

wwPDB X-ray Structure Validation Summary Report (i)

Nov 16, 2023 – 03:46 AM JST

PDB ID	:	6KMV
Title	:	caspase-11 C254A P22/P10 in complex with mouse GSDMD-C domain
Authors	:	Ding, J.; Sun, Q.
Deposited on	:	2019-08-01
Resolution	:	3.35 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.35 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	1558 (3.42-3.30)
Ramachandran outliers	138981	1599(3.42-3.30)
Sidechain outliers	138945	1598(3.42-3.30)
RSRZ outliers	127900	1507 (3.42 - 3.30)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain
1	Λ	161	000/
	A	101	99%
2	В	167	99%
			10%
2	V	167	99% .
			3%
3	C	198	100%
	G		2%
3	G	198	100%
	-		4%
3	0	198	97% •
			5%
4	D	197	99%

Mol	Chain	Length	Quality of chain
4	IZ.	107	16%
4	ĸ	197	99% •
4	S	197	100%
4	т	107	<u>6%</u>
4	1	197	100%
4	W	197	100%
4	L	107	17%
4	d	197	91% 9% 12%
4	f	197	100%
F	F	166	%
	E	100	99% •
5	F	166	99%
F	7	166	3%
	L	100	99% •
5	d	166	99%
C	тт	101	17%
0	П	191	89% • 10%
7	Ι	165	100%
7	м	165	%
- 1	IVI	105	99% • 2%
7	Ν	165	99%
7	0	165	.%
- 1	Q	105	100%
7	Y	165	99%
0	т	140	· %
0	J	149	99% •
9	L	214	99%
0	р	914	
9	Г	214	<u> </u>
9	е	214	99%
10	р	150	
10	n	100	.%
10	с	150	100%
11	ΤŢ	165	4%
	U	601	99% •
12	Х	199	100%
19	0	106	
13	a	190	93% • 7%

Mol	Chain	Length	Quality of chain
14	g	88	99%
14	h	88	98% •
14	i	88	97% •
14	j	88	99% •
14	k	88	98% •
14	1	88	99% •
14	m	88	98% •
14	n	88	99%
14	О	88	98% •
14	р	88	99% •
14	q	88	99% ·
14	r	88	99%
14	t	88	98%
14	u	88	98% ·
14	v	88	99% •
15	S	87	99% •

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 56064 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Caspase-4.

Mol	Chain	Residues		Atoms					AltConf	Trace
1	А	161	Total 1258	C 788	N 217	0 242	S 11	0	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	254	ALA	CYS	engineered mutation	UNP P70343

• Molecule 2 is a protein called Caspase-4.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
9	Р	167	Total	С	Ν	0	\mathbf{S}	0	0	0
	2 B	107	1316	825	226	253	12	0	0	0
9	V	167	Total	С	Ν	0	S	0	0	0
	v	107	1316	825	226	253	12	0	0	U

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	254	ALA	CYS	engineered mutation	UNP P70343
V	254	ALA	CYS	engineered mutation	UNP P70343

• Molecule 3 is a protein called Gasdermin-D.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	2 0	108	Total	С	Ν	0	S	0	0	0
0		190	1506	960	237	301	8	0	0	0
9	C	109	Total	С	Ν	0	\mathbf{S}	0	0	0
0	G	198	1506	960	237	301	8	0	0	0
2	0	108	Total	С	Ν	0	S	0	0	0
0	0	198	1506	960	237	301	8	0	0	U

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	П	107	Total	С	Ν	0	S	0	0	0
4	D	197	1501	957	236	300	8	0	0	0
4	K	107	Total	С	Ν	0	S	0	0	0
4	Λ	197	1501	957	236	300	8	0	0	0
4	C	107	Total	С	Ν	0	S	0	0	0
4	G	197	1501	957	236	300	8	0	0	0
4	Т	107	Total	С	Ν	0	S	0	0	0
4	L	197	1501	957	236	300	8	0	0	0
4	W	107	Total	С	Ν	0	S	0	0	0
4	vv	197	1501	957	236	300	8	0	0	0
4	h	180	Total	С	Ν	0	S	0	0	0
4	D	160	1363	870	211	275	7	0	0	0
4	f	107	Total	С	Ν	Ο	\mathbf{S}	0	0	0
4		191	1501	957	236	300	8			0

• Molecule 4 is a protein called Gasdermin-D.

• Molecule 5 is a protein called Caspase-4.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms			ZeroOcc	AltConf	Trace
5	F	166	Total	С	Ν	0	S	0	0	0
0		100	1310	822	225	251	12	0	0	0
Б	Б	166	Total	С	Ν	0	S	0	0	0
0	Г	100	1310	822	225	251	12	0	0	0
5	7	166	Total	С	Ν	0	S	0	0	0
0		100	1310	822	225	251	12	0	0	0
۲.	d	166	Total	С	Ν	0	S	0	0	0
5 d	166	1310	822	225	251	12	0	0	0	

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Е	254	ALA	CYS	engineered mutation	UNP P70343
F	254	ALA	CYS	engineered mutation	UNP P70343
Ζ	254	ALA	CYS	engineered mutation	UNP P70343
d	254	ALA	CYS	engineered mutation	UNP P70343

• Molecule 6 is a protein called Gasdermin-D.

Mol	Chain	Residues		Atoms					AltConf	Trace
6	Н	171	Total 1304	C 830	N 206	0 261	${ m S} 7$	0	0	0

6KMV

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
7	т	165	Total	С	Ν	0	\mathbf{S}	0	0	0
1	1	105	1303	818	224	249	12	0	0	0
7	М	165	Total	С	Ν	0	S	0	0	0
1	111	105	1303	818	224	249	12	0	0	0
7	N	165	Total	С	Ν	0	S	0	0	0
1	1	105	1303	818	224	249	12	0	0	0
7	0	165	Total	С	Ν	0	S	0	0	0
1	Q	105	1303	818	224	249	12	0	0	0
7	V	165	Total	С	Ν	0	S	0	0	0
(I	105	1303	818	224	249	12			U

• Molecule 7 is a protein called Caspase-4.

There are 5 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	254	ALA	CYS	engineered mutation	UNP P70343
М	254	ALA	CYS	engineered mutation	UNP P70343
N	254	ALA	CYS	engineered mutation	UNP P70343
Q	254	ALA	CYS	engineered mutation	UNP P70343
Y	254	ALA	CYS	engineered mutation	UNP P70343

• Molecule 8 is a protein called Caspase-4.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
8	J	149	Total 1169	С 734	N 200	O 225	S 10	0	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
J	254	ALA	CYS	engineered mutation	UNP P70343

• Molecule 9 is a protein called Gasdermin-D.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	т	214	Total	С	Ν	0	S	0	0	0
9		214	1627	1035	253	331	8	0	0	0
0	D	914	Total	С	Ν	0	S	0	0	0
9	1	214	1627	1035	253	331	8	0	0	0
0	0	914	Total	С	Ν	0	S	0	0	0
	e	214	1627	1035	253	331	8		0	

• Molecule 10 is a protein called Caspase-4.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
10	D	150	Total	С	Ν	0	\mathbf{S}	0	0	0
10	n	150	1175	737	201	227	10	0	0	0
10		150	Total	С	Ν	0	S	0	0	0
10	с	150	1175	737	201	227	10	0	0	

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
R	254	ALA	CYS	engineered mutation	UNP P70343
с	254	ALA	CYS	engineered mutation	UNP P70343

• Molecule 11 is a protein called Caspase-4.

Mol	Chain	Residues		Atoms					AltConf	Trace
11	U	165	Total 1301	C 817	N 224	0 248	S 12	0	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
U	254	ALA	CYS	engineered mutation	UNP P70343

• Molecule 12 is a protein called Gasdermin-D.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
12	Х	199	Total 1511	C 963	N 238	O 302	S 8	0	0	0

• Molecule 13 is a protein called Gasdermin-D.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
13	a	183	Total 1405	C 898	N 222	0 278	${f S} {f 7}$	0	0	0

• Molecule 14 is a protein called Caspase-4.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
14	g	88	Total 726	C 471	N 125	O 126	${f S}$ 4	0	0	0

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1/	h	88	Total	С	Ν	0	S	0	0	0
14	11	00	726	471	125	126	4	0	0	0
14	i	88	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	-		726	471	125	126	4	Ŭ		0
14	i	88	Total	С	Ν	Ο	S	0	0	0
	J		726	471	125	126	4	Ŭ		Ŭ
14	k	88	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	ň		726	471	125	126	4	0	0	0
14	1	88	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	1	00	726	471	125	126	4	0	0	0
14	m	m 88	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
11		00	726	471	125	126	4	0	0	0
1/	n	88	Total	С	Ν	Ο	\mathbf{S}	0	0	0
14	11		726	471	125	126	4	0	0	0
1/	0	0 88	Total	С	Ν	Ο	\mathbf{S}	0	0	0
11	0	00	726	471	125	126	4	0	0	0
1/	n	00	Total	С	Ν	Ο	\mathbf{S}	0	0	0
14	Р	00	726	471	125	126	4	0	0	0
14	a	88	Total	С	Ν	Ο	\mathbf{S}	0	0	0
14	Ч	00	726	471	125	126	4	0	0	0
14	r	88	Total	С	Ν	Ο	\mathbf{S}	0	0	0
14	1	00	726	471	125	126	4	0	0	0
14	+	88	Total	С	Ν	Ο	\mathbf{S}	0	0	0
14	U	00	726	471	125	126	4	0	0	0
1/	11	88	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
1.4	u	00	726	471	125	126	4	0	0	0
14	V	88	Total	C	N	Ō	S		0	0
1.7	v	00	726	471	125	126	4			0

• Molecule 15 is a protein called Caspase-4.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
15	S	87	Total 721	C 468	N 124	0 125	${S \atop 4}$	0	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain A:	99%	•
1118 12776 12777 1.278		
• Molecule 2: Caspase-4		
Chain B:	99%	
1101 1264 1265 1266 1266 1266 1266		
• Molecule 2: Caspase-4		
Chain V:	99%	•
11 01 126 A127 A128	P2 46 122 65 122 65 122 65	
• Molecule 3: Gasdermin-D		
Chain C:	100%	
A287 F289 (7289 0290 0349 L396 L396 L431 1431		
• Molecule 3: Gasdermin-D		
Chain G:	100%	
A287 V296 E397 L412 Q484		
• Molecule 3: Gasdermin-D		

• Molecule 1: Caspase-4

• Molecule 7: Caspase-4		
Chain I:	100%	
There are no outlier residues reco	orded for this chain.	
• Molecule 7: Caspase-4		
Chain M:	99%	
L102 D164 1264 1265 1266 12266		
• Molecule 7: Caspase-4		
Chain N:	99%	
E108 E108 R115 G129 G129 G129 E266		
• Molecule 7: Caspase-4		
Chain Q:	100%	
11 12 12 12 12 12 12 12 12 12 12 12 12 1		
• Molecule 7: Caspase-4		
Chain Y:	00%	
	5570	
L102 C105 E108 E126 E265 E265 E265		
• Molecule 8: Caspase-4		
Chain I:	00%/	
• •	5370	•
118 1241 1266		
• Molecule 9: Gasdermin-D		
Chain L:	99%	
		•
L271 L271 1284 F289 M328 M328 L392 L392 L392 L476 C419 C476 C455 L476	20 20 20	

• Molecule 9: Gasdermin-D	
Chain P:	99%
1271 5272 5276 1276 1246 1246 12484	
• Molecule 9: Gasdermin-D	
Chain e:	99% .
L271 D276 E289 L322 L476 L444 Q484	
• Molecule 10: Caspase-4	
Chain R:	100%
There are no outlier residues recorded	for this chain.
• Molecule 10: Caspase-4	
Chain c:	100%
11118 1267 1267	
• Molecule 11: Caspase-4	
Chain U:	99% .
1101 E108 C1113 C1113 C114 D164 N263 N265 R265	
• Molecule 12: Gasdermin-D	
Chain X:	100%
There are no outlier residues recorded	for this chain.
• Molecule 13: Gasdermin-D	
Chain a:	93% · 7%
F289 R311 L314 L315 V315 V316 V316 V316 C319 C319 C319 C319 C319 C319 F375 C358 F375 C358 F375 C358	10305 10
T469 8474 4774 8481 9484	

• Molecule 14: Caspase-4		
Chain g:	99%	
A286 1739 18773		
• Molecule 14: Caspase-4		
Chain h:	98%	·
A286 F326 N373		
• Molecule 14: Caspase-4		
Chain i:	97%	•
A286 F299 R321 N373		
• Molecule 14: Caspase-4		
Chain j:	99%	·
A286 F299 Na73		
• Molecule 14: Caspase-4		
Chain k:	98%	·
A286 F299 N373		
• Molecule 14: Caspase-4		
Chain 1:	99%	·
4286 11373 11373		
• Molecule 14: Caspase-4		
Chain m:	98%	•
1286 1373 1373		

• Molecule 14: Caspase-4		
Chain n:	99% .	
A286 F229 N373		
• Molecule 14: Caspase-4		
Chain o:	98% .	
A286 F299 N3 73 N3 73		
• Molecule 14: Caspase-4		
Chain p:	99%	
A2366 13373 1373		
• Molecule 14: Caspase-4		
Chain q:	99% .	
A286 F299 D311 N373		
• Molecule 14: Caspase-4		
Chain r:	99% .	
A286 F399 F314 F325 F325 M373 M373		
• Molecule 14: Caspase-4		
Chain t:	98% .	
A286 7299 7326 8372 8373 8373		
• Molecule 14: Caspase-4		
Chain u:	98% .	

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	89.80Å 139.21Å 175.94Å	Depositor
a, b, c, α , β , γ	92.43° 99.06° 96.35°	Depositor
Bosolution(A)	37.44 - 3.35	Depositor
Resolution (A)	45.07 - 3.35	EDS
% Data completeness	98.2 (37.44-3.35)	Depositor
(in resolution range)	94.2 (45.07-3.35)	EDS
R_{merge}	0.09	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.35 (at 3.32 \text{\AA})$	Xtriage
Refinement program	PHENIX	Depositor
P. P.	0.219 , 0.252	Depositor
Π, Π_{free}	0.220 , 0.252	DCC
R_{free} test set	2000 reflections $(1.69%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	81.1	Xtriage
Anisotropy	0.167	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.30 , 46.3	EDS
L-test for $twinning^2$	$ < L >=0.49, < L^2>=0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.91	EDS
Total number of atoms	56064	wwPDB-VP
Average B, all atoms $(Å^2)$	91.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.51% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
IVIOI	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.31	0/1280	0.50	0/1724	
2	В	0.24	0/1339	0.43	0/1802	
2	V	0.24	0/1339	0.43	0/1802	
3	С	0.23	0/1532	0.40	0/2089	
3	G	0.24	0/1532	0.39	0/2089	
3	0	0.29	0/1532	0.46	0/2089	
4	D	0.24	0/1527	0.39	0/2082	
4	Κ	0.23	0/1527	0.39	0/2082	
4	S	0.24	0/1527	0.39	0/2082	
4	Т	0.23	0/1527	0.39	0/2082	
4	W	0.23	0/1527	0.39	0/2082	
4	b	0.24	0/1382	0.39	0/1877	
4	f	0.24	0/1527	0.39	0/2082	
5	Е	0.24	0/1333	0.43	0/1794	
5	F	0.24	0/1333	0.43	0/1794	
5	Ζ	0.24	0/1333	0.43	0/1794	
5	d	0.24	0/1333	0.43	0/1794	
6	Н	0.23	0/1324	0.40	0/1801	
7	Ι	0.24	0/1326	0.42	0/1784	
7	М	0.24	0/1326	0.42	0/1784	
7	Ν	0.24	0/1326	0.42	0/1784	
7	Q	0.24	0/1326	0.42	0/1784	
7	Y	0.24	0/1326	0.42	0/1784	
8	J	0.24	0/1190	0.43	0/1603	
9	L	0.24	0/1653	0.40	0/2253	
9	Р	0.31	0/1653	0.46	0/2253	
9	е	0.24	0/1653	0.40	0/2253	
10	R	0.24	0/1196	0.43	0/1611	
10	с	0.24	0/1196	0.43	0/1611	
11	U	0.24	0/1324	0.43	0/1782	
12	Х	0.25	0/1537	0.41	0/2096	
13	a	0.24	0/1429	0.39	0/1945	
14	g	0.24	0/748	0.44	0/1007	
14	h	0.24	0/748	0.43	0/1007	

Mal	Chain	Bond lengths		Bond angles		
	Ullaill	RMSZ	# Z > 5	RMSZ	# Z > 5	
14	i	0.24	0/748	0.44	0/1007	
14	j	0.24	0/748	0.42	0/1007	
14	k	0.24	0/748	0.44	0/1007	
14	l	0.24	0/748	0.42	0/1007	
14	m	0.24	0/748	0.43	0/1007	
14	n	0.24	0/748	0.42	0/1007	
14	0	0.24	0/748	0.44	0/1007	
14	р	0.24	0/748	0.43	0/1007	
14	q	0.24	0/748	0.44	0/1007	
14	r	0.24	0/748	0.42	0/1007	
14	\mathbf{t}	0.24	0/748	0.42	0/1007	
14	u	0.24	0/748	0.44	0/1007	
14	V	0.25	0/748	0.42	0/1007	
15	s	0.24	0/743	0.44	0/1000	
All	All	0.24	0/57178	0.42	0/77373	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	159/161~(99%)	151 (95%)	8 (5%)	0	100	100
2	В	165/167~(99%)	157 (95%)	8 (5%)	0	100	100

α \cdot \cdot \cdot	C		
Continued	trom	nromanic	naae
Continucu	110116	preduous	puyc
		1	1 0

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	V	165/167~(99%)	156 (94%)	8~(5%)	1 (1%)	25	59
3	С	196/198~(99%)	195 (100%)	1 (0%)	0	100	100
3	G	196/198~(99%)	195 (100%)	1 (0%)	0	100	100
3	Ο	196/198~(99%)	193~(98%)	2(1%)	1 (0%)	29	63
4	D	195/197~(99%)	193 (99%)	2(1%)	0	100	100
4	Κ	195/197~(99%)	194 (100%)	1 (0%)	0	100	100
4	S	195/197~(99%)	194 (100%)	1 (0%)	0	100	100
4	Т	195/197~(99%)	194 (100%)	1 (0%)	0	100	100
4	W	195/197~(99%)	194 (100%)	1 (0%)	0	100	100
4	b	170/197~(86%)	169 (99%)	1 (1%)	0	100	100
4	f	195/197~(99%)	194 (100%)	1 (0%)	0	100	100
5	Е	164/166~(99%)	156 (95%)	8 (5%)	0	100	100
5	F	164/166~(99%)	157 (96%)	7 (4%)	0	100	100
5	Ζ	164/166~(99%)	155 (94%)	9~(6%)	0	100	100
5	d	164/166~(99%)	156 (95%)	8 (5%)	0	100	100
6	Н	163/191~(85%)	163 (100%)	0	0	100	100
7	Ι	163/165~(99%)	155 (95%)	8 (5%)	0	100	100
7	М	163/165~(99%)	154 (94%)	9~(6%)	0	100	100
7	Ν	163/165~(99%)	155 (95%)	7 (4%)	1 (1%)	25	59
7	Q	163/165~(99%)	155 (95%)	8 (5%)	0	100	100
7	Y	163/165~(99%)	154 (94%)	9~(6%)	0	100	100
8	J	147/149~(99%)	141 (96%)	6 (4%)	0	100	100
9	L	212/214~(99%)	208 (98%)	4 (2%)	0	100	100
9	Р	212/214~(99%)	207 (98%)	5 (2%)	0	100	100
9	е	212/214~(99%)	206 (97%)	5 (2%)	1 (0%)	29	63
10	R	148/150 (99%)	142 (96%)	6 (4%)	0	100	100
10	с	148/150~(99%)	140 (95%)	8 (5%)	0	100	100
11	U	163/165~(99%)	155 (95%)	8 (5%)	0	100	100
12	Х	197/199~(99%)	196 (100%)	1 (0%)	0	100	100
13	a	179/196~(91%)	178 (99%)	1 (1%)	0	100	100
14	g	86/88~(98%)	83 (96%)	3 (4%)	0	100	100

6KM	V
-----	---

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
14	h	86/88~(98%)	83~(96%)	3(4%)	0	100	100
14	i	86/88~(98%)	83~(96%)	3(4%)	0	100	100
14	j	86/88~(98%)	83~(96%)	3~(4%)	0	100	100
14	k	86/88~(98%)	83~(96%)	3 (4%)	0	100	100
14	1	86/88~(98%)	83~(96%)	3(4%)	0	100	100
14	m	86/88~(98%)	82 (95%)	4 (5%)	0	100	100
14	n	86/88~(98%)	83 (96%)	3 (4%)	0	100	100
14	О	86/88~(98%)	83 (96%)	3 (4%)	0	100	100
14	р	86/88~(98%)	83 (96%)	3 (4%)	0	100	100
14	q	86/88~(98%)	83 (96%)	3 (4%)	0	100	100
14	r	86/88~(98%)	83 (96%)	3 (4%)	0	100	100
14	t	86/88~(98%)	83 (96%)	3 (4%)	0	100	100
14	u	86/88~(98%)	83 (96%)	3 (4%)	0	100	100
14	V	86/88~(98%)	83 (96%)	3 (4%)	0	100	100
15	S	85/87~(98%)	82 (96%)	3 (4%)	0	100	100
All	All	7044/7206~(98%)	6838 (97%)	202 (3%)	4 (0%)	51	82

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
9	е	282	GLU
2	V	265	ARG
3	0	398	THR
7	Ν	128	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	139/139~(100%)	137~(99%)	2(1%)	67 83

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	В	146/146~(100%)	144 (99%)	2(1%)	67	83
2	V	146/146~(100%)	145~(99%)	1 (1%)	84	92
3	\mathbf{C}	171/171~(100%)	171 (100%)	0	100	100
3	G	171/171~(100%)	171 (100%)	0	100	100
3	Ο	171/171~(100%)	167~(98%)	4 (2%)	50	75
4	D	171/171~(100%)	170 (99%)	1 (1%)	86	93
4	Κ	$171/171 \ (100\%)$	169 (99%)	2 (1%)	71	85
4	S	$171/171 \ (100\%)$	171 (100%)	0	100	100
4	Т	$171/171 \ (100\%)$	171 (100%)	0	100	100
4	W	$171/171 \ (100\%)$	171 (100%)	0	100	100
4	b	155/171 (91%)	155 (100%)	0	100	100
4	f	$171/171 \ (100\%)$	171 (100%)	0	100	100
5	Е	145/145~(100%)	144 (99%)	1 (1%)	84	92
5	F	145/145~(100%)	144 (99%)	1 (1%)	84	92
5	Z	145/145~(100%)	144 (99%)	1 (1%)	84	92
5	d	145/145~(100%)	144 (99%)	1 (1%)	84	92
6	Н	150/166~(90%)	149 (99%)	1 (1%)	84	92
7	Ι	144/144~(100%)	144 (100%)	0	100	100
7	М	144/144~(100%)	143 (99%)	1 (1%)	84	92
7	Ν	144/144~(100%)	143 (99%)	1 (1%)	84	92
7	Q	144/144~(100%)	144 (100%)	0	100	100
7	Y	144/144~(100%)	143~(99%)	1 (1%)	84	92
8	J	128/128 (100%)	127~(99%)	1 (1%)	81	91
9	L	185/185~(100%)	182 (98%)	3 (2%)	62	81
9	Р	185/185~(100%)	182 (98%)	3 (2%)	62	81
9	е	185/185 (100%)	183 (99%)	2 (1%)	73	86
10	R	129/129~(100%)	129 (100%)	0	100	100
10	с	129/129~(100%)	129 (100%)	0	100	100
11	U	144/144 (100%)	142 (99%)	2 (1%)	67	83
12	Х	171/171~(100%)	171 (100%)	0	100	100
13	a	158/170~(93%)	157 (99%)	1 (1%)	86	93

6KMV	
------	--

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntile	s
14	g	80/80~(100%)	79~(99%)	1 (1%)	69	84	
14	h	80/80~(100%)	78~(98%)	2(2%)	47	73	
14	i	80/80~(100%)	77~(96%)	3~(4%)	33	63	
14	j	80/80~(100%)	79~(99%)	1 (1%)	69	84	
14	k	80/80~(100%)	78~(98%)	2(2%)	47	73	
14	1	80/80~(100%)	79~(99%)	1 (1%)	69	84	
14	m	80/80~(100%)	78~(98%)	2(2%)	47	73	
14	n	80/80~(100%)	79~(99%)	1 (1%)	69	84	
14	О	80/80~(100%)	78~(98%)	2(2%)	47	73	
14	р	80/80~(100%)	79~(99%)	1 (1%)	69	84	
14	q	80/80~(100%)	79~(99%)	1 (1%)	69	84	
14	r	80/80~(100%)	79~(99%)	1 (1%)	69	84	
14	t	80/80~(100%)	78~(98%)	2(2%)	47	73	
14	u	80/80~(100%)	78~(98%)	2(2%)	47	73	
14	v	80/80~(100%)	79~(99%)	1 (1%)	69	84	
15	S	80/80 (100%)	79 (99%)	1 (1%)	69	84	
All	All	6269/6313~(99%)	6213 (99%)	56 (1%)	78	89	

5 of 56 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
13	a	407	LEU
14	V	299	PHE
14	i	299	PHE
14	u	321	ARG
14	r	299	PHE

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such side chains are listed below:

Mol	Chain	Res	Type
14	r	344	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q < 0.9
1	А	161/161~(100%)	-0.05	0 100 100	41,65,104,154	0
2	В	167/167~(100%)	-0.01	0 100 100	41,63,95,109	0
2	V	167/167~(100%)	0.48	17 (10%) 6 8	70, 116, 140, 159	0
3	С	198/198~(100%)	0.27	6 (3%) 50 53	60, 88, 125, 139	0
3	G	198/198~(100%)	0.29	3 (1%) 73 76	70, 97, 121, 137	0
3	Ο	198/198~(100%)	0.18	8 (4%) 38 40	30, 94, 119, 140	0
4	D	197/197~(100%)	0.30	9 (4%) 32 35	66, 98, 140, 149	0
4	K	197/197~(100%)	0.85	31 (15%) 2 2	77, 122, 147, 154	0
4	S	197/197~(100%)	0.57	20 (10%) 6 8	68, 107, 148, 162	0
4	Т	197/197~(100%)	0.48	12 (6%) 21 23	81, 116, 150, 160	0
4	W	197/197~(100%)	0.64	16 (8%) 12 13	99, 126, 146, 153	0
4	b	180/197~(91%)	0.89	34 (18%) 1 1	96, 123, 145, 153	0
4	f	197/197~(100%)	0.69	23 (11%) 4 5	80, 111, 150, 163	0
5	Е	166/166~(100%)	-0.03	2 (1%) 79 82	48, 75, 111, 129	0
5	F	166/166~(100%)	-0.07	2 (1%) 79 82	53, 77, 111, 120	0
5	Z	166/166~(100%)	0.17	5 (3%) 50 53	68, 93, 127, 147	0
5	d	166/166~(100%)	-0.08	3 (1%) 68 71	41, 64, 96, 123	0
6	Н	171/191~(89%)	1.02	32 (18%) 1 1	86, 126, 156, 165	0
7	Ι	165/165~(100%)	-0.04	0 100 100	45, 66, 105, 120	0
7	М	165/165~(100%)	0.09	1 (0%) 89 92	61, 91, 117, 132	0
7	Ν	165/165~(100%)	0.09	3 (1%) 68 71	72, 100, 130, 138	0
7	Q	165/165~(100%)	0.09	1 (0%) 89 92	56, 82, 109, 123	0
7	Y	165/165~(100%)	0.09	3 (1%) 68 71	66, 94, 129, 144	0
8	J	149/149~(100%)	0.06	2 (1%) 77 80	44, 64, 88, 125	0

Continued	from	nrevious	naae
Commueu	jiom	previous	page

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{A}^2)$	Q<0.9
9	L	214/214~(100%)	0.30	10 (4%) 31 34	64, 100, 128, 138	0
9	Р	214/214~(100%)	0.11	0 100 100	30, 77, 97, 114	0
9	е	214/214~(100%)	0.19	5 (2%) 60 63	51, 84, 121, 138	0
10	R	150/150~(100%)	-0.12	0 100 100	45, 61, 100, 118	0
10	с	150/150~(100%)	-0.01	1 (0%) 87 91	45, 74, 95, 136	0
11	U	165/165~(100%)	0.19	7 (4%) 36 38	66, 87, 121, 130	0
12	Х	199/199~(100%)	0.12	0 100 100	30, 73, 97, 109	0
13	a	183/196~(93%)	0.84	28 (15%) 2 2	86, 120, 142, 148	0
14	g	88/88 (100%)	0.08	1 (1%) 80 84	43, 59, 86, 104	0
14	h	88/88 (100%)	-0.01	0 100 100	41, 58, 95, 118	0
14	i	88/88 (100%)	-0.02	0 100 100	52, 69, 93, 104	0
14	j	88/88 (100%)	0.01	0 100 100	50, 72, 92, 102	0
14	k	88/88 (100%)	0.07	0 100 100	44, 66, 87, 94	0
14	1	88/88 (100%)	0.07	1 (1%) 80 84	43, 64, 94, 109	0
14	m	88/88 (100%)	0.11	1 (1%) 80 84	67, 87, 110, 119	0
14	n	88/88 (100%)	0.12	0 100 100	69, 90, 124, 130	0
14	О	88/88 (100%)	-0.02	0 100 100	42, 68, 96, 105	0
14	р	88/88 (100%)	-0.00	1 (1%) 80 84	44, 61, 82, 112	0
14	q	88/88 (100%)	0.26	1 (1%) 80 84	69, 95, 114, 128	0
14	r	88/88 (100%)	0.36	5 (5%) 23 26	78, 107, 136, 144	0
14	t	88/88~(100%)	0.40	6 (6%) 17 20	71, 93, 122, 132	0
14	u	88/88~(100%)	0.11	1 (1%) 80 84	43, 63, 100, 105	0
14	V	88/88~(100%)	0.14	2 (2%) 60 63	43, 64, 99, 130	0
15	s	87/87 (100%)	0.08	1 (1%) 80 84	67, 88, 112, 128	0
All	All	7156/7206~(99%)	0.25	304 (4%) 36 38	30, 89, 137, 165	0

The worst 5 of 304 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
13	a	396	LEU	6.7
4	f	431	LEU	6.2
13	a	441	THR	6.0
4	Κ	450	LEU	6.0
4	b	398	THR	5.5

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

