

Full wwPDB X-ray Structure Validation Report (i)

Nov 1, 2023 – 03:31 PM JST

PDB ID	:	5KNC
Title	:	Crystal structure of the 3 ADP-bound V1 complex
Authors	:	Suzuki, K.; Mizutani, K.; Maruyama, S.; Shimono, K.; Imai, F.L.; Muneyuki,
		E.; Kakinuma, Y.; Ishizuka-Katsura, Y.; Shirouzu, M.; Yokoyama, S.; Yamato,
		I.; Murata, T.
Deposited on	:	2016-06-28
Resolution	:	3.02 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.02 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	2399(3.04-3.00)
Clashscore	141614	2734(3.04-3.00)
Ramachandran outliers	138981	2640 (3.04-3.00)
Sidechain outliers	138945	2643 (3.04-3.00)
RSRZ outliers	127900	2287 (3.04-3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	٨	600	4%		_
<u> </u>	A	600	77%	20%	••
1	В	600	83%	15%	.
			2%		
1	С	600	79%	18%	·
	D	105	% •		_
2	D	465	79%	18%	•
	Б	105	.% 		
2	E	405	80%	17%	•

Continued from previous page...

Mol	Chain	Length	Quality of chain		
2	F	465	.% 78%	19%	·
3	G	217	75%	15%	10%
4	Н	115	75%	14%	11%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
6	SO4	А	702	-	-	Х	-
8	GOL	А	707	-	-	-	Х

$5 \mathrm{KNC}$

2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 26799 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	599	Total	С	Ν	0	\mathbf{S}	0	1	0
	A	000	4527	2839	769	893	26	0	1	0
1	р	599	Total	С	Ν	0	S	0	0	0
	D	000	4554	2861	767	900	26	0	0	0
1	C	596	Total	С	Ν	0	S	0	0	0
		560	4518	2839	761	892	26	0	0	0

• Molecule 1 is a protein called V-type sodium ATPase catalytic subunit A.

Chain	Residue	Modelled	Actual	Comment	Reference
А	-6	GLY	-	expression tag	UNP Q08636
А	-5	SER	-	expression tag	UNP Q08636
А	-4	SER	-	expression tag	UNP Q08636
А	-3	GLY	-	expression tag	UNP Q08636
А	-2	SER	-	expression tag	UNP Q08636
А	-1	SER	-	expression tag	UNP Q08636
А	0	GLY	-	expression tag	UNP Q08636
В	-6	GLY	-	expression tag	UNP Q08636
В	-5	SER	-	expression tag	UNP Q08636
В	-4	SER	-	expression tag	UNP Q08636
В	-3	GLY	-	expression tag	UNP Q08636
В	-2	SER	-	expression tag	UNP Q08636
В	-1	SER	-	expression tag	UNP Q08636
В	0	GLY	-	expression tag	UNP Q08636
С	-6	GLY	-	expression tag	UNP Q08636
С	-5	SER	-	expression tag	UNP Q08636
С	-4	SER	-	expression tag	UNP Q08636
С	-3	GLY	-	expression tag	UNP Q08636
С	-2	SER	-	expression tag	UNP Q08636
С	-1	SER	-	expression tag	UNP Q08636
С	0	GLY	-	expression tag	UNP Q08636

There are 21 discrepancies between the modelled and reference sequences:

• Molecule 2 is a protein called V-type sodium ATPase subunit B.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	п	454	Total	С	Ν	0	\mathbf{S}	0	1	0
	D	404	3540	2245	607	673	15	0		0
0	Б	452	Total	С	Ν	0	S	0	0	0
		400	3526	2236	604	672	14	0	0	0
9	F	455	Total	С	Ν	0	S	0	0	0
	400	3552	2253	605	679	15	0		U	

There are 21 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	-6	GLY	-	expression tag	UNP Q08637
D	-5	SER	-	expression tag	UNP Q08637
D	-4	SER	-	expression tag	UNP Q08637
D	-3	GLY	-	expression tag	UNP Q08637
D	-2	SER	-	expression tag	UNP Q08637
D	-1	SER	-	expression tag	UNP Q08637
D	0	GLY	-	expression tag	UNP Q08637
Е	-6	GLY	-	expression tag	UNP Q08637
Е	-5	SER	-	expression tag	UNP Q08637
Е	-4	SER	-	expression tag	UNP Q08637
Е	-3	GLY	-	expression tag	UNP Q08637
Е	-2	SER	-	expression tag	UNP Q08637
Е	-1	SER	-	expression tag	UNP Q08637
Е	0	GLY	-	expression tag	UNP Q08637
F	-6	GLY	-	expression tag	UNP Q08637
F	-5	SER	-	expression tag	UNP Q08637
F	-4	SER	-	expression tag	UNP Q08637
F	-3	GLY	-	expression tag	UNP Q08637
F	-2	SER	-	expression tag	UNP Q08637
F	-1	SER	-	expression tag	UNP Q08637
F	0	GLY	-	expression tag	UNP Q08637

• Molecule 3 is a protein called V-type sodium ATPase subunit D.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms			ZeroOcc	AltConf	Trace
3	G	195	Total 1568	C 991	N 276	O 291	S 10	0	0	0

There are 7 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	-6	GLY	-	expression tag	UNP P43435
G	-5	SER	-	expression tag	UNP P43435

	<i>v</i> 1	10			
Chain	Residue	Modelled	Actual	Comment	Reference
G	-4	SER	-	expression tag	UNP P43435
G	-3	GLY	-	expression tag	UNP P43435
G	-2	SER	-	expression tag	UNP P43435
G	-1	SER	-	expression tag	UNP P43435
G	0	GLY	-	expression tag	UNP P43435

• Molecule 4 is a protein called V-type sodium ATPase subunit NtpG (F).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
4	Н	102	Total 769	C 490	N 127	O 150	${ m S} { m 2}$	0	0	0

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Н	104	SER	-	expression tag	UNP P43455
Н	105	GLY	-	expression tag	UNP P43455
Н	106	PRO	-	expression tag	UNP P43455
Н	107	SER	-	expression tag	UNP P43455
Н	108	SER	-	expression tag	UNP P43455
Н	109	GLY	-	expression tag	UNP P43455
Н	110	GLU	-	expression tag	UNP P43455
Н	111	ASN	-	expression tag	UNP P43455
Н	112	LEU	-	expression tag	UNP P43455
Н	113	TYR	-	expression tag	UNP P43455
Н	114	PHE	-	expression tag	UNP P43455
Н	115	GLN	-	expression tag	UNP P43455

• Molecule 5 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	1	Total Mg 1 1	0	0
5	В	1	Total Mg 1 1	0	0
5	С	1	Total Mg 1 1	0	0

• Molecule 6 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
6	А	1	Total 5	0 4	S 1	0	0

• Molecule 7 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
7	Δ	1	Total	С	Ν	Ο	Р	0	0
1	A	L	27	10	5	10	2	0	0
7	В	1	Total	С	Ν	Ο	Р	0	0
'	D	L	27	10	5	10	2	0	U

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
7	С	1	Total 27	C 10	N 5	O 10	Р 2	0	0

• Molecule 8 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
8	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
8	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
8	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
8	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
8	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
8	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
8	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
8	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
8	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
8	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
8	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
8	F	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0

• Molecule 9 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	А	12	Total O 12 12	0	0
9	В	19	Total O 19 19	0	0
9	С	15	Total O 15 15	0	0
9	D	6	Total O 6 6	0	0
9	Е	8	Total O 8 8	0	0
9	F	7	Total O 7 7	0	0
9	G	4	Total O 4 4	0	0
9	Н	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: V-type sodium ATPase catalytic subunit A

7317 7321 7321 7321 7321 7321 7323 7324 7325 7325 7356 7359 7359 7359 7359 7359 7359 7359 7359 7359 7359 7359 7446 7446 7446 7446 7446 7446 7446 7446 7446 7446 7446 7446 7446 7446 </t

• Molecule 3: V-type sodium ATPase subunit D

• Molecule 4: V-type sodium ATPase subunit NtpG (F)

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	121.68Å 126.49 Å 225.26 Å	Deneriten
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{Posolution}(\mathbf{\hat{A}})$	48.37 - 3.02	Depositor
Resolution (A)	48.37 - 3.02	EDS
% Data completeness	99.2 (48.37-3.02)	Depositor
(in resolution range)	99.2 (48.37-3.02)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.25 (at 3.01 \text{\AA})$	Xtriage
Refinement program	PHENIX (phenix.refine: 1.9_1692)	Depositor
P. P.	0.214 , 0.253	Depositor
n, n_{free}	0.217 , 0.253	DCC
R_{free} test set	3422 reflections $(4.98%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	58.1	Xtriage
Anisotropy	0.385	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.35 , 48.5	EDS
L-test for twinning ²	$< L > = 0.46, < L^2 > = 0.29$	Xtriage
Estimated twinning fraction	0.029 for k,h,-l	Xtriage
Reported twinning fraction	0.060 for k,h,-l	Depositor
Outliers	0 of 68687 reflections	Xtriage
F_o, F_c correlation	0.91	EDS
Total number of atoms	26799	wwPDB-VP
Average B, all atoms $(Å^2)$	55.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.17% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4, GOL, ADP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.23	0/4603	0.41	0/6232
1	В	0.22	0/4630	0.38	0/6267
1	С	0.22	0/4594	0.40	0/6221
2	D	0.22	0/3602	0.41	0/4874
2	Е	0.22	0/3589	0.40	0/4859
2	F	0.22	0/3615	0.40	0/4892
3	G	0.23	0/1583	0.42	0/2126
4	Н	0.22	0/781	0.40	0/1060
All	All	0.22	0/26997	0.40	0/36531

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4527	0	4432	74	0
1	В	4554	0	4502	52	0
1	С	4518	0	4436	67	0
2	D	3540	0	3534	57	0
2	Е	3526	0	3512	51	0

5KNC

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	F	3552	0	3558	56	0
3	G	1568	0	1621	21	0
4	Н	769	0	761	12	0
5	А	1	0	0	0	0
5	В	1	0	0	0	0
5	С	1	0	0	0	0
6	А	5	0	0	2	0
7	А	27	0	12	0	0
7	В	27	0	12	0	0
7	С	27	0	12	0	0
8	А	36	0	48	2	0
8	В	30	0	40	0	0
8	D	12	0	16	0	0
8	F	6	0	8	0	0
9	А	12	0	0	0	0
9	В	19	0	0	1	0
9	С	15	0	0	1	0
9	D	6	0	0	0	0
9	Е	8	0	0	0	0
9	F	7	0	0	0	0
9	G	4	0	0	0	0
9	Н	1	0	0	0	0
All	All	26799	0	26504	365	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (365) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:202:LYS:NZ	1:A:367:GLU:O	2.06	0.89
1:C:133:GLY:O	1:C:380:ARG:NH2	2.18	0.76
3:G:41:ILE:HD11	4:H:98:VAL:HG21	1.69	0.75
2:F:101:PRO:HB2	2:F:103:ILE:HG12	1.70	0.74
2:D:123:TYR:O	2:D:290:ARG:NH1	2.22	0.73
2:E:379:GLY:HA2	2:E:401:TYR:HB3	1.69	0.73
2:D:119:ILE:O	2:D:292:ARG:NH2	2.22	0.73
2:E:250:MET:HB2	2:E:304:LEU:HB3	1.71	0.73
3:G:21:THR:HA	3:G:24:ARG:HE	1.54	0.72
1:C:148:LYS:HD2	1:C:320:MET:HB2	1.70	0.71
3:G:201:ILE:O	3:G:205:ASN:ND2	2.23	0.71

	h h	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:103:LEU:HD21	2:F:117:ASN:HD22	1.55	0.70
2:E:45:LEU:HD11	2:E:55:GLN:HB2	1.74	0.69
2:E:153:SER:O	2:E:331:ARG:NH2	2.25	0.69
2:F:11:VAL:HG22	2:F:16:MET:HG2	1.75	0.68
1:C:210:ILE:HD11	1:C:515:ARG:HE	1.57	0.68
2:D:415:GLN:HE21	2:D:421:ARG:HD2	1.58	0.68
1:C:333:ARG:HH22	2:F:321:TYR:HD2	1.41	0.67
3:G:164:ARG:NH2	4:H:96:LYS:O	2.27	0.67
2:E:216:ASP:O	2:E:221:ARG:NH1	2.27	0.67
1:C:558:ARG:NH1	2:F:445:ILE:O	2.26	0.67
2:F:291:ILE:HD11	2:F:294:LEU:HD22	1.78	0.65
1:C:268:ASP:OD1	2:F:354:LYS:NZ	2.28	0.65
1:A:90:PRO:HD3	1:A:111:ALA:HA	1.78	0.65
1:A:215:VAL:HG13	1:A:216:ILE:HD12	1.78	0.65
2:D:250:MET:HB2	2:D:304:LEU:HB3	1.79	0.65
1:B:51:VAL:HG12	1:B:53:GLU:H	1.62	0.64
1:B:24:ILE:HG22	1:B:25:GLN:HG2	1.79	0.64
1:A:264:ASN:ND2	2:D:324:GLU:OE2	2.31	0.64
1:B:56:SER:O	1:B:105:ARG:NH2	2.23	0.64
1:C:507:ASP:OD1	2:F:446:LYS:NZ	2.25	0.63
1:A:96:GLU:O	1:A:99:GLN:NE2	2.32	0.63
2:E:106:GLU:OE1	2:E:234:TYR:OH	2.16	0.63
1:C:467:GLU:OE1	1:C:497:ARG:NH1	2.31	0.63
1:B:445:MET:HA	1:B:448:ILE:HG22	1.81	0.62
2:D:199:ARG:HG2	2:D:204:ILE:HD13	1.82	0.62
2:D:186:ILE:HG23	2:D:190:GLU:HG2	1.81	0.62
2:E:88:ARG:NH2	2:E:101:PRO:O	2.32	0.62
1:C:356:ALA:HB1	2:D:259:GLU:HA	1.81	0.62
1:A:34:GLY:O	1:A:108:GLN:NE2	2.33	0.62
3:G:188:LYS:O	3:G:192:ASN:ND2	2.32	0.62
1:A:172:PRO:HB3	1:A:184:GLU:HB3	1.81	0.61
3:G:78:ASP:OD1	4:H:11:LYS:NZ	2.32	0.61
1:B:119:TRP:HE1	1:B:121:GLU:HG2	1.65	0.61
2:D:95:ARG:O	2:D:97:LYS:NZ	2.33	0.61
1:B:467:GLU:OE2	1:B:497:ARG:NH1	2.33	0.61
1:B:304:GLU:HG3	1:B:334:TRP:HE1	1.66	0.61
2:E:366:ALA:O	2:E:370:ASN:ND2	2.34	0.61
1:A:82:GLN:NE2	1:A:92:ASP:OD1	2.34	0.60
2:E:248:THR:HB	2:E:303:ILE:HB	1.83	0.60
1:A:546:MET:O	1:A:553:ARG:NH2	2.35	0.60
1:C:473:ILE:HD11	1:C:482:LEU:HD21	1.82	0.60

	h h	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:209:MET:HB2	1:A:224:LYS:HG3	1.83	0.60
2:F:203:ALA:O	2:F:207:SER:OG	2.19	0.60
1:B:476:LEU:HB3	3:G:165:ARG:HG3	1.84	0.60
2:F:44:VAL:HA	2:F:54:VAL:HG12	1.84	0.60
1:A:445:MET:HA	1:A:448:ILE:HG22	1.83	0.60
2:F:182:ALA:HB3	2:F:247:MET:HG2	1.84	0.59
2:D:145:GLN:HG3	2:D:351:LEU:HD22	1.85	0.59
2:E:196:GLU:HA	2:E:199:ARG:HE	1.66	0.59
2:F:454:LEU:HD12	2:F:455:PRO:HD2	1.85	0.59
1:C:85:ASP:OD1	1:C:86:GLY:N	2.32	0.59
2:D:137:HIS:ND1	2:D:412:TYR:OH	2.36	0.59
2:F:179:VAL:HG12	2:F:244:LEU:HB3	1.83	0.59
1:C:169:ILE:HA	1:C:187:MET:HB3	1.85	0.58
2:E:364:ASP:OD2	2:E:431:TRP:NE1	2.30	0.58
1:B:254:VAL:HB	1:B:289:THR:HG22	1.85	0.58
1:A:201:GLN:HB3	1:A:373:ILE:HD11	1.85	0.58
1:B:440:GLU:OE1	1:B:443:ARG:NH1	2.36	0.58
2:F:328:ILE:HD12	2:F:346:PRO:HB2	1.86	0.58
1:C:30:VAL:HA	1:C:64:VAL:HG12	1.86	0.58
2:F:40:ARG:HH12	2:F:61:SER:H	1.52	0.58
1:A:208:PRO:HA	1:A:223:THR:HA	1.85	0.58
1:C:83:MET:HG2	1:C:91:LEU:HD22	1.86	0.58
2:D:441:GLU:HG3	2:D:444:ARG:HH12	1.67	0.58
1:C:562:ILE:HD11	1:C:570:ILE:HG12	1.86	0.57
2:E:371:GLN:HG2	2:E:444:ARG:HB2	1.86	0.57
1:B:82:GLN:NE2	1:B:92:ASP:OD2	2.37	0.57
1:B:126:GLU:HG3	1:B:162:ILE:HG22	1.87	0.57
2:D:148:PRO:HB3	2:D:302:PRO:HG2	1.85	0.57
1:B:507:ASP:HB3	1:B:510:ASP:HB3	1.88	0.56
1:B:233:PRO:HG3	1:B:417:SER:HB3	1.86	0.56
1:B:6:ILE:HD12	1:B:62:GLU:HB2	1.87	0.56
1:C:467:GLU:HG2	1:C:471:ASN:ND2	2.21	0.56
3:G:90:ILE:HD13	4:H:5:ILE:HD11	1.87	0.56
1:B:400:PRO:O	1:B:404:ASN:ND2	2.34	0.56
3:G:155:LEU:HD21	4:H:69:LEU:HA	1.88	0.56
1:C:453:TRP:HZ3	1:C:519:PHE:HA	1.70	0.55
2:E:66:LYS:HD2	2:E:66:LYS:N	2.22	0.55
2:F:406:GLU:OE2	2:F:410:ASN:ND2	2.39	0.55
1:B:41:GLU:HB2	1:B:48:SER:HB2	1.88	0.55
2:D:328:ILE:HD12	2:D:346:PRO:HB2	1.88	0.55
2:F:148:PRO:HB3	2:F:302:PRO:HG2	1.87	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:194:ARG:NH2	1:A:304:GLU:OE1	2.37	0.55
1:A:482:LEU:HD13	1:A:482:LEU:H	1.71	0.55
2:E:362:ARG:HG2	2:E:427:LEU:HD13	1.89	0.55
2:D:198:PHE:HB3	2:D:204:ILE:HG23	1.89	0.55
1:C:51:VAL:HG12	1:C:53:GLU:H	1.72	0.55
1:C:38:GLU:OE2	1:C:194:ARG:NH1	2.40	0.54
1:C:467:GLU:HG2	1:C:471:ASN:HD21	1.70	0.54
2:D:138:LEU:HD13	2:D:344:VAL:HG21	1.90	0.54
2:F:317:ASP:O	2:F:321:TYR:HD1	1.91	0.54
1:A:143:LYS:HD3	1:A:144:ILE:HA	1.89	0.54
2:D:106:GLU:OE1	2:D:234:TYR:OH	2.25	0.54
2:D:121:ARG:NH1	2:D:288:ALA:O	2.41	0.53
2:E:315:ILE:HB	2:E:316:PRO:HD3	1.90	0.53
2:F:10:GLU:HB2	2:F:17:ALA:HB3	1.91	0.53
2:D:248:THR:HB	2:D:303:ILE:HB	1.89	0.53
1:A:399:GLU:HG2	1:A:401:VAL:H	1.73	0.53
1:A:91:LEU:HD13	2:D:118:PRO:HG2	1.91	0.52
2:E:214:ALA:O	2:E:221:ARG:NH1	2.41	0.52
1:A:477:VAL:HG21	2:E:388:VAL:O	2.09	0.52
1:A:483:SER:O	1:A:485:ASN:N	2.39	0.52
1:C:41:GLU:HB2	1:C:48:SER:HB2	1.91	0.52
2:D:18:VAL:HG13	2:D:52:ALA:HB3	1.90	0.52
2:F:58:GLU:OE2	2:F:95:ARG:NH2	2.41	0.52
3:G:84:PRO:N	3:G:85:ALA:HA	2.25	0.52
1:A:264:ASN:HB3	2:D:351:LEU:HD21	1.92	0.51
2:D:91:ASP:N	2:D:97:LYS:HZ1	2.08	0.51
2:D:315:ILE:HB	2:D:316:PRO:HD3	1.91	0.51
2:F:345:LEU:HB2	2:F:346:PRO:HD3	1.93	0.51
1:B:85:ASP:OD1	1:B:89:ARG:N	2.36	0.51
1:A:238:LYS:NZ	6:A:702:SO4:O2	2.43	0.51
1:A:543:ASN:O	1:A:543:ASN:ND2	2.44	0.51
1:B:241:VAL:O	1:B:245:ILE:HG12	2.11	0.51
1:A:12:PRO:HG3	1:A:344[B]:ARG:HD3	1.92	0.51
1:B:84:PHE:HB3	1:B:88:GLN:HA	1.93	0.51
2:E:388:VAL:HG23	2:E:389:LEU:H	1.76	0.51
1:A:174:CYS:HB3	1:A:185:LEU:HB2	1.93	0.50
2:E:384:GLU:O	2:E:388:VAL:HG22	2.11	0.50
2:F:396:ASP:O	2:F:400:ILE:HG13	2.11	0.50
1:A:20:SER:O	2:E:66:LYS:HD3	2.12	0.50
2:F:324:GLU:HA	2:F:350:ARG:HD2	1.94	0.50
1:B:52:TYR:HD1	1:B:302:ALA:HA	1.77	0.50

	A (D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D:226:ARG:NH2	2:D:253:TYR:OH	2.44	0.50
1:B:360:SER:OG	2:F:259:GLU:OE2	2.29	0.49
2:D:184:ILE:HG21	2:D:253:TYR:HB2	1.94	0.49
2:F:270:ARG:HD3	2:F:314:PRO:HG3	1.93	0.49
3:G:32:LYS:O	3:G:36:LEU:HB2	2.11	0.49
1:A:231:PRO:HG2	1:A:412:PHE:HE1	1.78	0.49
1:C:431:ILE:HG13	1:C:468:GLU:HG3	1.93	0.49
2:F:448:ASP:OD1	2:F:449:LEU:N	2.44	0.49
1:A:5:LYS:HE3	1:A:61:GLY:HA2	1.94	0.49
1:C:16:ALA:HB1	1:C:64:VAL:HG21	1.95	0.49
1:B:97:VAL:HG21	1:B:109:LEU:HD21	1.94	0.49
1:C:481:SER:O	3:G:99:SER:HB2	2.12	0.49
4:H:63:GLU:HG2	4:H:66:LYS:HD3	1.94	0.49
1:A:202:LYS:HG3	1:A:372:VAL:HG12	1.93	0.49
2:E:182:ALA:HB3	2:E:247:MET:HG2	1.95	0.49
3:G:127:ALA:O	3:G:131:ARG:HG3	2.13	0.49
1:A:130:VAL:HG22	1:A:157:GLY:O	2.11	0.49
2:E:375:ALA:O	2:E:379:GLY:N	2.43	0.49
2:E:442:LEU:HD12	2:E:442:LEU:H	1.78	0.49
2:F:248:THR:HB	2:F:303:ILE:HB	1.94	0.49
1:B:54:GLU:O	1:B:105:ARG:NH1	2.44	0.48
2:F:389:LEU:HD12	2:F:390:GLY:O	2.13	0.48
1:A:416:ASP:OD2	8:A:709:GOL:O1	2.23	0.48
1:B:231:PRO:HB3	1:B:390:VAL:HB	1.95	0.48
2:D:133:SER:H	2:D:415:GLN:NE2	2.11	0.48
2:E:107:LYS:HE2	2:E:109:LEU:HD21	1.94	0.48
2:F:124:PRO:HB2	2:F:351:LEU:HD23	1.95	0.48
1:B:92:ASP:OD1	1:B:93:THR:N	2.42	0.48
2:F:143:ARG:HH21	2:F:170:VAL:HG11	1.78	0.48
1:A:437:TYR:OH	2:E:189:GLU:OE2	2.31	0.48
1:A:471:ASN:O	1:A:475:ARG:HG3	2.14	0.48
1:C:200:LYS:HE3	1:C:375:LEU:HD23	1.96	0.48
1:A:131:SER:OG	1:A:132:ALA:N	2.46	0.48
2:F:29:LEU:HD13	2:F:77:LEU:HB2	1.95	0.48
1:A:123:THR:HG23	1:A:137:GLY:HA2	1.95	0.48
1:A:131:SER:N	1:A:134:ASP:OD2	2.45	0.48
2:D:142:VAL:HG12	2:D:145:GLN:HB2	1.96	0.48
1:A:9:VAL:HG22	1:A:14:VAL:HG22	1.95	0.47
1:C:442:GLY:O	1:C:446:ASP:HB2	2.14	0.47
1:A:153:ASN:HD22	1:A:153:ASN:N	2.10	0.47
1:B:231:PRO:HG2	1:B:412:PHE:HE1	1.79	0.47

	e us pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:F:84:ASP:OD2	2:F:103:ILE:HG21	2.13	0.47
4:H:4:LYS:HD2	4:H:45:TYR:CE1	2.49	0.47
2:E:388:VAL:HG23	2:E:389:LEU:N	2.29	0.47
2:F:107:LYS:HE2	2:F:109:LEU:HD21	1.96	0.47
1:C:259:CYS:N	1:C:329:ASP:O	2.46	0.47
1:B:262:ARG:NH1	9:B:703:HOH:O	2.47	0.47
1:C:148:LYS:NZ	1:C:320:MET:O	2.38	0.47
1:C:451:GLN:O	1:C:453:TRP:N	2.46	0.47
2:E:6:ARG:HG2	2:E:69:SER:HB3	1.96	0.47
2:F:300:GLN:HG2	2:F:302:PRO:HD3	1.97	0.47
1:B:466:GLU:HG2	1:B:470:LEU:HD23	1.97	0.47
1:C:410:LYS:HD2	1:C:436:LEU:HB2	1.97	0.47
3:G:80:LEU:HD13	3:G:122:TYR:HB2	1.96	0.47
2:E:288:ALA:HB2	2:E:300:GLN:HG3	1.96	0.47
2:F:35:GLN:NE2	2:F:62:GLY:O	2.47	0.47
1:B:38:GLU:OE1	1:B:52:TYR:OH	2.31	0.46
1:B:300:VAL:O	1:B:303:ARG:HG2	2.14	0.46
1:A:87:ILE:HG13	1:A:89:ARG:HG3	1.97	0.46
1:A:333:ARG:NH2	6:A:702:SO4:S	2.89	0.46
2:D:340:PRO:HA	2:D:341:PRO:HD3	1.76	0.46
1:C:573:ILE:O	1:C:577:ILE:HG13	2.16	0.46
2:D:324:GLU:HB2	2:D:350:ARG:HB2	1.97	0.46
1:A:169:ILE:HG22	1:A:187:MET:HB2	1.96	0.46
1:B:197:ARG:HA	1:B:198:PRO:HD3	1.82	0.46
1:A:261:GLU:OE1	1:A:333:ARG:NH1	2.49	0.46
1:A:348:MET:HG3	2:E:265:ARG:HA	1.96	0.46
2:F:16:MET:HB2	2:F:54:VAL:HG23	1.98	0.46
1:C:26:ASP:OD2	1:C:66:SER:OG	2.25	0.46
1:A:143:LYS:CD	1:A:144:ILE:HA	2.46	0.46
1:C:513:THR:HG23	1:C:517:LYS:HD3	1.98	0.46
2:D:134:ALA:HB2	2:D:413:VAL:HG23	1.98	0.46
2:E:91:ASP:OD1	2:E:95:ARG:N	2.47	0.46
2:F:88:ARG:NH1	2:F:101:PRO:O	2.43	0.46
3:G:19:LEU:HD11	3:G:179:GLU:HG2	1.97	0.46
1:A:42:MET:HG2	2:E:65:LEU:HD13	1.98	0.45
1:A:214:ARG:NH2	1:A:502:GLN:O	2.49	0.45
1:A:329:ASP:HA	1:A:330:SER:HA	1.54	0.45
2:D:86:ILE:HA	2:D:208:VAL:HG22	1.98	0.45
2:D:138:LEU:HD23	2:D:369:MET:HG3	1.98	0.45
1:A:406:LEU:HA	1:A:409:VAL:HG22	1.97	0.45
1:A:523:LYS:O	1:A:527:THR:OG1	2.35	0.45

	s as pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:214:ARG:NH2	1:A:503:GLN:HB3	2.32	0.45
1:B:191:TRP:CZ2	1:B:198:PRO:HD3	2.51	0.45
1:C:203:LEU:HD11	1:C:373:ILE:HG12	1.98	0.45
1:A:177:GLU:HA	1:A:182:LEU:HA	1.98	0.45
1:B:168:THR:HG23	1:B:170:ASP:H	1.82	0.45
2:E:66:LYS:HD2	2:E:66:LYS:H	1.82	0.45
1:C:160:GLN:HB3	1:C:175:VAL:HG13	1.99	0.45
2:D:155:LEU:HD13	2:D:329:LEU:HB3	1.99	0.45
2:E:97:LYS:HE2	2:E:211:MET:HB2	1.99	0.45
2:E:395:SER:HB2	2:E:397:ILE:HG22	1.99	0.45
1:A:300:VAL:HA	1:A:303:ARG:HE	1.82	0.45
2:D:149:VAL:HB	2:D:303:ILE:HG12	1.99	0.45
2:D:151:SER:OG	2:D:152:GLY:N	2.48	0.45
1:C:118:TRP:CZ3	1:C:141:GLU:HA	2.51	0.45
1:C:139:VAL:HG21	1:C:187:MET:HE1	1.99	0.45
2:F:57:PHE:HB3	2:F:220:GLU:HG2	1.99	0.45
4:H:11:LYS:O	4:H:15:SER:OG	2.18	0.45
1:A:6:ILE:HD12	1:A:62:GLU:HB2	1.99	0.45
1:A:461:MET:O	1:A:465:GLN:HG3	2.17	0.45
2:D:166:ARG:HD2	2:D:201:THR:HG21	1.98	0.45
1:A:2:GLN:NE2	1:A:18:ASN:OD1	2.49	0.44
1:A:575:GLU:HA	1:A:578:LYS:HG3	1.98	0.44
1:A:202:LYS:HB3	2:E:188:PHE:CE2	2.53	0.44
1:C:256:TYR:HA	1:C:327:MET:HB2	1.99	0.44
2:F:391:GLU:HA	2:F:394:LEU:HD21	2.00	0.44
2:F:236:ALA:O	2:F:296:GLY:HA3	2.18	0.44
1:A:397:ILE:HB	1:A:402:THR:HG21	1.98	0.44
2:E:385:LEU:HA	2:E:388:VAL:HG22	2.00	0.44
1:B:130:VAL:O	1:B:156:LYS:HD2	2.18	0.44
1:B:304:GLU:HG3	1:B:334:TRP:NE1	2.31	0.44
1:C:552:VAL:O	1:C:556:ILE:HG13	2.17	0.44
3:G:90:ILE:HG22	4:H:3:TYR:HB2	2.00	0.44
1:C:225:GLY:O	1:C:370:GLY:HA2	2.18	0.44
2:E:328:ILE:HD12	2:E:346:PRO:HB2	2.00	0.44
8:A:705:GOL:O3	8:A:705:GOL:O1	2.31	0.44
2:E:382:ALA:HB1	2:E:398:ASP:HB3	2.00	0.44
1:A:283:GLU:N	1:A:283:GLU:OE1	2.50	0.43
1:B:243:HIS:O	1:B:247:LYS:HG3	2.18	0.43
1:C:516:GLU:O	1:C:520:ASN:ND2	2.34	0.43
1:A:30:VAL:HA	1:A:64:VAL:HG22	1.99	0.43
1:B:87:ILE:HD11	1:B:89:ARG:NH2	2.32	0.43

	A 4 O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:143:LYS:HD2	1:C:143:LYS:HA	1.68	0.43
1:A:586:SER:HA	1:A:587:GLU:HA	1.57	0.43
2:F:195:MET:O	2:F:199:ARG:HG3	2.19	0.43
1:C:238:LYS:HG2	1:C:415:LEU:HD12	2.00	0.43
2:F:29:LEU:HD23	2:F:73:LEU:HD22	1.99	0.43
1:A:342:SER:HB3	1:A:355:PRO:HG3	2.00	0.43
1:A:482:LEU:HB2	1:A:487:ARG:HB2	2.01	0.43
1:B:225:GLY:O	1:B:370:GLY:HA2	2.18	0.43
2:F:132:ILE:HA	2:F:415:GLN:HE22	1.84	0.43
2:F:150:PHE:HB2	2:F:328:ILE:HG12	2.01	0.43
1:A:569:LYS:O	1:A:573:ILE:HG13	2.19	0.43
2:D:95:ARG:HA	2:D:96:PRO:HD3	1.83	0.43
2:D:122:ASP:OD1	2:D:123:TYR:N	2.45	0.43
4:H:10:ASP:O	4:H:14:VAL:HG22	2.19	0.43
2:D:126:GLU:HG2	2:D:127:PHE:H	1.83	0.43
2:E:89:VAL:HB	2:E:98:ASP:HB3	2.00	0.43
2:E:434:LEU:HB3	2:E:442:LEU:HD21	2.00	0.43
1:A:84:PHE:HB3	1:A:88:GLN:HA	2.01	0.42
2:D:270[B]:ARG:HE	2:D:275:GLY:HA2	1.84	0.42
1:C:230:VAL:HG22	1:C:413:TRP:HE3	1.84	0.42
2:D:97:LYS:HE2	2:D:97:LYS:HB2	1.79	0.42
2:E:7:THR:OG1	2:E:19:GLU:O	2.18	0.42
1:A:552:VAL:O	1:A:556:ILE:HG13	2.20	0.42
1:B:259:CYS:N	1:B:329:ASP:O	2.49	0.42
2:D:8:ILE:HD11	2:D:70:VAL:HG23	2.00	0.42
1:C:75:LEU:HD13	1:C:316:TYR:HB2	2.01	0.42
2:D:7:THR:O	2:D:18:VAL:HG23	2.19	0.42
1:B:120:PHE:HB2	1:B:187:MET:HE2	2.02	0.42
4:H:33:ILE:HD13	4:H:54:CYS:HB3	2.02	0.42
1:B:497:ARG:HA	1:B:501:LEU:HB2	2.00	0.42
1:C:113:ASP:OD1	1:C:114:HIS:N	2.53	0.42
1:C:191:TRP:HA	1:C:192:PRO:HD3	1.89	0.42
2:D:307:PRO:HG2	2:D:313:HIS:NE2	2.34	0.42
2:E:111:ILE:HG21	2:E:227:MET:HG2	2.01	0.42
2:F:285:PHE:HA	2:F:300:GLN:HE22	1.84	0.42
1:B:236:ALA:HB1	1:B:415:LEU:HB3	2.02	0.42
1:C:507:ASP:O	1:C:511:THR:OG1	2.22	0.42
1:A:225:GLY:O	1:A:370:GLY:HA2	2.19	0.42
1:B:94:PHE:O	1:B:98:THR:OG1	2.30	0.42
1:B:270:VAL:HA	1:B:286:MET:HE2	2.02	0.42
2:E:454:LEU:HD12	2:E:455:PRO:HD2	2.01	0.42

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:62:GLU:HA	1:A:63:PRO:HD3	1.86	0.42
1:C:467:GLU:O	1:C:471:ASN:ND2	2.52	0.42
2:D:249:ASP:OD1	2:D:250:MET:N	2.53	0.42
2:E:142:VAL:HG21	2:E:351:LEU:O	2.20	0.42
1:B:251:VAL:O	1:B:288:ARG:NH1	2.53	0.42
1:C:210:ILE:HD11	1:C:515:ARG:NE	2.29	0.42
1:C:286:MET:HA	1:C:289:THR:HG22	2.02	0.42
1:C:507:ASP:HB3	1:C:510:ASP:HB3	2.02	0.42
2:F:45:LEU:HD13	2:F:264:ARG:HD2	2.01	0.42
2:F:383:LYS:HE3	2:F:383:LYS:HB2	1.75	0.42
2:F:438:PRO:HG2	2:F:441:GLU:HG2	2.01	0.42
2:F:146:LYS:HD3	2:F:285:PHE:O	2.20	0.41
1:A:516:GLU:H	1:A:516:GLU:HG3	1.61	0.41
1:B:173:ILE:HD13	1:B:187:MET:HG2	2.02	0.41
1:C:138:TYR:HB2	1:C:146:GLN:HG2	2.01	0.41
2:D:409:GLU:HA	2:D:413:VAL:HG12	2.03	0.41
2:E:313:HIS:O	2:E:316:PRO:HD2	2.19	0.41
1:A:24:ILE:HG22	1:A:25:GLN:HG2	2.02	0.41
2:F:313:HIS:CG	2:F:314:PRO:HD2	2.56	0.41
1:A:173:ILE:HD13	1:A:187:MET:HG2	2.02	0.41
1:A:484:ASP:HB3	1:A:536:LEU:HD21	2.02	0.41
1:C:90:PRO:HD3	1:C:111:ALA:HA	2.01	0.41
1:B:315:GLU:HA	1:B:384:ILE:HD11	2.02	0.41
3:G:17:LYS:HE2	3:G:17:LYS:HB3	1.80	0.41
3:G:72:VAL:HB	3:G:77:ILE:HD11	2.02	0.41
1:C:81:SER:OG	1:C:287:GLU:HA	2.20	0.41
1:C:231:PRO:HG2	1:C:412:PHE:HE1	1.85	0.41
2:D:9:LYS:HA	2:D:9:LYS:HD2	1.76	0.41
2:D:288:ALA:HB2	2:D:300:GLN:HE21	1.85	0.41
2:F:249:ASP:OD1	2:F:304:LEU:HA	2.20	0.41
3:G:151:LYS:HD2	3:G:151:LYS:HA	1.79	0.41
1:C:118:TRP:HA	1:C:118:TRP:CE3	2.56	0.41
2:D:137:HIS:HA	2:D:365:HIS:CE1	2.56	0.41
1:B:298:MET:HG3	2:E:115:VAL:HG11	2.02	0.41
1:C:315:GLU:HA	1:C:384:ILE:HD11	2.03	0.41
2:D:313:HIS:O	2:D:316:PRO:HD2	2.21	0.41
2:E:328:ILE:H	2:E:347:SER:HB3	1.85	0.41
2:F:271:ARG:HB2	2:F:314:PRO:HG2	2.03	0.41
2:F:367:ALA:HB1	2:F:445:ILE:HG12	2.03	0.41
1:B:273:PHE:HB3	1:B:286:MET:HG2	2.03	0.41
1:C:264:ASN:ND2	9:C:705:HOH:O	2.49	0.41

A 4 a m 1	A 4 a ma 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	$\begin{array}{c} \text{Clash}\\ \text{overlap (Å)}\\ \hline 0.41\\ \hline 0.40\\ \hline 0.4$
1:C:391:SER:HB3	2:F:321:TYR:CE2	2.56	0.41
2:D:73:LEU:HB3	2:D:75:HIS:CD2	2.55	0.41
2:E:394:LEU:CB	2:E:398:ASP:HB2	2.51	0.41
2:F:151:SER:OG	2:F:152:GLY:N	2.51	0.41
4:H:87:LEU:HD12	4:H:87:LEU:HA	1.90	0.41
1:B:231:PRO:HA	1:B:390:VAL:O	2.22	0.41
1:C:329:ASP:HA	1:C:330:SER:HA	1.66	0.41
2:D:248:THR:HA	2:D:249:ASP:HA	1.82	0.41
1:C:453:TRP:CZ3	1:C:519:PHE:HA	2.55	0.40
2:D:97:LYS:C	2:D:99:ASN:H	2.23	0.40
2:D:307:PRO:HG2	2:D:313:HIS:CE1	2.56	0.40
3:G:123:LEU:HD12	3:G:124:HIS:N	2.36	0.40
1:C:197:ARG:HA	1:C:198:PRO:HD3	1.85	0.40
1:B:283:GLU:HG3	1:B:284:SER:H	1.87	0.40
1:A:30:VAL:HG21	1:A:51:VAL:HG22	2.03	0.40
1:C:470:LEU:O	1:C:474:VAL:HG23	2.21	0.40
2:D:160:LEU:O	2:D:164:ILE:HG12	2.22	0.40
2:D:339:GLN:HA	2:D:340:PRO:HA	1.92	0.40
2:E:21:VAL:HG22	2:E:50:ASP:O	2.20	0.40
2:E:313:HIS:HB3	2:E:316:PRO:HD2	2.03	0.40
3:G:178:LEU:HD12	3:G:178:LEU:HA	1.89	0.40
1:A:2:GLN:HE22	1:A:20:SER:HB2	1.86	0.40
1:C:81:SER:HG	1:C:287:GLU:HA	1.87	0.40
1:C:264:ASN:O	1:C:268:ASP:N	2.52	0.40
2:E:137:HIS:HB2	2:E:426:THR:HG21	2.04	0.40
2:F:120:ALA:HA	2:F:292:ARG:HD2	2.02	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	587/600~(98%)	567~(97%)	19 (3%)	1 (0%)	47	81
1	В	586/600~(98%)	569~(97%)	17 (3%)	0	100	100
1	С	584/600~(97%)	570~(98%)	14 (2%)	0	100	100
2	D	453/465~(97%)	438~(97%)	15 (3%)	0	100	100
2	Ε	451/465~(97%)	430~(95%)	20~(4%)	1 (0%)	47	81
2	F	453/465~(97%)	443~(98%)	10 (2%)	0	100	100
3	G	191/217~(88%)	184 (96%)	7 (4%)	0	100	100
4	Η	100/115~(87%)	98~(98%)	2(2%)	0	100	100
All	All	3405/3527~(96%)	3299~(97%)	104 (3%)	2(0%)	51	85

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	Е	172	ASP
1	А	279	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	486/511~(95%)	472 (97%)	14 (3%)	42	75
1	В	496/511~(97%)	493 (99%)	3 (1%)	86	95
1	С	487/511~(95%)	476 (98%)	11 (2%)	50	79
2	D	370/387~(96%)	363~(98%)	7 (2%)	57	83
2	Ε	369/387~(95%)	364 (99%)	5 (1%)	67	87
2	F	376/387~(97%)	371 (99%)	5 (1%)	69	88
3	G	170/198~(86%)	166~(98%)	4 (2%)	49	79
4	Н	82/99~(83%)	82 (100%)	0	100	100
All	All	2836/2991~(95%)	2787 (98%)	49 (2%)	60	85

All (49) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	107	VAL
1	А	108	GLN
1	А	109	LEU
1	А	140	ASP
1	А	153	ASN
1	А	161	LYS
1	А	178	THR
1	А	213	GLN
1	А	238	LYS
1	А	262	ARG
1	А	448	ILE
1	А	479	ILE
1	A	482	LEU
1	А	543	ASN
1	В	243	HIS
1	В	371	ARG
1	В	516	GLU
1	С	33	LEU
1	С	42	MET
1	С	116	LYS
1	С	117	GLN
1	С	143	LYS
1	С	171	ASP
1	С	254	VAL
1	С	266	MET
1	С	380	ARG
1	С	485	ASN
1	С	574	ASN
2	D	1	MET
2	D	6	ARG
2	D	12	VAL
2	D	81	VAL
2	D	172	ASP
2	D	190	GLU
2	D	248	THR
2	Е	33	ARG
2	Е	175	ASP
2	Е	196	GLU
2	Е	353	ASP
2	Е	442	LEU
2	F	103	ILE
2	F	104	LEU
2	F	392	SER

Continued from previous page...

Mol	Chain	Res	Type
2	F	394	LEU
2	F	447	ASP
3	G	36	LEU
3	G	130	ASP
3	G	140	LEU
3	G	156	MET

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (9) such side chains are listed below:

Mol	Chain	Res	Type
1	А	82	GLN
1	А	99	GLN
1	А	153	ASN
1	А	543	ASN
1	С	471	ASN
2	D	415	GLN
2	F	117	ASN
3	G	192	ASN
3	G	205	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 21 ligands modelled in this entry, 3 are monoatomic - leaving 18 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The

Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Tink	Bo	ond leng	ths	В	ond ang	les
	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
8	GOL	А	704	-	5,5,5	0.35	0	$5,\!5,\!5$	0.32	0
8	GOL	В	603	-	5,5,5	0.36	0	$5,\!5,\!5$	0.25	0
8	GOL	В	605	-	5,5,5	0.36	0	$5,\!5,\!5$	0.29	0
6	SO4	А	702	5	4,4,4	0.32	0	6,6,6	0.06	0
8	GOL	В	604	-	5,5,5	0.35	0	$5,\!5,\!5$	0.34	0
8	GOL	D	501	-	5,5,5	0.36	0	$5,\!5,\!5$	0.29	0
7	ADP	А	703	5	24,29,29	0.94	1 (4%)	29,45,45	1.55	4 (13%)
8	GOL	А	709	-	5,5,5	0.35	0	$5,\!5,\!5$	0.36	0
8	GOL	А	706	-	5,5,5	0.34	0	$5,\!5,\!5$	0.31	0
8	GOL	В	606	-	5,5,5	0.35	0	$5,\!5,\!5$	0.30	0
8	GOL	А	707	-	5,5,5	0.34	0	$5,\!5,\!5$	0.31	0
8	GOL	D	502	-	5,5,5	0.35	0	$5,\!5,\!5$	0.31	0
8	GOL	F	501	-	5,5,5	0.35	0	$5,\!5,\!5$	0.34	0
8	GOL	А	705	-	$5,\!5,\!5$	0.38	0	$5,\!5,\!5$	0.21	0
7	ADP	В	602	5	24,29,29	0.95	1 (4%)	29,45,45	1.44	4 (13%)
8	GOL	В	607	-	5,5,5	0.35	0	$5,\!5,\!5$	0.32	0
8	GOL	A	708	-	5,5,5	0.35	0	5, 5, 5	0.37	0
7	ADP	С	602	5	24,29,29	0.95	1 (4%)	29,45,45	1.46	4 (13%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	GOL	А	704	-	-	2/4/4/4	-
8	GOL	В	603	-	-	2/4/4/4	-
8	GOL	В	605	-	-	2/4/4/4	-
8	GOL	В	604	-	-	4/4/4/4	-
8	GOL	D	501	-	-	2/4/4/4	-
7	ADP	А	703	5	-	5/12/32/32	0/3/3/3
8	GOL	А	709	-	-	2/4/4/4	-
8	GOL	А	706	-	-	2/4/4/4	-
8	GOL	В	606	-	-	2/4/4/4	-
8	GOL	А	707	-	-	2/4/4/4	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	GOL	D	502	-	-	2/4/4/4	-
8	GOL	F	501	-	-	2/4/4/4	-
8	GOL	А	705	-	-	2/4/4/4	-
7	ADP	В	602	5	-	7/12/32/32	0/3/3/3
8	GOL	В	607	-	-	0/4/4/4	-
8	GOL	А	708	-	-	4/4/4/4	-
7	ADP	С	602	5	-	8/12/32/32	0/3/3/3

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
7	А	703	ADP	C5-C4	2.52	1.47	1.40
7	В	602	ADP	C5-C4	2.52	1.47	1.40
7	С	602	ADP	C5-C4	2.49	1.47	1.40

All (12) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	703	ADP	PA-O3A-PB	-4.02	119.04	132.83
7	С	602	ADP	PA-O3A-PB	-3.65	120.31	132.83
7	А	703	ADP	C3'-C2'-C1'	3.63	106.44	100.98
7	В	602	ADP	C3'-C2'-C1'	3.35	106.03	100.98
7	В	602	ADP	PA-O3A-PB	-3.26	121.63	132.83
7	С	602	ADP	N3-C2-N1	-3.20	123.67	128.68
7	В	602	ADP	N3-C2-N1	-3.18	123.71	128.68
7	С	602	ADP	C3'-C2'-C1'	3.15	105.72	100.98
7	А	703	ADP	N3-C2-N1	-3.07	123.87	128.68
7	А	703	ADP	C4-C5-N7	-2.67	106.61	109.40
7	В	602	ADP	C4-C5-N7	-2.61	106.68	109.40
7	С	602	ADP	C4-C5-N7	-2.47	106.83	109.40

There are no chirality outliers.

All (50) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
7	А	703	ADP	C5'-O5'-PA-O2A
7	А	703	ADP	C5'-O5'-PA-O3A
7	В	602	ADP	PA-O3A-PB-O2B
7	В	602	ADP	C5'-O5'-PA-O1A
7	В	602	ADP	C5'-O5'-PA-O2A

Mol	Chain	Res	Type	Atoms
7	В	602	ADP	C5'-O5'-PA-O3A
7	С	602	ADP	C5'-O5'-PA-O1A
7	C	602	ADP	C5'-O5'-PA-O2A
7	С	602	ADP	C5'-O5'-PA-O3A
8	A	704	GOL	O1-C1-C2-C3
8	A	705	GOL	O1-C1-C2-O2
8	A	705	GOL	O1-C1-C2-C3
8	А	706	GOL	O1-C1-C2-C3
8	А	707	GOL	O1-C1-C2-C3
8	А	708	GOL	O1-C1-C2-C3
8	A	708	GOL	C1-C2-C3-O3
8	В	604	GOL	O1-C1-C2-C3
8	В	605	GOL	O1-C1-C2-O2
8	В	606	GOL	O1-C1-C2-C3
8	D	501	GOL	O1-C1-C2-C3
8	А	704	GOL	O1-C1-C2-O2
8	D	502	GOL	O1-C1-C2-O2
7	А	703	ADP	O4'-C4'-C5'-O5'
7	А	703	ADP	C3'-C4'-C5'-O5'
7	В	602	ADP	O4'-C4'-C5'-O5'
7	В	602	ADP	C3'-C4'-C5'-O5'
7	С	602	ADP	O4'-C4'-C5'-O5'
7	С	602	ADP	C3'-C4'-C5'-O5'
8	А	709	GOL	O1-C1-C2-C3
8	В	604	GOL	C1-C2-C3-O3
8	В	605	GOL	O1-C1-C2-C3
8	D	502	GOL	O1-C1-C2-C3
8	F	501	GOL	O1-C1-C2-C3
8	А	709	GOL	O1-C1-C2-O2
8	D	501	GOL	O1-C1-C2-O2
8	A	707	GOL	01-C1-C2-O2
8	A	708	GOL	01-C1-C2-O2
8	А	708	GOL	02-C2-C3-O3
8	В	604	GOL	01-C1-C2-O2
8	В	606	GOL	O1-C1-C2-O2
7	C	602	ADP	PA-O3A-PB-O1B
8	A	706	GOL	O1-C1-C2-O2
8	В	603	GOL	O1-C1-C2-O2
8	В	604	GOL	O2-C2-C3-O3
8	В	603	GOL	O1-C1-C2-C3
7	A	703	ADP	C5'-O5'-PA-O1A
8	F	501	GOL	01-C1-C2-O2

Continued from previous page...

Mol	Chain	Res	Type	Atoms
7	В	602	ADP	PA-O3A-PB-O3B
7	С	602	ADP	PA-O3A-PB-O2B
7	С	602	ADP	PA-O3A-PB-O3B

Continued from previous page...

There are no ring outliers.

3 monomers are involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
6	А	702	SO4	2	0
8	А	709	GOL	1	0
8	А	705	GOL	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2		$OWAB(Å^2)$	Q < 0.9	
1	А	588/600~(98%)	0.05	22 (3%)	41	17	26, 55, 122, 146	0
1	В	588/600~(98%)	-0.23	1 (0%) 9	95	87	18, 39, 64, 107	0
1	С	586/600~(97%)	0.08	12 (2%)	65	36	30, 59, 114, 141	0
2	D	454/465~(97%)	-0.14	4 (0%) 8	84	62	25, 54, 83, 106	0
2	Ε	453/465~(97%)	-0.18	6 (1%)	77	51	21, 45, 93, 132	0
2	F	455/465~(97%)	-0.14	6 (1%) 7	77	51	30, 49, 98, 143	0
3	G	195/217~(89%)	0.19	7 (3%) 4	42	17	40, 63, 104, 131	0
4	Н	102/115~(88%)	0.09	3 (2%) 5	51	23	30, 66, 115, 162	0
All	All	3421/3527~(96%)	-0.07	61 (1%)	68	39	18, 51, 103, 162	0

All (61) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	280	ASN	4.2
1	А	160	GLN	4.1
4	Н	99	GLY	4.0
2	Ε	387	VAL	3.9
2	F	103	ILE	3.9
1	С	182	LEU	3.6
2	Ε	388	VAL	3.6
1	А	157	GLY	3.6
2	Е	174	SER	3.6
1	А	162	ILE	3.5
1	А	181	GLY	3.4
1	А	581	ILE	3.4
1	С	160	GLN	3.4
1	С	277	ILE	3.3
4	Н	98	VAL	3.3
1	А	129	GLU	3.2

Mol	Chain	Res	Type	RSRZ
1	А	184	GLU	3.2
1	А	586	SER	3.1
2	F	102	GLU	3.0
1	С	280	ASN	2.9
3	G	124	HIS	2.9
2	Е	392	SER	2.8
4	Н	101	ASN	2.8
2	D	172	ASP	2.8
2	F	454	LEU	2.6
3	G	82	ALA	2.6
1	С	179	GLU	2.6
1	А	127	GLY	2.6
1	В	280	ASN	2.6
1	А	174	CYS	2.5
1	С	129	GLU	2.5
3	G	84	PRO	2.5
1	С	485	ASN	2.4
1	С	123	THR	2.4
1	А	283	GLU	2.4
2	F	99	ASN	2.4
2	D	175	ASP	2.4
1	С	117	GLN	2.4
1	А	125	GLU	2.4
1	А	136	ILE	2.4
2	F	455	PRO	2.4
3	G	83	LEU	2.3
1	А	130	VAL	2.3
2	D	174	SER	2.3
1	А	185	LEU	2.3
1	С	144	ILE	2.3
3	G	73	GLU	2.2
1	С	171	ASP	2.2
2	F	105	PRO	2.2
3	G	122	TYR	2.2
1	С	173	ILE	2.2
3	G	126	ASN	2.2
2	Е	207	SER	2.1
1	A	279	PRO	2.1
1	А	582	GLN	2.1
1	А	538	LEU	2.1
2	Е	397	ILE	2.1
1	А	541	TYR	2.1

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	А	543	ASN	2.1
1	А	182	LEU	2.0
2	D	295	LYS	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
8	GOL	А	707	6/6	0.28	0.56	80,82,82,82	0
8	GOL	В	607	6/6	0.74	0.32	62,63,63,63	0
8	GOL	F	501	6/6	0.74	0.40	95,96,97,97	0
8	GOL	А	706	6/6	0.75	0.27	$67,\!67,\!68,\!68$	0
8	GOL	D	502	6/6	0.77	0.28	$68,\!69,\!69,\!69$	0
8	GOL	В	604	6/6	0.79	0.35	82,82,83,83	0
8	GOL	В	606	6/6	0.83	0.28	64,64,64,65	0
8	GOL	D	501	6/6	0.83	0.34	66, 66, 67, 67	0
8	GOL	А	704	6/6	0.84	0.27	33,33,33,34	0
8	GOL	А	708	6/6	0.85	0.33	78, 78, 79, 79	0
8	GOL	В	605	6/6	0.87	0.28	77,77,78,78	0
8	GOL	В	603	6/6	0.88	0.20	$65,\!65,\!66,\!66$	0
8	GOL	А	709	6/6	0.90	0.23	75, 75, 75, 75, 75	0
8	GOL	А	705	6/6	0.93	0.23	49,51,51,52	0
5	MG	В	601	1/1	0.95	0.36	$65,\!65,\!65,\!65$	0
7	ADP	А	703	27/27	0.95	0.20	$36,\!44,\!47,\!48$	0
7	ADP	С	602	27/27	0.96	0.21	36,54,61,62	0
6	SO4	A	702	5/5	0.96	0.14	72,72,72,72	0
7	ADP	В	602	27/27	0.96	0.23	33,38,40,41	0
5	MG	A	701	1/1	0.99	0.18	50,50,50,50	0

Continued from previous page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
5	MG	С	601	1/1	0.99	0.23	26,26,26,26	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

