

May 27, 2024 – 06:28 PM EDT

PDB ID	:	5KO0				
EMDB ID	:	EMD-8273				
Title	:	Human Islet Amyloid Polypeptide Segment 15-FLVHSSNNFGA-25 Deter-				
		mined by MicroED				
Authors	:	Krotee, P.A.L.; Rodriguez, J.A.; Sawaya, M.R.; Cascio, D.; Shi, D.; Nannenga,				
		B.L.; Hattne, J.; Reyes, F.E.; Gonen, T.; Eisenberg, D.S.				
Deposited on						
Resolution	:	1.40 Å(reported)				

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
MolProbity	:	FAILED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ CRYSTALLOGRAPHY$

The reported resolution of this entry is 1.40 Å.

There are no overall percentile quality scores available for this entry.

ENTRY-COMPOSITION INFOmissingINFO

SEQUENCE-PLOTS INFOmissingINFO

2 Experimental information (i)

Property	Value	Source
EM reconstruction method	CRYSTALLOGRAPHY	Depositor
Imposed symmetry	3D CRYSTAL, $a=11.68$ Å, $b=18.18$ Å,	Depositor
	$c=19.93$ Å, $\alpha=62.8^{\circ}$, $\beta=88.9^{\circ}$, $\gamma=87.6^{\circ}$,	
	space group=P1	
Number of images used	Not provided	
Resolution determination method	DIFFRACTION PATTERN/LAYERLINES	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TECNAI 20	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	0.01	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	TVIPS TEMCAM-F416 (4k x 4k)	Depositor

3 Model quality (i)

3.1 Standard geometry (i)

MolProbity failed to run properly - this section is therefore empty.

3.2 Too-close contacts (i)

MolProbity failed to run properly - this section is therefore empty.

3.3 Torsion angles (i)

3.3.1 Protein backbone (i)

MolProbity failed to run properly - this section is therefore empty.

3.3.2 Protein sidechains (i)

MolProbity failed to run properly - this section is therefore empty.

3.3.3 RNA (i)

MolProbity failed to run properly - this section is therefore empty.

3.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

3.5 Carbohydrates (i)

There are no monosaccharides in this entry.

3.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 could not be matched to an existing wwPDB Chemical Component Dictionary definition at this stage - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers. There are no torsion outliers. There are no ring outliers.

No monomer is involved in short contacts.

3.7 Other polymers (i)

There are no such residues in this entry.

3.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

