

wwPDB X-ray Structure Validation Summary Report (i)

Nov 2, 2023 – 05:15 AM EDT

:	3KR4
:	Structure of a protease 3
:	McGowan, S.; Whisstock, J.C.
:	2009-11-17
:	2.00 Å(reported)
	: : : :

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	Similar resolution
IVIEUTIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	8085 (2.00-2.00)
Clashscore	141614	9178 (2.00-2.00)
Ramachandran outliers	138981	9054 (2.00-2.00)
Sidechain outliers	138945	9053 (2.00-2.00)
RSRZ outliers	127900	7900 (2.00-2.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	528	% 91%	7% •
1	В	528	86%	11% ••
1	С	528	% 86%	11% ••
1	D	528	% 86%	9% ••
1	Е	528	84%	10% • •

ria:

Conti	nued fron	<i>i</i> previous	page	
Mol	Chain	Length	Quality of chain	
1	F	528	83%	13% ••
1	G	528	% 	9% ••
1	Н	528	2% 8 5%	9% • •
1	Ι	528	86%	10% ••
1	J	528	% • 86%	9% ••
1	K	528	% 	8% • •
1	L	528	.% 8 6%	10% ••

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit crite-

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
6	SO4	L	25	-	-	Х	-
7	1PE	В	61	-	-	Х	-
7	1PE	В	62	-	-	-	Х
7	1PE	L	612	-	-	Х	-

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 53016 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	А	518	Total	C	N 620	0	S 20	3	1	0
			3983	2558	039 N	100	20			
1	В	518	Total 3036	C 2531	N 637	0 748	S 20	0	0	0
			Total	2001 C	N	0140	<u>20</u> S			
1	С	518	3955	2545	638	753	19	0	1	0
1	D	F10	Total	С	Ν	0	S	0	0	0
	D	516	3946	2541	638	747	20	0	0	0
1	Б	510	Total	С	Ν	0	S	0	0	0
1	E	510	3896	2509	626	743	18	0	0	0
1	F	510	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0	0
1	T,	510	3873	2492	623	739	19	0	U	0
1	C	516	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	G	510	3996	2564	650	762	20	0	0	0
1	и	500	Total	С	Ν	0	S	0	1	0
	11	509	3943	2534	641	749	19	0	L	0
1	т	510	Total	С	Ν	0	S	0	1	0
1	1	510	4008	2570	652	767	19	0	L	0
1	т	519	Total	С	Ν	0	S	0	1	0
1	1	515	3963	2545	641	757	20	0	L	0
1	V	500	Total	С	Ν	0	S	0	1	0
	n	509	3935	2528	638	750	19	U		U
1	т	519	Total	С	Ν	0	S	0	1	0
	L	513	3944	2532	635	758	19	U		U

• Molecule 1 is a protein called M17 leucyl aminopeptidase.

There are 108 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	152	GLN	ASN	engineered mutation	UNP Q8IL11
А	515	GLN	ASN	engineered mutation	UNP Q8IL11
А	546	GLN	ASN	engineered mutation	UNP Q8IL11
А	606	HIS	-	expression tag	UNP Q8IL11
А	607	HIS	-	expression tag	UNP Q8IL11

F

F

152

515

GLN

GLN

ASN

ASN

Chain	Residue	Modelled	Actual	Comment	Reference
А	608	HIS	-	expression tag	UNP Q8IL11
А	609	HIS	-	expression tag	UNP Q8IL11
А	610	HIS	_	expression tag	UNP Q8IL11
А	611	HIS	-	expression tag	UNP Q8IL11
В	152	GLN	ASN	engineered mutation	UNP Q8IL11
В	515	GLN	ASN	engineered mutation	UNP Q8IL11
В	546	GLN	ASN	engineered mutation	UNP Q8IL11
В	606	HIS	-	expression tag	UNP Q8IL11
В	607	HIS	-	expression tag	UNP Q8IL11
В	608	HIS	-	expression tag	UNP Q8IL11
В	609	HIS	-	expression tag	UNP Q8IL11
В	610	HIS	-	expression tag	UNP Q8IL11
В	611	HIS	-	expression tag	UNP Q8IL11
С	152	GLN	ASN	engineered mutation	UNP Q8IL11
С	515	GLN	ASN	engineered mutation	UNP Q8IL11
С	546	GLN	ASN	engineered mutation	UNP Q8IL11
С	606	HIS	-	expression tag	UNP Q8IL11
С	607	HIS	-	expression tag	UNP Q8IL11
С	608	HIS	-	expression tag	UNP Q8IL11
С	609	HIS	-	expression tag	UNP Q8IL11
С	610	HIS	-	expression tag	UNP Q8IL11
С	611	HIS	-	expression tag	UNP Q8IL11
D	152	GLN	ASN	engineered mutation	UNP Q8IL11
D	515	GLN	ASN	engineered mutation	UNP Q8IL11
D	546	GLN	ASN	engineered mutation	UNP Q8IL11
D	606	HIS	-	expression tag	UNP Q8IL11
D	607	HIS	-	expression tag	UNP Q8IL11
D	608	HIS	-	expression tag	UNP Q8IL11
D	609	HIS	-	expression tag	UNP Q8IL11
D	610	HIS	-	expression tag	UNP Q8IL11
D	611	HIS	-	expression tag	UNP Q8IL11
Е	152	GLN	ASN	engineered mutation	UNP Q8IL11
Е	515	GLN	ASN	engineered mutation	UNP Q8IL11
Е	546	GLN	ASN	engineered mutation	UNP Q8IL11
Е	606	HIS	-	expression tag	UNP Q8IL11
Е	607	HIS	-	expression tag	UNP Q8IL11
Е	608	HIS	-	expression tag	UNP Q8IL11
Е	609	HIS	-	expression tag	UNP Q8IL11
Е	610	HIS	-	expression tag	UNP Q8IL11
Е	611	HIS	_	expression tag	UNP Q8IL11

Continued from previous page...

Continued on next page...

UNP Q8IL11

UNP Q8IL11

engineered mutation

engineered mutation

Chain

F F

F

F

F

F

F

G

G

G G

G

G

G

G

G

Η

Η

Η

Η

H H

H H

Η

Ι

Ι

Ι

Ι

Ι

I I

I I

J

J

J

J

J

J

J

J

152

515

546

606

607

608

609

610

Residue	Modelled	Actual	Comment	Reference
546	GLN	ASN	engineered mutation	UNP Q8IL11
606	HIS	_	expression tag	UNP Q8IL11
607	HIS	_	expression tag	UNP Q8IL11
608	HIS	-	expression tag	UNP Q8IL11
609	HIS	_	expression tag	UNP Q8IL11
610	HIS	_	expression tag	UNP Q8IL11
611	HIS	_	expression tag	UNP Q8IL11
152	GLN	ASN	engineered mutation	UNP Q8IL11
515	GLN	ASN	engineered mutation	UNP Q8IL11
546	GLN	ASN	engineered mutation	UNP Q8IL11
606	HIS	-	expression tag	UNP Q8IL11
607	HIS	-	expression tag	UNP Q8IL11
608	HIS	-	expression tag	UNP Q8IL11
609	HIS	-	expression tag	UNP Q8IL11
610	HIS	-	expression tag	UNP Q8IL11
611	HIS	-	expression tag	UNP Q8IL11
152	GLN	ASN	engineered mutation	UNP Q8IL11
515	GLN	ASN	engineered mutation	UNP Q8IL11
546	GLN	ASN	engineered mutation	UNP Q8IL11
606	HIS	-	expression tag	UNP Q8IL11
607	HIS	-	expression tag	UNP Q8IL11
608	HIS	-	expression tag	UNP Q8IL11
609	HIS	-	expression tag	UNP Q8IL11
610	HIS	-	expression tag	UNP Q8IL11
611	HIS	-	expression tag	UNP Q8IL11
152	GLN	ASN	engineered mutation	UNP Q8IL11
515	GLN	ASN	engineered mutation	UNP Q8IL11
546	GLN	ASN	engineered mutation	UNP Q8IL11
606	HIS	-	expression tag	UNP Q8IL11
607	HIS	-	expression tag	UNP Q8IL11
608	HIS	-	expression tag	UNP Q8IL11
609	HIS	-	expression tag	UNP Q8IL11
610	HIS	-	expression tag	UNP Q8IL11
611	HIS	-	expression tag	UNP Q8IL11

Continued from previous page...

Continued on next page...

UNP Q8IL11

engineered mutation

engineered mutation

engineered mutation

expression tag

expression tag

expression tag

expression tag

expression tag

ASN

ASN

ASN

-

-

_

-

-

GLN

GLN

GLN

HIS

HIS

HIS

HIS

HIS

Chain	Residue	Modelled	Actual Comment		Reference
J	611	HIS	-	expression tag	UNP Q8IL11
K	152	GLN	ASN	engineered mutation	UNP Q8IL11
K	515	GLN	ASN	engineered mutation	UNP Q8IL11
K	546	GLN	ASN	engineered mutation	UNP Q8IL11
K	606	HIS	-	expression tag	UNP Q8IL11
K	607	HIS	-	expression tag	UNP Q8IL11
K	608	HIS	-	expression tag	UNP Q8IL11
K	609	HIS	-	expression tag	UNP Q8IL11
K	610	HIS	-	expression tag	UNP Q8IL11
K	611	HIS	-	expression tag	UNP Q8IL11
L	152	GLN	ASN	engineered mutation	UNP Q8IL11
L	515	GLN	ASN	engineered mutation	UNP Q8IL11
L	546	GLN	ASN	engineered mutation	UNP Q8IL11
L	606	HIS	-	expression tag	UNP Q8IL11
L	607	HIS	-	expression tag	UNP Q8IL11
L	608	HIS	-	expression tag	UNP Q8IL11
L	609	HIS	-	expression tag	UNP Q8IL11
L	610	HIS	-	expression tag	UNP Q8IL11
L	611	HIS	-	expression tag	UNP Q8IL11

Continued from previous page...

• Molecule 2 is CARBONATE ION (three-letter code: CO3) (formula: CO_3).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
2	F	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
2	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
2	Н	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
2	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
2	J	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
2	К	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
2	L	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0

Continued from previous page...

• Molecule 3 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total Zn 1 1	0	0
3	В	1	Total Zn 1 1	0	0
3	С	1	Total Zn 1 1	0	0
3	D	1	Total Zn 1 1	0	0
3	Е	1	Total Zn 1 1	0	0
3	F	1	Total Zn 1 1	0	0
3	G	1	Total Zn 1 1	0	0
3	Н	1	Total Zn 1 1	0	0
3	Ι	1	Total Zn 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	J	1	Total Zn 1 1	0	0
3	Κ	1	Total Zn 1 1	0	0
3	L	1	Total Zn 1 1	0	0

• Molecule 4 is 2-(3-AMINO-2-HYDROXY-4-PHENYL-BUTYRYLAMINO)-4-METHYL-PE NTANOIC ACID (three-letter code: BES) (formula: C₁₆H₂₄N₂O₄).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Λ	1	Total C N O	0	0
4	Л	1	22 16 2 4	0	0
4	В	1	Total C N O	0	0
4	D	1	22 16 2 4	0	0
4	C	1	Total C N O	0	0
4	U	1	22 16 2 4	0	U
4	р	1	Total C N O	0	0
4	D		22 16 2 4	0	
4	F	F 1	Total C N O	0	0
4	Ľ	1	22 16 2 4	0	0
4	Б	1	Total C N O	0	0
4	Г	1	22 16 2 4	0	0
4	С	1	Total C N O	0	0
4	G		22 16 2 4	0	0
4	4 II	T 1	Total C N O	0	0
4	11		22 16 2 4	0	

Continued from previous page...

Mol	Chain	Residues	A	Aton	ns		ZeroOcc	AltConf
4	Т	1	Total	С	Ν	0	0	0
4	1	1	22	16	2	4	0	0
4	т	1	Total	С	Ν	Ο	0	0
4	J	1	22	16	2	4	0	0
4	K	1	Total	С	Ν	0	0	0
4	Γ	1	22	16	2	4	0	
4	4 T	1	Total	С	Ν	0	0	0
4	Ľ		22	16	2	4	0	0

• Molecule 5 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	1	Total Mg 1 1	0	0
5	В	1	Total Mg 1 1	0	0
5	С	1	Total Mg 1 1	0	0
5	D	1	Total Mg 1 1	0	0
5	Ε	1	Total Mg 1 1	0	0
5	F	1	Total Mg 1 1	0	0
5	G	1	Total Mg 1 1	0	0
5	Н	1	Total Mg 1 1	0	0
5	Ι	1	Total Mg 1 1	0	0
5	J	1	Total Mg 1 1	0	0
5	K	1	Total Mg 1 1	0	0
5	L	1	Total Mg 1 1	0	0

• Molecule 6 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	Е	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	F	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	G	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	G	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	J	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	J	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	K	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	L	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 7 is PENTAETHYLENE GLYCOL (three-letter code: 1PE) (formula: $C_{10}H_{22}O_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 9 6 3 \end{array}$	0	0
7	А	1	Total C O 12 8 4	0	0
7	В	1	Total C O 10 7 3	0	0
7	В	1	Total C O 10 7 3	0	0
7	В	1	Total C O 10 7 3	0	0
7	С	1	Total C O 13 9 4	0	0
7	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 9 6 3 \end{array}$	0	0
7	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 10 7 3 \end{array}$	0	0
7	D	1	Total C O 11 8 3	0	0
7	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 10 7 3 \end{array}$	0	0
7	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 5 & 2 \end{array}$	0	0
7	Е	1	Total C O 12 8 4	0	0
7	Е	1	Total C O 12 8 4	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 5 3 \end{array}$	0	0
7	F	1	Total C O 10 6 4	0	0
7	F	1	Total C O 10 6 4	0	0
7	F	1	Total C O 10 6 4	0	0
7	G	1	Total C O 9 6 3	0	0
7	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
7	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 4 2 \end{array}$	0	0
7	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 4 2 \end{array}$	0	0
7	G	1	Total C O 15 10 5	0	0
7	Н	1	Total C O 10 7 3	0	0
7	Н	1	Total C O 10 7 3	0	0
7	Ι	1	Total C O 15 10 5	0	0
7	Ι	1	Total C O 11 8 3	0	0
7	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 5 & 2 \end{array}$	0	0
7	J	1	Total C O 11 7 4	0	0
7	J	1	Total C O 10 6 4	0	0
7	J	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 10 7 3 \end{array}$	0	0
7	K	1	$\begin{array}{c c} \text{Total} & \text{C} & \text{O} \\ 12 & 8 & 4 \end{array}$	0	0
7	К	1	$\begin{array}{c c} \text{Total} & \text{C} & \text{O} \\ 12 & 8 & 4 \end{array}$	0	0
7	K	1	Total C O 11 7 4	0	0
7	К	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 4 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	L	1	Total C O 10 6 4	0	0
7	L	1	Total C O 12 8 4	0	0
7	L	1	Total C O 11 7 4	0	0

• Molecule 8 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	А	423	Total O 423 423	0	0
8	В	361	Total O 361 361	0	0
8	С	427	Total O 427 427	0	0
8	D	411	Total O 411 411	0	0
8	Е	442	Total O 442 442	0	0
8	F	373	Total O 373 373	0	0
8	G	421	Total O 421 421	0	0
8	Н	389	Total O 389 389	0	0
8	Ι	414	Total O 414 414	0	0
8	J	403	Total O 403 403	0	0
8	К	438	Total O 438 438	0	0
8	L	356	Total O 356 356	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: M17 leucyl aminopeptidase

 \bullet Molecule 1: M17 leucyl aminopeptidase

SIH

• Molecule 1: M17 leucyl aminopeptidase

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	173.56Å 178.12 Å 230.48 Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	43.15 - 2.00	Depositor
Resolution (A)	43.13 - 2.00	EDS
% Data completeness	98.3 (43.15-2.00)	Depositor
(in resolution range)	98.3(43.13-2.00)	EDS
R _{merge}	0.25	Depositor
R_{sym}	0.07	Depositor
$< I/\sigma(I) > 1$	2.34 (at 2.00Å)	Xtriage
Refinement program	REFMAC 5.5.0063	Depositor
D D	0.192 , 0.242	Depositor
Λ, Λ_{free}	0.196 , 0.243	DCC
R_{free} test set	23578 reflections $(5.03%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	15.6	Xtriage
Anisotropy	0.457	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.35 , 53.0	EDS
L-test for twinning ²	$< L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	0.000 for k,h,-l	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	53016	wwPDB-VP
Average B, all atoms $(Å^2)$	18.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 47.00 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.0558e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CO3, BES, ZN, MG, SO4, 1PE

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		B	ond angles
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.85	0/4063	0.76	0/5508
1	В	0.81	2/4014~(0.0%)	0.79	8/5450~(0.1%)
1	С	0.84	0/4036	0.80	4/5477~(0.1%)
1	D	0.84	0/4023	0.81	8/5454~(0.1%)
1	Е	0.86	0/3973	0.83	9/5392~(0.2%)
1	F	0.83	0/3949	0.81	5/5364~(0.1%)
1	G	0.86	2/4073~(0.0%)	0.77	6/5513~(0.1%)
1	Н	0.80	2/4022~(0.0%)	0.78	3/5445~(0.1%)
1	Ι	0.84	0/4089	0.83	6/5539~(0.1%)
1	J	0.86	0/4043	0.81	4/5476~(0.1%)
1	Κ	0.87	2/4014~(0.0%)	0.83	7/5438~(0.1%)
1	L	0.85	0/4024	0.81	4/5460~(0.1%)
All	All	0.84	8/48323~(0.0%)	0.80	64/65516 (0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	В	0	1
1	G	0	1
All	All	0	2

The worst 5 of 8 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	G	262	GLU	CB-CG	-5.83	1.41	1.52
1	K	206	VAL	CB-CG2	-5.61	1.41	1.52
1	В	422	GLU	CD-OE1	-5.53	1.19	1.25
1	K	206	VAL	CB-CG1	-5.39	1.41	1.52

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	Н	421	VAL	CB-CG2	-5.33	1.41	1.52

The worst 5 of 64 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	С	440	ARG	NE-CZ-NH2	-15.18	112.71	120.30
1	Ι	440	ARG	NE-CZ-NH2	-13.93	113.34	120.30
1	В	440	ARG	NE-CZ-NH1	12.56	126.58	120.30
1	L	440	ARG	NE-CZ-NH2	-12.05	114.28	120.30
1	F	440	ARG	NE-CZ-NH2	-11.99	114.31	120.30

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	В	257	LYS	Peptide
1	G	136	GLY	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3983	0	3917	25	0
1	В	3936	0	3843	51	0
1	С	3955	0	3881	36	0
1	D	3946	0	3888	45	0
1	Е	3896	0	3819	50	0
1	F	3873	0	3771	46	0
1	G	3996	0	3988	36	0
1	Н	3943	0	3937	37	0
1	Ι	4008	0	3985	38	0
1	J	3963	0	3940	49	0
1	Κ	3935	0	3907	39	0
1	L	3944	0	3874	44	0
2	А	4	0	0	0	0
2	В	4	0	0	0	0
2	С	4	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	D	4	0	0	0	0
2	Е	4	0	0	0	0
2	F	4	0	0	0	0
2	G	4	0	0	0	0
2	Н	4	0	0	0	0
2	Ι	4	0	0	0	0
2	J	4	0	0	0	0
2	K	4	0	0	0	0
2	L	4	0	0	0	0
3	А	1	0	0	0	0
3	В	1	0	0	0	0
3	С	1	0	0	0	0
3	D	1	0	0	0	0
3	Е	1	0	0	0	0
3	F	1	0	0	0	0
3	G	1	0	0	0	0
3	Н	1	0	0	0	0
3	I	1	0	0	0	0
3	J	1	0	0	0	0
3	K	1	0	0	0	0
3	L	1	0	0	0	0
4	A	22	0	22	1	0
4	B	22	0	22	3	0
4	C	22	0	22	3	0
4	D	22	0	22	3	0
4	E	22	0	22	3	0
4	F'	22	0	22	0	0
4	G	22	0	22	0	0
4	H	22	0	22	3	0
4	l	22	0	22	3	0
4	J	22	0	22	2	0
4	K I	22	0	22	4	0
4		1	0	22	0	0
5	A D	1	0	0	0	0
5	D C	1	0	0	0	0
5		1	0	0	0	0
5	E E	1	0	0	0	0
5	F	1	0	0	0	0
5		1	0	0	0	0
5	H H	1	0	0	0	0
5	I	1	0	0	0	0
J	1	1	U	U	0	U

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	J	1	0	0	0	0
5	Κ	1	0	0	0	0
5	L	1	0	0	0	0
6	А	15	0	0	0	0
6	В	5	0	0	0	0
6	D	10	0	0	1	0
6	Е	5	0	0	0	0
6	F	5	0	0	0	0
6	G	10	0	0	0	0
6	J	10	0	0	1	0
6	Κ	5	0	0	0	0
6	L	5	0	0	2	0
7	А	21	0	22	2	0
7	В	30	0	30	8	0
7	С	22	0	24	5	0
7	D	38	0	38	6	0
7	Ε	32	0	36	4	0
7	F	30	0	39	3	0
7	G	43	0	47	7	0
7	Н	20	0	20	4	0
7	Ι	33	0	37	8	0
7	J	31	0	36	10	0
7	K	41	0	44	1	0
7	L	33	0	40	11	0
8	А	423	0	0	3	0
8	В	361	0	0	9	0
8	С	427	0	0	9	0
8	D	411	0	0	12	0
8	Е	442	0	0	13	0
8	F	373	0	0	12	0
8	G	421	0	0	5	0
8	Н	389	0	0	5	0
8	Ι	414	0	0	11	0
8	J	403	0	0	12	0
8	K	438	0	0	10	0
8	L	356	0	0	7	0
All	All	53016	0	47427	482	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

The worst 5 of 482 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:104:ASN:HB2	8:B:3372:HOH:O	1.37	1.21
1:B:257:LYS:CB	1:B:258:ASN:HB3	1.71	1.18
1:F:316:GLU:HG3	7:F:32:1PE:H141	1.28	1.12
1:J:518:LYS:HE2	8:J:2650:HOH:O	1.50	1.08
1:D:320:LYS:HZ1	7:D:63:1PE:H142	1.16	1.06

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	515/528~(98%)	503~(98%)	12 (2%)	0	100	100
1	В	516/528~(98%)	502 (97%)	11 (2%)	3 (1%)	25	19
1	С	517/528~(98%)	509~(98%)	8 (2%)	0	100	100
1	D	512/528~(97%)	492 (96%)	18 (4%)	2(0%)	34	30
1	Ε	506/528~(96%)	493 (97%)	10 (2%)	3(1%)	25	19
1	F	504/528~(96%)	487 (97%)	17 (3%)	0	100	100
1	G	512/528~(97%)	500 (98%)	11 (2%)	1 (0%)	47	44
1	Н	504/528~(96%)	493 (98%)	10 (2%)	1 (0%)	47	44
1	Ι	517/528~(98%)	507 (98%)	10 (2%)	0	100	100
1	J	510/528~(97%)	496 (97%)	14 (3%)	0	100	100
1	Κ	504/528~(96%)	495 (98%)	9(2%)	0	100	100
1	L	510/528~(97%)	501 (98%)	9 (2%)	0	100	100
All	All	6127/6336~(97%)	5978 (98%)	139 (2%)	10 (0%)	47	44

 $5~{\rm of}~10$ Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Н	124	GLU
	<i>α</i>	-	· · ·

Continued from previous page...

	5	1	1 5
Mol	Chain	Res	Type
1	В	136	GLY
1	В	258	ASN
1	В	259	VAL
1	Е	362	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	А	427/455~(94%)	417 (98%)	10 (2%)	50	53
1	В	414/455~(91%)	395~(95%)	19 (5%)	27	23
1	С	419/455~(92%)	401 (96%)	18 (4%)	29	26
1	D	418/455~(92%)	397~(95%)	21 (5%)	24	20
1	Ε	413/455~(91%)	398~(96%)	15 (4%)	35	34
1	F	409/455~(90%)	391 (96%)	18 (4%)	28	25
1	G	437/455~(96%)	422 (97%)	15 (3%)	37	36
1	Н	431/455~(95%)	409 (95%)	22~(5%)	24	19
1	Ι	437/455~(96%)	411 (94%)	26~(6%)	19	15
1	J	432/455~(95%)	415 (96%)	17 (4%)	32	30
1	Κ	428/455~(94%)	415 (97%)	13 (3%)	41	41
1	L	424/455~(93%)	404 (95%)	20 (5%)	26	22
All	All	5089/5460~(93%)	4875 (96%)	214 (4%)	30	27

5 of 214 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	G	603	ASP
1	Ι	173	LYS
1	L	229	ASN
1	Н	155	GLU
1	Н	398	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 20 such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	Κ	113	GLN
1	L	181	ASN
1	L	217	ASN
1	L	215	HIS
1	G	149	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 99 ligands modelled in this entry, 24 are monoatomic - leaving 75 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Chain Bos		Res	Tiple	Bo	ond leng	ths	E	Bond ang	gles
MOI	туре	Unam	nes			Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
7	1PE	В	60	-	9,9,15	0.44	0	8,8,14	0.56	0		
6	SO4	G	23	-	4,4,4	0.20	0	$6,\!6,\!6$	0.31	0		
4	BES	J	1003	5,3	22,22,22	0.92	1 (4%)	27,29,29	1.63	5 (18%)		
7	1PE	G	48	-	5,5,15	0.64	0	4,4,14	0.80	0		
7	1PE	J	45	-	9,9,15	0.52	0	8,8,14	0.36	0		
7	1PE	L	1	-	9,9,15	0.31	0	8,8,14	0.53	0		
7	1PE	С	18	-	8,8,15	0.54	0	7,7,14	0.42	0		

	T		D	т !1.	Bo	Bond lengths		Bond angles		
IVIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
7	1PE	F	33	-	9,9,15	0.54	0	8,8,14	0.32	0
2	CO3	С	1002	-	2,3,3	0.62	0	$2,\!3,\!3$	1.17	0
6	SO4	А	24	-	4,4,4	0.17	0	$6,\!6,\!6$	0.15	0
7	1PE	Е	43	-	7,7,15	0.53	0	$6,\!6,\!14$	0.29	0
7	1PE	I	66	-	$6,\!6,\!15$	0.60	0	$5,\!5,\!14$	0.33	0
7	1PE	K	5	-	11,11,15	0.44	0	10,10,14	0.64	0
4	BES	L	1003	$5,\!3$	22,22,22	0.75	0	$27,\!29,\!29$	1.49	6 (22%)
7	1PE	Ι	21	-	$14,\!14,\!15$	0.66	0	$13,\!13,\!14$	0.76	0
2	CO3	Ε	1002	-	$2,\!3,\!3$	0.39	0	$2,\!3,\!3$	0.92	0
7	1PE	J	3	-	9,9,15	0.54	0	8,8,14	0.50	0
2	CO3	G	1002	-	2,3,3	0.61	0	2,3,3	0.77	0
7	1PE	L	56	-	10,10,15	0.56	0	9,9,14	0.28	0
4	BES	F	1003	$5,\!3$	22,22,22	0.76	0	$27,\!29,\!29$	1.57	5(18%)
7	1PE	Н	64	-	9,9,15	0.52	0	8,8,14	0.56	0
2	CO3	Κ	1002	-	2,3,3	0.51	0	$2,\!3,\!3$	0.90	0
7	1PE	G	47	-	$5,\!5,\!15$	0.51	0	$4,\!4,\!14$	0.51	0
6	SO4	G	17	-	4,4,4	0.08	0	$6,\!6,\!6$	0.37	0
7	1PE	D	9	-	9,9,15	0.47	0	8,8,14	0.29	0
7	1PE	D	63	-	9,9,15	0.74	0	8,8,14	0.80	0
7	1PE	Ι	22	-	10,10,15	0.49	0	9,9,14	0.34	0
4	BES	D	1003	$5,\!3$	$22,\!22,\!22$	0.79	0	$27,\!29,\!29$	1.12	3 (11%)
7	1PE	G	58	-	$14,\!14,\!15$	0.71	0	$13,\!13,\!14$	0.54	0
6	SO4	A	1	-	4,4,4	0.21	0	$6,\!6,\!6$	0.34	0
7	1PE	А	19	-	8,8,15	0.51	0	$7,\!7,\!14$	0.25	0
7	1PE	В	61	-	9,9,15	0.64	0	8,8,14	0.83	0
6	SO4	K	19	-	4,4,4	0.24	0	$6,\!6,\!6$	0.22	0
4	BES	С	1003	5,3	22,22,22	0.88	0	$27,\!29,\!29$	1.41	2(7%)
7	1PE	В	62	-	9,9,15	0.61	0	8,8,14	0.41	0
4	BES	Е	1003	5,3	22,22,22	0.85	1 (4%)	$27,\!29,\!29$	1.37	2(7%)
7	1PE	С	17	-	12,12,15	0.56	0	11,11,14	0.49	0
7	1PE	G	30	-	6,6,15	0.48	0	$5,\!5,\!14$	0.32	0
7	1PE	Н	65	-	9,9,15	0.64	0	8,8,14	0.73	0
4	BES	Κ	1003	5,3	22,22,22	0.89	0	27,29,29	1.56	4 (14%)
7	1PE	K	4	_	11,11,15	0.57	0	10,10,14	0.38	0
4	BES	G	1003	5,3	22,22,22	0.94	2(9%)	27,29.29	1.61	2(7%)
2	CO3	J	1002	-	2,3,3	0.51	0	2,3,3	1.61	0
4	BES	A	1003	5.3	22.22.22	0.83	0	27.29.29	1.55	4 (14%)
2	CO3	Н	1002		2.3.3	0.26	0	2.3.3	1.22	0
4	BES	Н	1002	5.3	22,22.22	0.75	0	27,29.29	1.41	4 (14%)
2	CO3	A	1002	_	2.3.3	0.13	0	2.3.3	1.36	0
$\frac{-}{2}$	CO3	I	1002	_	2.3.3	0.67	0	2.3.3	1.33	0
$ \begin{array}{r} 7 \\ 7 \\ 7 \\ 4 \\ 7 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 2 \\ 2 \end{array} $	1PE1PE1PEBES1PEBESCO3BESCO3BESCO3CO3	C G H K G J A H H H A I	$ \begin{array}{r} 17 \\ 30 \\ 65 \\ 1003 \\ 4 \\ 1003 \\ 1002 \\ 1003 \\ 1002 \\ 1003 \\ 1002 \\ 100 \\ 100 \\ $	- - 5,3 - 5,3 - 5,3 - 5,3 - 5,3 - 5,3 -	$\begin{array}{r} 12,12,15\\ 6,6,15\\ 9,9,15\\ 22,22,22\\ 11,11,15\\ 22,22,22\\ 2,3,3\\ 22,22,22\\ 2,3,3\\ 22,22,22\\ 2,3,3\\ 22,3,3\\ 2,3,3\\ 2,3,3\\ \end{array}$	$\begin{array}{c} 0.56 \\ 0.48 \\ 0.64 \\ 0.89 \\ 0.57 \\ 0.94 \\ 0.51 \\ 0.83 \\ 0.26 \\ 0.75 \\ 0.13 \\ 0.67 \end{array}$	0 0 0 0 0 2 (9%) 0 0 0 0 0 0 0 0 0	$\begin{array}{r} 11,11,14\\ 5,5,14\\ 8,8,14\\ 27,29,29\\ 10,10,14\\ 27,29,29\\ 2,3,3\\ 27,29,29\\ 2,3,3\\ 27,29,29\\ 2,3,3\\ 27,29,29\\ 2,3,3\\ 2,3,3\\ 2,3,3\\ \end{array}$	$\begin{array}{c} 0.49\\ 0.32\\ 0.73\\ 1.56\\ 0.38\\ 1.61\\ 1.61\\ 1.55\\ 1.22\\ 1.41\\ 1.36\\ 1.33\\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 4 (14\%) \\ 0 \\ 2 (7\%) \\ 0 \\ 4 (14\%) \\ 0 \\ 4 (14\%) \\ 0 \\ 4 (14\%) \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$

Mal	Type	Chain	Dog	Link	Bond lengths		Bond angles			
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
4	BES	Ι	1003	5,3	22,22,22	0.92	0	27,29,29	1.65	6 (22%)
7	1PE	Е	7	-	11,11,15	0.54	0	10,10,14	0.44	0
6	SO4	D	7	-	4,4,4	0.34	0	$6,\!6,\!6$	0.54	0
6	SO4	F	21	-	4,4,4	0.17	0	6,6,6	0.24	0
7	1PE	F	32	-	9,9,15	0.57	0	8,8,14	0.39	0
4	BES	В	1003	5,3	22,22,22	0.71	0	27,29,29	1.66	9 (33%)
7	1PE	K	42	-	10,10,15	0.58	0	9,9,14	0.41	0
6	SO4	Е	22	-	4,4,4	0.18	0	$6,\!6,\!6$	0.25	0
6	SO4	J	20	-	4,4,4	0.11	0	$6,\!6,\!6$	0.22	0
7	1PE	А	20	-	11,11,15	0.61	0	10,10,14	0.53	0
7	1PE	G	12	-	8,8,15	0.57	0	7,7,14	0.37	0
7	1PE	K	50	-	$5,\!5,\!15$	0.60	0	4,4,14	0.31	0
2	CO3	F	1002	-	$2,\!3,\!3$	0.74	0	$2,\!3,\!3$	1.58	0
2	CO3	L	1002	-	2,3,3	0.36	0	$2,\!3,\!3$	1.30	0
6	SO4	D	5	-	4,4,4	0.18	0	$6,\!6,\!6$	0.25	0
7	1PE	L	612	-	$11,\!11,\!15$	0.45	0	10, 10, 14	0.51	0
7	1PE	D	44	-	$10,\!10,\!15$	0.72	0	$9,\!9,\!14$	0.66	0
7	1PE	F	31	-	$9,\!9,\!15$	0.36	0	8,8,14	0.62	0
6	SO4	L	25	-	$4,\!4,\!4$	0.24	0	$6,\!6,\!6$	0.34	0
7	1PE	J	2	-	$10,\!10,\!15$	0.41	0	$9,\!9,\!14$	0.58	0
6	SO4	J	18	-	4,4,4	0.35	0	$6,\!6,\!6$	0.62	0
7	1PE	D	67	-	$6,\!6,\!15$	0.50	0	$5,\!5,\!14$	0.28	0
6	SO4	В	3	-	4,4,4	0.32	0	$6,\!6,\!6$	0.43	0
2	CO3	В	1002	-	2,3,3	0.53	0	$2,\!3,\!3$	2.21	2 (100%)
2	CO3	D	1002	-	2,3,3	0.72	0	2,3,3	1.64	1 (50%)
6	SO4	A	2	-	4,4,4	0.20	0	6,6,6	0.28	0
7	1PE	E	8	-	11,11,15	0.39	0	10,10,14	0.53	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
7	1PE	В	60	-	-	3/7/7/13	-
7	1PE	L	1	-	-	5/7/7/13	-
4	BES	J	1003	5,3	-	5/24/24/24	0/1/1/1
7	1PE	G	48	-	-	2/3/3/13	-
7	1PE	J	45	-	-	4/7/7/13	-
7	1PE	С	18	-	-	4/6/6/13	-

Conti	nueu jio	m previou	is puye.	••			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	1PE	F	33	-	-	4/7/7/13	-
7	1PE	K	5	-	-	2/9/9/13	-
7	1PE	E	43	-	-	2/5/5/13	-
4	BES	L	1003	5,3	-	5/24/24/24	0/1/1/1
7	1PE	Ι	21	-	-	4/12/12/13	-
7	1PE	J	3	-	-	4/7/7/13	-
7	1PE	L	56	-	-	1/8/8/13	-
4	BES	F	1003	5,3	-	10/24/24/24	0/1/1/1
7	1PE	Н	64	-	-	2/7/7/13	-
7	1PE	G	47	-	-	3/3/3/13	-
7	1PE	D	9	-	-	6/7/7/13	-
7	1PE	D	63	-	-	3/7/7/13	-
7	1PE	Ι	22	-	-	5/8/8/13	-
4	BES	D	1003	5,3	-	5/24/24/24	0/1/1/1
7	1PE	G	58	-	-	5/12/12/13	-
7	1PE	А	19	-	-	2/6/6/13	-
7	1PE	В	61	-	-	7/7/7/13	-
4	BES	С	1003	5,3	-	6/24/24/24	0/1/1/1
7	1PE	В	62	-	_	1/7/7/13	-
4	BES	Е	1003	5,3	-	6/24/24/24	0/1/1/1
7	1PE	С	17	-	-	2/10/10/13	-
7	1PE	G	30	-	-	3/4/4/13	-
7	1PE	Н	65	-	-	3/7/7/13	-
4	BES	К	1003	5,3	-	8/24/24/24	0/1/1/1
7	1PE	K	4	-	-	1/9/9/13	-
4	BES	G	1003	5,3	-	6/24/24/24	0/1/1/1
4	BES	А	1003	5,3	-	2/24/24/24	0/1/1/1
4	BES	Н	1003	5,3	-	6/24/24/24	0/1/1/1
4	BES	Ι	1003	5,3	-	7/24/24/24	0/1/1/1
7	1PE	Е	7	-	-	3/9/9/13	-
7	1PE	К	42	-	-	4/8/8/13	-
7	1PE	F	32	-	-	3/7/7/13	-
7	1PE	K	50	-	-	3/3/3/13	-
4	BES	В	1003	5,3	-	6/24/24/24	0/1/1/1
7	1PE	G	12	-	-	6/6/6/13	-

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	1PE	А	20	-	-	4/9/9/13	-
7	1PE	L	612	-	-	6/9/9/13	-
7	1PE	D	44	-	-	2/8/8/13	-
7	1PE	F	31	-	-	0/7/7/13	-
7	1PE	J	2	-	-	6/8/8/13	-
7	1PE	D	67	-	-	3/4/4/13	-
7	1PE	Ι	66	-	-	2/4/4/13	-
7	1PE	Е	8	-	-	0/9/9/13	-

Continued from previous page...

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
4	G	1003	BES	O4-C5	2.12	1.28	1.22
4	Е	1003	BES	C2-C3	-2.10	1.48	1.52
4	J	1003	BES	O2-C2	2.09	1.46	1.42
4	G	1003	BES	C2-C1	2.09	1.56	1.54

The worst 5 of 55 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	J	1003	BES	O2-C2-C1	5.42	121.01	109.64
4	G	1003	BES	O2-C2-C1	5.14	120.41	109.64
4	F	1003	BES	O2-C2-C1	4.66	119.42	109.64
4	G	1003	BES	O2-C2-C3	-4.62	100.69	110.63
4	K	1003	BES	O2-C2-C3	-4.43	101.08	110.63

There are no chirality outliers.

5 of 192 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	А	1003	BES	O2-C2-C3-O3
4	А	1003	BES	O2-C2-C3-N1
4	В	1003	BES	O2-C2-C3-O3
4	В	1003	BES	O2-C2-C3-N1
4	С	1003	BES	N2-C1-C2-C3

There are no ring outliers.

35 monomers are involved in 98 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	J	1003	BES	2	0
7	J	45	1PE	2	0
7	L	1	1PE	3	0
7	С	18	1PE	4	0
7	Е	43	1PE	4	0
7	Ι	21	1PE	3	0
7	J	3	1PE	6	0
7	Н	64	1PE	1	0
7	D	9	1PE	1	0
7	D	63	1PE	2	0
7	Ι	22	1PE	5	0
4	D	1003	BES	3	0
7	G	58	1PE	6	0
7	А	19	1PE	1	0
7	В	61	1PE	8	0
4	С	1003	BES	3	0
4	Е	1003	BES	3	0
7	С	17	1PE	1	0
7	Н	65	1PE	3	0
4	K	1003	BES	4	0
4	А	1003	BES	1	0
4	Н	1003	BES	3	0
4	Ι	1003	BES	3	0
6	D	7	SO4	1	0
7	F	32	1PE	3	0
4	В	1003	BES	3	0
7	K	42	1PE	1	0
6	J	20	SO4	1	0
7	A	20	1PE	1	0
7	G	12	1PE	1	0
7	L	612	1PE	8	0
7	D	44	1PE	2	0
6	L	25	SO4	2	0
7	J	2	1PE	2	0
7	D	67	1PE	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the

average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSR	RZ>	2	$OWAB(Å^2)$	Q<0.9
1	А	518/528~(98%)	-0.40	4 (0%) 8	36	85	7, 14, 29, 39	1 (0%)
1	В	518/528~(98%)	-0.22	14 (2%) 5	54	53	7, 16, 42, 51	0
1	С	518/528~(98%)	-0.37	4 (0%) 8	36	85	7, 15, 31, 42	0
1	D	516/528~(97%)	-0.37	7 (1%) 7	75	74	8, 15, 29, 39	0
1	Е	510/528~(96%)	-0.46	4 (0%) 8	36	85	8, 14, 25, 37	0
1	F	510/528~(96%)	-0.25	6 (1%) 7	79	78	8, 17, 37, 46	0
1	G	516/528~(97%)	-0.36	6 (1%) 7	79	78	7, 14, 28, 40	0
1	Н	509/528~(96%)	-0.22	13 (2%) 5	56	54	7, 16, 42, 52	0
1	Ι	518/528~(98%)	-0.34	2 (0%) 9	92	92	7, 14, 31, 41	0
1	J	513/528~(97%)	-0.34	5 (0%) 8	32	81	8, 15, 29, 40	0
1	K	509/528~(96%)	-0.47	5 (0%) 8	32	81	9, 14, 25, 38	0
1	L	513/528~(97%)	-0.26	6 (1%) 7	79	78	8, 16, 40, 46	0
All	All	6168/6336 (97%)	-0.34	76 (1%)	79	78	7, 15, 34, 52	1 (0%)

The worst 5 of 76 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	136	GLY	7.4
1	J	136	GLY	7.0
1	D	136	GLY	7.0
1	В	259	VAL	5.0
1	Е	136	GLY	4.7

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
7	1PE	В	62	10/16	-0.02	0.71	91,95,97,98	0
7	1PE	K	50	6/16	0.66	0.21	37,40,45,46	0
7	1PE	D	63	10/16	0.79	0.18	22,30,33,36	0
7	1PE	А	20	12/16	0.80	0.18	40,43,46,47	0
7	1PE	D	44	11/16	0.80	0.29	36,38,43,44	0
7	1PE	D	67	7/16	0.82	0.23	29,33,41,41	0
7	1PE	G	58	15/16	0.83	0.20	37,42,52,53	0
7	1PE	Н	65	10/16	0.83	0.17	32,40,41,41	0
7	1PE	J	45	10/16	0.83	0.27	44,48,51,51	0
7	1PE	В	61	10/16	0.83	0.19	38,40,42,43	0
7	1PE	J	3	10/16	0.85	0.15	36,37,40,41	0
7	1PE	G	30	7/16	0.86	0.17	35,38,42,43	0
7	1PE	Ι	21	15/16	0.87	0.20	26,33,46,47	0
7	1PE	С	17	13/16	0.87	0.20	22,36,38,38	0
5	MG	J	1004	1/1	0.87	0.58	22,22,22,22	0
7	1PE	Κ	4	12/16	0.87	0.14	31,32,34,35	0
7	1PE	K	42	11/16	0.87	0.18	33,42,47,47	0
7	1PE	Е	7	12/16	0.87	0.15	32,34,36,36	0
7	1PE	L	56	11/16	0.87	0.18	43,45,48,50	0
4	BES	G	1003	22/22	0.88	0.17	13,28,34,39	0
7	1PE	Ι	66	7/16	0.88	0.15	30,32,34,34	0
4	BES	F	1003	22/22	0.88	0.20	13,27,36,40	0
7	1PE	F	32	10/16	0.88	0.16	37,39,39,39	0
4	BES	В	1003	22/22	0.89	0.18	17,30,39,45	0
6	SO4	А	2	5/5	0.89	0.15	45,46,50,51	0
6	SO4	А	24	5/5	0.89	0.14	$52,\!55,\!56,\!57$	0
4	BES	С	1003	22/22	0.89	0.15	22,27,36,36	0
7	1PE	Е	43	8/16	0.89	0.18	33,35,35,39	0
4	BES	Н	1003	22/22	0.89	0.18	15,25,34,37	0
7	1PE	G	12	9/16	0.89	0.16	27,28,32,32	0
4	BES	K	1003	22/22	0.89	0.16	16,26,32,39	0
7	1PE	L	612	12/16	0.89	0.18	22,36,39,40	0

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<0.9 0 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
4 BES A 1003 22/22 0.90 0.15 20,29,35,40	0
	0
7 1PE J 2 11/16 0.91 0.13 23,26,37,42	0
7 1PE D 9 10/16 0.91 0.16 21,25,35,37	0
7 1PE G 48 6/16 0.91 0.13 25,31,33,36	0
4 BES D 1003 22/22 0.91 0.15 13,28,32,33	0
	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
7 1PE A 19 9/16 0.92 0.17 20,24,28,31	0
5 MG C 1004 1/1 0.92 0.44 27,27,27,27	0
5 MG D 1004 1/1 0.92 0.42 28,28,28	0
4 BES J 1003 22/22 0.92 0.15 11,28,37,40	0
7 1PE I 22 11/16 0.92 0.13 18,23,36,38	0
4 BES L 1003 22/22 0.93 0.17 12,26,33,34	0
5 MG F 1004 1/1 0.93 0.45 37,37,37	0
7 1PE C 18 9/16 0.93 0.10 20,21,26,29	0
7 1PE G 47 6/16 0.93 0.13 30,31,32,35	0
7 1PE B 60 10/16 0.93 0.14 23,28,33,35	0
5 MG A 1004 1/1 0.93 0.55 24,24,24	0
7 1PE K 5 12/16 0.94 0.12 25,27,38,38	0
2 CO3 A 1002 4/4 0.94 0.14 13,14,14,17	0
5 MG I 1004 1/1 0.94 0.50 15,15,15,15	0
6 SO4 D 5 5/5 0.94 0.20 53,53,56,56	0
6 SO4 J 20 5/5 0.94 0.25 60,62,62,62	0
7 1PE E 8 12/16 0.95 0.13 20,23,35,35	0
7 1PE H 64 10/16 0.95 0.11 19,26,34,35	0
5 MG K 1004 1/1 0.95 0.35 23,23,23	0
7 1PE L 1 10/16 0.95 0.11 25,27,32,38	0
5 MG H 1004 1/1 0.95 0.51 40,40,40	0
6 SO4 K 19 5/5 0.95 0.20 52,53,54,54	0
6 SO4 G 23 5/5 0.96 0.22 46,49,50,50	0
7 1PE F 31 10/16 0.96 0.09 26.27.29.29	0
6 SO4 L 25 5/5 0.96 0.24 56,59,59,60	0
5 MG G 1004 1/1 0.96 0.40 23.23.23.23	0
6 SO4 F 21 5/5 0.97 0.20 56.59.59.59	0
2 CO3 D 1002 4/4 0.97 0.11 11.12.12.16	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
2	CO3	С	1002	4/4	0.98	0.10	12,13,13,16	0
2	CO3	G	1002	4/4	0.98	0.08	11,12,12,15	0
2	CO3	Н	1002	4/4	0.98	0.09	10,10,11,14	0
2	CO3	Ι	1002	4/4	0.98	0.10	14,15,15,18	0
2	CO3	В	1002	4/4	0.98	0.11	11,12,12,16	0
2	CO3	K	1002	4/4	0.98	0.10	13,14,14,18	0
2	CO3	L	1002	4/4	0.98	0.10	14,15,15,16	0
6	SO4	А	1	5/5	0.98	0.17	$50,\!51,\!53,\!53$	0
2	CO3	Е	1002	4/4	0.98	0.13	16,17,18,19	0
3	ZN	Е	1001	1/1	0.99	0.04	38,38,38,38	0
3	ZN	F	1001	1/1	0.99	0.08	40,40,40,40	0
3	ZN	G	1001	1/1	0.99	0.09	38,38,38,38	0
3	ZN	Н	1001	1/1	0.99	0.08	34,34,34,34	0
3	ZN	Ι	1001	1/1	0.99	0.08	36,36,36,36	0
6	SO4	В	3	5/5	0.99	0.06	8,9,10,10	0
3	ZN	J	1001	1/1	0.99	0.04	38,38,38,38	0
3	ZN	Κ	1001	1/1	0.99	0.07	37,37,37,37	0
3	ZN	L	1001	1/1	0.99	0.08	37,37,37,37	0
6	SO4	G	17	5/5	0.99	0.07	10,11,13,14	0
3	ZN	А	1001	1/1	0.99	0.08	39,39,39,39	0
6	SO4	J	18	5/5	0.99	0.09	11,11,12,14	0
3	ZN	С	1001	1/1	0.99	0.10	39,39,39,39	0
3	ZN	D	1001	1/1	1.00	0.04	34,34,34,34	0
3	ZN	В	1001	1/1	1.00	0.07	37,37,37,37	0
6	SO4	D	7	5/5	1.00	0.09	8,11,11,12	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

