

wwPDB EM Validation Summary Report (i)

Apr 29, 2024 – 03:52 am BST

PDB ID	:	5L4G
EMDB ID	:	EMD-4002
Title	:	The human $26S$ proteasome at 3.9 A
Authors	:	Schweitzer, A.; Aufderheide, A.; Rudack, T.; Beck, F.
Deposited on	:	2016-05-25
Resolution	:	3.90 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#Entries)$	${ m EM~structures}\ (\#{ m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	246	86%	13% •
1	Ν	246	85%	14% •
2	В	234	81%	15% •
2	0	234	83%	15% ·
3	С	261	89%	6% •
3	Р	261	85%	9% • •
4	D	248	86%	11% ••
4	Q	248	87%	11% •

Continued on next page...

Mol	Chain	Length	Quality of chain	
5	Е	241	85%	11% • •
5	R	241	85%	11% •
6	F	263	75% 15	% 10%
6	S	263	79%	10%
7	G	255	82%	13% 5%
7	Т	255	87%	7% 5%
8	1	241	75% 12%	12%
8	I	241	72%	. 12%
0	<u> </u>	241	12%	• 12%
9		201	88%	9% ••
9	V	201	88%	10% ••
10	3	205	83%	15% ·
10	W	205	93%	6%
11	4	264	72% 11%	18%
11	Х	264	75% 6% ·	18%
12	5	263	63% 13%	24%
12	Y	263	63% 11% ·	24%
13	6	239	74% 8%	17%
13	Z	239	72% 12%	16%
14	7	277	69% 9% •	21%
14	8	277	70% 8% •	21%
15	Н	433	65% 24%	• 9%
16	T	440	11% 66% 10%	. 14%
17	IZ	/10	11%	- 17/0
11	IV.	410	/5% 1 11%	/% • 6%
18	L	389	80%	17% •
19	Μ	439	74% 18	• 5%

Continued from previous page...

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain		
			13%		
20	J	406	73%	21%	• •

2 Entry composition (i)

There are 23 unique types of molecules in this entry. The entry contains 135560 atoms, of which 67868 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Proteasome subunit alpha type-6.

Mol	Chain	Residues				AltConf	Trace			
1	1 N	244	Total	С	Η	Ν	0	S	0	0
	244	3814	1206	1911	320	364	13	0	0	
1	1 Λ	244	Total	С	Η	Ν	0	S	0	0
	A	244	3814	1206	1911	320	364	13	0	0

• Molecule 2 is a protein called Proteasome subunit alpha type-2.

Mol	Chain	Residues			Atoms		AltConf	Trace		
2	0	933	Total	С	Η	Ν	0	S	0	0
	0	200	3630	1161	1812	308	343	6	0	0
2	В	033	Total	С	Η	Ν	0	S	0	0
	D	233	3630	1161	1812	308	343	6	0	0

• Molecule 3 is a protein called Proteasome subunit alpha type-4.

Mol	Chain	Residues				AltConf	Trace			
9	D	250	Total	С	Η	Ν	0	S	0	0
3 F	Г	230	3963	1245	1992	339	377	10	0	0
2	3 C	250	Total	С	Η	Ν	0	S	0	0
3		230	3963	1245	1992	339	377	10		U

• Molecule 4 is a protein called Proteasome subunit alpha type-7.

Mol	Chain	Residues			Atoms		AltConf	Trace		
4	4 0	243	Total	С	Η	Ν	Ο	S	0	0
4 Q	Q	240	3875	1206	1952	342	370	5	0	0
4	4 D	D 243	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
4			3875	1206	1952	342	370	5	0	0

• Molecule 5 is a protein called Proteasome subunit alpha type-5.

Mol	Chain	Residues			Atom		AltConf	Trace		
5	5 D	224	Total	С	Η	Ν	0	S	0	0
0 R	234	3563	1125	1773	295	359	11	0	0	
5	ь Б	224	Total	С	Н	Ν	0	S	0	0
5	Ľ	234	3563	1125	1773	295	359	11	0	U

• Molecule 6 is a protein called Proteasome subunit alpha type-1.

Mol	Chain	Residues				AltConf	Trace			
6	6 9	020	Total	С	Η	Ν	0	S	0	0
0 5	230	3733	1172	1860	337	353	11	0	0	
6	Б	028	Total	С	Η	Ν	0	S	0	0
0 F	Г	238	3733	1172	1860	337	353	11	0	0

• Molecule 7 is a protein called Proteasome subunit alpha type-3.

Mol	Chain	Residues			Atom	S			AltConf	Trace
7	Т	242	Total	С	Η	Ν	0	S	0	0
1	T	242	3771	1200	1877	323	360	11	0	0
7	С	241	Total	С	Η	Ν	0	S	0	0
1	G	241	3764	1198	1874	322	359	11	0	0

• Molecule 8 is a protein called Proteasome subunit beta type-1.

Mol	Chain	Residues			Atom	s			AltConf	Trace
8	II	212	Total	С	Η	Ν	0	\mathbf{S}	0	0
0	U	210	3308	1047	1654	284	313	10	0	0
8	1	913	Total	С	Η	Ν	0	S	0	0
0	1	210	3308	1047	1654	284	313	10	0	0

• Molecule 9 is a protein called Proteasome subunit beta type-2.

Mol	Chain	Residues			Atom	5			AltConf	Trace
0	V	100	Total	С	Η	Ν	0	S	0	0
9	v	199	3197	1022	1601	272	293	9	0	0
0	0	100	Total	С	Η	Ν	0	S	0	0
9		199	3197	1022	1601	272	293	9	0	0

• Molecule 10 is a protein called Proteasome subunit beta type-3.

Mol	Chain	Residues			Atom	S			AltConf	Trace
10	W	204	Total 3200	C 1013	Н 1609	N 265	O 294	S 19	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues			Atom	s			AltConf	Trace
10	3	204	Total 3200	C 1013	Н 1609	N 265	O 294	S 19	0	0

• Molecule 11 is a protein called Proteasome subunit beta type-4.

Mol	Chain	Residues			Atom	S			AltConf	Trace
11	X	217	Total 3358	C 1066	Н 1667	N 292	O 321	S 12	0	0
11	4	217	Total 3358	C 1066	H 1667	N 292	O 321	S 12	0	0

• Molecule 12 is a protein called Proteasome subunit beta type-5.

Mol	Chain	Residues			Atom	S			AltConf	Trace
10	V	201	Total	С	Η	Ν	0	S	0	0
	1	201	3080	982	1521	274	294	9	0	0
10	5	201	Total	С	Η	Ν	0	S	0	0
	5	201	3080	982	1521	274	294	9	0	U

• Molecule 13 is a protein called Proteasome subunit beta type-6.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
12	7	200	Total	С	Η	Ν	0	\mathbf{S}	0	0
10		200	2966	939	1467	256	292	12	0	0
19	6	100	Total	С	Η	Ν	0	S	0	0
10	0	199	2956	936	1462	255	291	12	0	0

• Molecule 14 is a protein called Proteasome subunit beta type-7.

Mol	Chain	Residues			Atom	s			AltConf	Trace
14	8	220	Total	С	Η	Ν	0	\mathbf{S}	0	0
14	0	220	3338	1044	1679	283	320	12	0	0
14	7	220	Total	С	Η	Ν	0	S	0	0
14	1	220	3338	1044	1679	283	320	12	0	0

• Molecule 15 is a protein called 26S protease regulatory subunit 7.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
15	Н	396	Total 6283	C 1961	Н 3167	N 549	O 588	S 18	0	0

• Molecule 16 is a protein called 26S protease regulatory subunit 4.

Mol	Chain	Residues			Atom	S			AltConf	Trace
16	Ι	379	Total 6043	C 1880	Н 3050	N 510	O 588	S 15	0	0

• Molecule 17 is a protein called 26S protease regulatory subunit 6B.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
17	K	393	Total	С	Н	N	0	S	0	0
			6302	1986	3164	537	602	13		Ŭ

• Molecule 18 is a protein called 26S protease regulatory subunit 10B.

Mol	Chain	Residues	Atoms				AltConf	Trace		
18	L	389	Total 6271	C 1947	Н 3173	N 552	O 582	S 17	0	0

• Molecule 19 is a protein called 26S protease regulatory subunit 6A.

Mol	Chain	Residues	Atoms					AltConf	Trace	
19	М	415	Total	C 2020	H 2200	N 561	0 625	S 19	0	0
			6160	2039	3322	100	030	18		

• Molecule 20 is a protein called 26S protease regulatory subunit 8.

Mol	Chain	Residues	Atoms					AltConf	Trace	
20	J	391	Total 6252	C 1928	Н 3178	N 549	O 579	S 18	0	0

• Molecule 21 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		Atoms					AltConf	
21	Ц	1	Total	С	Η	Ν	Ο	Р	0	
21	11	1	43	10	12	5	13	3	0	
91	21 I	1	Total	С	Η	Ν	Ο	Р	0	
21		1	43	10	12	5	13	3	0	
91	91 V		1	Total	С	Η	Ν	Ο	Р	0
21	Т	T	43	10	12	5	13	3	0	
91	т	1 T	1	Total	С	Η	Ν	Ο	Р	0
21	Ľ	1	43	10	12	5	13	3	0	
91	М	1	Total	С	Η	Ν	Ο	Р	0	
<u>1</u>	111	1	43	10	12	5	13	3	0	

• Molecule 22 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
22	Н	1	Total Mg 1 1	0
22	Ι	1	Total Mg 1 1	0
22	K	1	Total Mg 1 1	0
22	L	1	Total Mg 1 1	0
22	М	1	Total Mg 1 1	0

• Molecule 23 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues	Atoms				AltConf		
- 12	т	1	Total	С	Η	Ν	Ο	Р	0
20	J	L	39	10	12	5	10	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Proteasome subunit alpha type-6

V205 V219 V220 V220 ASP

• Molecule 2: Proteasome subunit alpha type-2

• Molecule 2: Proteasome subunit alpha type-2

```
Chain B: 81% 15%
```


A186 A MET 1187 A1 1188 E2 A100 A100 A100 A100 A100 A110 A110 A110 A110 A110 A100 A100

• Molecule 3: Proteasome subunit alpha type-4

• Molecule 3: Proteasome subunit alpha type-4

• Molecule 4: Proteasome subunit alpha type-7

S188 L217 T230 T230

• Molecule 5: Proteasome subunit alpha type-5

F226 1241

• Molecule 6: Proteasome subunit alpha type-1

• Molecule 6: Proteasome subunit alpha type-1

• Molecule 8: Proteasome subunit beta type-1

 \bullet Molecule 9: Proteasome subunit beta type-2

• Molecule 9: Proteasome subunit beta type-2

 \bullet Molecule 10: Proteasome subunit beta type-3

Chain W: 93% 6%

MET

 \bullet Molecule 10: Proteasome subunit beta type-3

Chain 3:	83%		15% •
MET 82 13 13 13 13 13 13 13 13 13 149 149 182	L94 Y104 P107 P107 V108 T116 F117 F117 F117 F117 T129 C129	1133 0134 V138 V138 M149 M149	5152 D159 L162 F164 F164 F164 H188
R 198			
• Molecule 11: Proteasor	ne subunit beta type-4		
Chain X:	75%	6% •	18%
MET GLU GLU GLU ELEU LEU GLY GLY GLY GLY ALA ALA ALA PRO	GLY CHLN PHE TYR ARG ARG FRO SER SER PHO ARS PHE PHE ARS PHE ARS PHE ARS PHE ARS PHE ARS PHE ARD ARS PHE ARC ARS PHE ARC ARC ARC ARC ARC ARC ARC ARC ARC ARC	TYR ARG GLY PRO ILE THR ARG T1	V6 L27 G28 S29 M50 M50 M50 S28 S282 S282
Y83 491 494 894 8121 7124 7124 7137 7141 7141 7141 7148 7148	R166 D167 L168 P202 P202 GLU GLU		
• Molecule 11: Proteasor	ne subunit beta type-4		
Chain 4:	72%	11%	18%
MET GLU GLU ALLA ALLA LEU LEU CLY GLY GLY GLY ALLA ALLA ALLA ALLA PRO	GLY GLY FHE TYR TYR ARG TLE FRO FRO SER FRO ARF ARF ARF ARF ALA ALA	TYR ARG GLY PRO ILE THR ARG T1	510 844 145 144 147 157 167 284 884
W91 N100 W107 W108 W108 W111 W128 M128 M128 M128 M128 M136 M136 M136 M137 M138 M138 <	1138 1139 7141 7141 7141 7133 8133 8133 8133 8133 8133 8133 813	G217 PHE GLU	
• Molecule 12: Proteasor	ne subunit beta type-5		
Chain Y:	63%	11% •	24%
MET ALA ALA ALA ALA ALA ALA CUU ALU PRO GLU ASN ASN ASN ASN ASN ASN ASN ASN	CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	LEU SER LEU ALA ALA PRO GLY TRP GLY	VAL PRO GLU GLU GLU GLU MET LEU HIS GLU T1 CL
G1 1 51 2 135 5 137 1 137 1 13	R61 788 796 896 896 799 898 7100 7100 7100 7100 8110 7115 7116 7115	8127 V138 V138 A159 A163	1164 8170 A173 A173 A173 A173 A173 E181 D182 D182 D183 M184
V187 COI SER FIR PRO			

• Molecule 12: Proteasome subunit beta type-5

Chain 5:	63%	13%	24%
MET ALA ALA ALA LEU SER VAL CLU CLU CLU ARO ARO ARO ARO ARO ARO ARO ALY CLY	GLY GLY GLY GLY ARG ARG ASP ARD ASP CLY CLY CLY SER SER SER SER SER SER SER SER SER SER	LEU SER LEU ALA ALA PRO GLY GLY	VAL VAL GLU GLU GLU CLV MET MET HEU HEU HEU HIS
A5 P8 P8 P8 P8 P8 P8 P8 P8 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	Y66 174 575 575 875 478 178 88 88 88 88 896 102 102 102	0105 0105 0109 0109 0160 0162 0162	1164 1169 1170 1172 1172 1185 1188 1188 1188 1188 1188
S189			
• Molecule 13: Proteasome	subunit beta type-6		
Chain Z:	72%	12%	16%
MET ALA ALA ALA ILEU ILEU ILEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PHLA THR PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	L14 G15 A16 S18 R19 R19 T22	R28 N29 V30 V30 V30 V30 V45 V45 V45 V45 V45 V45 V45 V45 V45 V45
L75 L75 L94 L94 1100 A101 A101 A101 A101 A101 A101 A13 B13 B14 C146 C146 C146 C146 C146	A175 A198 A198 A200 FLU PR0 PR0 PR0 ALA		
• Molecule 13: Proteasome	subunit beta type-6		
Chain 6:	74%	8%	17%
MET ALA ALA ALA ALA IEU IEU IEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA THR PRO ARP ARP ARP ARP ARC ALU GLU CI CI CI CI CI CI CI CI CI CI CI CI CI	L14 S18 R19 R19 T31 T31	C44 C44 D51 D51 V61 S81 C44 S81 C461 M95 M95 A101
M19 1127 1127 1127 1127 1127 1127 1127 11			
• Molecule 14: Proteasome	subunit beta type-7		
Chain 8:	70%	8% •	21%
MET ALA ALA ALA ALA ALA SER VAL TYR PRO CLY CLY CLY SER SER SER SER SER SER CTS CTS CTS	ANG ANN ALA ALA ALA LEU ALA ALA ALA ALA ALA ALA CLY CLY CLY CLY CLEU CLY CLEU CLY	V ARG ARG LYS THR GLY T2 T2 I3	615 822 838 159 178 178 V99
P115 P115 P116 P120	5169 6170 8171 174 1174 1186 1186 1186 1186 1186 1186 1186 118	LLE VAL LEU CLU GLU CLU CLU CLU CLU THR THR	MET ASP THR SER
• Molecule 14: Proteasome	subunit beta type-7		
Chain 7:	69%	9% •	21%
MET ALA ALA ALA VAL VAL VAL TA PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	AKG ALA ALA ALA ALA CULU ALA ALA ALA ALA ALA ALA CLY CLY CLY CLY CLY CLY CLY CLY	VAL ARG LYS GLY GLY Y 8 K9	D10 V13 C31 I37 I41 A50 A50 I59
	WORLDW PROTEIN DATA	I D E BANK	

• Molecule 20: 26S protease regulatory subunit 8

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	461402	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	45	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	OTHER	Depositor
Maximum map value	0.307	Depositor
Minimum map value	-0.195	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.007	Depositor
Recommended contour level	0.035	Depositor
Map size (Å)	518.4, 518.4, 518.4	wwPDB
Map dimensions	384, 384, 384	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.35, 1.35, 1.35	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ATP, ADP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	nd lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.43	0/1937	0.55	0/2617	
1	Ν	0.38	0/1937	0.56	0/2617	
2	В	0.88	6/1857~(0.3%)	0.78	9/2514~(0.4%)	
2	0	0.38	0/1857	0.54	0/2514	
3	С	0.38	0/2001	0.56	0/2694	
3	Р	0.36	0/2001	0.56	0/2694	
4	D	0.37	0/1949	0.55	0/2626	
4	Q	0.34	0/1949	0.52	0/2626	
5	Е	0.38	0/1818	0.56	0/2455	
5	R	0.37	0/1818	0.53	0/2455	
6	F	0.36	0/1908	0.56	0/2579	
6	S	0.34	0/1908	0.54	0/2579	
7	G	0.38	0/1925	0.55	0/2592	
7	Т	0.37	0/1929	0.53	0/2597	
8	1	0.41	0/1684	0.58	0/2268	
8	U	0.38	0/1684	0.59	0/2268	
9	2	0.43	0/1629	0.58	0/2203	
9	V	0.42	0/1629	0.58	0/2203	
10	3	0.42	1/1620~(0.1%)	0.57	0/2184	
10	W	0.40	0/1620	0.58	0/2184	
11	4	0.42	0/1724	0.61	0/2333	
11	Х	0.40	0/1724	0.59	0/2333	
12	5	0.42	0/1590	0.59	0/2147	
12	Y	0.41	0/1590	0.60	0/2147	
13	6	0.40	0/1520	0.56	0/2057	
13	Ζ	0.39	0/1525	0.60	0/2064	
14	7	0.36	0/1686	0.58	0/2282	
14	8	0.35	0/1686	0.58	0/2282	
15	Н	0.38	0/3168	0.61	$2/\overline{4277}~(0.0\%)$	
16	Ι	0.35	0/3034	0.58	0/4089	
17	K	0.37	0/3191	0.53	0/4306	
18	L	0.38	$0/3\overline{146}$	0.56	$0/4\overline{233}$	

Mal	Chain	Bo	nd lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
19	М	0.38	0/3294	0.54	0/4437	
20	J	0.39	0/3113	0.56	0/4184	
All	All	0.41	7/68651~(0.0%)	0.57	$11/92640 \ (0.0\%)$	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	В	0	1
7	G	0	1
7	Т	0	1
15	Н	0	2
16	Ι	0	1
17	Κ	0	2
20	J	0	1
All	All	0	9

The worst 5 of 7 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
2	В	185	ASP	CB-CG	20.70	1.95	1.51
2	В	185	ASP	CA-CB	17.41	1.92	1.53
2	В	184	GLU	CB-CG	13.19	1.77	1.52
2	В	184	GLU	C-N	8.40	1.53	1.34
2	В	185	ASP	N-CA	7.22	1.60	1.46

The worst 5 of 11 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	В	185	ASP	N-CA-CB	12.31	132.76	110.60
2	В	184	GLU	C-N-CA	11.92	151.50	121.70
15	Н	153	LEU	C-N-CD	-11.44	95.42	120.60
2	В	185	ASP	CB-CG-OD1	8.30	125.77	118.30
2	В	185	ASP	CB-CA-C	-8.00	94.41	110.40

There are no chirality outliers.

5 of 9 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	В	186	ALA	Peptide
7	G	215	TRP	Peptide
15	Н	153	LEU	Peptide
15	Н	321	THR	Peptide
7	Т	215	TRP	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1903	1911	1911	17	0
1	Ν	1903	1911	1911	18	0
2	В	1818	1812	1814	46	0
2	0	1818	1812	1814	20	0
3	С	1971	1992	1992	7	0
3	Р	1971	1992	1992	16	0
4	D	1923	1952	1952	15	0
4	Q	1923	1952	1952	12	0
5	Е	1790	1773	1773	14	0
5	R	1790	1773	1773	13	0
6	F	1873	1860	1860	21	0
6	S	1873	1860	1860	12	0
7	G	1890	1874	1874	11	0
7	Т	1894	1877	1877	9	0
8	1	1654	1654	1656	13	0
8	U	1654	1654	1656	23	0
9	2	1596	1601	1601	15	0
9	V	1596	1601	1601	14	0
10	3	1591	1609	1609	20	0
10	W	1591	1609	1609	7	0
11	4	1691	1667	1669	14	0
11	Х	1691	1667	1669	9	0
12	5	1559	1521	1523	15	0
12	Y	1559	1521	1523	21	0
13	6	1494	1462	1464	10	0
13	Ζ	1499	1467	1469	14	0
14	7	1659	1679	1681	20	0
14	8	1659	1679	1681	12	0
15	Н	3116	3167	3167	90	0

Continued on next page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
16	Ι	2993	3050	3050	63	0
17	K	3138	3164	3164	52	0
18	L	3098	3173	3173	52	0
19	М	3253	3322	3322	71	0
20	J	3074	3178	3178	73	0
21	Н	31	12	12	2	0
21	Ι	31	12	12	0	0
21	K	31	12	12	5	0
21	L	31	12	12	1	0
21	М	31	12	12	4	0
22	Н	1	0	0	0	0
22	Ι	1	0	0	0	0
22	K	1	0	0	0	0
22	L	1	0	0	0	0
22	М	1	0	0	0	0
23	J	27	12	12	2	0
All	All	67692	67868	67892	756	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

The worst 5 of 756 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:B:184:GLU:CB	2:B:184:GLU:CG	1.77	1.54
2:B:185:ASP:CB	2:B:185:ASP:CA	1.92	1.45
2:B:185:ASP:CB	2:B:185:ASP:CG	1.95	1.35
2:B:185:ASP:O	2:B:189:THR:N	1.81	1.14
17:K:70:LYS:O	17:K:73:LEU:N	1.97	0.96

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	242/246~(98%)	217 (90%)	23~(10%)	2 (1%)	19	57
1	Ν	242/246~(98%)	215 (89%)	25 (10%)	2 (1%)	19	57
2	В	231/234~(99%)	208 (90%)	20 (9%)	3 (1%)	12	48
2	Ο	231/234~(99%)	206 (89%)	21 (9%)	4 (2%)	9	43
3	С	248/261~(95%)	235 (95%)	13~(5%)	0	100	100
3	Р	248/261~(95%)	230 (93%)	15 (6%)	3 (1%)	13	49
4	D	241/248~(97%)	221 (92%)	18 (8%)	2 (1%)	19	57
4	Q	241/248~(97%)	217 (90%)	20 (8%)	4 (2%)	9	43
5	Е	232/241~(96%)	207 (89%)	17 (7%)	8 (3%)	3	31
5	R	232/241~(96%)	207 (89%)	22 (10%)	3 (1%)	12	48
6	F	236/263~(90%)	214 (91%)	17 (7%)	5 (2%)	7	39
6	S	236/263~(90%)	218 (92%)	14 (6%)	4 (2%)	9	43
7	G	239/255~(94%)	212 (89%)	24 (10%)	3 (1%)	12	48
7	Т	240/255~(94%)	224 (93%)	13 (5%)	3 (1%)	12	48
8	1	211/241 (88%)	189 (90%)	17 (8%)	5 (2%)	6	37
8	U	211/241 (88%)	186 (88%)	22 (10%)	3 (1%)	11	46
9	2	197/201~(98%)	176 (89%)	18 (9%)	3 (2%)	10	45
9	V	197/201~(98%)	177 (90%)	17 (9%)	3 (2%)	10	45
10	3	202/205~(98%)	180 (89%)	21 (10%)	1 (0%)	29	67
10	W	202/205~(98%)	180 (89%)	20 (10%)	2 (1%)	15	52
11	4	215/264 (81%)	193 (90%)	21 (10%)	1 (0%)	29	67
11	Х	215/264 (81%)	196 (91%)	15 (7%)	4 (2%)	8	41
12	5	199/263~(76%)	176 (88%)	19 (10%)	4 (2%)	7	40
12	Y	199/263~(76%)	178 (89%)	16 (8%)	5 (2%)	5	36
13	6	197/239~(82%)	177 (90%)	17 (9%)	3 (2%)	10	45
13	Z	198/239~(83%)	177 (89%)	19 (10%)	2 (1%)	15	52
14	7	218/277~(79%)	195 (89%)	21 (10%)	2 (1%)	17	54
14	8	218/277~(79%)	192 (88%)	24 (11%)	2 (1%)	17	54
15	Н	394/433~(91%)	323 (82%)	51 (13%)	20 (5%)	2	23
16	Ι	377/440~(86%)	332 (88%)	41 (11%)	4 (1%)	14	51

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Ρ	erc	entiles	s
17	Κ	391/418 (94%)	323 (83%)	53 (14%)	15 (4%)		3	28	
18	L	387/389~(100%)	326 (84%)	45 (12%)	16 (4%)		3	27	
19	М	413/439~(94%)	348 (84%)	50 (12%)	15 (4%)		3	29	
20	J	389/406~(96%)	326 (84%)	52 (13%)	11 (3%)		5	34	
All	All	8569/9401 (91%)	7581 (88%)	821 (10%)	167 (2%)		11	41	

Continued from previous page...

5 of 167 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	0	41	ASN
2	0	70	HIS
4	Q	120	GLN
7	Т	64	LYS
8	U	2	PHE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	208/210~(99%)	204 (98%)	4 (2%)	57	75
1	Ν	208/210~(99%)	202 (97%)	6 (3%)	42	65
2	В	190/191 (100%)	178 (94%)	12 (6%)	18	47
2	Ο	190/191~(100%)	184 (97%)	6 (3%)	39	63
3	С	210/221~(95%)	205 (98%)	5 (2%)	49	69
3	Р	210/221~(95%)	205~(98%)	5(2%)	49	69
4	D	207/211~(98%)	200 (97%)	7 (3%)	37	62
4	Q	207/211~(98%)	200~(97%)	7 (3%)	37	62
5	Е	196/203~(97%)	189 (96%)	7 (4%)	35	61
5	R	196/203~(97%)	190 (97%)	6 (3%)	40	64
6	F	204/224~(91%)	200 (98%)	4 (2%)	55	74
6	S	$20\overline{4/224}~(91\%)$	197 (97%)	7(3%)	37	62

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntile	es
7	G	199/212 (94%)	192 (96%)	7 (4%)	36	62	
7	Т	199/212 (94%)	198 (100%)	1 (0%)	88	93	
8	1	178/199~(89%)	169 (95%)	9(5%)	24	53	
8	U	178/199~(89%)	170 (96%)	8 (4%)	27	56	
9	2	$170/171 \ (99\%)$	168 (99%)	2 (1%)	71	83	
9	V	170/171~(99%)	167~(98%)	3(2%)	59	77	
10	3	173/174 (99%)	165~(95%)	8 (5%)	27	55	
10	W	173/174~(99%)	171 (99%)	2(1%)	71	83	
11	4	179/215~(83%)	172~(96%)	7~(4%)	32	59	
11	Х	179/215~(83%)	174 (97%)	5(3%)	43	66	
12	5	156/202~(77%)	149~(96%)	7~(4%)	27	56	
12	Y	156/202~(77%)	152 (97%)	4 (3%)	46	68	
13	6	155/181~(86%)	151~(97%)	4 (3%)	46	68	
13	Z	155/181 (86%)	147~(95%)	8 (5%)	23	53	
14	7	181/228~(79%)	178~(98%)	3(2%)	60	78	
14	8	181/228 (79%)	173~(96%)	8 (4%)	28	56	
15	Н	341/372~(92%)	329~(96%)	12 (4%)	36	62	
16	Ι	336/385~(87%)	325~(97%)	11 (3%)	38	63	
17	K	344/366~(94%)	336~(98%)	8 (2%)	50	71	
18	L	341/341~(100%)	337~(99%)	4 (1%)	71	83	
19	М	357/379~(94%)	350~(98%)	7 (2%)	55	74	
20	J	339/352~(96%)	322 (95%)	17 (5%)	24	53	
All	All	7270/7879~(92%)	7049 (97%)	221 (3%)	44	64	

Continued from previous page...

5 of 221 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
7	G	8	ASP
11	4	141	TYR
20	J	293	MET
19	М	209	LYS
7	G	186	CYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

Mol	Chain	Res	Type
17	Κ	257	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 11 ligands modelled in this entry, 5 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec Link		Bo	Bond lengths			Bond angles		
INIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
21	ATP	Ι	501	22	26,33,33	0.89	1 (3%)	$31,\!52,\!52$	1.53	5 (16%)	
21	ATP	М	501	22	26,33,33	1.01	1 (3%)	31,52,52	1.72	8 (25%)	
21	ATP	L	401	22	26,33,33	0.97	2 (7%)	31,52,52	1.57	6 (19%)	
23	ADP	J	501	-	24,29,29	1.00	2 (8%)	$29,\!45,\!45$	1.31	4 (13%)	
21	ATP	Н	501	22	26,33,33	0.81	0	31,52,52	1.70	6 (19%)	
21	ATP	К	501	22	26,33,33	1.11	2 (7%)	31,52,52	1.75	10 (32%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
21	ATP	Ι	501	22	-	3/18/38/38	0/3/3/3
21	ATP	М	501	22	-	5/18/38/38	0/3/3/3
21	ATP	L	401	22	-	5/18/38/38	0/3/3/3
23	ADP	J	501	-	-	4/12/32/32	0/3/3/3
21	ATP	Н	501	22	-	4/18/38/38	0/3/3/3
21	ATP	К	501	22	-	4/18/38/38	0/3/3/3

The worst 5 of 8 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
23	J	501	ADP	O4'-C1'	2.49	1.44	1.41
23	J	501	ADP	C5-C4	2.38	1.47	1.40
21	Κ	501	ATP	C5-C4	2.27	1.46	1.40
21	L	401	ATP	C5-C4	2.21	1.46	1.40
21	L	401	ATP	C2-N3	2.13	1.35	1.32

The worst 5 of 39 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
21	Н	501	ATP	N3-C2-N1	-5.00	120.86	128.68
21	Н	501	ATP	PA-O3A-PB	-4.69	116.74	132.83
21	Ι	501	ATP	N3-C2-N1	-4.58	121.53	128.68
21	L	401	ATP	N3-C2-N1	-4.56	121.55	128.68
21	М	501	ATP	C5-C6-N6	-4.28	113.85	120.35

There are no chirality outliers.

5 of 25 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
21	Н	501	ATP	C5'-O5'-PA-O1A
21	Н	501	ATP	C5'-O5'-PA-O2A
21	Ι	501	ATP	C5'-O5'-PA-O1A
21	Ι	501	ATP	C5'-O5'-PA-O2A
21	L	401	ATP	C5'-O5'-PA-O1A

There are no ring outliers.

5 monomers are involved in 14 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
21	М	501	ATP	4	0

Continued on next page...

	0	-	1 0		
Mol	Chain	Res	Type	Clashes	Symm-Clashes
21	L	401	ATP	1	0
23	J	501	ADP	2	0
21	Н	501	ATP	2	0
21	К	501	ATP	5	0

Continued from previous page...

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and similar rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-4002. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

Central slices (i) 6.2

6.2.1Primary map

X Index: 192

Y Index: 192

Z Index: 192

The images above show central slices of the map in three orthogonal directions.

Largest variance slices (i) 6.3

6.3.1Primary map

X Index: 150

Y Index: 212

Z Index: 210

The images above show the largest variance slices of the map in three orthogonal directions.

Orthogonal standard-deviation projections (False-color) (i) 6.4

6.4.1**Primary map**

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.035. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 708 $\rm nm^3;$ this corresponds to an approximate mass of 639 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.256 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-4002 and PDB model 5L4G. Per-residue inclusion information can be found in section 3 on page 11.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.035 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.035).

9.4 Atom inclusion (i)

At the recommended contour level, 76% of all backbone atoms, 75% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.035) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7540	0.4280
1	0.8250	0.4670
2	0.8250	0.4610
3	0.8100	0.4630
4	0.8540	0.4740
5	0.8500	0.4690
6	0.8290	0.4660
7	0.8100	0.4540
8	0.8330	0.4580
А	0.7940	0.4470
В	0.7860	0.4420
C	0.8010	0.4430
D	0.7930	0.4420
Ε	0.7970	0.4570
F	0.8170	0.4560
G	0.8080	0.4480
Н	0.6880	0.3810
Ι	0.6440	0.3490
J	0.6680	0.3620
K	0.6610	0.3600
L	0.6690	0.3700
М	0.6540	0.3800
Ν	0.7690	0.4300
О	0.7830	0.4370
Р	0.7810	0.4340
Q	0.7770	0.4240
R	0.7640	0.4320
S	0.7880	0.4380
Т	0.7770	0.4290
U	0.8130	0.4580
V	0.8190	0.4560
W	0.8120	0.4660
Х	0.8470	0.4690
Y	0.8430	0.4690
\mathbf{Z}	0.8180	0.4690

