

Full wwPDB NMR Structure Validation Report (i)

Jun 12, 2024 – 04:29 PM EDT

:	2L5D
:	Solution Structures of human PIWI-like 1 PAZ domain with ssRNA (5'-
	pUGACA)
:	Zeng, L.; Zhang, Q.; Yan, K.; Zhou, M.
:	2010-10-29
	: : :

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
wwPDB-RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
wwPDB-ShiftChecker	:	v1.2
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	NMR archive
Metric	$(\# { m Entries})$	$(\# { m Entries})$
Clashscore	158937	12864
Ramachandran outliers	154571	11451
Sidechain outliers	154315	11428
RNA backbone	4643	676

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length		Quali	ty of chain			
1	А	134	13%	39%	17%	•	29%	
2	В	5	20%		80%			

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 11 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: *lowest energy*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues										
Well-defined core	Residue range (total)	Backbone RMSD (Å)	Medoid model							
1	A:277-A:332, A:340-A:364,	0.33	11							
	A:380-A:393 (95)									

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 3 clusters and 1 single-model cluster was found.

Cluster number	Models
1	1, 2, 3, 5, 7, 9, 10, 11, 12, 14, 16, 17, 20
2	4, 8, 15, 18
3	13, 19
Single-model clusters	6

3 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 2355 atoms, of which 1149 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called Piwi-like protein 1.

Mol	Chain	Residues		Atoms										
1	٨	194	Total	С	Η	Ν	0	S	0					
	А	154	2195	698	1093	188	211	5	0					

• Molecule 2 is a RNA chain called 5'-R(*UP*GP*AP*CP*A)-3'.

Mol	Chain	Residues		Atoms										
0	D	И	Total	С	Η	Ν	Ο	Р	0					
	D	5	160	48	56	20	32	4	0					

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

- Chain A:
 13%
 39%
 17%
 29%

 900
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
- Molecule 1: Piwi-like protein 1

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

• Molecule 1: Piwi-like protein 1

T331 1331 1333 1333 1333 1333 1335 1335 1335 1335 1335 1335 1335 1335 1335 1335 1335 1335 1355

K395 M396 R397 N398 D399

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

4.2.2 Score per residue for model 2

• Molecule 1: Piwi-like protein 1

L392 T393 D394 K395 M396 M396 N398 N398

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	20%	40%	40%
U501 G502 A503 C504 A505			

4.2.3 Score per residue for model 3

• Molecule 1: Piwi-like protein 1

T393 D394 K395 M396 R397 N398 D399

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

~ · ~		
Chain B:	40%	60%

UE01 GE02 A503 C504 A505

4.2.4 Score per residue for model 4

• Molecule 1: Piwi-like protein 1

Chain	А	: •		1	5%									3	9%	,									1	5%			•					2	29%	%					•			
C266 T267 D268 V269	H271	K272 V273	L274	K275	E277	T278	V279	D281	F282	M283	HZ84	F286		T290	E291	H293	K294	F295		0298 V200	8300 8300	K301	E302	L303	I30 4	0305 1306	V307	V308	L309	1310 K311	Y312	N313	N314	T316	Y317	R318	V319	D320	D321	1322 D323	W324		N327	P328 K329
S330 T331 F332 K333 K333	A335	D336 G337	S338	E339	v 340 S341	F342	L343	<u>Y345</u>	Y346	R347	K348	¥350	N351	0352 2352	L303 T354	T355	D356	L357	K358	0359 D360	V361	L362	V363	S364	Q365	P366 K367	R368	R369	R370	G3/1 P372	G373	G374	T375	L3/0 P377	G378	P379	A380	M381	L382	1383 D384	E385	L386	C387	<u>1388</u> L389

T390 T393 K395 M396 M396 N398 N398

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	60%	40%
U501 6602 8603 8604 6005 8605		

4.2.5 Score per residue for model 5

• Molecule 1: Piwi-like protein 1

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B: '	20%	80%	
U501 G502 A503 C504 A505			

4.2.6 Score per residue for model 6

• Molecule 1: Piwi-like protein 1

4.2.7 Score per residue for model 7

• Molecule 1: Piwi-like protein 1

- Chain A:
 16%
 37%
 16%
 29%

 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 000000
 000000
 000
- Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B: 20% 80%

4.2.8 Score per residue for model 8

• Molecule 1: Piwi-like protein 1

6391 L392 T393 D394 K395 M396 R397 N398 N398 N398

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	20%	40%	40%
U501 G502 A503 C504 A505			

4.2.9 Score per residue for model 9

• Molecule 1: Piwi-like protein 1

С	h	ai	n	А	:			149	%									;	369	%										1	9%	, 0			·						29)%									
C266	T267	U268 V760	8270 S270	H271	K272	V273 1 97 4	R275	S276	E277	T278	V279	L280	D281	F282 M202	502M	N285	F286	-	T290	E291	E292	H293	K294	r 290	0298	V299	S300	K301	E302	L303	1304	6069 1 306	V307	V308	L309	T310	K311 V210	N313	N314	K315	T316	Y317	R318	V319	D321	1322	D323	W324	N327	P328	K329
S330	T331	F332	K334	A335	D336	G337 c220	E339	V340	S341	F342	L343	E344	Y345	Y346	1404	<u>Y350</u>	N351	Q352	E353	I354	T355	D356	L357	0359	P360	V361	L362	V363	S364	Q365	P366	R368	R369	R370	G371	P372	G373	T375	L376	P377	G378	P379	A380	M381	L383	P384	E385	L386	V388	L389	T390
G391	L392	1393	K395	M396	R397	N398	6601																																												

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	20%	80%
U501 G502 A503 A505 A505		

- 4.2.10 Score per residue for model 10
- Molecule 1: Piwi-like protein 1

L389 T390 G391 C391 C392 L393 T393 D394 M396 M396 M396 M396 N398 D399

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	20%	80%
4505 4505 4505 4505		

4.2.12 Score per residue for model 12

• Molecule 1: Piwi-like protein 1

Chair	ı A	\ :		1(0%									39	9%											1	9%	, 0			•	•					2	9%	, D										
C266 T267 D268 V269	S270 H271	K272	V273	L274	6724 S776	E277	T278	V279	L280	D281	F282	F284	N285	F286	0000	002h	E291	E292	H293	K294	F295	ц296 воо7	0.098	0620	S300	K301	E302	L303	I304	6305	L306 V307	V308	L309	T310	V317	N313	N314	K315	T316	Y317	R318	V319	D320	1322	D323	-	N327	P328	
																								W P R		R					E																		

K329 K329 K333 K334 K334 K344 K346 K369 K366 K366</l

L389 T390 G311 L392 L392 T393 D394 M396 M396 M396 M396 N398 D399

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	20%	80%
_		

U501 G502 A503 C504 A505 A505

4.2.13 Score per residue for model 13

• Molecule 1: Piwi-like protein 1

L392 T393 D394 K395 M396 R397 N398 N398

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	20%	80%
U501 G502 A503 A505 A505		

- 4.2.14 Score per residue for model 14
- Molecule 1: Piwi-like protein 1

U50 G50 A50 C50 A50

T390 G391 L392 T393 D394 K395 M396 R397 R397 N398 D399

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	80%	20%

4.2.15 Score per residue for model 15

• Molecule 1: Piwi-like protein 1

Chain A: 13% 40% 15%	• 29%
C266 C266 T267 T267 T267 T267 T267 T267 T267 T	L306 L306 L306 L308 L309 L309 L309 L314 N313 N314 N313 N314 N313 N314 N313 N314 N313 N313
K329 K329 K3330 K3335 K3335 K3335 K3335 K3335 K3345 K3345 K3345 K3445 K3445 K3445 K3445 K3445 K3445 K3445 K3445 K3445 K3445 K3445 K3445 K3445 K3445 K3445 K3445 K3455 K3445 K3455 K35555 K3555 K3555 K3555 K3555 K35555 K3555 K3555 K3555 K3555 K3555	Kase Rase Gast Rasto Fasto Casta Casta Casta Casta Pase Pase Lase Case Case Case Case Case Case Case C

T390 G391 L392 T393 D394 M395 M396 N398 N398 N398

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	40%	60%
4601 4602 4603 4605 4605		

4.2.16 Score per residue for model 16

• Molecule 1: Piwi-like protein 1

L392 T393 D394 K395 M396 M396 N398 N398

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	20%	60%	20%
U501 G502 A503 C504 A505			

4.2.17 Score per residue for model 17

• Molecule 1: Piwi-like protein 1

D394 K395 M396 R397 N398 D399

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

4.2.18 Score per residue for model 18

• Molecule 1: Piwi-like protein 1

- Chain
 11%
 38%
 18%
 53%

 1385
 1388
 138%
 18%
 53%

 1385
 138%
 18%
 63%

 1385
 138%
 18%
 63%

 1386
 18%
 18%
 63%

 1386
 18%
 18%
 18%

 1386
 18%
 18%
 18%

 1386
 18%
 18%
 18%

 1386
 18%
 18%
 18%

 1386
 18%
 18%
 18%

 1386
 18%
 18%
 18%

 1386
 18%
 18%
 18%

 1386
 138%
 18%
 18%

 1386
 138%
 138%
 138%

 1386
 138%
 138%
 138%

 1386
 138%
 138%
 138%

 1386
 138%
 138%
 138%

 138%
 138%
 138%
 138%

 138%
 138%
 138%
 138%

 138%
 138%
 138%
 138%

 138%
 138%
- Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	20%	60%	20%
U501 G502 A503 C504 A505 A505			
		WORLDWIDE PROTEIN DATA BANK	

4.2.19 Score per residue for model 19

• Molecule 1: Piwi-like protein 1

L389 T390 G391 L392 L393 T393 D394 K395 K395 K395 K395 R397 N398 D399

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	20%	80%
U501 (502 A503 C504 A505		

- 4.2.20 Score per residue for model 20
- Molecule 1: Piwi-like protein 1

Chain A:	16%	34%	19% <mark>•</mark>	29%	•
C266 T267 D268 V269 H271 K272 V273 V273 L274	R275 8276 8277 1278 1280 1281 7281 7282 7283 7283 7283 7283 7283 7283	Q289 T290 E291 E292 K294 F295 G296 Q296 Q298 Q298	V209 8300 8301 8301 8301 8302 1303 1303 1306 1306 1306 1309 1309	T310 K311 K311 N313 N313 N315 K315 K316 F316 F316 F318 V319 V319 D321	1322 D323 W324 P328
K329 S330 S331 T331 K332 K333 A335 D336 G337	8338 8339 8340 8341 8342 1343 8345 8345 8345 8345 8345 8345 8345 8	1354 13555 13556 13556 13556 13556 13558 13559 13650 13650 13622	N363 S364 Q365 P366 K367 R368 R369 R369 R370 C371 C371 C371	Cart 4 Cart 4 Cart 4 Cart 4 Cart 4 Cart 4 Cart 7 Cart 7 Cart 7 Cart 8 Ca	L386 C387 Y388 L389 T390

G391 L392 T393 D394 N395 M396 N398 N398 N398 D399

• Molecule 2: 5'-R(*UP*GP*AP*CP*A)-3'

Chain B:	20%	80%
U501 G502 A503 A505 A505		

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: DGSA-distance geometry simulated annealing, torsion angle dynamics.

Of the 200 calculated structures, 20 were deposited, based on the following criterion: *structures with the lowest energy*.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
ARIA	refinement	2.2
CNS	structure solution	1.2

No chemical shift data was provided.

6 Model quality (i)

6.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the (average) root-mean-square of all Z scores of the bond lengths (or angles).

Mol C	Chain	Bond lengths		Bond angles		
	Ullalli	RMSZ	#Z>5	RMSZ	$\#Z{>}5$	
1	А	$0.42 {\pm} 0.01$	$0\pm 0/824~(~0.0\pm~0.0\%)$	$0.60 {\pm} 0.02$	$0\pm 0/1119~(~0.0\pm~0.0\%)$	
2	В	$0.22 {\pm} 0.04$	$0\pm 0/116~(~0.0\pm~0.0\%)$	$0.67 {\pm} 0.04$	$0{\pm}0/179~(~0.0{\pm}~0.0\%)$	
All	All	0.40	0/18800 ($0.0%$)	0.61	2/25960 ($0.0%$)	

There are no bond-length outliers.

All unique angle outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble.

Mal	Chain	$\mathbf{D}_{\mathbf{n}} = \mathbf{P}_{\mathbf{n}} $		Dec	Atoms	7 Observed $(^{0})$	7	Ideal(0)	Moo	dels
		nes	Type			Observed()	Ideal()	Worst	Total	
1	А	350	TYR	CB-CG-CD1	8.22	125.93	121.00	18	1	
1	А	350	TYR	CB-CG-CD2	-5.44	117.74	121.00	18	1	

There are no chirality outliers.

There are no planarity outliers.

$6.2 \quad \text{Too-close contacts} (i)$

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	804	786	784	109 ± 6
2	В	104	56	56	1±1
All	All	18160	16840	16800	2188

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 63.

All unique clashes are listed below, sorted by their clash magnitude.

Atom 1	Atom_2	Clash(Å)	Distance(Å)	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:306:LEU:HD23	1:A:393:THR:HG22	0.82	1.50	19	20	
1:A:354:ILE:HD12	1:A:383:ILE:HG21	0.82	1.51	2	9	
1:A:303:LEU:HB2	1:A:322:ILE:HD11	0.81	1.52	4	20	
1:A:384:PRO:HA	1:A:387:CYS:SG	0.79	2.18	11	6	
1:A:352:GLN:HG3	1:A:386:LEU:HD22	0.79	1.51	8	14	
1:A:350:TYR:CD1	1:A:350:TYR:N	0.78	2.51	18	2	
1:A:279:VAL:HG13	1:A:387:CYS:SG	0.78	2.19	9	6	
1:A:308:VAL:HB	1:A:387:CYS:HB3	0.77	1.56	19	14	
1:A:279:VAL:HG23	1:A:283:MET:SD	0.74	2.23	18	18	
1:A:299:VAL:O	1:A:303:LEU:HD12	0.72	1.84	4	20	
1:A:361:VAL:HG12	1:A:362:LEU:H	0.72	1.45	10	10	
1:A:308:VAL:HB	1:A:387:CYS:HB2	0.72	1.61	1	6	
1:A:300:SER:HA	1:A:322:ILE:HD13	0.71	1.63	4	20	
1:A:309:LEU:O	1:A:387:CYS:HA	0.70	1.87	16	20	
1:A:291:GLU:HB2	1:A:294:LYS:HE2	0.70	1.63	6	1	
1:A:279:VAL:HG22	1:A:387:CYS:SG	0.69	2.26	8	6	
1:A:352:GLN:CG	1:A:386:LEU:HD22	0.69	2.18	13	9	
1:A:340:VAL:HG23	1:A:344:GLU:CB	0.69	2.18	8	1	
1:A:354:ILE:CD1	1:A:386:LEU:HD11	0.68	2.17	6	16	
1:A:306:LEU:CD2	1:A:393:THR:HG22	0.68	2.19	3	19	
1:A:308:VAL:HG13	1:A:319:VAL:CG1	0.68	2.19	17	18	
1:A:309:LEU:HB3	1:A:388:TYR:HB2	0.67	1.64	9	19	
1:A:391:GLY:O	1:A:393:THR:HG23	0.67	1.89	9	7	
1:A:290:THR:HG23	1:A:295:PHE:HB2	0.67	1.67	6	1	
1:A:323:ASP:HB3	1:A:361:VAL:HB	0.66	1.68	8	20	
1:A:280:LEU:HD13	1:A:385:GLU:HG2	0.66	1.68	16	2	
1:A:329:LYS:HB3	1:A:357:LEU:HD21	0.65	1.69	5	1	
1:A:359:GLN:NE2	1:A:383:ILE:HG23	0.65	2.06	5	1	
1:A:329:LYS:HB2	1:A:357:LEU:HD11	0.65	1.67	2	16	
1:A:280:LEU:HD11	1:A:359:GLN:HB2	0.64	1.67	20	18	
1:A:309:LEU:O	1:A:309:LEU:HD13	0.64	1.91	16	2	
1:A:309:LEU:HD13	1:A:309:LEU:C	0.64	2.13	19	19	
1:A:383:ILE:HB	1:A:386:LEU:HD12	0.64	1.69	13	14	
1:A:293:HIS:HD2	1:A:294:LYS:H	0.63	1.34	14	15	
1:A:352:GLN:N	1:A:352:GLN:OE1	0.63	2.31	4	1	
1:A:308:VAL:HG13	1:A:319:VAL:HG11	0.63	1.69	14	11	
1:A:346:TYR:HB3	1:A:352:GLN:HE21	0.63	1.52	10	1	
1:A:349:GLN:HB3	1:A:350:TYR:CD1	0.63	2.28	18	1	
1:A:306:LEU:HD13	1:A:307:VAL:N	0.63	2.09	14	17	
1:A:350:TYR:N	1:A:350:TYR:HD1	0.63	1.89	18	2	
1:A:317:TYR:CD2	1:A:382:LEU:HD21	0.63	2.29	17	16	
1:A:299:VAL:O	1:A:302:GLU:HB2	0.63	1.94	4	20	

				Models		
Atom-1	Atom-2	$\operatorname{Clash}(A)$	Distance(A)	Worst	Total	
1:A:309:LEU:HD12	1:A:388:TYR:HB2	0.62	1.70	16	1	
1:A:280:LEU:HB2	1:A:384:PRO:C	0.62	2.14	11	18	
1:A:293:HIS:N	1:A:293:HIS:CD2	0.62	2.66	6	1	
1:A:309:LEU:HD23	1:A:388:TYR:HB2	0.62	1.70	15	1	
1:A:293:HIS:CD2	1:A:294:LYS:H	0.62	2.13	3	20	
1:A:343:LEU:HD22	1:A:357:LEU:CD2	0.62	2.25	10	16	
1:A:362:LEU:HB2	1:A:382:LEU:HB2	0.62	1.70	18	17	
1:A:328:PRO:HG3	1:A:359:GLN:HE21	0.61	1.54	5	1	
1:A:309:LEU:HD21	1:A:314:ASN:HA	0.61	1.70	16	1	
1:A:307:VAL:HG22	1:A:390:THR:OG1	0.61	1.94	9	16	
1:A:361:VAL:HG13	1:A:382:LEU:O	0.61	1.96	2	4	
1:A:308:VAL:HG21	1:A:382:LEU:HD13	0.61	1.72	20	9	
1:A:295:PHE:O	1:A:299:VAL:HG23	0.61	1.96	3	20	
1:A:307:VAL:HG13	1:A:393:THR:H	0.61	1.55	12	19	
1:A:317:TYR:CE2	1:A:382:LEU:HD21	0.61	2.31	15	1	
1:A:308:VAL:O	1:A:316:THR:HA	0.61	1.95	5	20	
1:A:349:GLN:HB3	1:A:350:TYR:CE1	0.61	2.30	18	1	
1:A:321:ASP:HB2	1:A:363:VAL:HG13	0.61	1.73	3	20	
1:A:361:VAL:HG12	1:A:362:LEU:N	0.61	2.10	17	11	
1:A:353:GLU:HG3	1:A:355:THR:HG23	0.60	1.73	8	3	
1:A:289:GLN:HG3	1:A:290:THR:N	0.60	2.12	13	2	
1:A:279:VAL:HG11	1:A:308:VAL:HG11	0.60	1.73	15	10	
1:A:280:LEU:HD12	1:A:359:GLN:CD	0.60	2.16	16	1	
1:A:354:ILE:HD11	1:A:383:ILE:HG13	0.60	1.74	17	10	
1:A:300:SER:O	1:A:304:ILE:HG12	0.60	1.96	8	20	
1:A:340:VAL:HG23	1:A:344:GLU:HB2	0.60	1.73	8	1	
1:A:294:LYS:N	1:A:294:LYS:HE3	0.60	2.12	6	1	
1:A:289:GLN:HE21	1:A:290:THR:HG22	0.59	1.55	12	4	
1:A:306:LEU:HD21	1:A:391:GLY:HA2	0.59	1.74	3	7	
1:A:300:SER:C	1:A:304:ILE:HG12	0.59	2.18	5	20	
1:A:329:LYS:N	1:A:357:LEU:HD11	0.59	2.13	5	6	
1:A:347:ARG:O	1:A:351:ASN:HA	0.59	1.97	8	18	
1:A:354:ILE:HG13	1:A:383:ILE:HG21	0.59	1.73	9	8	
1:A:279:VAL:HG21	1:A:362:LEU:HD21	0.58	1.73	3	4	
1:A:312:TYR:HB3	1:A:352:GLN:NE2	0.58	2.13	4	1	
1:A:280:LEU:O	1:A:284:PHE:HB2	0.58	1.98	8	19	
1:A:289:GLN:CG	1:A:290:THR:HG22	0.58	2.28	13	1	
1:A:308:VAL:CG2	1:A:382:LEU:HD13	0.58	2.29	1	9	
1:A:289:GLN:HG3	1:A:290:THR:HG22	0.58	1.75	5	6	
1:A:318:ARG:N	1:A:318:ARG:HD2	0.58	2.13	19	3	
1:A:310:THR:HG23	1:A:315:LYS:O	0.58	1.99	8	10	

 $C \epsilon$ tin d fa

1.99810Continued on next page...

Atom-1	Atom-2	$Clash(\lambda)$	Distanco(Å)	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:354:ILE:HD12	1:A:386:LEU:HD11	0.57	1.76	20	3	
1:A:279:VAL:HA	1:A:282:PHE:HB3	0.57	1.76	9	20	
1:A:291:GLU:O	1:A:295:PHE:HB2	0.57	1.99	3	19	
1:A:357:LEU:HD12	1:A:357:LEU:O	0.57	2.00	3	16	
1:A:294:LYS:O	1:A:298:GLN:HG2	0.57	2.00	6	20	
1:A:280:LEU:HD13	1:A:385:GLU:CG	0.56	2.30	16	2	
1:A:278:THR:HG21	1:A:385:GLU:O	0.56	2.00	5	20	
1:A:289:GLN:O	1:A:290:THR:O	0.56	2.23	16	3	
1:A:292:GLU:O	1:A:295:PHE:HB3	0.56	2.00	6	13	
1:A:331:THR:HG22	1:A:341:SER:HB3	0.56	1.76	7	8	
1:A:350:TYR:HD1	1:A:350:TYR:H	0.56	1.43	18	1	
1:A:280:LEU:HD12	1:A:384:PRO:HG2	0.56	1.78	8	10	
1:A:315:LYS:HD2	1:A:317:TYR:OH	0.56	2.01	11	9	
1:A:309:LEU:HD12	1:A:388:TYR:CG	0.56	2.36	16	1	
1:A:310:THR:O	1:A:314:ASN:N	0.56	2.39	3	12	
1:A:359:GLN:HB3	1:A:360:PRO:HD2	0.56	1.76	9	16	
1:A:329:LYS:N	1:A:357:LEU:HD21	0.55	2.16	4	3	
1:A:310:THR:HG22	1:A:382:LEU:HD22	0.55	1.77	15	2	
1:A:279:VAL:HG22	1:A:384:PRO:HB3	0.55	1.77	5	3	
1:A:329:LYS:HD2	1:A:357:LEU:HD11	0.55	1.78	5	1	
1:A:303:LEU:O	1:A:306:LEU:HB3	0.55	2.01	4	18	
1:A:359:GLN:OE1	1:A:385:GLU:N	0.55	2.39	5	1	
1:A:318:ARG:HD3	1:A:318:ARG:N	0.55	2.17	2	4	
1:A:309:LEU:HD22	1:A:310:THR:N	0.55	2.16	16	1	
1:A:294:LYS:HE3	1:A:295:PHE:H	0.55	1.61	6	1	
1:A:295:PHE:O	1:A:299:VAL:CG2	0.55	2.55	7	20	
1:A:356:ASP:O	1:A:358:LYS:N	0.55	2.40	8	6	
1:A:364:SER:HB2	1:A:382:LEU:HD11	0.55	1.77	13	2	
1:A:286:PHE:CE2	1:A:298:GLN:HB2	0.54	2.37	3	11	
1:A:321:ASP:O	1:A:363:VAL:HG13	0.54	2.02	9	10	
1:A:362:LEU:CB	1:A:382:LEU:HD12	0.54	2.32	6	6	
1:A:290:THR:OG1	1:A:294:LYS:NZ	0.54	2.40	6	1	
1:A:277:GLU:O	1:A:388:TYR:HA	0.54	2.02	10	19	
1:A:328:PRO:HB2	1:A:357:LEU:HD13	0.54	1.77	19	16	
1:A:382:LEU:HB3	1:A:387:CYS:SG	0.54	2.43	15	13	
2:B:503:A:H4'	2:B:504:C:OP2	0.54	2.02	8	1	
1:A:283:MET:HG2	1:A:299:VAL:HG12	0.54	1.80	12	18	
1:A:329:LYS:O	1:A:330:SER:C	0.54	2.46	13	7	
1:A:308:VAL:HG11	1:A:362:LEU:HD13	0.54	1.79	2	3	
1:A:310:THR:HB	1:A:312:TYR:CE1	0.54	2.38	9	12	
1:A:361:VAL:CG1	1:A:362:LEU:N	0.54	2.71	2	7	

		(1,1,(3))	D: ()	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:329:LYS:HD3	1:A:357:LEU:HD21	0.54	1.77	18	11	
1:A:361:VAL:HG11	1:A:381:MET:CE	0.54	2.32	2	1	
1:A:346:TYR:HA	1:A:350:TYR:CD1	0.54	2.38	18	1	
1:A:354:ILE:HD11	1:A:386:LEU:HD11	0.53	1.80	5	3	
1:A:309:LEU:CD2	1:A:314:ASN:HA	0.53	2.33	16	1	
1:A:352:GLN:NE2	1:A:352:GLN:H	0.53	2.01	1	1	
1:A:390:THR:HB	1:A:392:LEU:HD13	0.53	1.81	19	1	
1:A:291:GLU:N	1:A:294:LYS:NZ	0.53	2.57	6	1	
1:A:331:THR:HG22	1:A:341:SER:HB2	0.53	1.78	20	3	
1:A:309:LEU:HD12	1:A:388:TYR:CB	0.53	2.33	16	1	
1:A:278:THR:HB	1:A:384:PRO:O	0.53	2.04	14	14	
1:A:317:TYR:HD2	1:A:382:LEU:HD21	0.53	1.63	13	5	
1:A:390:THR:CB	1:A:392:LEU:HD22	0.53	2.33	19	1	
1:A:384:PRO:O	1:A:387:CYS:SG	0.53	2.67	9	6	
1:A:329:LYS:O	1:A:330:SER:O	0.53	2.27	10	4	
1:A:364:SER:CB	1:A:382:LEU:HD11	0.53	2.33	13	1	
1:A:359:GLN:HE21	1:A:359:GLN:N	0.53	2.00	16	1	
1:A:304:ILE:CD1	1:A:321:ASP:HA	0.53	2.34	8	20	
1:A:303:LEU:HA	1:A:306:LEU:HD12	0.53	1.79	19	1	
1:A:280:LEU:HG	1:A:359:GLN:HG3	0.53	1.80	13	12	
1:A:345:TYR:O	1:A:349:GLN:HB2	0.53	2.04	15	1	
1:A:354:ILE:CG1	1:A:383:ILE:HG21	0.52	2.34	12	8	
1:A:313:ASN:HD22	1:A:313:ASN:N	0.52	2.02	17	1	
1:A:293:HIS:CD2	1:A:293:HIS:N	0.52	2.77	10	17	
1:A:308:VAL:HA	1:A:390:THR:HG23	0.52	1.81	5	1	
1:A:280:LEU:HD12	1:A:359:GLN:OE1	0.52	2.05	5	1	
1:A:359:GLN:HE21	1:A:359:GLN:H	0.52	1.48	16	1	
1:A:346:TYR:HB3	1:A:352:GLN:NE2	0.52	2.19	4	1	
1:A:389:LEU:HD23	1:A:389:LEU:H	0.52	1.65	10	19	
1:A:308:VAL:CB	1:A:387:CYS:HB3	0.52	2.33	2	7	
1:A:303:LEU:O	1:A:306:LEU:HB2	0.52	2.04	19	2	
1:A:390:THR:HB	1:A:392:LEU:HD22	0.52	1.82	19	1	
1:A:313:ASN:O	1:A:314:ASN:C	0.52	2.48	16	16	
1:A:294:LYS:O	1:A:295:PHE:C	0.51	2.49	19	10	
1:A:329:LYS:HE3	1:A:357:LEU:HG	0.51	1.81	3	11	
1:A:280:LEU:O	1:A:280:LEU:HD23	0.51	2.04	5	2	
1:A:312:TYR:CD2	1:A:386:LEU:HD13	0.51	2.40	19	10	
1:A:354:ILE:HG22	1:A:355:THR:N	0.51	2.18	5	11	
1:A:352:GLN:HB2	1:A:386:LEU:HD22	0.51	1.80	1	1	
2:B:504:C:H4'	2:B:505:A:H5'	0.51	1.83	2	1	
1:A:305:GLY:HA2	1:A:318:ARG:NH2	0.51	2.21	13	1	

	AL O		D: (2)	Models		
Atom-1	Atom-2	Ulash(A)	Distance(A)	Worst	Total	
1:A:352:GLN:O	1:A:353:GLU:C	0.51	2.49	4	2	
1:A:317:TYR:CD2	1:A:382:LEU:HD11	0.51	2.40	15	1	
1:A:361:VAL:CG1	1:A:362:LEU:H	0.50	2.18	17	4	
1:A:389:LEU:HD23	1:A:389:LEU:N	0.50	2.22	2	19	
1:A:306:LEU:HD22	1:A:307:VAL:H	0.50	1.66	4	10	
1:A:361:VAL:HA	1:A:384:PRO:HD3	0.50	1.81	14	2	
1:A:390:THR:C	1:A:392:LEU:H	0.50	2.09	3	1	
1:A:329:LYS:HB2	1:A:357:LEU:CD2	0.50	2.37	15	3	
1:A:315:LYS:HD3	1:A:317:TYR:OH	0.50	2.07	13	6	
1:A:346:TYR:CB	1:A:352:GLN:NE2	0.50	2.75	4	1	
1:A:306:LEU:HD13	1:A:307:VAL:H	0.50	1.65	14	2	
1:A:346:TYR:O	1:A:352:GLN:NE2	0.50	2.45	10	1	
1:A:350:TYR:HB2	1:A:352:GLN:HE22	0.50	1.65	10	1	
1:A:307:VAL:CG2	1:A:392:LEU:HD12	0.49	2.37	5	9	
1:A:340:VAL:CG2	1:A:345:TYR:N	0.49	2.75	8	1	
1:A:343:LEU:HD22	1:A:357:LEU:CD1	0.49	2.37	4	2	
1:A:309:LEU:HD23	1:A:388:TYR:CB	0.49	2.35	15	1	
1:A:307:VAL:HB	1:A:318:ARG:HA	0.49	1.84	9	16	
1:A:390:THR:HB	1:A:392:LEU:HG	0.49	1.84	20	3	
1:A:298:GLN:O	1:A:299:VAL:C	0.49	2.51	2	20	
1:A:306:LEU:HD13	1:A:307:VAL:O	0.49	2.08	5	17	
1:A:312:TYR:HD2	1:A:386:LEU:HD13	0.49	1.67	2	9	
1:A:340:VAL:HG23	1:A:344:GLU:HB3	0.49	1.85	8	1	
1:A:300:SER:O	1:A:304:ILE:N	0.49	2.45	9	2	
1:A:304:ILE:C	1:A:306:LEU:H	0.49	2.11	16	11	
1:A:312:TYR:HB2	1:A:350:TYR:CD2	0.49	2.43	14	10	
1:A:309:LEU:C	1:A:309:LEU:CD1	0.49	2.81	13	18	
1:A:312:TYR:HA	1:A:352:GLN:NE2	0.49	2.22	6	7	
1:A:350:TYR:HB2	1:A:352:GLN:NE2	0.48	2.23	10	1	
1:A:280:LEU:CD1	1:A:359:GLN:HB2	0.48	2.37	15	12	
1:A:331:THR:HA	1:A:341:SER:HA	0.48	1.85	11	13	
1:A:312:TYR:HB3	1:A:352:GLN:CD	0.48	2.28	10	2	
1:A:359:GLN:HB3	1:A:360:PRO:CD	0.48	2.38	9	10	
1:A:352:GLN:CD	1:A:352:GLN:N	0.48	2.66	10	1	
1:A:286:PHE:CD2	1:A:299:VAL:HG13	0.48	2.44	14	13	
1:A:362:LEU:HB2	1:A:382:LEU:HD12	0.48	1.84	6	3	
1:A:280:LEU:HG	1:A:359:GLN:HG2	0.48	1.84	19	2	
1:A:293:HIS:CD2	1:A:294:LYS:N	0.48	2.81	14	4	
1:A:289:GLN:HG2	1:A:290:THR:HG22	0.48	1.85	10	2	
1:A:286:PHE:O	1:A:290:THR:HG22	0.48	2.09	6	1	
1:A:311:LYS:HB2	1:A:386:LEU:O	0.48	2.09	4	10	

At any 1	A + ama 0	$Clack(\lambda)$	\mathbf{D}	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:354:ILE:HD13	1:A:386:LEU:HD11	0.48	1.86	6	3	
1:A:384:PRO:CA	1:A:387:CYS:SG	0.48	3.00	11	5	
1:A:279:VAL:N	1:A:387:CYS:SG	0.47	2.88	9	4	
2:B:505:A:C2'	2:B:505:A:N3	0.47	2.77	18	1	
1:A:359:GLN:HB2	1:A:360:PRO:HD2	0.47	1.87	5	1	
1:A:340:VAL:CG2	1:A:341:SER:N	0.47	2.76	8	1	
1:A:341:SER:OG	1:A:342:PHE:N	0.47	2.47	11	2	
1:A:346:TYR:CE2	1:A:383:ILE:HG12	0.47	2.44	19	6	
1:A:311:LYS:HB3	1:A:352:GLN:NE2	0.47	2.23	11	2	
1:A:317:TYR:HD2	1:A:382:LEU:HD11	0.47	1.68	15	1	
1:A:343:LEU:HD22	1:A:357:LEU:HD11	0.47	1.86	15	1	
1:A:280:LEU:HD13	1:A:385:GLU:CB	0.47	2.39	20	17	
1:A:308:VAL:HG13	1:A:319:VAL:HG12	0.47	1.86	11	6	
1:A:291:GLU:O	1:A:295:PHE:CB	0.47	2.62	6	5	
1:A:340:VAL:CG2	1:A:345:TYR:HB2	0.47	2.40	5	9	
1:A:291:GLU:CB	1:A:294:LYS:HE2	0.47	2.37	6	1	
1:A:344:GLU:HB3	1:A:348:LYS:HE3	0.47	1.86	8	1	
1:A:278:THR:HA	1:A:387:CYS:O	0.47	2.09	9	5	
1:A:280:LEU:HD21	1:A:356:ASP:CG	0.47	2.28	13	9	
1:A:354:ILE:CD1	1:A:383:ILE:HG21	0.47	2.40	1	3	
1:A:279:VAL:CG2	1:A:362:LEU:HD11	0.47	2.40	15	7	
1:A:307:VAL:CG1	1:A:393:THR:N	0.47	2.78	14	2	
1:A:328:PRO:HB3	1:A:354:ILE:HG12	0.47	1.87	5	2	
1:A:307:VAL:CG1	1:A:318:ARG:HD2	0.47	2.39	14	1	
1:A:329:LYS:CB	1:A:357:LEU:HD11	0.47	2.39	19	13	
1:A:280:LEU:HD23	1:A:280:LEU:C	0.47	2.31	5	2	
1:A:347:ARG:HB3	1:A:348:LYS:HE3	0.47	1.84	11	1	
1:A:327:ASN:C	1:A:329:LYS:H	0.47	2.13	6	7	
1:A:311:LYS:HD2	1:A:352:GLN:HE22	0.47	1.68	11	3	
1:A:317:TYR:OH	2:B:504:C:H5'	0.47	2.09	14	1	
1:A:307:VAL:HG12	1:A:318:ARG:HD2	0.47	1.87	13	2	
1:A:283:MET:CE	1:A:322:ILE:HG21	0.46	2.40	10	6	
1:A:286:PHE:O	1:A:289:GLN:HG3	0.46	2.11	1	6	
1:A:304:ILE:HD12	1:A:321:ASP:HA	0.46	1.87	8	4	
2:B:503:A:O2'	2:B:504:C:P	0.46	2.73	8	1	
1:A:279:VAL:HA	1:A:389:LEU:HD22	0.46	1.87	16	8	
1:A:304:ILE:HG23	1:A:320:ASP:O	0.46	2.11	10	12	
1:A:343:LEU:HD13	1:A:357:LEU:HD22	0.46	1.88	2	2	
1:A:280:LEU:HD13	1:A:385:GLU:HB2	0.46	1.88	18	10	
1:A:293:HIS:CD2	1:A:293:HIS:H	0.46	2.27	6	7	
1:A:346:TYR:CA	1:A:352:GLN:NE2	0.46	2.79	4	1	

	A 4 9	(1, 1, 1)		Models	
Atom-1	Atom-1 Atom-2 Clash(A) 200 LVG HE0 1 A 255 LEVL HG 0.46		Distance(A)	Worst	Total
1:A:329:LYS:HE2	1:A:357:LEU:HG	0.46	1.87	1	2
1:A:344:GLU:O	1:A:348:LYS:HG3	0.46	2.11	18	3
1:A:359:GLN:HG3	1:A:384:PRO:HB2	0.46	1.86	16	1
1:A:322:ILE:O	1:A:324:TRP:CD1	0.46	2.69	16	14
1:A:294:LYS:HE3	1:A:295:PHE:N	0.46	2.25	6	1
1:A:390:THR:CG2	1:A:392:LEU:HD22	0.46	2.40	19	1
1:A:304:ILE:HD12	1:A:320:ASP:O	0.46	2.10	3	8
1:A:311:LYS:HD2	1:A:352:GLN:NE2	0.46	2.26	13	1
1:A:356:ASP:C	1:A:358:LYS:N	0.46	2.69	4	6
1:A:295:PHE:CG	1:A:296:GLN:N	0.46	2.84	6	7
1:A:352:GLN:CD	1:A:352:GLN:C	0.46	2.74	1	1
1:A:283:MET:HE1	1:A:360:PRO:HG2	0.46	1.86	9	2
1:A:290:THR:HB	1:A:298:GLN:NE2	0.46	2.25	13	1
1:A:346:TYR:O	1:A:351:ASN:N	0.46	2.49	18	2
1:A:312:TYR:CD1	1:A:313:ASN:ND2	0.45	2.84	2	1
1:A:280:LEU:HB2	1:A:385:GLU:N	0.45	2.27	18	9
1:A:341:SER:O	1:A:342:PHE:C	0.45	2.55	8	3
1:A:383:ILE:N	2:B:505:A:N7	0.45	2.64	18	1
1:A:282:PHE:HZ	1:A:302:GLU:HB3	0.45	1.70	13	14
1:A:279:VAL:HG13	1:A:387:CYS:HB2	0.45	1.89	6	4
1:A:303:LEU:HD13	1:A:322:ILE:HG12	0.45	1.89	20	6
1:A:282:PHE:CD2	1:A:389:LEU:HD21	0.45	2.45	4	1
1:A:352:GLN:O	1:A:386:LEU:HD21	0.45	2.11	4	1
1:A:352:GLN:HG2	1:A:386:LEU:HD22	0.45	1.85	13	1
1:A:312:TYR:CD1	1:A:313:ASN:N	0.45	2.84	18	5
1:A:328:PRO:HG2	1:A:357:LEU:HA	0.45	1.89	15	3
1:A:280:LEU:HD11	1:A:356:ASP:CG	0.45	2.32	16	1
1:A:383:ILE:HB	2:B:505:A:H62	0.45	1.72	18	1
1:A:307:VAL:HG12	1:A:318:ARG:CD	0.45	2.41	13	1
1:A:279:VAL:HG21	1:A:362:LEU:HD11	0.45	1.89	18	2
1:A:389:LEU:H	1:A:389:LEU:CD2	0.45	2.24	10	18
1:A:390:THR:OG1	1:A:391:GLY:N	0.45	2.50	5	1
1:A:307:VAL:HG13	1:A:392:LEU:HB2	0.45	1.88	9	3
1:A:328:PRO:HD2	1:A:357:LEU:HD23	0.45	1.89	4	2
1:A:340:VAL:HG21	1:A:345:TYR:N	0.45	2.27	8	1
1:A:312:TYR:HB3	1:A:352:GLN:CG	0.45	2.41	18	1
1:A:354:ILE:CD1	1:A:383:ILE:HG13	0.44	2.42	17	2
1:A:309:LEU:HD21	1:A:314:ASN:CG	0.44	2.33	6	2
1:A:282:PHE:C	1:A:284:PHE:N	0.44	2.71	4	10
1:A:343:LEU:HA	1:A:354:ILE:HG13	0.44	1.90	1	1
1:A:356:ASP:C	1:A:358:LYS:H	0.44	2.15	4	5

2L5D

	lous page	. 0 .	. 0 .	Models	
Atom-1	Atom-2	$\operatorname{Clash}(A)$	Distance(A)	Worst	Total
1:A:277:GLU:HG2	1:A:389:LEU:HD11	0.44	1.89	14	7
1:A:328:PRO:O	1:A:342:PHE:HB2	0.44	2.13	18	6
1:A:295:PHE:CE1	1:A:299:VAL:HG21	0.44	2.48	6	13
1:A:329:LYS:HB3	1:A:357:LEU:HD11	0.44	1.89	5	1
1:A:363:VAL:HB	1:A:381:MET:SD	0.44	2.52	18	6
1:A:343:LEU:HA	1:A:354:ILE:HD13	0.44	1.89	17	1
1:A:381:MET:O	1:A:381:MET:HG3	0.44	2.11	2	1
1:A:347:ARG:HA	1:A:352:GLN:H	0.44	1.73	17	2
1:A:328:PRO:HD2	1:A:357:LEU:HD12	0.44	1.89	5	1
1:A:298:GLN:O	1:A:301:LYS:N	0.44	2.51	4	9
1:A:329:LYS:CA	1:A:357:LEU:HD21	0.44	2.43	4	3
1:A:307:VAL:HB	1:A:317:TYR:O	0.43	2.13	2	2
1:A:350:TYR:HD2	1:A:352:GLN:HE22	0.43	1.53	4	1
1:A:328:PRO:HA	1:A:383:ILE:HD11	0.43	1.90	16	3
1:A:347:ARG:O	1:A:351:ASN:N	0.43	2.52	4	2
1:A:279:VAL:HG22	1:A:384:PRO:CB	0.43	2.44	5	1
1:A:307:VAL:CG1	1:A:393:THR:H	0.43	2.26	14	2
1:A:352:GLN:H	1:A:352:GLN:HE21	0.43	1.55	1	1
1:A:279:VAL:CG1	1:A:387:CYS:SG	0.43	3.02	7	5
1:A:312:TYR:HB3	1:A:352:GLN:HG2	0.43	1.89	18	1
1:A:315:LYS:HB3	1:A:317:TYR:CZ	0.43	2.49	14	1
1:A:282:PHE:O	1:A:285:ASN:ND2	0.43	2.52	1	4
1:A:300:SER:O	1:A:301:LYS:C	0.43	2.57	18	6
1:A:340:VAL:CG2	1:A:345:TYR:H	0.43	2.27	8	1
1:A:317:TYR:OH	2:B:504:C:H5"	0.43	2.13	16	1
1:A:342:PHE:CD2	1:A:383:ILE:HD11	0.43	2.49	3	5
1:A:313:ASN:ND2	1:A:350:TYR:CD2	0.43	2.87	19	1
1:A:300:SER:O	1:A:303:LEU:N	0.43	2.51	13	16
1:A:305:GLY:H	1:A:320:ASP:HA	0.43	1.73	17	1
1:A:361:VAL:HG11	1:A:381:MET:HE2	0.42	1.89	2	1
1:A:390:THR:HG21	1:A:392:LEU:HD22	0.42	1.91	19	1
1:A:381:MET:H	2:B:505:A:H4'	0.42	1.74	20	1
1:A:279:VAL:CG2	1:A:384:PRO:HB3	0.42	2.44	5	1
1:A:312:TYR:HB3	1:A:352:GLN:CB	0.42	2.44	15	1
1:A:318:ARG:N	1:A:318:ARG:CD	0.42	2.79	2	2
1:A:328:PRO:HA	1:A:383:ILE:CD1	0.42	2.44	6	1
1:A:347:ARG:HA	1:A:352:GLN:N	0.42	2.29	11	1
1:A:307:VAL:CG1	1:A:392:LEU:HB2	0.42	2.43	13	1
1:A:381:MET:O	2:B:505:A:C1'	0.42	2.68	18	1
1:A:382:LEU:HD23	2:B:505:A:C2	0.42	2.49	18	1
1:A:310:THR:O	1:A:314:ASN:HA	0.42	2.13	19	1

J fa α n tin

	A h o		D1 (8)	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:328:PRO:C	1:A:357:LEU:HD21	0.42	2.35	4	1	
1:A:285:ASN:O	1:A:289:GLN:HG2	0.42	2.15	8	1	
1:A:357:LEU:O	1:A:358:LYS:HE2	0.42	2.14	16	2	
1:A:317:TYR:HB3	1:A:364:SER:OG	0.42	2.14	17	2	
1:A:312:TYR:HA	1:A:352:GLN:HE21	0.42	1.74	8	1	
1:A:348:LYS:HE3	1:A:348:LYS:N	0.42	2.29	11	1	
1:A:279:VAL:HA	1:A:389:LEU:CD2	0.42	2.44	1	1	
1:A:307:VAL:O	1:A:390:THR:OG1	0.42	2.30	6	7	
1:A:362:LEU:HD11	1:A:387:CYS:SG	0.42	2.55	9	1	
1:A:361:VAL:HG11	1:A:381:MET:HE3	0.42	1.92	20	1	
1:A:344:GLU:O	1:A:345:TYR:C	0.42	2.58	18	3	
1:A:304:ILE:C	1:A:306:LEU:N	0.42	2.72	16	5	
1:A:329:LYS:CA	1:A:357:LEU:HD11	0.42	2.45	19	4	
1:A:382:LEU:HA	2:B:505:A:C5	0.42	2.50	18	1	
1:A:330:SER:HB2	1:A:342:PHE:CE2	0.41	2.49	3	1	
1:A:279:VAL:HB	1:A:303:LEU:CD2	0.41	2.45	9	2	
1:A:328:PRO:HD2	1:A:357:LEU:O	0.41	2.15	8	1	
1:A:303:LEU:O	1:A:304:ILE:C	0.41	2.56	19	1	
1:A:299:VAL:O	1:A:303:LEU:CD1	0.41	2.66	7	3	
1:A:312:TYR:HA	1:A:352:GLN:CD	0.41	2.36	12	1	
1:A:315:LYS:HG2	1:A:317:TYR:CE2	0.41	2.49	15	1	
1:A:323:ASP:HB2	1:A:363:VAL:HG12	0.41	1.93	4	1	
1:A:345:TYR:O	1:A:349:GLN:CB	0.41	2.67	11	2	
1:A:283:MET:HE1	1:A:322:ILE:HG21	0.41	1.91	10	3	
1:A:329:LYS:CE	1:A:357:LEU:HD13	0.41	2.45	15	1	
1:A:329:LYS:NZ	1:A:357:LEU:HD13	0.41	2.30	4	1	
1:A:328:PRO:HG2	1:A:356:ASP:O	0.41	2.15	6	3	
1:A:362:LEU:HD12	1:A:387:CYS:SG	0.41	2.55	2	1	
1:A:328:PRO:HB2	1:A:357:LEU:HG	0.41	1.93	8	1	
2:B:501:U:H4'	2:B:502:G:OP2	0.41	2.14	4	1	
1:A:279:VAL:CG2	1:A:387:CYS:SG	0.41	3.07	13	1	
1:A:308:VAL:CG2	1:A:387:CYS:SG	0.41	3.09	15	1	
1:A:343:LEU:HD13	1:A:357:LEU:HD12	0.41	1.92	8	2	
1:A:310:THR:CG2	1:A:382:LEU:HD22	0.41	2.46	5	1	
1:A:390:THR:C	1:A:392:LEU:N	0.41	2.74	3	1	
1:A:354:ILE:CG2	1:A:355:THR:N	0.41	2.84	5	3	
1:A:295:PHE:CD2	1:A:296:GLN:HG3	0.41	2.51	6	1	
1:A:347:ARG:O	1:A:351:ASN:CA	0.41	2.69	11	1	
1:A:348:LYS:HE3	1:A:348:LYS:H	0.41	1.76	11	1	
1:A:344:GLU:HG2	1:A:348:LYS:HD3	0.41	1.93	12	2	
1:A:331:THR:HG22	1:A:341:SER:CA	0.41	2.46	13	1	

A 4 amo 1	A 4 am 2	$C = c \left(\frac{\lambda}{\lambda} \right)$	\mathbf{D} : \mathbf{D} : \mathbf{D}	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:290:THR:OG1	1:A:295:PHE:N	0.41	2.54	16	1	
1:A:279:VAL:CG1	1:A:387:CYS:O	0.41	2.69	18	1	
1:A:357:LEU:CD2	1:A:357:LEU:O	0.41	2.69	4	1	
1:A:317:TYR:HB2	1:A:382:LEU:HD11	0.41	1.92	15	1	
1:A:307:VAL:HG22	1:A:392:LEU:HD12	0.40	1.92	5	1	
1:A:323:ASP:OD1	1:A:326:GLN:HG3	0.40	2.15	6	1	
1:A:284:PHE:O	1:A:287:TYR:N	0.40	2.54	14	2	
1:A:328:PRO:HB2	1:A:354:ILE:HG21	0.40	1.93	11	1	
1:A:363:VAL:O	1:A:363:VAL:HG22	0.40	2.17	15	1	
1:A:328:PRO:HG2	1:A:359:GLN:NE2	0.40	2.31	16	1	
1:A:280:LEU:HD21	1:A:356:ASP:OD2	0.40	2.15	2	1	
1:A:346:TYR:HA	1:A:352:GLN:NE2	0.40	2.31	4	1	
1:A:357:LEU:HD23	1:A:357:LEU:O	0.40	2.16	4	1	
1:A:345:TYR:O	1:A:349:GLN:HB3	0.40	2.16	8	1	
1:A:317:TYR:HB3	1:A:364:SER:HB3	0.40	1.92	15	1	
1:A:388:TYR:O	1:A:390:THR:HG23	0.40	2.16	3	1	
1:A:359:GLN:OE1	1:A:384:PRO:HB2	0.40	2.16	5	1	
1:A:291:GLU:OE2	1:A:294:LYS:HG3	0.40	2.17	14	1	
1:A:299:VAL:O	1:A:300:SER:C	0.40	2.58	16	1	
1:A:279:VAL:HG13	1:A:387:CYS:O	0.40	2.16	17	1	
1:A:383:ILE:HG22	1:A:385:GLU:N	0.40	2.32	1	1	
1:A:290:THR:HG21	1:A:295:PHE:HA	0.40	1.94	12	1	
1:A:331:THR:CG2	1:A:341:SER:OG	0.40	2.69	12	1	
1:A:313:ASN:O	1:A:315:LYS:N	0.40	2.54	16	1	

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	95/134~(71%)	$64\pm2~(68\pm2\%)$	22 ± 2 (23 $\pm2\%$)	$9{\pm}1$ ($9{\pm}1\%$)	1	11
All	All	1900/2680~(71%)	1288 (68%)	432 (23%)	180 (9%)	1	11

All 18 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	277	GLU	20
1	А	295	PHE	20
1	А	299	VAL	20
1	А	360	PRO	20
1	А	314	ASN	17
1	А	291	GLU	16
1	А	357	LEU	15
1	А	290	THR	14
1	А	330	SER	12
1	А	391	GLY	8
1	А	289	GLN	6
1	А	328	PRO	4
1	А	353	GLU	2
1	А	304	ILE	2
1	А	347	ARG	1
1	А	393	THR	1
1	А	351	ASN	1
1	А	312	TYR	1

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perc	entiles
1	А	92/125~(74%)	$67 \pm 3 (72 \pm 3\%)$	25 ± 3 (28±3%)	2	20
All	All	1840/2500~(74%)	1331 (72%)	509 (28%)	2	20

All 56 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	277	GLU	20
1	А	281	ASP	20
1	А	293	HIS	20
1	А	298	GLN	20
1	А	299	VAL	20
1	А	301	LYS	20
1	А	303	LEU	20
1	А	357	LEU	20

Mol	Chain	Res	Type	Models (Total)
1	А	363	VAL	20
1	А	290	THR	19
1	А	309	LEU	19
1	А	319	VAL	19
1	А	389	LEU	19
1	А	320	ASP	17
1	А	340	VAL	16
1	А	382	LEU	15
1	А	279	VAL	14
1	А	385	GLU	14
1	А	350	TYR	13
1	А	383	ILE	13
1	А	282	PHE	12
1	А	286	PHE	12
1	А	307	VAL	10
1	А	289	GLN	9
1	А	332	PHE	9
1	А	354	ILE	9
1	А	284	PHE	7
1	А	288	HIS	7
1	А	361	VAL	7
1	А	312	TYR	6
1	А	313	ASN	6
1	А	381	MET	5
1	А	314	ASN	5
1	А	285	ASN	5
1	А	352	GLN	4
1	А	300	SER	4
1	А	351	ASN	4
1	А	353	GLU	4
1	А	359	GLN	3
1	А	341	SER	3
1	А	386	LEU	2
1	А	283	MET	2
1	А	315	LYS	2
1	A	345	TYR	2
1	А	306	LEU	1
1	A	329	LYS	1
1	А	292	GLU	1
1	А	294	LYS	1
1	А	311	LYS	1
1	А	326	GLN	1

Mol	Chain	Res	Type	Models (Total)
1	А	344	GLU	1
1	А	348	LYS	1
1	А	318	ARG	1
1	А	330	SER	1
1	А	392	LEU	1
1	А	393	THR	1

6.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers	Suiteness
2	В	4/5~(80%)	4 ± 0 (95 $\pm10\%$)	$0{\pm}0$ (4 ${\pm}9\%$)	$0.01 {\pm} 0.03$
All	All	82/100~(82%)	76 (93%)	3~(4%)	0.01

The overall RNA backbone suiteness is 0.01.

All unique RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Models (Total)
2	В	502	G	19
2	В	503	А	19
2	В	504	С	19
2	В	505	A	19

All unique RNA pucker outliers are listed below:

Mol	Chain	Res	Type	Models (Total)
2	В	501	U	2
2	В	503	А	1

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

No chemical shift data were provided

