Full wwPDB X-ray Structure Validation Report

Mar 9, 2018 – 02:32 am GMT

PDB ID : 3LN1
Title : Structure of celecoxib bound at the COX-2 active site
Authors : Kiefer, J.R.; Kurumbail, R.G.; Stallings, W.C.; Pawlitz, J.L.
Deposited on : 2010-02-01
Resolution : 2.40 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.02b-467
- Mogul : 1.7.3 (157068), CSD as539be (2018)
- Xtriage (Phenix) : 1.13
- EDS : trunk30967
- Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
- Refmac : 5.8.0158
- CCP4 : 7.0 (Gargrove)
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : trunk30967
1 Overall quality at a glance

The following experimental techniques were used to determine the structure: *X-RAY DIFFRACTION*

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R$_{\text{free}}$</td>
<td>111664</td>
<td>3481 (2.40-2.40)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>3956 (2.40-2.40)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>3897 (2.40-2.40)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>3898 (2.40-2.40)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>3386 (2.40-2.40)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for \geq3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq5\%$

The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>587</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>587</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>587</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>587</td>
<td></td>
</tr>
</tbody>
</table>

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit crite-
ria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>673</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 6 unique types of molecules in this entry. The entry contains 18603 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Prostaglandin G/H synthase 2.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>552</td>
<td>Total C N O S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4474 2885 750 814 25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>552</td>
<td>Total C N O S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4474 2885 750 814 25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>552</td>
<td>Total C N O S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4474 2885 750 814 25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>552</td>
<td>Total C N O S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4474 2885 750 814 25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 2 is N-ACETYL-D-GLUCOSAMINE (three-letter code: NAG) (formula: C₈H₁₅NO₆).

Molecule 2

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C N O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 8 1 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C N O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 8 1 5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 3 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: C₃₄H₃₂FeN₄O₄).
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total</td>
<td>C 43</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe 34</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O 4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total</td>
<td>C 43</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe 34</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O 4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total</td>
<td>C 43</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe 34</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O 4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1</td>
<td>Total</td>
<td>C 43</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe 34</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O 4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S 4</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 4 is 4-[5-(4-METHYLPHENYL)-3-(TRIFLUOROMETHYL)-1H-PYRAZOL-1-YL]BENZENESULFONAMIDE (three-letter code: CEL) (formula: C_{17}H_{14}F_{3}N_{3}O_{2}S).
Table 1: Molecular Details

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total C F N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26 17 3 3 2 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C F N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26 17 3 3 2 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>1</td>
<td>Total C F N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26 17 3 3 2 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1</td>
<td>Total C F N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26 17 3 3 2 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 5 is B-OCTYLGLUCOSIDE (three-letter code: BOG) (formula: C\textsubscript{14}H\textsubscript{28}O\textsubscript{6}).

![BOG Diagram](image)

- Molecule 6 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 14 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 14 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 6 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td>37</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37 37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>33</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>12</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>29</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29 29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometric and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Prostaglandin G/H synthase 2

Chain A:

- Molecule 1: Prostaglandin G/H synthase 2

Chain B:
- Molecule 1: Prostaglandin G/H synthase 2

Chain C:

- Molecule 1: Prostaglandin G/H synthase 2

Chain D:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 2 1 2 1 2</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>180.94Å, 135.38Å, 124.08Å</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>90.00°, 90.00°, 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>26.77 – 2.40</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>26.59 – 2.40</td>
<td>EDS</td>
</tr>
<tr>
<td>% Data completeness</td>
<td>74.2 (26.77-2.40)</td>
<td>Depositor</td>
</tr>
<tr>
<td>(in resolution range)</td>
<td>74.2 (26.59-2.40)</td>
<td>EDS</td>
</tr>
<tr>
<td>R_{merge}</td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R_{sym}</td>
<td>0.10</td>
<td>Depositor</td>
</tr>
<tr>
<td>$< I/\sigma(I) >$</td>
<td>1.39 (at 2.39Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>REFMAC 5.4.0067</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R_{free}</td>
<td>0.232 , 0.264</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>0.240 , 0.271</td>
<td>DCC</td>
</tr>
<tr>
<td>R_{free} test set</td>
<td>8910 reflections (10.06%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>36.2</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.261</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent $k_{sol}(e/Å³)$, $B_{sol}(Å²)$</td>
<td>0.32 , 30.9</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning2</td>
<td>$<</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>No twinning to report.</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F_o,F_c correlation</td>
<td>0.93</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>18603</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å²)</td>
<td>47.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 50.26 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to $6.6381e-05$. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

1Intensities estimated from amplitudes.

2Theoretical values of $<|L|>$, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: HEM, CEL, NAG, BOG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.57</td>
<td>1/4601 (0.0%)</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.57</td>
<td>0/4601</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0.56</td>
<td>0/4601</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0.57</td>
<td>0/4601</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.57</td>
<td>1/18404 (0.0%)</td>
</tr>
</tbody>
</table>

All (1) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>526</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-6.91</td>
<td>1.70</td>
<td>1.82</td>
</tr>
</tbody>
</table>

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>4474</td>
<td>0</td>
<td>4373</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>4474</td>
<td>0</td>
<td>4373</td>
<td>89</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>4474</td>
<td>0</td>
<td>4372</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>4474</td>
<td>0</td>
<td>4373</td>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>70</td>
<td>0</td>
<td>63</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>70</td>
<td>0</td>
<td>63</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (370) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:128:PHE:O</td>
<td>1:D:362:ARG:NH2</td>
<td>2.00</td>
<td>0.94</td>
</tr>
<tr>
<td>1:B:128:PHE:O</td>
<td>1:B:362:ARG:NH2</td>
<td>2.00</td>
<td>0.94</td>
</tr>
<tr>
<td>1:A:128:PHE:O</td>
<td>1:A:362:ARG:NH2</td>
<td>2.03</td>
<td>0.91</td>
</tr>
<tr>
<td>1:C:128:PHE:O</td>
<td>1:C:362:ARG:NH2</td>
<td>2.03</td>
<td>0.91</td>
</tr>
<tr>
<td>1:C:280:LEU:HD2</td>
<td>1:C:395:TYR:HD2</td>
<td>1.42</td>
<td>0.84</td>
</tr>
<tr>
<td>1:C:279:GLY:HA2</td>
<td>1:C:285:MET:CE</td>
<td>2.08</td>
<td>0.83</td>
</tr>
<tr>
<td>1:C:384:GLU:HG3</td>
<td>1:C:407:GLN:CG</td>
<td>2.09</td>
<td>0.82</td>
</tr>
<tr>
<td>1:D:384:GLU:HG3</td>
<td>1:D:407:GLN:CG</td>
<td>2.10</td>
<td>0.82</td>
</tr>
<tr>
<td>1:B:384:GLU:HG3</td>
<td>1:B:407:GLN:CG</td>
<td>2.11</td>
<td>0.81</td>
</tr>
<tr>
<td>1:A:286:MET:HE1</td>
<td>1:A:409:VAL:HG22</td>
<td>1.60</td>
<td>0.81</td>
</tr>
<tr>
<td>1:D:279:GLY:HA2</td>
<td>1:D:285:MET:CE</td>
<td>2.11</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:286:MET:HE1</td>
<td>1:B:409:VAL:HG22</td>
<td>1.63</td>
<td>0.80</td>
</tr>
<tr>
<td>1:A:279:GLY:HA2</td>
<td>1:A:285:MET:CE</td>
<td>2.10</td>
<td>0.80</td>
</tr>
<tr>
<td>1:D:306:HIS:HA</td>
<td>1:D:308:GLU:OE2</td>
<td>1.81</td>
<td>0.79</td>
</tr>
<tr>
<td>1:B:280:LEU:HD2</td>
<td>1:B:395:TYR:HD2</td>
<td>1.47</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:286:MET:CE</td>
<td>1:D:409:VAL:HG22</td>
<td>2.13</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:306:HIS:HA</td>
<td>1:A:308:GLU:OE2</td>
<td>1.84</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:18:ALA:HB3</td>
<td>1:A:144:ASP:OD2</td>
<td>1.83</td>
<td>0.78</td>
</tr>
<tr>
<td>1:D:280:LEU:HD22</td>
<td>1:D:395:TYR:HD2</td>
<td>1.49</td>
<td>0.78</td>
</tr>
<tr>
<td>1:C:561:CYS:O</td>
<td>1:C:561:CYS:SG</td>
<td>2.41</td>
<td>0.78</td>
</tr>
<tr>
<td>1:B:24:ASN:N</td>
<td>1:B:25:PRO:HD3</td>
<td>2.00</td>
<td>0.77</td>
</tr>
<tr>
<td>1:B:286:MET:CE</td>
<td>1:B:409:VAL:HG22</td>
<td>2.16</td>
<td>0.76</td>
</tr>
<tr>
<td>1:C:456:PHE:CG</td>
<td>1:C:511:LEU:HD22</td>
<td>2.21</td>
<td>0.76</td>
</tr>
<tr>
<td>1:D:24:ASN:N</td>
<td>1:D:25:PRO:HD3</td>
<td>2.02</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:24:ASN:N</td>
<td>1:A:25:PRO:HD3</td>
<td>2.01</td>
<td>0.75</td>
</tr>
<tr>
<td>1:D:286:MET:HE1</td>
<td>1:D:409:VAL:HG22</td>
<td>1.67</td>
<td>0.74</td>
</tr>
<tr>
<td>1:B:306:HIS:HA</td>
<td>1:B:308:GLU:OE2</td>
<td>1.87</td>
<td>0.74</td>
</tr>
<tr>
<td>1:C:306:HIS:HA</td>
<td>1:C:308:GLU:OE2</td>
<td>1.86</td>
<td>0.74</td>
</tr>
<tr>
<td>1:B:279:GLY:HA2</td>
<td>1:B:285:MET:CE</td>
<td>2.18</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:53:ASN:ND2</td>
<td>2:B:661:NAG:H61</td>
<td>2.04</td>
<td>0.73</td>
</tr>
<tr>
<td>1:C:384:GLU:HG3</td>
<td>1:C:407:GLN:HG2</td>
<td>1.70</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:384:GLU:HG3</td>
<td>1:A:407:GLN:HG2</td>
<td>1.74</td>
<td>0.70</td>
</tr>
<tr>
<td>3:B:605:HEM:HHC</td>
<td>3:B:605:HEM:HBB2</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:384:GLU:HG3</td>
<td>1:B:407:GLN:HG2</td>
<td>1.72</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:456:PHE:CG</td>
<td>1:B:511:LEU:HD22</td>
<td>2.26</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:286:MET:CE</td>
<td>1:A:409:VAL:HG22</td>
<td>2.21</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:456:PHE:CG</td>
<td>1:D:511:LEU:HD22</td>
<td>2.27</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:346:LYS:HE3</td>
<td>1:C:348:ASP:HB2</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:384:GLU:HG3</td>
<td>1:D:407:GLN:CD</td>
<td>2.14</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:384:GLU:HG3</td>
<td>1:D:407:GLN:HG2</td>
<td>1.74</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:384:GLU:HG3</td>
<td>1:C:407:GLN:CD</td>
<td>2.14</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:286:MET:CE</td>
<td>1:C:409:VAL:HG22</td>
<td>2.23</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:159:ASP:HB3</td>
<td>1:B:162:GLU:HB2</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:D:346:LYS:HE3</td>
<td>1:D:348:ASP:HB2</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:279:GLY:HA2</td>
<td>1:A:285:MET:HE3</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:255:THR:OG1</td>
<td>1:A:257:VAL:HG13</td>
<td>1.95</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:346:LYS:HE3</td>
<td>1:A:348:ASP:HB2</td>
<td>1.75</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:166:LYS:HD3</td>
<td>1:B:476:GLU:OE1</td>
<td>1.93</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:286:MET:HE1</td>
<td>1:C:409:VAL:HG22</td>
<td>1.76</td>
<td>0.66</td>
</tr>
<tr>
<td>2:C:672:NAG:H4</td>
<td>2:C:673:NAG:HN2</td>
<td>1.61</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:346:LYS:HE3</td>
<td>1:B:348:ASP:HB2</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>1:D:53:ASN:ND2</td>
<td>2:D:661:NAG:H61</td>
<td>2.09</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:166:LYS:HD3</td>
<td>1:C:476:GLU:OE1</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:384:GLU:HG3</td>
<td>1:B:407:GLN:CD</td>
<td>2.16</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Atom-1

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:159:ASP:HB3</td>
<td>1:D:162:GLU:HB2</td>
<td>1.78</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:166:LYS:HD3</td>
<td>1:A:476:GLU:OE1</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:279:GLY:HA2</td>
<td>1:C:285:MET:HE3</td>
<td>1.76</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:53:ASN:ND2</td>
<td>2:C:661:NAG:H61</td>
<td>2.11</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:255:THR:OG1</td>
<td>1:D:257:VAL:HG13</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:529:GLN:OE1</td>
<td>1:B:529:GLN:HA</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:98:ILE:O</td>
<td>1:D:102:VAL:HG13</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:529:GLN:OE1</td>
<td>1:C:529:GLN:HA</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:159:ASP:HB3</td>
<td>1:C:162:GLU:HB2</td>
<td>1.79</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:202:ARG:NH1</td>
<td>2:C:672:NAG:HN2</td>
<td>1.97</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:159:ASP:HB3</td>
<td>1:A:162:GLU:HB2</td>
<td>1.79</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:98:ILE:O</td>
<td>1:B:102:VAL:HG13</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:286:MET:CE</td>
<td>1:D:409:VAL:CG2</td>
<td>2.77</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:255:THR:OG1</td>
<td>1:B:257:VAL:HG13</td>
<td>2.00</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:286:MET:HE1</td>
<td>1:B:409:VAL:CG2</td>
<td>2.29</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:279:GLY:HA2</td>
<td>1:D:285:MET:HE3</td>
<td>1.81</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:24:ASN:N</td>
<td>1:C:25:PRO:HD3</td>
<td>2.15</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:529:GLN:HA</td>
<td>1:A:529:GLN:OE1</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:458:LEU:HD21</td>
<td>1:A:510:GLU:HG3</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:278:PHE:O</td>
<td>1:C:285:MET:HE2</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:255:THR:OG1</td>
<td>1:C:257:VAL:HG13</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:98:ILE:O</td>
<td>1:A:102:VAL:HG13</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:108:TYR:CE2</td>
<td>1:C:109:LEU:HD22</td>
<td>2.37</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:279:GLY:HA2</td>
<td>1:B:285:MET:HE3</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:247:VAL:O</td>
<td>1:A:293:ARG:NH1</td>
<td>2.35</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:286:MET:HE1</td>
<td>1:A:409:VAL:CG2</td>
<td>2.31</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:292:LEU:HD23</td>
<td>1:D:292:LEU:C</td>
<td>2.24</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:28:ASN:O</td>
<td>1:D:29:ARG:HB2</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:108:TYR:CE2</td>
<td>1:B:109:LEU:HD22</td>
<td>2.38</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:368:ASN:O</td>
<td>1:D:372:HIS:HD2</td>
<td>1.87</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:247:VAL:O</td>
<td>1:C:293:ARG:NH1</td>
<td>2.36</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:374:HIS:N</td>
<td>1:D:375:PRO:CD</td>
<td>2.67</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:368:ASN:O</td>
<td>1:C:372:HIS:HD2</td>
<td>1.88</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:24:ASN:N</td>
<td>1:B:25:PRO:CD</td>
<td>2.67</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:286:MET:CE</td>
<td>1:B:409:VAL:CG2</td>
<td>2.82</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:529:GLN:HA</td>
<td>1:D:529:GLN:OE1</td>
<td>2.04</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:53:ASN:ND2</td>
<td>2:A:661:NAG:H61</td>
<td>2.19</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:661:NAG:O7</td>
<td>2:B:661:NAG:C3</td>
<td>2.52</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:368:ASN:O</td>
<td>1:B:372:HIS:HD2</td>
<td>1.89</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:561:CYS:O</td>
<td>1:B:561:CYS:SG</td>
<td>2.63</td>
<td>0.56</td>
</tr>
<tr>
<td>2:C:672:NAG:H4</td>
<td>2:C:673:NAG:N2</td>
<td>2.18</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:98:ILE:O</td>
<td>1:C:102:VAL:HG13</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:20:PRO:HB2</td>
<td>1:C:40:TYR:HB3</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:373:TRP:HZ2</td>
<td>4:C:682:CEL:H112</td>
<td>1.71</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:108:TYR:CE2</td>
<td>1:D:109:LEU:HD22</td>
<td>2.41</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:247:VAL:O</td>
<td>1:D:293:ARG:NH1</td>
<td>2.39</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:292:LEU:C</td>
<td>1:B:292:LEU:HD23</td>
<td>2.26</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:278:PHE:O</td>
<td>1:D:285:MET:HE2</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:286:MET:HE1</td>
<td>1:D:409:VAL:CG2</td>
<td>2.35</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:292:LEU:C</td>
<td>1:C:292:LEU:HD23</td>
<td>2.27</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:216:LEU:HD13</td>
<td>1:C:219:ILE:HD12</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:28:ASN:O</td>
<td>1:B:29:ARG:HB2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:661:NAG:O3</td>
<td>2:B:661:NAG:O7</td>
<td>2.21</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:306:HIS:CA</td>
<td>1:C:308:GLU:OE2</td>
<td>2.55</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:561:CYS:SG</td>
<td>1:D:561:CYS:O</td>
<td>2.66</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:247:VAL:O</td>
<td>1:B:293:ARG:NH1</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:280:LEU:HD22</td>
<td>1:C:395:TYR:CD2</td>
<td>2.33</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:370:LEU:HD12</td>
<td>1:B:370:LEU:C</td>
<td>2.28</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:255:THR:O</td>
<td>1:C:256:GLN:HB2</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:561:CYS:SG</td>
<td>1:A:561:CYS:O</td>
<td>2.67</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:97:LEU:O</td>
<td>1:A:97:LEU:HD23</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>2:D:673:NAG:H3</td>
<td>2:D:673:NAG:O7</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:458:LEU:HD21</td>
<td>1:B:510:GLU:HG3</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:513:ALA:N</td>
<td>1:B:514:PRO:CD</td>
<td>2.72</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:458:LEU:HD21</td>
<td>1:D:510:GLU:HG3</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:216:LEU:HD22</td>
<td>1:B:218:HIS:HE1</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:255:THR:O</td>
<td>1:B:256:GLN:HB2</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:184:PHE:CZ</td>
<td>1:C:338:LEU:HD13</td>
<td>2.44</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:306:HIS:CA</td>
<td>1:A:308:GLU:OE2</td>
<td>2.55</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:490:TYR:HB3</td>
<td>1:D:491:PRO:HD3</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:24:ASN:H</td>
<td>1:A:25:PRO:HD3</td>
<td>1.71</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:458:LEU:HD21</td>
<td>1:C:510:GLU:HG3</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:19:ASN:HB21</td>
<td>1:D:22:CYS:SG</td>
<td>2.49</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:197:LYS:NZ</td>
<td>1:D:222:GLU:HG2</td>
<td>2.24</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:104:THR:HG21</td>
<td>1:B:355:GLN:HG2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:374:HIS:N</td>
<td>1:B:375:PRO:CD</td>
<td>2.72</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:112:SER:HA</td>
<td>1:B:113:PRO:C</td>
<td>2.30</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:374:HIS:N</td>
<td>1:A:375:PRO:CD</td>
<td>2.73</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:24:ASN:N</td>
<td>1:D:25:PRO:CD</td>
<td>2.71</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:368:ASN:O</td>
<td>1:A:372:HIS:CD2</td>
<td>2.63</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:216:LEU:HD22</td>
<td>1:C:218:HIS:HE1</td>
<td>1.74</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:184:PHE:CD2</td>
<td>1:D:368:LEU:HD13</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:97:LEU:HD23</td>
<td>1:D:97:LEU:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:374:HIS:CZ</td>
<td>1:C:368:LEU:HD13</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:104:THR:HG21</td>
<td>1:D:355:GLN:HG2</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:24:ASN:H</td>
<td>1:D:25:PRO:HD3</td>
<td>1.71</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:468:THR:HG22</td>
<td>1:C:495:VAL:HG13</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:255:Tyr:O</td>
<td>1:D:256:GLN:HB2</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:216:LEU:HD22</td>
<td>1:A:218:HIS:HE1</td>
<td>1.76</td>
<td>0.51</td>
</tr>
<tr>
<td>3:A:605:HEM:HC</td>
<td>3:A:605:HEM:HB2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:513:ALA:HB3</td>
<td>1:A:514:PRO:HD3</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:490:TYR:HB3</td>
<td>1:B:491:PRO:HD3</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:456:PHE:CD2</td>
<td>1:C:511:LEU:HD22</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:373:TRP:CZ2</td>
<td>4:C:682:CEL:H112</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:458:LEU:HD11</td>
<td>1:A:510:GLU:HB2</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:373:TRP:CZ2</td>
<td>4:A:682:CEL:H112</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:184:PHE:CD2</td>
<td>1:B:368:LEU:HD13</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:184:PHE:CD2</td>
<td>1:C:338:LEU:CD1</td>
<td>2.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:368:ASN:O</td>
<td>1:C:372:HIS:CD2</td>
<td>2.64</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:278:PHE:O</td>
<td>1:B:285:MET:HE2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:513:ALA:N</td>
<td>1:C:514:PRO:CD</td>
<td>2.75</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:513:ALA:N</td>
<td>1:D:514:PRO:CD</td>
<td>2.75</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:486:VAL:O</td>
<td>1:C:486:VAL:HG12</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:202:ARG:HH11</td>
<td>2:C:672:NAG:HN2</td>
<td>1.59</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:513:ALA:HB3</td>
<td>1:B:514:PRO:HD3</td>
<td>1.92</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:277:VAL:O</td>
<td>1:C:280:LEU:HB2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:368:ASN:O</td>
<td>1:D:372:HIS:CD2</td>
<td>2.65</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:490:TYR:HB3</td>
<td>1:C:491:PRO:HD3</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:513:ALA:HB3</td>
<td>1:C:514:PRO:HD3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:216:LEU:HA</td>
<td>1:D:218:HIS:CE1</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:458:LEU:HD11</td>
<td>1:D:510:GLU:HB2</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:456:PHE:CD2</td>
<td>1:D:511:LEU:HD22</td>
<td>2.47</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:513:ALA:HB3</td>
<td>1:D:514:PRO:HD3</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:19:ASN:HB3</td>
<td>1:B:22:CYS:SG</td>
<td>2.52</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:277:VAL:O</td>
<td>1:D:280:LEU:HB2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:430:VAL:HG13</td>
<td>1:B:430:VAL:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:18:ALA:HB3</td>
<td>1:D:144:ASP:OD2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:286:MET:HB3</td>
<td>1:A:409:VAL:CG2</td>
<td>2.88</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:112:SER:HA</td>
<td>1:A:113:PRO:CD2</td>
<td>2.32</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:159:ASP:OD2</td>
<td>1:D:161:LYS:HB3</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:112:SER:HA</td>
<td>1:C:113:PRO:CD2</td>
<td>2.32</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:468:THR:HG22</td>
<td>1:D:495:VAL:HG13</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:486:VAL:O</td>
<td>1:A:486:VAL:HG12</td>
<td>2.11</td>
<td>0.48</td>
</tr>
<tr>
<td>2:A:673:NAG:O3</td>
<td>2:A:673:NAG:C7</td>
<td>2.61</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:216:LEU:HD22</td>
<td>1:D:218:LYS:HE1</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:486:VAL:O</td>
<td>1:D:486:VAL:HG12</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:222:GLU:HG2</td>
<td>1:C:222:GLU:HG2</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>3:B:605:HEM:HHC</td>
<td>3:B:605:HEM:CBB</td>
<td>2.41</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:216:LEU:HD12</td>
<td>1:B:219:ILE:HD12</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:350:GLU:HA</td>
<td>1:B:353:PRO:CD2</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:486:VAL:HG12</td>
<td>1:B:486:VAL:O</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:306:LYS:CE1</td>
<td>1:D:308:LYS:CE1</td>
<td>2.57</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:468:THR:HG22</td>
<td>1:A:495:VAL:HG13</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>2:C:673:NAG:H3</td>
<td>2:C:673:NAG:O7</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:349:PRO:CG2</td>
<td>1:A:531:GLU:CD2</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:286:MET:HE3</td>
<td>1:D:409:VAL:CG2</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:277:VAL:O</td>
<td>1:B:280:LEU:HB3</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:112:SER:HA</td>
<td>1:C:113:PRO:CD2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>3:D:605:HEM:HHC</td>
<td>3:D:605:HEM:CG2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:468:THR:HG22</td>
<td>1:B:495:VAL:HG13</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:563:PRO:CD2</td>
<td>1:A:563:PRO:CD2</td>
<td>2.88</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:104:THR:HG21</td>
<td>1:C:355:GLU:HG2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:281:VAL:HG11</td>
<td>3:C:605:HEM:CBB</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:513:ALA:N</td>
<td>1:A:514:PRO:CD2</td>
<td>2.78</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:216:LEU:HA</td>
<td>1:B:218:LYS:CE1</td>
<td>2.50</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:216:LEU:HA</td>
<td>1:C:218:HIS:CE1</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:569:GLN:HA</td>
<td>1:D:569:GLN:NE2</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:306:HIS:CA</td>
<td>1:B:308:GLU:OE2</td>
<td>2.61</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:672:NAG:H4</td>
<td>2:B:673:NAG:N2</td>
<td>2.28</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:159:ASP:OD2</td>
<td>1:B:161:LYS:HB3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:456:PHE:CD2</td>
<td>1:B:511:LEU:HD22</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:31:GLU:OE1</td>
<td>1:B:123:LYS:NZ</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:370:LEU:HD12</td>
<td>1:D:370:LEU:C</td>
<td>2.36</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:179:GLY:O</td>
<td>1:D:567:ASN:HA</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:197:LYS:NZ</td>
<td>1:A:222:GLU:HG2</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:458:LEU:HD11</td>
<td>1:B:510:GLU:HB2</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:292:LEU:HD23</td>
<td>1:D:292:LEU:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:94:LEU:O</td>
<td>1:B:98:ILE:HG12</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:20:PRO:HB2</td>
<td>1:A:40:TYR:HB3</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:451:GLU:OE1</td>
<td>1:C:451:GLU:HA</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:97:LEU:O</td>
<td>1:C:97:LEU:HD23</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:44:CYS:O</td>
<td>1:B:45:THR:C</td>
<td>2.54</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:511:LEU:N</td>
<td>1:D:511:LEU:HD23</td>
<td>2.30</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:184:PHE:CZ</td>
<td>1:B:338:LEU:CD1</td>
<td>2.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:449:LEU:HD22</td>
<td>1:C:492:ALA:CB</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>2:C:661:NAG:C3</td>
<td>2:C:661:NAG:O7</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:490:TYR:HB3</td>
<td>1:A:491:PRO:HD3</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:149:MET:CE</td>
<td>1:C:488:GLU:HG2</td>
<td>2.45</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:449:LEU:HD22</td>
<td>1:A:492:ALA:CB</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:41:LYS:HG3</td>
<td>1:B:42:CYS:N</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:561:CYS:N</td>
<td>1:A:562:PRO:CD</td>
<td>2.80</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:179:GLY:O</td>
<td>1:B:567:ASN:HA</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:337:HIS:CE1</td>
<td>1:B:567:ASN:HB3</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:279:GLY:HA2</td>
<td>1:C:285:MET:HE1</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:41:LYS:HG3</td>
<td>1:C:42:CYS:N</td>
<td>2.30</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:551:GLN:HA</td>
<td>1:D:551:GLN:HE21</td>
<td>1.80</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:41:LYS:HG3</td>
<td>1:D:42:CYS:N</td>
<td>2.30</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:104:THR:HG21</td>
<td>1:A:355:GLN:HG2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:44:CYS:O</td>
<td>1:D:45:THR:C</td>
<td>2.55</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:184:PHE:CZ</td>
<td>1:A:338:LEU:CD1</td>
<td>3.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:63:ILE:HD12</td>
<td>1:B:63:ILE:H</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:112:SER:HA</td>
<td>1:D:113:PRO:C</td>
<td>2.37</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:373:TRP:HZ2</td>
<td>4:D:682:CEL:H112</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:350:GLU:HA</td>
<td>1:C:353:PHE:CD1</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:184:PHE:CZ</td>
<td>1:D:338:LEU:CD1</td>
<td>2.99</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:C:672:NAG:O7</td>
<td>2:C:672:NAG:H3</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:673:NAG:H3</td>
<td>2:B:673:NAG:O7</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:366:GLU:HG2</td>
<td>1:C:452:TYR:CE1</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:451:GLU:HA</td>
<td>1:D:451:GLU:OE1</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:367:PHE:O</td>
<td>1:D:370:LEU:HG</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:44:CYS:O</td>
<td>1:A:45:THR:C</td>
<td>2.56</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:155:LYS:HD3</td>
<td>1:C:155:LYS:HA</td>
<td>1.89</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:454:LYS:HD2</td>
<td>1:A:460:PRO:HG3</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:149:MET:CE</td>
<td>1:D:488:GLU:HG2</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:159:ASP:OD2</td>
<td>1:A:161:LYS:HB3</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:41:LYS:HG3</td>
<td>1:A:42:CYS:N</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:672:NAG:H4</td>
<td>2:B:673:NAG:HN2</td>
<td>1.83</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:349:PRO:HG2</td>
<td>1:C:531:TRP:CD2</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:94:LEU:O</td>
<td>1:C:98:ILE:HG12</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:255:THR:CB</td>
<td>1:D:257:VAL:HG13</td>
<td>2.48</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:179:GLY:O</td>
<td>1:C:567:ASN:HA</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:192:THR:HG21</td>
<td>1:B:371:TYR:CE2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:389:SER:OG</td>
<td>1:B:392:GLN:HG3</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:115:THR:OG1</td>
<td>1:C:116:TYR:N</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:486:VAL:O</td>
<td>1:C:486:VAL:CG1</td>
<td>2.67</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:220:TYR:CE2</td>
<td>1:D:319:ARG:HG3</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:188:ALA:O</td>
<td>1:A:192:THR:HG23</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:286:MET:HG3</td>
<td>1:A:405:LEU:HD13</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:157:LEU:HD12</td>
<td>1:B:157:LEU:HA</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:184:PHE:CE1</td>
<td>1:C:338:LEU:HD13</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:430:VAL:O</td>
<td>1:D:430:VAL:HG13</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:350:GLU:HA</td>
<td>1:A:353:PHE:CD1</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:281:VAL:HG11</td>
<td>3:A:605:HEM:CBB</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:104:THR:CG2</td>
<td>1:B:355:GLN:HG2</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:255:THR:CB</td>
<td>1:B:257:VAL:HG13</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:605:HEM:HC</td>
<td>3:B:605:HEM:HB2</td>
<td>2.41</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:286:MET:CE</td>
<td>1:C:409:VAL:CG2</td>
<td>2.95</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:31:GLU:OE1</td>
<td>1:C:123:LYS:NZ</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:94:LEU:O</td>
<td>1:D:98:ILE:HG12</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:384:GLU:HB3</td>
<td>1:A:385:ASP:H</td>
<td>1.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:320:LEU:HD23</td>
<td>1:B:320:LEU:HA</td>
<td>1.86</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:188:ALA:O</td>
<td>1:D:192:THR:HG23</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:149:MET:CE</td>
<td>1:A:488:GLU:HG2</td>
<td>2.49</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:155:LYS:HA</td>
<td>1:B:155:LYS:HD3</td>
<td>1.92</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:157:LEU:HD12</td>
<td>1:C:157:LEU:HA</td>
<td>1.88</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:280:LEU:HD22</td>
<td>1:B:395:TYR:CD2</td>
<td>2.39</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:330:VAL:HA</td>
<td>1:C:334:TYR:HB3</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:31:GLU:OE1</td>
<td>1:D:123:LYS:NZ</td>
<td>2.51</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:458:LEU:HD11</td>
<td>1:C:510:GLU:HB2</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:78:LEU:HB3</td>
<td>1:A:341:TYR:CD1</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:19:ASN:HB3</td>
<td>1:C:22:CYS:SG</td>
<td>2.60</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:149:MET:HB3</td>
<td>1:B:488:GLU:HG2</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:560:GLY:O</td>
<td>1:B:561:CYS:C</td>
<td>2.58</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:375:PRO:HB2</td>
<td>1:C:420:VAL:HA</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:486:VAL:O</td>
<td>1:A:486:VAL:CG1</td>
<td>2.67</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:326:THR:O</td>
<td>1:B:330:VAL:HG23</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:449:LEU:HD22</td>
<td>1:B:492:ALA:CB</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>3:A:605:HEM:HBB2</td>
<td>3:A:605:HEM:CHC</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:197:LYS:HZ1</td>
<td>1:D:222:GLU:HG2</td>
<td>1.83</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:179:GLY:O</td>
<td>1:A:567:ASN:HA</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>2:A:661:NAG:O7</td>
<td>2:A:661:NAG:H3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:24:ASN:H</td>
<td>1:B:25:PRO:HD3</td>
<td>1.79</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:67:LEU:N</td>
<td>1:D:67:LEU:CD1</td>
<td>2.82</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:292:LEU:O</td>
<td>1:B:292:LEU:HD23</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:454:LYS:HD3</td>
<td>1:B:460:PRO:HG3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:392:GLN:HA</td>
<td>2:B:681:NAG:O7</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:159:ASP:OD2</td>
<td>1:C:161:LYS:HB3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:486:VAL:O</td>
<td>1:D:486:VAL:CG1</td>
<td>2.68</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:67:LEU:CD1</td>
<td>1:C:67:LEU:N</td>
<td>2.83</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:512:GLY:HA3</td>
<td>4:D:682:CEL:H113</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:76:TYR:CD1</td>
<td>1:A:80:HIS:CE1</td>
<td>3.08</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:76:TYR:CE1</td>
<td>1:A:80:HIS:CE1</td>
<td>3.09</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:280:LEU:HD13</td>
<td>1:B:395:TYR:CE2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:78:LEU:HB3</td>
<td>1:B:341:TYR:CD1</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:349:PRO:HG2</td>
<td>1:B:531:TRP:CD2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:67:LEU:N</td>
<td>1:B:67:LEU:CD1</td>
<td>2.83</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:389:SER:OG</td>
<td>1:C:392:GLN:HG3</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:18:ALA:CB</td>
<td>1:A:144:ASP:OD2</td>
<td>2.61</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:255:THR:CB</td>
<td>1:C:257:VAL:HG13</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:192:THR:HG21</td>
<td>1:D:371:TYR:CE2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>3:A:605:HEM:HHC</td>
<td>3:A:605:HEM:CBB</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:24:ASN:N</td>
<td>1:C:25:PRO:CD</td>
<td>2.82</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:112:SER:CB</td>
<td>1:D:518:LYS:HZ1</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:186:PHF:HE1</td>
<td>3:A:605:HEM:HB1</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:255:THR:CB</td>
<td>1:A:257:VAL:HG13</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:449:LEU:HD22</td>
<td>1:A:492:ALA:HB1</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:486:VAL:CG1</td>
<td>1:B:486:VAL:O</td>
<td>2.69</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:216:LEU:HD13</td>
<td>1:D:219:ILE:HD12</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:286:MET:HE3</td>
<td>1:D:409:VAL:HG23</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:386:GLN:HG3</td>
<td>1:A:388:TYR:OH</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:201:LYS:HG2</td>
<td>1:B:201:LYS:H</td>
<td>1.67</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:511:LEU:N</td>
<td>1:B:511:LEU:HD23</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:76:TYR:CE1</td>
<td>1:C:80:HIS:CE1</td>
<td>3.09</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:389:SER:OG</td>
<td>1:A:392:GLN:HG3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:449:LEU:HD22</td>
<td>1:C:492:ALA:HB1</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:29:ARG:HD3</td>
<td>1:A:455:ARG:HD2</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:267:GLU:OE1</td>
<td>6:B:607:HOH:O</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:455:ARG:HD2</td>
<td>1:C:455:ARG:O</td>
<td>2.20</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:372:HIS:CE1</td>
<td>3:C:605:HEM:HAD1</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:320:LEU:HD23</td>
<td>1:D:320:LEU:HA</td>
<td>1.91</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:90:ASN:O</td>
<td>1:B:92:PRO:HD3</td>
<td>2.22</td>
<td>0.40</td>
</tr>
<tr>
<td>2:C:672:NAG:C4</td>
<td>2:C:673:NAG:N2</td>
<td>2.84</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:346:LYS:CE</td>
<td>1:D:348:ASP:HB2</td>
<td>2.50</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:104:THR:CG2</td>
<td>1:D:355:GLN:HG2</td>
<td>2.51</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:112:SER:CB</td>
<td>1:B:518:LYS:HZ1</td>
<td>2.35</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:373:TRP:HZ2</td>
<td>4:B:682:CEL:H112</td>
<td>1.86</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:63:ILE:CG2</td>
<td>1:C:67:LEU:HD22</td>
<td>2.51</td>
<td>0.40</td>
</tr>
</tbody>
</table>

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:476:GLU:OE1</td>
<td>5:A:703:BOG:O2[4_545]</td>
<td>2.02</td>
<td>0.18</td>
</tr>
</tbody>
</table>

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.
The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>550/587 (94%)</td>
<td>529 (96%)</td>
<td>21 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>550/587 (94%)</td>
<td>527 (96%)</td>
<td>23 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>550/587 (94%)</td>
<td>533 (97%)</td>
<td>17 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>550/587 (94%)</td>
<td>532 (97%)</td>
<td>18 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2200/2348 (94%)</td>
<td>2121 (96%)</td>
<td>79 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>493/525 (94%)</td>
<td>464 (94%)</td>
<td>29 (6%)</td>
<td>21 34</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>493/525 (94%)</td>
<td>464 (94%)</td>
<td>29 (6%)</td>
<td>21 34</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>493/525 (94%)</td>
<td>463 (94%)</td>
<td>30 (6%)</td>
<td>20 32</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>493/525 (94%)</td>
<td>464 (94%)</td>
<td>29 (6%)</td>
<td>21 34</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1972/2100 (94%)</td>
<td>1855 (94%)</td>
<td>117 (6%)</td>
<td>21 34</td>
</tr>
</tbody>
</table>

All (117) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>93</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>102</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>103</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>107</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>109</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>157</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>164</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>171</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>201</td>
<td>LYS</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>224</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>225</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>238</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>257</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>275</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>277</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>280</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>284</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>308</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>362</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>371</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>395</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>430</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>470</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>478</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>511</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>520</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>542</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>565</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>93</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>102</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>103</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>107</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>109</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>157</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>164</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>171</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>201</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>224</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>225</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>238</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>257</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>275</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>277</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>280</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>284</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>308</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>362</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>371</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>395</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>430</td>
<td>VAL</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>454</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>470</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>478</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>511</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>520</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>552</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>67</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>93</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>102</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>103</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>107</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>109</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>157</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>164</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>201</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>224</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>225</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>238</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>257</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>275</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>277</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>280</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>284</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>308</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>362</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>371</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>395</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>430</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>454</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>470</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>478</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>511</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>520</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>542</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>564</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>93</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>102</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>103</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>107</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>109</td>
<td>LEU</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>157</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>164</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>171</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>201</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>224</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>225</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>238</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>257</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>275</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>277</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>280</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>284</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>308</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>362</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>371</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>395</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>430</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>470</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>478</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>511</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>520</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>551</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>569</td>
<td>GLN</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>28</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>569</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>551</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>569</td>
<td>GLN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.
5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

30 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts RMSZ #</td>
<td>Counts RMSZ #</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$</td>
<td>Z</td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>A</td>
<td>605</td>
<td>1</td>
<td>27,50,50 2.17</td>
<td>17,82,82 1.59</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>661</td>
<td>1</td>
<td>14,14,15 0.73</td>
<td>17,19,21 2.17</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>671</td>
<td>1,2</td>
<td>14,14,15 0.57</td>
<td>17,19,21 1.42</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>672</td>
<td>2</td>
<td>14,14,15 0.63</td>
<td>17,19,21 2.09</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>673</td>
<td>2</td>
<td>14,14,15 0.61</td>
<td>17,19,21 2.00</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>681</td>
<td>1</td>
<td>14,14,15 0.47</td>
<td>17,19,21 1.52</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>A</td>
<td>682</td>
<td>-</td>
<td>27,28,28 1.64</td>
<td>38,43,43 1.61</td>
</tr>
<tr>
<td>5</td>
<td>BOG</td>
<td>A</td>
<td>703</td>
<td>-</td>
<td>20,20,20 0.60</td>
<td>25,25,25 0.96</td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>B</td>
<td>605</td>
<td>1</td>
<td>27,50,50 2.13</td>
<td>17,82,82 2.03</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>661</td>
<td>1</td>
<td>14,14,15 0.81</td>
<td>17,19,21 1.82</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>671</td>
<td>1,2</td>
<td>14,14,15 0.65</td>
<td>17,19,21 1.35</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>672</td>
<td>2</td>
<td>14,14,15 0.62</td>
<td>17,19,21 2.06</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>673</td>
<td>2</td>
<td>14,14,15 0.66</td>
<td>17,19,21 1.50</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>681</td>
<td>1</td>
<td>14,14,15 0.62</td>
<td>17,19,21 1.37</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>B</td>
<td>682</td>
<td>-</td>
<td>27,28,28 1.46</td>
<td>38,43,43 1.45</td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>C</td>
<td>605</td>
<td>1</td>
<td>27,50,50 2.12</td>
<td>17,82,82 2.02</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>661</td>
<td>1</td>
<td>14,14,15 0.62</td>
<td>17,19,21 1.86</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>671</td>
<td>1,2</td>
<td>14,14,15 0.80</td>
<td>17,19,21 1.43</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>672</td>
<td>2</td>
<td>14,14,15 0.59</td>
<td>17,19,21 1.75</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>673</td>
<td>2</td>
<td>14,14,15 0.54</td>
<td>17,19,21 1.42</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>681</td>
<td>1</td>
<td>14,14,15 0.60</td>
<td>17,19,21 1.56</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>C</td>
<td>682</td>
<td>-</td>
<td>27,28,28 1.34</td>
<td>38,43,43 1.34</td>
</tr>
<tr>
<td>Mol</td>
<td>Type</td>
<td>Chain</td>
<td>Res</td>
<td>Link</td>
<td>Bond lengths</td>
<td>Bond angles</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>D</td>
<td>605</td>
<td>1</td>
<td>27,50,50</td>
<td>2.17</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>661</td>
<td>1</td>
<td>14,14,15</td>
<td>0.78</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>671</td>
<td>1,2</td>
<td>14,14,15</td>
<td>0.77</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>672</td>
<td>2</td>
<td>14,14,15</td>
<td>0.57</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>673</td>
<td>2</td>
<td>14,14,15</td>
<td>0.77</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>681</td>
<td>1</td>
<td>14,14,15</td>
<td>0.46</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>D</td>
<td>682</td>
<td>-</td>
<td>27,28,28</td>
<td>1.53</td>
</tr>
<tr>
<td>5</td>
<td>BOG</td>
<td>D</td>
<td>703</td>
<td>-</td>
<td>20,20,20</td>
<td>0.59</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>A</td>
<td>605</td>
<td>1</td>
<td>-</td>
<td>0/6,54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>661</td>
<td>1</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>671</td>
<td>1,2</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>672</td>
<td>2</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>673</td>
<td>2</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>681</td>
<td>1</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>A</td>
<td>682</td>
<td>-</td>
<td>-</td>
<td>0/20,20/20</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>5</td>
<td>BOG</td>
<td>A</td>
<td>703</td>
<td>-</td>
<td>-</td>
<td>0/11,31/31</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>B</td>
<td>605</td>
<td>1</td>
<td>-</td>
<td>0/6,54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>661</td>
<td>1</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>671</td>
<td>1,2</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>672</td>
<td>2</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>673</td>
<td>2</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>681</td>
<td>1</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>B</td>
<td>682</td>
<td>-</td>
<td>-</td>
<td>0/20,20/20</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>C</td>
<td>605</td>
<td>1</td>
<td>-</td>
<td>0/6,54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>661</td>
<td>1</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>671</td>
<td>1,2</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>672</td>
<td>2</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>673</td>
<td>2</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>681</td>
<td>1</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>C</td>
<td>682</td>
<td>-</td>
<td>-</td>
<td>0/20,20/20</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>D</td>
<td>605</td>
<td>1</td>
<td>-</td>
<td>0/6,54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>661</td>
<td>1</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>671</td>
<td>1,2</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>672</td>
<td>2</td>
<td>-</td>
<td>0/6,23/26</td>
<td>0/1/1/1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>673</td>
<td>2</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>681</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>D</td>
<td>682</td>
<td>-</td>
<td>-</td>
<td>0/20/20/20</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>5</td>
<td>BOG</td>
<td>D</td>
<td>703</td>
<td>-</td>
<td>-</td>
<td>0/11/31/31</td>
<td>0/1/1/1</td>
</tr>
</tbody>
</table>

All (39) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-5.76</td>
<td>1.32</td>
<td>1.40</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>605</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-5.19</td>
<td>1.33</td>
<td>1.40</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>605</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-4.88</td>
<td>1.33</td>
<td>1.40</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>605</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-4.84</td>
<td>1.33</td>
<td>1.40</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>605</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-4.80</td>
<td>1.33</td>
<td>1.40</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>605</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-4.78</td>
<td>1.33</td>
<td>1.40</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>605</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-4.53</td>
<td>1.34</td>
<td>1.40</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-3.76</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>682</td>
<td>CEL</td>
<td>N1-N2</td>
<td>-2.93</td>
<td>1.34</td>
<td>1.39</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>682</td>
<td>CEL</td>
<td>N1-N2</td>
<td>-2.81</td>
<td>1.34</td>
<td>1.39</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>C4-C1</td>
<td>-2.80</td>
<td>1.46</td>
<td>1.50</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>N1-N2</td>
<td>-2.77</td>
<td>1.34</td>
<td>1.39</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>C12-N2</td>
<td>-2.69</td>
<td>1.38</td>
<td>1.44</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>682</td>
<td>CEL</td>
<td>N1-N2</td>
<td>-2.60</td>
<td>1.35</td>
<td>1.39</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>682</td>
<td>CEL</td>
<td>C5-C3</td>
<td>-2.29</td>
<td>1.44</td>
<td>1.48</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>682</td>
<td>CEL</td>
<td>C12-N2</td>
<td>-2.26</td>
<td>1.39</td>
<td>1.44</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>682</td>
<td>CEL</td>
<td>C4-C1</td>
<td>-2.23</td>
<td>1.47</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>605</td>
<td>HEM</td>
<td>CAA-C2A</td>
<td>2.03</td>
<td>1.55</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>673</td>
<td>NAG</td>
<td>C1-C2</td>
<td>2.09</td>
<td>1.55</td>
<td>1.52</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>605</td>
<td>HEM</td>
<td>C1D-ND</td>
<td>2.25</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>661</td>
<td>NAG</td>
<td>C1-C2</td>
<td>2.26</td>
<td>1.55</td>
<td>1.52</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>CAA-C2A</td>
<td>2.42</td>
<td>1.56</td>
<td>1.52</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>605</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>2.43</td>
<td>1.52</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>661</td>
<td>NAG</td>
<td>C1-C2</td>
<td>2.47</td>
<td>1.55</td>
<td>1.52</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>2.60</td>
<td>1.52</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>605</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>3.15</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>605</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.19</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>605</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.25</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>605</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.50</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.53</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>605</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>3.67</td>
<td>1.55</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>682</td>
<td>CEL</td>
<td>S1-N3</td>
<td>4.18</td>
<td>1.69</td>
<td>1.60</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.12</td>
<td>1.52</td>
<td>1.37</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>682</td>
<td>CEL</td>
<td>S1-N3</td>
<td>5.40</td>
<td>1.71</td>
<td>1.60</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>D</td>
<td>605</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.47</td>
<td>1.53</td>
<td>1.37</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>605</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.48</td>
<td>1.53</td>
<td>1.37</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>605</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.56</td>
<td>1.54</td>
<td>1.37</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>682</td>
<td>CEL</td>
<td>S1-N3</td>
<td>5.70</td>
<td>1.72</td>
<td>1.60</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>S1-N3</td>
<td>6.18</td>
<td>1.73</td>
<td>1.60</td>
</tr>
</tbody>
</table>

All (100) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>661</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-6.42</td>
<td>102.66</td>
<td>111.52</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>682</td>
<td>CEL</td>
<td>C15-S1-N3</td>
<td>-5.73</td>
<td>100.22</td>
<td>108.40</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>661</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-5.32</td>
<td>104.17</td>
<td>111.52</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>605</td>
<td>HEM</td>
<td>CBA-CAA-C2A</td>
<td>-5.32</td>
<td>102.32</td>
<td>112.48</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>672</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-4.92</td>
<td>104.73</td>
<td>111.52</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>661</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-4.30</td>
<td>105.58</td>
<td>111.52</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-4.12</td>
<td>104.13</td>
<td>107.00</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>672</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-4.08</td>
<td>105.89</td>
<td>111.52</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>661</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-3.94</td>
<td>106.09</td>
<td>111.52</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>672</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-3.87</td>
<td>106.18</td>
<td>111.52</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>672</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-3.84</td>
<td>106.22</td>
<td>111.52</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-3.51</td>
<td>105.76</td>
<td>112.47</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>C17-C12-N2</td>
<td>-3.49</td>
<td>114.37</td>
<td>119.44</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>682</td>
<td>CEL</td>
<td>O1-S1-C15</td>
<td>-3.23</td>
<td>103.65</td>
<td>107.39</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>681</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>-3.19</td>
<td>107.80</td>
<td>112.19</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>703</td>
<td>BOG</td>
<td>O5-C5-C4</td>
<td>-3.15</td>
<td>103.90</td>
<td>109.69</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>605</td>
<td>HEM</td>
<td>CBA-CAA-C2A</td>
<td>-3.11</td>
<td>106.54</td>
<td>112.48</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>682</td>
<td>CEL</td>
<td>C15-S1-N3</td>
<td>-3.01</td>
<td>104.11</td>
<td>108.40</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>605</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-2.99</td>
<td>104.92</td>
<td>107.00</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>681</td>
<td>NAG</td>
<td>C3-C4-C5</td>
<td>-2.98</td>
<td>104.91</td>
<td>110.24</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>605</td>
<td>HEM</td>
<td>CMA-C3A-C4A</td>
<td>-2.98</td>
<td>123.89</td>
<td>128.46</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>682</td>
<td>CEL</td>
<td>F1-C4-C1</td>
<td>-2.85</td>
<td>107.67</td>
<td>112.48</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>O2-S1-C15</td>
<td>-2.80</td>
<td>104.15</td>
<td>107.39</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>681</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.79</td>
<td>118.87</td>
<td>122.94</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>671</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-2.78</td>
<td>107.68</td>
<td>111.52</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>682</td>
<td>CEL</td>
<td>C2-C3-C5</td>
<td>-2.76</td>
<td>123.64</td>
<td>128.09</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>C2-C3-N2</td>
<td>-2.73</td>
<td>104.09</td>
<td>108.27</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>682</td>
<td>CEL</td>
<td>C2-C3-C5</td>
<td>-2.71</td>
<td>123.73</td>
<td>128.09</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>703</td>
<td>BOG</td>
<td>C1-O5-C5</td>
<td>-2.68</td>
<td>108.44</td>
<td>113.71</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>661</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>-2.58</td>
<td>107.24</td>
<td>111.02</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>682</td>
<td>CEL</td>
<td>C2-C3-N2</td>
<td>-2.51</td>
<td>104.42</td>
<td>108.27</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>682</td>
<td>CEL</td>
<td>O2-S1-C15</td>
<td>-2.42</td>
<td>104.59</td>
<td>107.39</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>CBA-CAA-C2A</td>
<td>-2.41</td>
<td>107.87</td>
<td>112.48</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>D</td>
<td>703</td>
<td>BOG</td>
<td>C1-O5-C5</td>
<td>-2.40</td>
<td>108.97</td>
<td>113.71</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>681</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>-2.40</td>
<td>107.50</td>
<td>111.02</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>605</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-2.40</td>
<td>105.33</td>
<td>107.00</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>C16-C15-S1</td>
<td>-2.35</td>
<td>116.17</td>
<td>119.75</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>681</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-2.31</td>
<td>108.34</td>
<td>111.52</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>671</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-2.30</td>
<td>108.34</td>
<td>111.52</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>F2-C4-C1</td>
<td>-2.30</td>
<td>108.60</td>
<td>112.48</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>682</td>
<td>CEL</td>
<td>F1-C4-C1</td>
<td>-2.28</td>
<td>108.63</td>
<td>112.48</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>605</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-2.25</td>
<td>108.18</td>
<td>112.47</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>673</td>
<td>NAG</td>
<td>C3-C4-C5</td>
<td>-2.23</td>
<td>106.25</td>
<td>110.24</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>671</td>
<td>NAG</td>
<td>O7-C7-C8</td>
<td>-2.21</td>
<td>118.08</td>
<td>122.07</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>672</td>
<td>NAG</td>
<td>C6-C5-C4</td>
<td>-2.20</td>
<td>107.79</td>
<td>112.99</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>681</td>
<td>NAG</td>
<td>C1-C2-N2</td>
<td>-2.19</td>
<td>106.74</td>
<td>110.49</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>672</td>
<td>NAG</td>
<td>O4-C4-C5</td>
<td>-2.19</td>
<td>103.81</td>
<td>109.31</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>605</td>
<td>HEM</td>
<td>CAA-CBA-CGA</td>
<td>-2.15</td>
<td>108.98</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>605</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-2.13</td>
<td>108.40</td>
<td>112.47</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>682</td>
<td>CEL</td>
<td>C6-C5-C3</td>
<td>-2.13</td>
<td>116.92</td>
<td>120.75</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>682</td>
<td>CEL</td>
<td>C17-C12-N2</td>
<td>-2.10</td>
<td>116.39</td>
<td>119.44</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>671</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-2.01</td>
<td>108.75</td>
<td>111.52</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>682</td>
<td>CEL</td>
<td>C2-C3-N2</td>
<td>-2.00</td>
<td>105.20</td>
<td>108.27</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>661</td>
<td>NAG</td>
<td>O4-C4-C5</td>
<td>2.06</td>
<td>114.47</td>
<td>109.31</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>C13-C12-N2</td>
<td>2.10</td>
<td>122.49</td>
<td>119.44</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>C16-C15-C14</td>
<td>2.11</td>
<td>123.44</td>
<td>120.43</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>F3-C4-C1</td>
<td>2.12</td>
<td>116.06</td>
<td>112.48</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>682</td>
<td>CEL</td>
<td>F2-C4-C1</td>
<td>2.14</td>
<td>116.09</td>
<td>112.48</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>661</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.16</td>
<td>110.57</td>
<td>107.15</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>661</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.17</td>
<td>115.17</td>
<td>112.19</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>671</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.17</td>
<td>110.58</td>
<td>107.15</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>605</td>
<td>HEM</td>
<td>C4C-C3C-C2C</td>
<td>2.21</td>
<td>108.44</td>
<td>106.90</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>C4C-C3C-C2C</td>
<td>2.33</td>
<td>108.52</td>
<td>106.90</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>661</td>
<td>NAG</td>
<td>O3-C3-C2</td>
<td>2.37</td>
<td>114.47</td>
<td>109.39</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>671</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.42</td>
<td>110.97</td>
<td>107.15</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>605</td>
<td>HEM</td>
<td>CMD-C2D-C3D</td>
<td>2.43</td>
<td>129.53</td>
<td>124.94</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>681</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>2.45</td>
<td>114.61</td>
<td>111.02</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>661</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.53</td>
<td>115.67</td>
<td>112.19</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>672</td>
<td>NAG</td>
<td>O5-C5-C4</td>
<td>2.56</td>
<td>117.06</td>
<td>110.83</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>673</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.61</td>
<td>111.27</td>
<td>107.15</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>671</td>
<td>NAG</td>
<td>O7-C7-N2</td>
<td>2.67</td>
<td>126.98</td>
<td>121.94</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>671</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.70</td>
<td>111.43</td>
<td>107.15</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>661</td>
<td>NAG</td>
<td>O3-C3-C2</td>
<td>2.75</td>
<td>115.28</td>
<td>109.39</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>661</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.82</td>
<td>111.61</td>
<td>107.15</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>672</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.88</td>
<td>116.15</td>
<td>112.19</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>673</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.96</td>
<td>111.83</td>
<td>107.15</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>682</td>
<td>CEL</td>
<td>O1-S1-N3</td>
<td>2.99</td>
<td>111.95</td>
<td>107.36</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>673</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>3.02</td>
<td>111.92</td>
<td>107.15</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>671</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>3.15</td>
<td>112.13</td>
<td>107.15</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>661</td>
<td>NAG</td>
<td>O3-C3-C2</td>
<td>3.27</td>
<td>116.40</td>
<td>109.39</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>682</td>
<td>CEL</td>
<td>O1-S1-O2</td>
<td>3.35</td>
<td>124.53</td>
<td>118.71</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>661</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>3.41</td>
<td>116.88</td>
<td>112.19</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>681</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>3.83</td>
<td>113.20</td>
<td>107.15</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>672</td>
<td>NAG</td>
<td>O5-C5-C4</td>
<td>3.84</td>
<td>120.16</td>
<td>110.83</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>O1-S1-N3</td>
<td>3.84</td>
<td>113.25</td>
<td>107.36</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>681</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>3.92</td>
<td>113.35</td>
<td>107.15</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>CAA-CBA-CGA</td>
<td>3.92</td>
<td>119.36</td>
<td>112.06</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>672</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>3.98</td>
<td>117.66</td>
<td>112.19</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>661</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>3.99</td>
<td>116.86</td>
<td>111.02</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>681</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>4.07</td>
<td>113.59</td>
<td>107.15</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>673</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>4.14</td>
<td>117.24</td>
<td>111.52</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>672</td>
<td>NAG</td>
<td>O5-C5-C4</td>
<td>4.26</td>
<td>121.20</td>
<td>110.83</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>673</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>4.27</td>
<td>118.06</td>
<td>112.19</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>672</td>
<td>NAG</td>
<td>O5-C5-C4</td>
<td>4.31</td>
<td>121.31</td>
<td>110.83</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>681</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>4.42</td>
<td>114.15</td>
<td>107.15</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>673</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>4.98</td>
<td>119.03</td>
<td>112.19</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>672</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>5.11</td>
<td>119.21</td>
<td>112.19</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>672</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>5.19</td>
<td>119.33</td>
<td>112.19</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>673</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>7.07</td>
<td>121.91</td>
<td>112.19</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>673</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>7.59</td>
<td>122.63</td>
<td>112.19</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

20 monomers are involved in 40 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>605</td>
<td>HEM</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>661</td>
<td>NAG</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>673</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>682</td>
<td>CEL</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>703</td>
<td>BOG</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>605</td>
<td>HEM</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>661</td>
<td>NAG</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>672</td>
<td>NAG</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>673</td>
<td>NAG</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>681</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>682</td>
<td>CEL</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>605</td>
<td>HEM</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>661</td>
<td>NAG</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>672</td>
<td>NAG</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>673</td>
<td>NAG</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>682</td>
<td>CEL</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>605</td>
<td>HEM</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>661</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>673</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>682</td>
<td>CEL</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ> 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>552/587 (94%)</td>
<td>-0.12</td>
<td>11 (1%)</td>
<td>65 62</td>
<td>34, 45, 60, 73</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>552/587 (94%)</td>
<td>-0.16</td>
<td>12 (2%)</td>
<td>62 59</td>
<td>34, 45, 60, 73</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>552/587 (94%)</td>
<td>-0.13</td>
<td>15 (2%)</td>
<td>54 52</td>
<td>34, 45, 60, 73</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>552/587 (94%)</td>
<td>-0.13</td>
<td>13 (2%)</td>
<td>59 56</td>
<td>34, 46, 60, 73</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2208/2348 (94%)</td>
<td>-0.13</td>
<td>51 (2%)</td>
<td>60 57</td>
<td>34, 45, 60, 73</td>
</tr>
</tbody>
</table>

All (51) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>569</td>
<td>GLN</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>83</td>
<td>GLY</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>66</td>
<td>LEU</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>93</td>
<td>PHE</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>93</td>
<td>PHE</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>65</td>
<td>LEU</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>59</td>
<td>PHE</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>65</td>
<td>LEU</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>63</td>
<td>ILE</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>18</td>
<td>ALA</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>59</td>
<td>PHE</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>569</td>
<td>GLN</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>395</td>
<td>TYR</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>66</td>
<td>LEU</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>63</td>
<td>ILE</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>60</td>
<td>LEU</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>60</td>
<td>LEU</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>67</td>
<td>LEU</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>76</td>
<td>TYR</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>84</td>
<td>VAL</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>38</td>
<td>ASP</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>59</td>
<td>PHE</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>63</td>
<td>ILE</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>91</td>
<td>ILE</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>62</td>
<td>ARG</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>494</td>
<td>LEU</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>385</td>
<td>ASP</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>268</td>
<td>ASN</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>201</td>
<td>LYS</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>65</td>
<td>LEU</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>62</td>
<td>ARG</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>39</td>
<td>GLN</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>200</td>
<td>HIS</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>64</td>
<td>LYS</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>37</td>
<td>PHE</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>60</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>155</td>
<td>LYS</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>60</td>
<td>LEU</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>59</td>
<td>PHE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>266</td>
<td>PRO</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>38</td>
<td>ASP</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>93</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>73</td>
<td>THR</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>62</td>
<td>ARG</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>38</td>
<td>ASP</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>395</td>
<td>TYR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>62</td>
<td>ARG</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>64</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>92</td>
<td>PRO</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>395</td>
<td>TYR</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>65</td>
<td>LEU</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.
6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95\(^{th}\) percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å(^2))</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>673</td>
<td>14/15</td>
<td>0.63</td>
<td>0.42</td>
<td>81,84,85,86</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>673</td>
<td>14/15</td>
<td>0.68</td>
<td>0.37</td>
<td>68,73,74,75</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>673</td>
<td>14/15</td>
<td>0.69</td>
<td>0.36</td>
<td>74,77,80,80</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>673</td>
<td>14/15</td>
<td>0.70</td>
<td>0.35</td>
<td>79,83,83,83</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>661</td>
<td>14/15</td>
<td>0.78</td>
<td>0.31</td>
<td>62,68,69,69</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>681</td>
<td>14/15</td>
<td>0.78</td>
<td>0.29</td>
<td>70,73,74,75</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>661</td>
<td>14/15</td>
<td>0.80</td>
<td>0.32</td>
<td>57,65,67,68</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>672</td>
<td>14/15</td>
<td>0.84</td>
<td>0.23</td>
<td>62,66,71,76</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>661</td>
<td>14/15</td>
<td>0.84</td>
<td>0.34</td>
<td>59,65,67,69</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>681</td>
<td>14/15</td>
<td>0.84</td>
<td>0.22</td>
<td>70,72,75,76</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>672</td>
<td>14/15</td>
<td>0.86</td>
<td>0.25</td>
<td>55,60,63,68</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>681</td>
<td>14/15</td>
<td>0.88</td>
<td>0.24</td>
<td>68,70,71,72</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>672</td>
<td>14/15</td>
<td>0.88</td>
<td>0.25</td>
<td>56,60,63,70</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>681</td>
<td>14/15</td>
<td>0.89</td>
<td>0.22</td>
<td>60,65,72,76</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>671</td>
<td>14/15</td>
<td>0.90</td>
<td>0.27</td>
<td>67,69,70,71</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>D</td>
<td>605</td>
<td>43/43</td>
<td>0.91</td>
<td>0.17</td>
<td>39,45,56,62</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>C</td>
<td>671</td>
<td>14/15</td>
<td>0.92</td>
<td>0.14</td>
<td>41,44,47,53</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>A</td>
<td>605</td>
<td>43/43</td>
<td>0.93</td>
<td>0.17</td>
<td>36,39,54,62</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>A</td>
<td>671</td>
<td>14/15</td>
<td>0.93</td>
<td>0.12</td>
<td>40,44,48,54</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>C</td>
<td>605</td>
<td>43/43</td>
<td>0.94</td>
<td>0.16</td>
<td>36,42,58,62</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>HEM</td>
<td>B</td>
<td>605</td>
<td>43/43</td>
<td>0.94</td>
<td>0.14</td>
<td>37,44,54,57</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>D</td>
<td>671</td>
<td>14/15</td>
<td>0.95</td>
<td>0.10</td>
<td>40,43,48,55</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>A</td>
<td>682</td>
<td>26/26</td>
<td>0.95</td>
<td>0.12</td>
<td>35,40,45,45</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>BOG</td>
<td>D</td>
<td>703</td>
<td>20/20</td>
<td>0.96</td>
<td>0.12</td>
<td>43,46,55,55</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAG</td>
<td>B</td>
<td>671</td>
<td>14/15</td>
<td>0.96</td>
<td>0.12</td>
<td>35,42,49,55</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>BOG</td>
<td>A</td>
<td>703</td>
<td>20/20</td>
<td>0.96</td>
<td>0.11</td>
<td>43,47,50,51</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>D</td>
<td>682</td>
<td>26/26</td>
<td>0.97</td>
<td>0.14</td>
<td>43,46,51,51</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>B</td>
<td>682</td>
<td>26/26</td>
<td>0.97</td>
<td>0.14</td>
<td>43,45,47,50</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CEL</td>
<td>C</td>
<td>682</td>
<td>26/26</td>
<td>0.98</td>
<td>0.11</td>
<td>40,41,43,44</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.