

Full wwPDB X-ray Structure Validation Report (i)

Dec 13, 2021 – 01:16 PM EST

PDB ID : 7LO9

Title: RNA dodecamer containing a GNA A residue

Authors: Harp, J.M.; Wawrzak, Z.; Egli, M.

Deposited on : 2021-02-09

Resolution : 1.78 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp

with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul: 1.8.5 (274361), CSD as541be (2020)

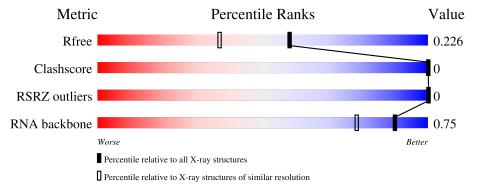
Xtriage (Phenix) : 1.13 EDS : 2.24

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac : 5.8.0158

CCP4 : 7.0.044 (Gargrove)
roteins) : Engh & Huber (2001

Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.24

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 1.78 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution				
Metric	$(\# ext{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$				
R_{free}	130704	9185 (1.80-1.76)				
Clashscore	141614	10184 (1.80-1.76)				
RSRZ outliers	127900	9032 (1.80-1.76)				
RNA backbone	3102	1069 (2.40-1.16)				

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	A	12	83%	17%
1	В	12	83%	17%
1	С	12	83%	17%
1	D	12	83%	17%

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 1525 atoms, of which 501 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called Chains: A,B,C,D.

Mol	Chain	Residues		Atoms						ZeroOcc	AltConf	Trace
1	Λ 10	12	Total	Br	С	Н	N	О	Р	0	0	0
1	A	12	380	1	113	128	48	79	11	0	0	
1	В	12	Total	Br	С	Н	N	О	Р	0	0	0
1			380	1	113	128	48	79	11			
1	С	12	Total	Br	С	Н	N	О	Р	0	0	0
1		12	369	1	113	117	48	79	11	0		U
1	1 D	12	Total	Br	С	Н	N	О	Р	0	0	0
1			380	1	113	128	48	79	11	0		0

• Molecule 2 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	2	Total O 2 2	0	0
2	В	4	Total O 4 4	0	0
2	С	5	Total O 5 5	0	0
2	D	5	Total O 5 5	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Chains: A,B,C,D

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 32	Depositor
Cell constants	29.37Å 29.37Å 133.14Å	Donositon
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
Resolution (Å)	23.76 - 1.78	Depositor
Resolution (A)	23.76 - 1.78	EDS
% Data completeness	99.4 (23.76-1.78)	Depositor
(in resolution range)	99.5 (23.76-1.78)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.33 (at 1.78Å)	Xtriage
Refinement program	PHENIX 1.18.2_3874, PHENIX 1.18.2_3874	Depositor
R, R_{free}	0.195 , 0.226	Depositor
, and the second	0.195 , 0.226	DCC
R_{free} test set	555 reflections (4.52%)	wwPDB-VP
Wilson B-factor (A^2)	40.2	Xtriage
Anisotropy	0.375	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.34, 38.1	EDS
L-test for twinning ²	$< L > = 0.50, < L^2> = 0.33$	Xtriage
	0.003 for -h,-k,l	
Estimated twinning fraction	0.102 for h,-h-k,-l	Xtriage
	0.062 for -k,-h,-l	
F_o, F_c correlation	0.97	EDS
Total number of atoms	1525	wwPDB-VP
Average B, all atoms (\mathring{A}^2)	50.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 7.38% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 5BU, ZAD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.19	0/237	0.64	0/366	
1	В	0.22	0/237	0.71	0/366	
1	С	0.21	0/237	0.70	0/366	
1	D	0.21	0/237	0.66	0/366	
All	All	0.21	0/948	0.68	0/1464	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	252	128	129	0	0
1	В	252	128	129	0	0
1	С	252	117	129	0	0
1	D	252	128	129	0	0
2	A	2	0	0	0	0
2	В	4	0	0	0	0
2	С	5	0	0	0	0
2	D	5	0	0	0	0
All	All	1024	501	516	0	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 0.

There are no clashes within the asymmetric unit.

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

There are no protein molecules in this entry.

5.3.2 Protein sidechains (i)

There are no protein molecules in this entry.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	A	9/12 (75%)	0	0
1	В	9/12 (75%)	0	0
1	С	9/12 (75%)	0	0
1	D	9/12 (75%)	0	0
All	All	36/48 (75%)	0	0

There are no RNA backbone outliers to report.

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

8 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	ol Type Chain Res Lini			Tiple	Вс	ond leng	ths	Bond angles		
MIOI	туре	Chain	nes	LINK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	5BU	В	7	1	15,22,23	2.09	2 (13%)	17,32,35	2.15	2 (11%)
1	ZAD	D	5	1	14,19,20	4.08	6 (42%)	8,26,29	2.79	4 (50%)
1	5BU	A	7	1	15,22,23	2.09	2 (13%)	17,32,35	2.26	3 (17%)
1	ZAD	С	5	1	14,19,20	4.14	6 (42%)	8,26,29	2.83	4 (50%)
1	ZAD	В	5	1	14,19,20	4.00	6 (42%)	8,26,29	2.84	4 (50%)
1	5BU	С	7	1	15,22,23	2.07	2 (13%)	17,32,35	2.15	3 (17%)
1	5BU	D	7	1	15,22,23	2.04	2 (13%)	17,32,35	2.20	3 (17%)
1	ZAD	A	5	1	14,19,20	4.10	6 (42%)	8,26,29	2.68	2 (25%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	5BU	В	7	1	-	0/5/25/26	0/2/2/2
1	ZAD	D	5	1	-	2/5/9/10	0/2/2/2
1	5BU	A	7	1	-	0/5/25/26	0/2/2/2
1	ZAD	С	5	1	-	1/5/9/10	0/2/2/2
1	ZAD	В	5	1	-	2/5/9/10	0/2/2/2
1	5BU	С	7	1	-	0/5/25/26	0/2/2/2
1	5BU	D	7	1	-	0/5/25/26	0/2/2/2
1	ZAD	A	5	1	-	4/5/9/10	0/2/2/2

All (32) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
1	С	5	ZAD	C1G-N9	-13.42	1.34	1.48
1	D	5	ZAD	C1G-N9	-13.22	1.34	1.48
1	A	5	ZAD	C1G-N9	-13.16	1.34	1.48
1	В	5	ZAD	C1G-N9	-12.90	1.34	1.48
1	A	7	5BU	C5-C4	7.68	1.48	1.38
1	В	7	5BU	C5-C4	7.67	1.48	1.38
1	С	7	5BU	C5-C4	7.57	1.48	1.38
1	D	7	5BU	C5-C4	7.44	1.48	1.38
1	A	5	ZAD	C2-N3	5.12	1.40	1.32
1	С	5	ZAD	C2-N3	5.02	1.40	1.32
1	D	5	ZAD	C2-N3	4.91	1.40	1.32
1	В	5	ZAD	C2-N3	4.75	1.39	1.32
1	A	5	ZAD	C2-N1	3.23	1.39	1.33

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	Observed(A)	Ideal(A)
1	С	5	ZAD	C2-N1	3.20	1.39	1.33
1	В	5	ZAD	C2-N1	3.19	1.39	1.33
1	D	5	ZAD	C2-N1	3.12	1.39	1.33
1	В	5	ZAD	C5-C4	-2.68	1.33	1.40
1	D	5	ZAD	C5-C4	-2.67	1.33	1.40
1	С	5	ZAD	C5-C4	-2.67	1.33	1.40
1	A	5	ZAD	C6-C5	-2.62	1.33	1.43
1	В	5	ZAD	C6-C5	-2.61	1.33	1.43
1	D	5	ZAD	C6-C5	-2.59	1.33	1.43
1	A	5	ZAD	C5-C4	-2.59	1.34	1.40
1	С	5	ZAD	C6-C5	-2.57	1.33	1.43
1	С	5	ZAD	O2G-C2G	-2.34	1.36	1.43
1	D	5	ZAD	O2G-C2G	-2.33	1.36	1.43
1	В	5	ZAD	O2G-C2G	-2.33	1.36	1.43
1	A	5	ZAD	O2G-C2G	-2.27	1.36	1.43
1	A	7	5BU	C2-N3	-2.17	1.33	1.38
1	С	7	5BU	C2-N3	-2.14	1.33	1.38
1	В	7	5BU	C2-N3	-2.09	1.34	1.38
1	D	7	5BU	C2-N3	-2.04	1.34	1.38

All (25) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^o)$	$\mathbf{Ideal}(^o)$
1	A	7	5BU	C2-N3-C4	7.82	121.75	115.14
1	С	7	5BU	C2-N3-C4	7.35	121.35	115.14
1	D	7	5BU	C2-N3-C4	7.31	121.31	115.14
1	В	7	5BU	C2-N3-C4	7.27	121.28	115.14
1	С	5	ZAD	N3-C2-N1	-6.51	118.50	128.68
1	D	5	ZAD	N3-C2-N1	-6.49	118.53	128.68
1	В	5	ZAD	N3-C2-N1	-6.45	118.60	128.68
1	A	5	ZAD	N3-C2-N1	-6.36	118.74	128.68
1	A	7	5BU	C5-C4-N3	-4.08	118.76	123.64
1	D	7	5BU	C5-C4-N3	-4.04	118.80	123.64
1	В	7	5BU	C5-C4-N3	-4.04	118.81	123.64
1	С	7	5BU	C5-C4-N3	-3.94	118.93	123.64
1	A	5	ZAD	C5-C6-N6	-2.98	115.82	120.35
1	В	5	ZAD	C5-C6-N6	-2.75	116.17	120.35
1	С	5	ZAD	C5-C6-N6	-2.66	116.31	120.35
1	D	5	ZAD	C5-C6-N6	-2.54	116.50	120.35
1	В	5	ZAD	C1G-C2G-C3G	2.35	116.84	111.62
1	D	7	5BU	BR-C5-C6	2.32	122.59	117.31
1	С	5	ZAD	C1G-C2G-C3G	2.26	116.64	111.62

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	${f Z}$	$Observed(^o)$	$\mathbf{Ideal}(^o)$
1	В	5	ZAD	O2G-C2G-C3G	2.18	117.19	109.56
1	A	7	5BU	BR-C5-C6	2.12	122.13	117.31
1	С	5	ZAD	O2G-C2G-C3G	2.11	116.97	109.56
1	D	5	ZAD	O2G-C2G-C3G	2.09	116.87	109.56
1	С	7	5BU	BR-C5-C6	2.05	121.98	117.31
1	D	5	ZAD	C1G-C2G-C3G	2.02	116.09	111.62

There are no chirality outliers.

All (9) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	A	5	ZAD	C1G-C2G-C3G-O3G
1	A	5	ZAD	N9-C1G-C2G-C3G
1	A	5	ZAD	N9-C1G-C2G-O2G
1	В	5	ZAD	C1G-C2G-C3G-O3G
1	В	5	ZAD	O2G-C2G-C3G-O3G
1	С	5	ZAD	C1G-C2G-C3G-O3G
1	D	5	ZAD	C1G-C2G-C3G-O3G
1	A	5	ZAD	O2G-C2G-C3G-O3G
1	D	5	ZAD	O2G-C2G-C3G-O3G

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#	#RSR2	Z>2	$OWAB(A^2)$	Q<0.9
1	A	10/12 (83%)	0.20	0	100	100	44, 46, 51, 54	0
1	В	10/12 (83%)	-0.02	0	100	100	43, 46, 51, 58	0
1	С	10/12 (83%)	0.16	0	100	100	42, 48, 53, 56	0
1	D	10/12 (83%)	0.08	0	100	100	44, 45, 52, 52	0
All	All	40/48 (83%)	0.11	0	100	100	42, 46, 54, 58	0

There are no RSRZ outliers to report.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q < 0.9
1	5BU	A	7	21/22	0.89	0.11	48,51,59,62	1
1	5BU	D	7	21/22	0.89	0.12	45,49,57,60	1
1	ZAD	A	5	18/19	0.92	0.14	47,50,61,61	0
1	ZAD	С	5	18/19	0.92	0.12	45,48,58,58	0
1	5BU	В	7	21/22	0.93	0.14	47,51,62,63	1
1	ZAD	D	5	18/19	0.94	0.13	47,49,60,60	0
1	5BU	С	7	21/22	0.97	0.11	44,46,55,57	1
1	ZAD	В	5	18/19	0.97	0.11	41,45,55,56	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

