

wwPDB EM Validation Summary Report (i)

Nov 4, 2023 – 09:57 PM EDT

PDB ID	:	7LQH
EMDB ID	:	EMD-23486
Title	:	Cryo-EM of KFE8 thinner nanotube (class 2, 2-sub-1)
Authors	:	Wang, F.; Gnewou, O.M.; Egelman, E.H.; Conticello, V.P.
Deposited on	:	2021-02-13
Resolution	:	3.40 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ranks	Value					
Ramachandran outliers		0					
Sidechain outliers		12.0%					
Worse Better							
Percentile relati	ve to all structures						
Percentile relati	ve to all EM structures						
Motria	Whole archive	EM structures					
Metric	$(\# { m Entries})$	$(\# { m Entries})$					
Ramachandran outliers	154571	4023					

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

3826

Mol	Chain	Length	Quality of chain				
1	0	8	38%	38%			
			50%				
1	0A	8	75%	25%			
1	1	8	50%	E 09/			
	T	0	88%	50%			
1	1A	8	75%	25%			
1	0	0	12%				
	2	8	75%	25%			
1	2A	8	62%	38%			
	_	_	38%				
1	3	8	62%	38%			
1	34	8	50%	250/			
	57	0	50%	23%			
1	4	8	75%	25%			

Mol	Chain	Length	Quality of chain	
1	1 4	8	62%	250/
1	471	0	38%	25%
1	5	8	50%	50%
			50%	
1	5A	8	50%	50%
1	0	0	12%	
1	6	8	75%	25%
1	64	8	620/	200/
1	011	0	38%	50 %
1	7	8	62%	38%
			62%	
1	7A	8	75%	25%
1	0	0	50%	
1	8	8	50%	50%
1	84	8	750/	25%
1	011	0	25%	2370
1	9	8	75%	25%
			75%	
1	9A	8	62%	38%
1	٨	0	50%	
1	A	0	88%	12%
1	AA	8	62%	38%
			50%	5670
1	AB	8	75%	25%
	-	-	50%	
1	В	8	75%	25%
1	ΡA	Q	50%	100/
1	DA	0	88%	12%
1	BB	8	75%	25%
			50%	
1	С	8	75%	25%
1		0	50%	
1	CA	8	62%	38%
1	CB	8	50%	E 0.0/
	UD	0	50%	50%
1	D	8	88%	12%
			12%	
1	DA	8	75%	25%
1		0	75%	
	DR	8	62% 50%	38%
1	E	8	75%	25%
			38%	د ے /u
1	EA	8	62%	38%

Mol	Chain	Length	Quality of chain	
1	ΠD	0	50%	
1	EB	8	75%	25%
1	F	8	75%	25%
			50%	
1	FA	8	50%	50%
1	\mathbf{FB}	8	750/	250/
1	гD	0		25%
1	G	8	88%	12%
1		0	12%	
	GA	8	75%	25%
1	GB	8	62%	38%
			50%	
1	Н	8	75%	25%
1	НΔ	8	38%	200/
1	шл	0	62% 50%	38%
1	HB	8	75%	25%
1	т	0	50%	
	1	8	75%	25%
1	IA	8	88%	12%
			75%	
1	IB	8	75%	25%
1	Т	8	50%	F 00/
1	5	0	50%	50%
1	JA	8	50%	50%
1	ID	0	62%	
1	JB	8	62%	38%
1	Κ	8	75%	25%
			12%	
1	KA	8	75%	25%
1	KB	8	/5%	200/
1	RD	0	38%	20 /0
1	L	8	62%	38%
1	тл	0	38%	
	LA	8	62% 50%	38%
1	LB	8	75%	25%
			50%	
1	М	8	75%	25%
1	MA	8	50%	50%
	11111	0	88%	50%
1	MB	8	75%	25%

Mol	Chain	Length	Quality of chain			
1	Ν	8	38%	50%		
-	11	0	12%	50%		
1	NA	8	75%	25%		
1	ND	0	62%			
1	NB	8	62%	38%		
1	0	8	75%	25%		
			38%			
1	OA	8	62%	38%		
1	OP	0	50%			
1	OB	0	38%	25%		
1	Р	8	62%	38%		
			50%			
1	PA	8	75%	25%		
1	PR	8	750/	250/		
1	1 D	0	50%	23%		
1	Q	8	50%	50%		
- 1	0.1	0	38%			
1	QA	8	50%	50%		
1	QB	8	50%	50%		
-			12%	5070		
1	R	8	75%	25%		
1	D۸	0	12%			
1	ĥА	0	75%	25%		
1	RB	8	62%	38%		
			38%			
1	S	8	62%	38%		
1	SΛ	8	38%	200/		
1	DA	0	62%	38%		
1	SB	8	75%	25%		
			50%			
1	Т	8	75%	25%		
1	ТА	8	62%	38%		
	111		88%	5677		
1	TB	8	75%	25%		
1	TT	0	50%			
1	U	8	50%	50%		
1	UA	8	75%	25%		
			25%			
1	V	8	75%	25%		
1	174	0	62%			
	VA	ð	75%	25%		

1 W 8 $62%$ $38%$ 1 WA 8 $50%$ $50%$ 1 X 8 $50%$ $50%$ 1 XA 8 $62%$ $38%$ 1 XA 8 $75%$ $25%$ 1 XA 8 $75%$ $25%$ 1 XA 8 $50%$ $50%$ 1 A 8 $50%$ $50%$ 1 AA 8 $62%$ $38%$ 1 AA 8 $50%$ $50%$ 1 CA 8 <	Mol	Chain	Length	Quality of chair	1
1 W 8 62% 38% 1 WA 8 50% 50% 1 X 8 62% 38% 1 XA 8 62% 38% 1 XA 8 62% 38% 1 YA 8 62% 38% 1 YA 8 75% 25% 1 YA 8 75% 25% 1 ZA 8 62% 38% 1 AA 8 62% 50% 1 aA 8 62% 38% 1 aA 8 62% 38% 1 bA 8 50% 50% 1 cA 8 50% 50% 1 cA 8 50% 50%	1	117	0	38%	
NA 8 $\frac{0.05}{50\%}$ 50% 1 X 8 62% 38% 1 XA 8 62% 38% 1 XA 8 62% 38% 1 YA 8 62% 38% 1 YA 8 75% 25% 1 YA 8 75% 25% 1 ZA 8 62% 38% 1 ZA 8 50% 25% 1 AA 8 50% 25% 1 AA 8 50% 38% 1 AA 8 50% 50% 1 CA 8 50% 50% 1 CA 8 50% </td <td>1</td> <td>W</td> <td>8</td> <td><u> </u></td> <td>38%</td>	1	W	8	<u> </u>	38%
1 NA 8 38% 20% 1 X 8 62% 38% 1 XA 8 62% 38% 1 Y 8 75% 25% 1 YA 8 75% 25% 1 YA 8 75% 25% 1 ZA 8 75% 25% 1 ZA 8 75% 25% 1 a 8 50% 50% 1 aA 8 62% 38% 1 bA 8 62% 38% 1 cA 8 62% 50% 1 cA 8 62% 50% 1 cA 8 50% 50%	1	WA	8	50%	50%
1 X 8 62% 38% 1 XA 8 62% 38% 1 Y 8 75% 25% 1 YA 8 75% 25% 1 YA 8 75% 25% 1 ZA 8 62% 38% 1 ZA 8 62% 38% 1 AA 8 62% 38% 1 CA 8 50% 50% 1 CA 8 50% 50%	1	**11	0		5078
1 XA 8 62% 38% 1 Y 8 62% 38% 1 YA 8 75% 25% 1 YA 8 75% 25% 1 ZA 8 62% 30% 1 ZA 8 62% 30% 1 ZA 8 50% 25% 1 a 8 50% 25% 1 aA 8 62% 30% 1 b 8 62% 38% 1 bA 8 50% 50% 1 cA 8 50% 50%	1	Х	8	62%	38%
1 XA 8 62% 38% 1 Y 8 75% 25% 1 YA 8 50% 25% 1 Z 8 62% 38% 1 Z 8 62% 38% 1 ZA 8 50% 50% 1 A 8 50% 50% 1 a 8 50% 50% 1 aA 8 62% 38% 1 bA 8 62% 38% 1 cA 8 62% 50% 1 cA 8 50% 50% 1 cA 8 50% </td <td></td> <td></td> <td>_</td> <td>62%</td> <td></td>			_	62%	
1 Y 8 12% 1 YA 8 50% 25% 1 Z 8 62% 38% 1 ZA 8 75% 25% 1 ZA 8 75% 25% 1 ZA 8 50% 50% 1 a 8 50% 50% 1 aA 8 62% 38% 1 bA 8 62% 38% 1 bA 8 62% 38% 1 bA 8 50% 25% 1 bA 8 50% 25% 1 cA 8 50% 50% 1 cA 8 50% <td< td=""><td>1</td><td>XA</td><td>8</td><td>62%</td><td>38%</td></td<>	1	XA	8	62%	38%
1 1 0 13% 25% 1 YA 8 75% 25% 1 Z 8 62% 38% 1 ZA 8 62% 38% 1 A 8 62% 38% 1 a 8 50% 25% 1 aA 8 62% 38% 1 bA 8 62% 38% 1 cA 8 50% 50% 1 cA 8 62% 38% 1 cA 8 50% 50%	1	V	8		250/
1 YA 8 75% 25% 1 Z 8 62% 38% 1 ZA 8 75% 25% 1 A 8 75% 25% 1 a 8 50% 50% 1 aA 8 62% 38% 1 bA 8 62% 38% 1 c 8 62% 38% 1 cA 8 75% 25% 1 cA 8 50% 50% 1 cA 8 50% 50% 1 cA 8 62% 38% 1 cA 8 62% 38% 1 </td <td>1</td> <td>1</td> <td>0</td> <td>50%</td> <td>23%</td>	1	1	0	50%	23%
1 Z 8 62% 38% 1 ZA 8 50% 25% 1 a 8 50% 25% 1 aA 8 62% 38% 1 b 8 62% 38% 1 b 8 62% 38% 1 bA 8 50% 25% 1 bA 8 50% 25% 1 c 8 50% 25% 1 cA 8 50% 50% 1 cA 8 50% 50% 1 cA 8 50% 50% 1 dA 8 50% 50% 1 fA 8 50% 50%	1	YA	8	75%	25%
1 Z 8 62% 38% 1 ZA 8 75% 25% 1 a 8 50% 50% 1 aA 8 62% 38% 1 b 8 62% 38% 1 bA 8 62% 38% 1 bA 8 50% 25% 1 c 8 50% 50% 1 cA 8 50% 50% 1 fA 8 50% <td></td> <td></td> <td></td> <td>38%</td> <td></td>				38%	
I ZA 8 $75%$ $25%$ 1 a 8 $50%$ $50%$ 1 aA 8 $62%$ $38%$ 1 b 8 $62%$ $38%$ 1 bA 8 $62%$ $38%$ 1 bA 8 $75%$ $25%$ 1 c 8 $50%$ $38%$ 1 c 8 $50%$ $50%$ 1 c 8 $50%$ $50%$ 1 c 8 $50%$ $50%$ 1 cA 8 $50%$ $50%$ 1 cA 8 $50%$ $50%$ 1 dA 8 $50%$ $50%$ 1 dA 8 $50%$ $50%$ 1 eA 8 $62%$ $38%$ 1 fA 8 $50%$ $50%$ 1 fA 8 $50%$ $50%$ 1 gA 8 $50%$ $50%$	1	Z	8	62%	38%
1 2.74 3.6 -50% 25% 1 a 8 50% 50% 1 aA 8 62% 38% 1 b 8 62% 38% 1 bA 8 62% 38% 1 bA 8 50% 25% 1 c 8 50% 50% 1 cA 8 50% 50% 1 cA 8 50% 50% 1 cA 8 50% 50% 1 dA 8 50% 50% 1 dA 8 50% 50% 1 dA 8 50% 50% 1 e 8 50% 50% 1 fA 8 50% 50% 1 fA 8 50% 50% 1 fA 8 50% 50% 1 gA 8 50% 50%	1	71	8	/5%	25%
1 a 8 50% 50% 1 aA 8 62% 38% 1 b 8 62% 38% 1 bA 8 50% 38% 1 bA 8 50% 38% 1 bA 8 50% 25% 1 c 8 50% 50% 1 cA 8 50% 50% 1 dA 8 50% 50% 1 eA 8 50% 50% 1 fA 8 50% 50% 1 fA 8 50% 50% 1 gA 8 50% 50% 1 gA 8 50% 50%	1	ZA	0	/5% 50%	25%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	a	8	50%	50%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				62%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	aA	8	62%	38%
1 b 8 62% 38% 1 bA 8 75% 25% 1 c 8 50% 50% 1 cA 8 75% 25% 1 cA 8 75% 25% 1 dA 8 50% 50% 1 dA 8 50% 50% 1 dA 8 50% 50% 1 e 8 50% 50% 1 eA 8 50% 50% 1 fA 8 50% 50% 1 fA 8 50% 50% 1 g 8 50% 50% 1 g 8 50% 50% 1 g 8 50% 50% 1 h 8 62% 38% 1 h 8 62% 38% 1 h 8 62% 38%	1	h	0	50%	
1 bA 8 75% 25% 1 c 8 50% 50% 1 cA 8 75% 25% 1 dA 8 75% 25% 1 dA 8 50% 50% 1 dA 8 50% 50% 1 e 8 62% 38% 1 f 8 62% 38% 1 fA 8 50% 50% 1 fA 8 50% 50% 1 gA 8 50% 50% 1 gA 8 62% 38% 1 hA 8 62% 38% 1 hA 8 62% 38% 1 hA 8 62% <td>1</td> <td>D</td> <td>0</td> <td>62% 50%</td> <td>38%</td>	1	D	0	62% 50%	38%
1 c 8 50% 50% 1 cA 8 75% 25% 1 d 8 62% 62% 1 dA 8 50% 50% 1 dA 8 50% 50% 1 e 8 50% 50% 1 eA 8 62% 38% 1 fA 8 50% 50% 1 g 8 50% 50% 1 gA 8 62% 38% 1 h 8 62% 38% 1 hA 8 62% 38% <tr< td=""><td>1</td><td>bA</td><td>8</td><td>75%</td><td>25%</td></tr<>	1	bA	8	75%	25%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				50%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	с	8	50%	50%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		0	75%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	CA	8	62%	25%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	d	8	50%	50%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				62%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	dA	8	50%	50%
1 e 8 50% 50% 1 eA 8 62% 38% 1 f 8 50% 50% 1 fA 8 50% 50% 1 fA 8 50% 50% 1 g 8 50% 50% 1 gA 8 50% 50% 1 h 8 62% 38% 1 gA 8 62% 38% 1 h 8 62% 38%	1		0	50%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	e	8	50%	50%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	еA	8	62%	38%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				62%	50%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	f	8	50%	50%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>	0	50%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	tA	8	75%	25%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	σ	8	50%	50%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	8	0	88%	50%
1 h 8 50% 1 h 8 62% 1 hA 8 62% 1 i 8 50% 50% 50% 50%	1	gA	8	75%	25%
1 h 8 62% 38% 1 hA 8 62% 38% 1 i 8 50% 38%			-	50%	
1 hA 8 62% 1 i 8 50% 50% 50% 50%	1	h	8	62%	38%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	hΔ	8	62%	200/
1 i 8 50% 50%	1	шл	0	<u> </u>	30%
	1	i	8	50%	50%

Mol	Chain	Length	Quality of chain	
1	: ^	0	50%	
1	1A	8	75%	25%
1	j	8	75%	25%
	5		50%	
1	jА	8	75%	25%
1	ŀ	8	50%	200/
1	K	0	62%	38%
1	kA	8	50%	50%
-	,		25%	
1	l	8	75%	25%
1	1A	8	62%	38%
-			38%	5070
1	m	8	62%	38%
1	Δ	0	50%	
1	mA	8	75%	25%
1	n	8	50%	50%
			75%	
1	nA	8	75%	25%
1	0	0	25%	250/
1	0	0	88%	25%
1	oA	8	62%	38%
			50%	
1	р	8	<u>62%</u>	38%
1	рA	8	75%	25%
-	P		50%	2378
1	q	8	75%	25%
1	- 4	0	50%	
1	qA	8	75%	25%
1	r	8	50%	50%
			50%	
1	rA	8	50%	50%
1	g	8	12%	250/
1	8	0	75%	25%
1	sA	8	62%	38%
			50%	
1	t	8	62%	38%
1	tΔ	8	750/) 50/
	071	0	38%	/0
1	u	8	62%	38%
			88%	
1		0		

Mol	Chain	Length	Quality of chain				
			12%				
1	V	8	75%	25%			
			62%				
1	vA	8	62%	38%			
			38%				
1	W	8	62%	38%			
			50%				
1	wA	8	75%	25%			
			50%				
1	Х	8	75%	25%			
			62%				
1	xA	8	75%	25%			
			38%				
1	У	8	62%	38%			
_			62%				
1	yА	8	62%	38%			
_			25%				
1	Z	8	75%	25%			
			75%				
1	zA	8	62%	38%			

2 Entry composition (i)

There is only 1 type of molecule in this entry. The entry contains 12096 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				AltConf	Trace												
1	٨	0	Total	С	Ν	0	0	0												
1	A	0	84	60	11	13	0	0												
1	т	0	Total	С	Ν	0	0	0												
1	J	0	84	60	11	13	0	0												
1	K	0	Total	С	Ν	0	0	0												
1	Γ	0	84	60	11	13	0	0												
1	т	8	Total	С	Ν	0	0	0												
1	Ľ	0	84	60	11	13	0	0												
1	М	8	Total	С	Ν	0	0	0												
1	111	0	84	60	11	13	0	0												
1	N	8	Total	С	Ν	Ο	0	0												
1	11	0	84	60	11	13		0												
1	0	8	Total	С	Ν	Ο	0	0												
1	U	0	84	60	11	13	0	0												
1	Р	8	Total	С	Ν	Ο	0	0												
1	T	0	84	60	11	13	0	0												
1	В	8	Total	С	Ν	Ο	0	0												
	D	0	84	60	11	13	0	0												
1	0	Ο	Ο	0	0	0	Ο	0	0	0	0	Ο	0	8	Total	С	Ν	Ο	0	0
-	~~	0	84	60	11	13	0	0												
1	В	8	Total	С	Ν	Ο	0	0												
-	10	0	84	60	11	13	0	0												
1	S	8	Total	С	Ν	Ο	0	0												
-	5	0	84	60	11	13	Ŭ	0												
1	Т	8	Total	С	Ν	Ο	0	0												
	1	0	84	60	11	13	Ŭ	0												
1	U	8	Total	С	Ν	Ο	0	0												
	0	0	84	60	11	13	Ŭ	0												
1	V	8	Total	С	Ν	Ο	0	0												
	, v	0	84	60	11	13														
1	W	8	Total	\mathbf{C}	Ν	Ο	0	0												
	••	0	84	60	11	13		U												
1	С	8	Total	С	Ν	Ο	0	0												
_ _		U	C	U	C	C	U	U	U	U		84	60	11	13	U	U			

• Molecule 1 is a protein called KFE8 peptide.

Continued from previous page...

Mol	Chain	Residues		Atoms				Trace
1	v	0	Total	С	Ν	Ο	0	0
1	Λ	0	84	60	11	13	0	0
1	v	8	Total	С	Ν	0	0	0
1	I	0	84	60	11	13	0	0
1	Z	8	Total	С	Ν	Ο	0	0
		0	84	60	11	13	0	0
1	i	8	Total	С	Ν	Ο	0	0
	J	0	84	60	11	13	0	0
1	k	8	Total	С	Ν	Ο	0	0
-		<u> </u>	84	60	11	13	Ŭ	
1	1	8	Total	С	Ν	0	0	0
	_		84	60	11	13		
1	m	8	Total	C	Ν	0	0	0
			84	<u>60</u>	11	13		
1	D	8	Total	C	N 11	0	0	0
			84	<u>60</u>	11 	13		
1	n	8		C GO	IN 11	U 19	0	0
			04 Total	00	11 N	$\frac{13}{0}$		
1	0	8		C 60	1N 11	12	0	0
			04 Total	$\frac{00}{C}$	11 N	$\frac{15}{0}$		
1	р	8	10tai 8/	60	11	13	0	0
			Total	<u> </u>	N	$\frac{10}{0}$		
1	q	8	84	60	11	13	0	0
			Total	<u>C</u>	N	$\frac{10}{0}$		
1	r	8	84	60	11	13	0	0
			Total	C	N	0		
1	S	8	84	60	11	13	0	0
1		0	Total	С	Ν	0	0	0
	t	8	84	60	11	13	0	0
1	F	0	Total	С	Ν	0	0	0
1	E	0	84	60	11	13	0	0
1		0	Total	С	Ν	0	0	0
1	u	0	84	60	11	13	0	0
1	V	8	Total	С	Ν	0	0	0
	v	0	84	60	11	13		0
1	W	8	Total	\mathbf{C}	Ν	Ο	0	
	vv	0	84	60	11	13	U	0
1	x	8	Total	С	Ν	Ο	0	0
	A		84	60	11	13		
1	v	8	Total	С	Ν	Ο	0	0
_ _	т у		84	60	11	13		

Continued from previous page...

Mol	Chain	Residues		Ator	ns		AltConf	Trace
1		0	Total	С	Ν	0	0	0
1	Z	0	84	60	11	13	0	0
1	0	0	Total	С	Ν	0	0	0
1	0	0	84	60	11	13	0	0
1	F	8	Total	С	Ν	0	0	0
1	I.	8	84	60	11	13	0	0
1	1	8	Total	С	Ν	0	0	0
1	T	0	84	60	11	13	0	0
1	2	8	Total	\mathbf{C}	Ν	Ο	0	0
	2	0	84	60	11	13	0	0
1	3	8	Total	\mathbf{C}	Ν	Ο	0	0
-	0	0	84	60	11	13	Ŭ	0
1	4	8	Total	С	Ν	Ο	0	0
	1	0	84	60	11	13	Ŭ	
1	5	8	Total	С	Ν	Ο	0	0
-	Ŭ		84	60	11	13	Ŭ	
1	6	8	Total	С	Ν	0	0	0
	Ŭ		84	60	11	13	Ŭ	
1	7	8	Total	С	Ν	Ο	0	0
		Ŭ	84	60	11	13	Ŭ	
1	G	8	Total	С	Ν	0	0	0
		-	84	60	11	13		
1	8	8	Total	С	Ν	0	0	0
		-	84	60	11	13		
1	9	8	Total	С	Ν	0	0	0
			84	60	11	13		
1	AA	8	Total	C	Ν	0	0	0
			84	60	11	13		
1	BA	8	Total	C	N	0	0	0
			84	<u>60</u>	<u></u>	13		
1	CA	8	Total	C	N	0	0	0
			84	<u>60</u>	11 	13		
1	DA	8	Total	C	N 11	U 19	0	0
			84	<u>60</u>	11 	13		
1	EA	8	Total	C	N 11	U 19	0	0
			84 Tet 1	00		$\frac{13}{0}$		
1	Н	8		U GO	1N 1 1	U 19	0	0
			84 Tet 1	00		13		
1	FA	8	Total	C	IN 1 1	U 19	0	0
			84 Tet 1	00		13		
1	GA	8		C	1N 1 1	U 19	0	0
			84	60	11	13		

Continued from previous page...

Mol	Chain	Residues		Ator	ns		AltConf	Trace
1	ττ Δ	0	Total	С	Ν	0	0	0
	ПА	8	84	60	11	13	0	0
1	ТА	0	Total	С	Ν	0	0	0
	IA	0	84	60	11	13	0	0
1	ΤΔ	8	Total	С	Ν	0	0	0
1	9A	0	84	60	11	13	0	0
1	KΔ	8	Total	\mathbf{C}	Ν	Ο	0	0
-	1111	0	84	60	11	13	0	0
1	LA	8	Total	С	Ν	Ο	0	0
		0	84	60	11	13	Ŭ	
1	T	8	Total	С	Ν	Ο	0	0
	-	<u> </u>	84	60	11	13		
1	MA	8	Total	С	Ν	Ο	0	0
		Ŭ	84	60	11	13	Ŭ	
1	NA	8	Total	С	Ν	0	0	0
		_	84	60	11	13		_
1	OA	8	Total	C	N	0	0	0
			84	<u>60</u>	11	13		
1	PA	8	Total	C	N	0	0	0
			84	<u>60</u>	11 	13		
1	QA	8	Total	C	IN 11	10	0	0
			84 Tatal	<u>00</u>	11 N	$\frac{13}{0}$		
1	RA	8		C	IN 11	U 19	0	0
			04 Total	$\frac{00}{C}$	11 N	$\frac{13}{0}$		
1	SA	8	10tai 94	60	1N 11	12	0	0
			04 Total	$\frac{00}{C}$	11 N	$\frac{13}{0}$		
1	a	8	10tai 8/	60	11	13	0	0
			Total	<u> </u>	N	$\frac{10}{0}$		
1	TA	8	84	60	11	13	0	0
			Total	<u> </u>	N	$\frac{10}{0}$		
1	UA	8	84	60	11	13	0	0
			Total	<u> </u>	N	$\frac{10}{0}$		
1	VA	8	84	60	11	13	0	0
		_	Total	C	N	0		
1	WA	8	84	60	11	13	0	0
	37.4		Total	C	Ν	0	6	6
	XA	8	84	60	11	13	0	0
	3.7.4	6	Total	С	Ν	0	6	6
	YA	8	84	60	11	13		0
1	77.4	0	Total	С	Ν	0	0	0
	ZA	8	84	60	11	13		U

Continued from previous page...

Mol	Chain	Residues		Ator	ns		AltConf	Trace
1	1_	0	Total	С	Ν	0	0	0
	d	8	84	60	11	13	0	0
1	- A	0	Total	С	Ν	0	0	0
1	aA	0	84	60	11	13	0	0
1	1 1 4	0	Total	С	Ν	0	0	0
1	DA	0	84	60	11	13	0	0
1	сA	8	Total	С	Ν	0	0	0
1	UA	0	84	60	11	13	0	0
1	dA	8	Total	С	Ν	Ο	0	0
	un	0	84	60	11	13	0	0
1	eА	8	Total	С	Ν	Ο	0	0
	011	0	84	60	11	13	Ŭ	
1	fA	8	Total	С	Ν	Ο	0	0
-			84	60	11	13	Ŭ	
1	gA	8	Total	С	Ν	0	0	0
	0	-	84	60	11	13	-	
1	с	8	Total	С	Ν	0	0	0
		_	84	60	11	13		
1	hA	8	Total	С	Ν	0	0	0
			84	<u>60</u>	11	13		
1	iA	8	Total	C	N	0	0	0
			84	<u>60</u>	11 	13		
1	jА	8	Total	C	IN 11	10	0	0
			84 Tutul	$\frac{60}{C}$	11 	13		
1	kA	8		C	1N 1 1	19	0	0
			04 Total	$\frac{00}{C}$	11 N	$\frac{13}{0}$		
1	lA	8	10tai 94	60	1N 11	12	0	0
			04 Total	$\frac{00}{C}$	11 N	$\frac{13}{0}$		
1	mA	8	10tai 8/	60	11	13	0	0
			Total	<u> </u>	N	$\frac{10}{0}$		
1	nA	8	10tai 84	60	11	13	0	0
			Total	<u> </u>	N	$\frac{10}{0}$		
1	d	8	84	60	11	13	0	0
			Total	<u> </u>	N	$\frac{10}{0}$		
1	oA	8	84	60	11	13	0	0
			Total	C	N	0		
1	pА	8	84	60	11	13	0	0
			Total	C	Ν	0		
1	qA	8	84	60	11	13	0	0
-			Total	C	Ν	0	6	6
	rA	8	84	60	11	13	0	0

Mol	Chain	Residues	L	Ator	\mathbf{ns}		AltConf	Trace
1	σ Λ	0	Total	С	Ν	Ο	0	0
1	SA	0	84	60	11	13	0	0
1	+ Δ	0	Total	С	Ν	0	0	0
1	υA	0	84	60	11	13	0	0
1	11 Δ	8	Total	С	Ν	Ο	0	0
	un	0	84	60	11	13	0	0
1	е	8	Total	С	Ν	Ο	0	0
	C	0	84	60	11	13	0	0
1	vA	8	Total	С	Ν	Ο	0	0
	***	0	84	60	11	13	Ŭ	
1	wA	8	Total	С	Ν	Ο	0	0
-			84	60	11	13	Ŭ	, in the second
1	xA	8	Total	С	Ν	Ο	0	0
-			84	60	11	13	Ŭ	
1	vA	8	Total	С	Ν	Ο	0	0
	<i>J</i>	Č .	84	60	11	13	Ŭ	
1	zA	8	Total	С	Ν	0	0	0
			84	60	11	13	-	
1	0A	8	Total	С	Ν	0	0	0
		-	84	60	11	13		
1	1A	8	Total	C	Ν	0	0	0
			84	60	11	13		
1	f	8	Total	C	N	0	0	0
			84	<u>60</u>	11	13		
1	2A	8	Total	C	N	0	0	0
			84	<u>60</u>	11	13		
1	3A	8	Total	C	N 11	10	0	0
			84	<u> </u>	<u></u>	13		
1	4A	8	Total	C	N 11	0	0	0
			84	<u> </u>	<u></u>	13		
1	5A	8	Total	C	N 11	10	0	0
			84	<u> </u>		13		
1	6A	8	Total	C	N 11	10	0	0
			84	<u> </u>		13		
1	7A	8	Total	C	N 11	10	0	0
			84	<u>60</u>	11	13		
1	8A	8	Total	C	N	0	0	0
			84	60	11	13		
1	g	8	Total	C	N	0	0	0
			84	60	11	13		
1	9A	8	Total	C	Ν	U 16	0	0
			84	60	11	13		

Continued from previous page...

Mol	Chain	Residues	L	Ator	\mathbf{ns}		AltConf	Trace
1	٨D	0	Total	С	Ν	0	0	0
	AD	0	84	60	11	13	0	0
1	BB	0	Total	С	Ν	0	0	0
1	DD	0	84	60	11	13	0	0
1	CB	8	Total	С	Ν	Ο	0	0
1	UD	0	84	60	11	13	0	0
1	DB	8	Total	С	Ν	Ο	0	0
-		0	84	60	11	13	0	0
1	EB	8	Total	С	Ν	Ο	0	0
		<u> </u>	84	60	11	13	Ŭ	
1	FB	8	Total	С	Ν	0	0	0
			84	60	11	13	-	
1	h	8	Total	C	N	0	0	0
			84	<u>60</u>	<u></u>	13		
1	GB	8	Total	C	N 11	0	0	0
			84	<u>60</u>	11 	13		
1	HB	8		C 60	IN 11	0 19	0	0
			04 Total	00	11 N	$\frac{13}{0}$		
1	IB	8		C 60	1N 11	12	0	0
			04 Total	$\frac{00}{C}$	 	$\frac{13}{0}$		
1	JB	8	10tai 8/	60	11	13	0	0
			Total	<u> </u>	 N	$\frac{10}{0}$		
1	KB	8	84	60	11	13	0	0
			Total	<u>C</u>	N	$\frac{10}{0}$		
1	LB	8	84	60	11	13	0	0
			Total	C	Ν	0		
	MB	8	84	60	11	13	0	0
1	•	0	Total	С	Ν	0	0	0
	1	8	84	60	11	13	0	0
1	ND	0	Total	С	Ν	0	0	0
	ND	0	84	60	11	13	0	0
1	OB	8	Total	С	Ν	0	0	0
1	OD	0	84	60	11	13	0	0
1	PB	8	Total	С	Ν	Ο	0	0
	ID	0	84	60	11	13	0	0
1	OB	8	Total	С	Ν	Ο	0	0
-	പറ	0	84	60	11	13		
1	RB	8	Total	С	Ν	Ο	0	0
			84	60	11	13		
1	SB	8	Total	С	Ν	Ο	0	0
-			84	60	11	13		

Continued from previous page...

Mol	Chain	Residues	L	Ator	\mathbf{ns}		AltConf	Trace
1	ТВ	8	Total	С	N	0	0	0
			84	60	11	13		

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

	50%	
Chain t:	62%	38%
F1301 K1302 F1303 F1303 F1303 F1303 F1307 F1307 F1307 F1307		
• Molecule 1: Kl	FE8 peptide	
	50%	
Chain E:	75%	25%
F1 K2 F5 F6 F6 F7 F7		
• Molecule 1: Kl	FE8 peptide	
	38%	
Chain u:	62%	38%
F101 K102 F103 F104 F106 F107 F107 F107		
• Molecule 1: Kl	FE8 peptide	
12%		
Chain v:	75%	25%
F201		
• Molecule 1: Kl	FE8 peptide	
	38%	
Chain w:	62%	38%
F301 F302 F303 F303 F305 F305 F305 F305 F307 F306		
• Molecule 1: Kl	FE8 peptide	
	50%	
Chain x:	75%	25%
F1001 K1002 F1003 F1003 F1005 K1005 F1007 E1008		
• Molecule 1: Kl	FE8 peptide	
	38%	
Chain y:	62%	38%

- Molecule 1: KFE8 peptide 38% Chain AA: 62% 38% • Molecule 1: KFE8 peptide 50% Chain BA: 88% 12% • Molecule 1: KFE8 peptide 50% Chain CA: 62% 38% • Molecule 1: KFE8 peptide 12% Chain DA: 75% 25% • Molecule 1: KFE8 peptide 38% Chain EA: 62% 38% • Molecule 1: KFE8 peptide 50% Chain H: 75% 25% E 5
 - Molecule 1: KFE8 peptide

	50%		
Chain FA:	50%		50%
F101 K102 F103 F104 F105 F107 F107 F107			
• Molecule 1: KFE	28 peptide		
12%			
Chain GA:		75%	25%
F201 E208			
• Molecule 1: KFE	28 peptide		
	38%		
Chain HA:	62%	6	38%
F301 K302 F303 F305 F305 F305 F305 F305 F305 F305			
• Molecule 1: KFE	28 peptide		
	50%		
Chain IA:		88%	12%
F1001 K1002 F1003 E1004 F1005 F1005 F1007 E1008			
• Molecule 1: KFE	28 peptide		
	50%		
Chain JA:	50%		50%
F1101 K1102 F1103 F1103 F1104 K1106 F1107 F1107 F1107			
• Molecule 1: KFE	28 peptide		
12%			
Chain KA:		75%	25%
F1201			
• Molecule 1: KFE	28 peptide		
	38%		
Chain LA:	62%	6	38%

Chain RA:	12%	75%		25%
F1201				
• Molecule 1:	KFE8 peptide			
Chain SA:	38%	62%		38%
F1301 K1302 F1303 F1303 F1305 F1305 F1307 E1308				
• Molecule 1:	KFE8 peptide			
Chain a:	50%		F.0%/	
Chan a.	20%		20 <i>%</i>	
F1 K2 F3 F5 F5 F7 E8 E8				
• Molecule 1:	KFE8 peptide			
		62%		
Chain TA:		62%		38%
F101 K102 F103 E104 F105 K106 F107 E108				
• Molecule 1:	KFE8 peptide			
Chain IIA.		62%		250/
Ullalli UA.		75%		25%
F201 K202 F203 E204 F205 K205 F207 E208				
• Molecule 1:	KFE8 peptide			
Chain VA:		62% 75%		25%
F301 K302 F303 F304 F305 F305 F305 F305				
• Molecule 1:	KFE8 peptide			
	50%	6		
Chain WA:	50%	, 0	50%	

		/5%		
Chain cA:		75%	25%	
F301 K302 F303 F305 F305 F307 F307 F307				
• Molecule 1:	KFE8 peptide			
		62%		
Chain dA:	50%		50%	
F1001 K1002 F1003 E1004 F1005 F1005 F1007 E1008				
• Molecule 1:	KFE8 peptide			
		75%		
Chain eA:		62%	38%	
F1101 K1102 F1103 F1103 K1105 F1107 F1107 F1107				
\bullet Molecule 1:	KFE8 peptide			
	50%		-	
Chain fA:		75%	25%	
F1201 K1202 F1203 E1204 F1205 F1205 F1205 F1205				
• Molecule 1:	KFE8 peptide			
• Molecule 1:	KFE8 peptide	88%		
• Molecule 1: Chain gA:	KFE8 peptide	88% 75%	25%	
• Molecule 1: Chain gA:	KFE8 peptide	88% 75%	25%	
 Molecule 1: Chain gA: Molecule 1: 	KFE8 peptide KFE8 peptide	88%	25%	
 Molecule 1: Chain gA: Molecule 1: 	KFE8 peptide KFE8 peptide 50%	88% 75%	25%	
 Molecule 1: Chain gA: Molecule 1: 	KFE8 peptide KFE8 peptide 50%	88%	25%	
 Molecule 1: Chain gA: Molecule 1: Chain c: 	KFE8 peptide KFE8 peptide 50%	88%	25%	
 Molecule 1: Chain gA: Molecule 1: Chain c: Molecule 1: 	KFE8 peptide KFE8 peptide 50% 50% KFE8 peptide	88%	25%	
 Molecule 1: Chain gA: Molecule 1: Chain c: Molecule 1: 	KFE8 peptide KFE8 peptide 50% KFE8 peptide	88% 75%	50%	

F101 F102 F102 F104 F105 F107 F107		
• Molecule 1: KFE8 I	peptide	
Chain iA:	75%	25%
F201 F203 F205 F205 F205 F205 F205 F205		
• Molecule 1: KFE8 p	peptide	
Chain jA:	50% 75%	25%
F301 F302 F303 F305 F305 F305 F305 F306 F306 F306		
• Molecule 1: KFE8 p	peptide 62%	
Chain kA:	50%	50%
F1001 K1002 F1003 F1004 F1005 F1005 F1007 E1008		
• Molecule 1: KFE8 p	peptide	
Chain lA:	62% 62%	38%
F1101 K1102 F1102 F1105 F1105 F1106 F1107 E1108		
• Molecule 1: KFE8 p	peptide	
Chain mA:	50% 75%	25%
F1201 K1202 F1202 E1204 F1205 F1205 F1205 F1205 E1208		
• Molecule 1: KFE8 p	peptide	
Chain nA:	75%	25%
	07 E 1	2376

• Molecule 1: KF	E8 peptide		
	62%		
Chain d:	50%		50%
F1 F3 F5 F7 E8			
• Molecule 1: KF	E8 peptide		
		88%	
Chain oA:	62%		38%
F101 K102 F103 F105 F105 F107 F107 F107 F107			
• Molecule 1: KF	E8 peptide		
	50%		
Chain pA:		75%	25%
F201 K202 F203 F204 F204 F204 F205 F207 F207			
• Molecule 1: KF	E8 peptide		
Chain aA:	50%	750/	750/
Cham qrt.		7 3 76	2376
F301 K302 F303 F305 F305 F305 F305 F306			
• Molecule 1: KF	E8 peptide		
	50%		
Chain rA:	50%		50%
F1001 K1002 F1003 F1004 F1004 F1007 F1007 F1005			
• Molecule 1: KF	E8 peptide		
		75%	
Chain sA:	62%		38%
F1101 F1102 F1103 F1105 F1105 F1105 F1107 F1107 F1107 F1107			
• Molecule 1: KF	E8 peptide		
	50%		
Chain tA:		75%	25%

• Molecule 1: KFE8 peptide

	88%	
Chain uA:	75%	25%
F1301 K1302 F1303 F1304 F1305 K1306 F1307 E1308		
• Molecule 1:	KFE8 peptide	
	50%	
Chain e:	50%	50%
F1 K2 F3 F5 F7 E8		
• Molecule 1:	KFE8 peptide	
	62%	
Chain vA:	62%	38%
F101 K102 F103 F103 F105 K106 F105 F105 F105 F105		
• Molecule 1:	KFE8 peptide	
_	50%	
Chain wA:	75%	25%
F201 K202 F203 F205 K205 F205 F205 F205 F205		
• Molecule 1:	KFE8 peptide	
	62%	
Chain xA:	75%	25%
F301 K302 F303 E304 F305 K306 F307 E308		
• Molecule 1:	KFE8 peptide	
	62%	
Chain yA:	62%	38%
F1001 K1002 F1003 F1005 F1005 F1005 F1007 F1007		

_	7	5%		
Chain zA:	62%		38%	
F1101 K1102 F1103 E1104 F1105 K1106 F1107 E1107				
• Molecule 1:	KFE8 peptide			
Chain 0A:	50% 7	5%		25%
F1201 K1202 F1203 E1204 F1205 K1205 F1205 F1205 F1205				
• Molecule 1:	KFE8 peptide			
Chain 14.		88%		
Unain 1A:	7	/5%		25%
F1301 K1302 F1303 F1305 F1305 F1305 F1305 F1307 F1307 F1307				
• Molecule 1:	KFE8 peptide			
	62%			
Chain f:	50%		50%	
F1 K2 F3 F5 F5 F5 F7 B8				
• Molecule 1:	KFE8 peptide			
	62%			
Chain 2A:	62%		38%	
F101 K102 F103 F104 F105 F105 F107 E108				
• Molecule 1:	KFE8 peptide			
	50%			
Chain 3A:	7	5%		25%
F201 K202 F203 F205 F205 F205 F205 F205 F207				
• Molecule 1:	KFE8 peptide			
	62%			
Chain 4A:	7	5%		25%

• Molecule 1: KFE8 peptide

	50%			
Chain 5A:	50%		50%	5
F1001 K1002 F1003 F1005 F1005 K1006 F1007 F1007				
• Molecule 1:	KFE8 peptide			
		75%		
Chain 6A:	62%			38%
F1101 K1102 F1103 E1104 F1105 K1105 F1105 F1107 E1108				
• Molecule 1:	KFE8 peptide			
	62%			
Chain 7A:		75%		25%
F1201 K1202 F1203 F1203 F1205 F1205 F1205 F1205 F1205 F1205				
• Molecule 1:	KFE8 peptide			
_		88%		
Chain 8A:		75%		25%
F1301 K1302 F1303 E1304 F1305 K1306 K1306 E1308				
• Molecule 1:	KFE8 peptide			
	50%			
Chain g:	50%		50%	
F1 K2 F3 F5 F7 E8 E8				
• Molecule 1:	KFE8 peptide			
		75%		
Chain 9A:	62%			38%
F101 K102 F103 F104 F105 F105 F107 F107 F107				

	50%	
Chain AB:	75%	25%
201 202 203 205 205 205 205 205 206		
• Molecule 1:	KFE8 peptide	
	75%	
Chain BB:	75%	25%
01 02 00 05 00 07 00 07		
F3 F3 F3 F3 F3 F3 F3 F3		
• Molecule 1:	KFF8 poptido	
• Molecule 1.		
Chain CB.	50%	50%
Chain OD.	5078	0,05
F1001 F1002 F1003 F1005 F1005 F1005 F1005 F1005		
• Molecule 1:	KFE8 peptide	
_	75%	
Chain DB:	62%	38%
***** *		
101 102 104 105 105 107 107		
E E E E E		
• Molecule 1.	KFE8 peptide	
• Molecule 1.		
Chain EB:	75%	25%
	,5,6	2370

F1201 F1203 F1203 F1205 F1205 F1205 F1205 F1205 F1205		
• Molecule 1:	KFE8 peptide	
_	88%	
Chain FB:	75%	25%
******	•	
301 302 303 304 305 305 307 307 308		
F1 F1 F1 F1 F1 F1		
• Molecule 1.	KFF8 peptide	
- molecule 1.		
	50%	
Chain h	62%	38%

• Molecule 1: KFE8 peptide

_		88%	
Chain MB:		75%	25%
F1301 K1302 F1303 E1304 F1305 K1305 F1307 E1308			
• Molecule 1:	KFE8 peptide		
	50%		
Chain i:	50%		50%
F1 K2 E3 E4 F5 E8 E8			
• Molecule 1:	KFE8 peptide		
	62%		
Chain NB:	62%		38%
F101 K102 F103 E104 F105 F105 F107 F107 E108			
• Molecule 1:	KFE8 peptide		
_	50%		
Chain OB:	7	75%	25%
F201 K202 F203 F205 F205 F205 F205 F205 F205 F207			
• Molecule 1:	KFE8 peptide		
	62%		
Chain PB:	7	5%	25%
F301 K302 F303 F305 F305 F307 F307 E308			
• Molecule 1:	KFE8 peptide		
_	50%		
Chain QB:	50%		50%
F1001 K1002 F1003 F1005 F1005 F1005 F1007 F1007			
• Molecule 1:	KFE8 peptide		
_	7	75%	
Chain RB:	62%		38%

• Molecule 1: KFE8 peptide

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	HELICAL	Depositor
Imposed symmetry	HELICAL, twist=172.1°, rise=3.97 Å, axial	Depositor
	sym=C2	
Number of segments used	31760	Depositor
Resolution determination method	OTHER	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.929	Depositor
Minimum map value	-0.001	Depositor
Average map value	0.003	Depositor
Map value standard deviation	0.029	Depositor
Recommended contour level	0.273	Depositor
Map size (Å)	345.6, 345.6, 345.6	wwPDB
Map dimensions	320, 320, 320	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.08, 1.08, 1.08	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GMA, $5\mathrm{CR}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain Bo		lengths	Bond	angles
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	0	0.55	0/62	0.37	0/79
1	0A	0.50	0/62	0.48	0/79
1	1	0.53	0/62	0.45	0/79
1	1A	0.50	0/62	0.48	0/79
1	2	0.59	0/62	0.42	0/79
1	2A	0.49	0/62	0.49	0/79
1	3	0.56	0/62	0.37	0/79
1	3A	0.50	0/62	0.48	0/79
1	4	0.55	0/62	0.45	0/79
1	4A	0.51	0/62	0.48	0/79
1	5	0.53	0/62	0.45	0/79
1	5A	0.54	0/62	0.60	0/79
1	6	0.60	0/62	0.42	0/79
1	6A	0.49	0/62	0.49	0/79
1	7	0.56	0/62	0.37	0/79
1	7A	0.51	0/62	0.48	0/79
1	8	0.54	0/62	0.44	0/79
1	8A	0.51	0/62	0.48	0/79
1	9	0.60	0/62	0.42	0/79
1	9A	0.49	0/62	0.50	0/79
1	А	0.55	0/62	0.45	0/79
1	AA	0.56	0/62	0.37	0/79
1	AB	0.50	0/62	0.48	0/79
1	В	0.55	0/62	0.45	0/79
1	BA	0.55	0/62	0.45	0/79
1	BB	0.51	0/62	0.48	0/79
1	С	0.54	0/62	0.46	0/79
1	CA	0.54	0/62	0.44	0/79
1	CB	0.55	0/62	0.60	0/79
1	D	0.55	$0/\overline{62}$	0.45	$0/\overline{79}$
1	DA	0.60	0/62	0.42	0/79
1	DB	0.49	0/62	0.50	0/79

Mal	Chain	Bond lengths		Bond angles		
WIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	Е	0.55	0/62	0.45	0/79	
1	EA	0.55	0/62	0.37	0/79	
1	EB	0.50	0/62	0.48	0/79	
1	F	0.55	0/62	0.45	0/79	
1	FA	0.53	0/62	0.44	0/79	
1	FB	0.51	0/62	0.48	0/79	
1	G	0.55	0/62	0.45	0/79	
1	GA	0.60	0/62	0.42	0/79	
1	GB	0.49	0/62	0.49	0/79	
1	Н	0.54	0/62	0.45	0/79	
1	HA	0.55	0/62	0.37	0/79	
1	HB	0.50	0/62	0.48	0/79	
1	Ι	0.55	0/62	0.45	0/79	
1	IA	0.54	0/62	0.45	0/79	
1	IB	0.50	0/62	0.48	0/79	
1	J	0.53	0/62	0.45	0/79	
1	JA	0.54	0/62	0.44	0/79	
1	JB	0.55	0/62	0.60	0/79	
1	Κ	0.60	0/62	0.42	0/79	
1	KA	0.60	0/62	0.42	0/79	
1	KB	0.50	0/62	0.49	0/79	
1	L	0.55	0/62	0.37	0/79	
1	LA	0.55	0/62	0.37	0/79	
1	LB	0.50	0/62	0.48	0/79	
1	М	0.55	0/62	0.45	0/79	
1	MA	0.54	0/62	0.45	0/79	
1	MB	0.50	0/62	0.48	0/79	
1	Ν	0.53	0/62	0.45	0/79	
1	NA	0.59	0/62	0.42	0/79	
1	NB	0.49	0/62	0.50	0/79	
1	0	0.60	0/62	0.42	0/79	
1	OA	0.56	0/62	0.37	0/79	
1	OB	0.51	0/62	0.47	0/79	
1	Р	0.55	0/62	0.37	0/79	
1	PA	0.55	0/62	0.46	0/79	
1	PB	0.50	0/62	0.48	0/79	
1	Q	0.53	0/62	0.45	0/79	
1	QA	0.54	0/62	0.45	0/79	
1	QB	0.55	0/62	0.60	0/79	
1	R	0.60	0/62	0.42	0/79	
1	RA	0.59	0/62	0.42	0/79	
1	RB	0.49	0/62	0.49	0/79	
1	S	0.56	0/62	0.37	0/79	

Mal	Chain	Bond	lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	SA	0.56	0/62	0.37	0/79	
1	SB	0.51	0/62	0.47	0/79	
1	Т	0.55	0/62	0.45	0/79	
1	TA	0.48	0/62	0.49	0/79	
1	TB	0.50	0/62	0.48	0/79	
1	U	0.53	0/62	0.45	0/79	
1	UA	0.51	0/62	0.48	0/79	
1	V	0.60	0/62	0.42	0/79	
1	VA	0.50	0/62	0.48	0/79	
1	W	0.56	0/62	0.37	0/79	
1	WA	0.55	0/62	0.60	0/79	
1	Х	0.53	0/62	0.45	0/79	
1	XA	0.48	0/62	0.49	0/79	
1	Y	0.60	0/62	0.42	0/79	
1	YA	0.51	0/62	0.48	0/79	
1	Ζ	0.55	0/62	0.37	0/79	
1	ZA	0.50	0/62	0.48	0/79	
1	a	0.55	0/62	0.60	0/79	
1	aA	0.49	0/62	0.50	0/79	
1	b	0.55	0/62	0.60	0/79	
1	bA	0.50	0/62	0.47	0/79	
1	с	0.55	0/62	0.60	0/79	
1	cA	0.51	0/62	0.48	0/79	
1	d	0.54	0/62	0.60	0/79	
1	dA	0.55	0/62	0.60	0/79	
1	е	0.54	0/62	0.60	0/79	
1	eA	0.49	0/62	0.50	0/79	
1	f	0.54	0/62	0.60	0/79	
1	fA	0.50	0/62	0.47	0/79	
1	g	0.55	0/62	0.59	0/79	
1	gA	0.51	0/62	0.48	0/79	
1	h	0.55	0/62	0.60	0/79	
1	hA	0.49	0/62	0.49	0/79	
1	i	0.55	0/62	0.60	0/79	
1	iA	0.51	0/62	0.48	0/79	
1	j	0.54	$0/\overline{62}$	0.46	$0/\overline{79}$	
1	jА	0.50	0/62	0.48	0/79	
1	k	0.53	0/62	0.45	0/79	
1	kA	0.55	$0/\overline{62}$	0.59	$0/\overline{79}$	
1	1	0.60	0/62	0.42	0/79	
1	lĀ	0.49	$0/\overline{62}$	0.49	$0/\overline{79}$	
1	m	0.55	0/62	0.36	0/79	
1	mA	0.51	$0/6\overline{2}$	$0.4\overline{7}$	0/79	

Mal	Chain	Bond lengths		Bond	angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	n	0.54	0/62	0.44	0/79
1	nA	0.50	0/62	0.48	0/79
1	0	0.60	0/62	0.42	0/79
1	oA	0.48	0/62	0.50	0/79
1	р	0.55	0/62	0.37	0/79
1	рА	0.50	0/62	0.48	0/79
1	q	0.55	0/62	0.45	0/79
1	qA	0.51	0/62	0.48	0/79
1	r	0.53	0/62	0.45	0/79
1	rA	0.55	0/62	0.60	0/79
1	s	0.60	0/62	0.42	0/79
1	sA	0.48	0/62	0.50	0/79
1	t	0.55	0/62	0.37	0/79
1	tA	0.50	0/62	0.48	0/79
1	u	0.53	0/62	0.45	0/79
1	uA	0.51	0/62	0.48	0/79
1	V	0.59	0/62	0.42	0/79
1	vA	0.49	0/62	0.50	0/79
1	W	0.55	0/62	0.37	0/79
1	wA	0.50	0/62	0.48	0/79
1	Х	0.54	0/62	0.45	0/79
1	xA	0.51	0/62	0.48	0/79
1	У	0.53	0/62	0.44	0/79
1	yА	0.54	0/62	0.59	0/79
1	Z	0.60	0/62	0.42	0/79
1	zA	0.49	0/62	0.50	0/79
All	All	0.54	0/8928	0.47	0/11376

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	0	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	0A	6/8~(75%)	6 (100%)	0	0	100	100
1	1	6/8~(75%)	6 (100%)	0	0	100	100
1	1A	6/8~(75%)	6 (100%)	0	0	100	100
1	2	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	2A	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	3	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	3A	6/8~(75%)	6 (100%)	0	0	100	100
1	4	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	4A	6/8~(75%)	6 (100%)	0	0	100	100
1	5	6/8~(75%)	6 (100%)	0	0	100	100
1	5A	6/8~(75%)	6 (100%)	0	0	100	100
1	6	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	6A	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	7	6/8~(75%)	5(83%)	1 (17%)	0	100	100
1	7A	6/8~(75%)	6 (100%)	0	0	100	100
1	8	6/8~(75%)	6 (100%)	0	0	100	100
1	8A	6/8~(75%)	6 (100%)	0	0	100	100
1	9	6/8~(75%)	5(83%)	1 (17%)	0	100	100
1	9A	6/8~(75%)	5(83%)	1 (17%)	0	100	100
1	А	6/8~(75%)	5(83%)	1 (17%)	0	100	100
1	AA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	AB	6/8~(75%)	6 (100%)	0	0	100	100
1	В	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	BA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100

<i>/ / / / / / / / / / / / / / / / / / / </i>	•	
Continued from	n previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	BB	6/8~(75%)	6 (100%)	0	0	100	100
1	С	6/8~(75%)	5(83%)	1 (17%)	0	100	100
1	CA	6/8~(75%)	6 (100%)	0	0	100	100
1	CB	6/8~(75%)	6 (100%)	0	0	100	100
1	D	6/8~(75%)	5(83%)	1 (17%)	0	100	100
1	DA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	DB	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	Е	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	EA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	EB	6/8~(75%)	6 (100%)	0	0	100	100
1	F	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	FA	6/8~(75%)	6 (100%)	0	0	100	100
1	FB	6/8~(75%)	6 (100%)	0	0	100	100
1	G	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	GA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	GB	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	Н	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	НА	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	HB	6/8~(75%)	6 (100%)	0	0	100	100
1	Ι	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	IA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	IB	6/8~(75%)	6 (100%)	0	0	100	100
1	J	6/8~(75%)	6 (100%)	0	0	100	100
1	JA	6/8~(75%)	6 (100%)	0	0	100	100
1	JB	6/8~(75%)	6 (100%)	0	0	100	100
1	K	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	KA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	KB	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	L	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	LA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	LB	6/8~(75%)	6 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	М	6/8~(75%)	5(83%)	1 (17%)	0	100	100
1	MA	6/8~(75%)	6 (100%)	0	0	100	100
1	MB	6/8~(75%)	6 (100%)	0	0	100	100
1	Ν	6/8~(75%)	6 (100%)	0	0	100	100
1	NA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	NB	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	Ο	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	OA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	OB	6/8~(75%)	6 (100%)	0	0	100	100
1	Р	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	PA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	PB	6/8~(75%)	6 (100%)	0	0	100	100
1	Q	6/8~(75%)	6 (100%)	0	0	100	100
1	QA	6/8~(75%)	6 (100%)	0	0	100	100
1	QB	6/8~(75%)	6 (100%)	0	0	100	100
1	R	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	RA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	RB	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	S	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	SA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	SB	6/8~(75%)	6 (100%)	0	0	100	100
1	Т	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	ТА	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	TB	6/8~(75%)	6 (100%)	0	0	100	100
1	U	6/8~(75%)	6 (100%)	0	0	100	100
1	UA	6/8~(75%)	6 (100%)	0	0	100	100
1	V	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	VA	6/8~(75%)	6 (100%)	0	0	100	100
1	W	6/8~(75%)	5 (83%)	1 (17%)	0	100	100
1	WA	6/8~(75%)	6 (100%)	0	0	100	100
1	Х	6/8~(75%)	6 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles		
1	XA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	Y	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	YA	6/8~(75%)	6 (100%)	0	0	100	100	
1	Ζ	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	ZA	6/8~(75%)	6 (100%)	0	0	100	100	
1	a	6/8~(75%)	6 (100%)	0	0	100	100	
1	aA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	b	6/8~(75%)	6 (100%)	0	0	100	100	
1	bA	6/8~(75%)	6 (100%)	0	0	100	100	
1	с	6/8~(75%)	6 (100%)	0	0	100	100	
1	cA	6/8~(75%)	6 (100%)	0	0	100	100	_
1	d	6/8~(75%)	6 (100%)	0	0	100	100	-
1	dA	6/8~(75%)	6 (100%)	0	0	100	100	
1	е	6/8~(75%)	6 (100%)	0	0	100	100	-
1	eA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	f	6/8~(75%)	6 (100%)	0	0	100	100	-
1	fA	6/8~(75%)	6 (100%)	0	0	100	100	
1	g	6/8~(75%)	6 (100%)	0	0	100	100	
1	gA	6/8~(75%)	6 (100%)	0	0	100	100	-
1	h	6/8~(75%)	6 (100%)	0	0	100	100	
1	hA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	i	6/8~(75%)	6 (100%)	0	0	100	100	_
1	iA	6/8~(75%)	6 (100%)	0	0	100	100	-
1	j	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	jА	6/8~(75%)	6 (100%)	0	0	100	100	
1	k	6/8~(75%)	6 (100%)	0	0	100	100	
1	kA	6/8~(75%)	6 (100%)	0	0	100	100	
1	1	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	lA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	m	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	mA	6/8~(75%)	6 (100%)	0	0	100	100	

			D 1	A 11 1		Ъ	. •1	-
Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles	_
1	n	6/8~(75%)	6 (100%)	0	0	100	100	
1	nA	6/8~(75%)	6~(100%)	0	0	100	100	
1	О	6/8~(75%)	5~(83%)	1 (17%)	0	100	100	
1	oA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	р	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	рА	6/8~(75%)	6 (100%)	0	0	100	100	
1	q	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	qA	6/8~(75%)	6 (100%)	0	0	100	100	
1	r	6/8~(75%)	6 (100%)	0	0	100	100	
1	rA	6/8~(75%)	6 (100%)	0	0	100	100	
1	s	6/8~(75%)	5(83%)	1 (17%)	0	100	100	
1	sA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	t	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	tA	6/8~(75%)	6 (100%)	0	0	100	100	
1	u	6/8~(75%)	6 (100%)	0	0	100	100	
1	uA	6/8~(75%)	6 (100%)	0	0	100	100	
1	v	6/8~(75%)	5(83%)	1 (17%)	0	100	100	
1	vA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	W	6/8~(75%)	5(83%)	1 (17%)	0	100	100	
1	wA	6/8~(75%)	6 (100%)	0	0	100	100	
1	х	6/8~(75%)	5(83%)	1 (17%)	0	100	100	
1	xA	6/8~(75%)	6 (100%)	0	0	100	100	
1	У	6/8~(75%)	6 (100%)	0	0	100	100	
1	yА	6/8~(75%)	6 (100%)	0	0	100	100	
1	Z	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
1	zA	6/8~(75%)	5 (83%)	1 (17%)	0	100	100	
All	All	864/1152~(75%)	792 (92%)	72 (8%)	0	100	100	-

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	3 Percentiles	
1	0	6/6~(100%)	5~(83%)	1 (17%)	2	8
1	0A	6/6~(100%)	6 (100%)	0	100	100
1	1	6/6~(100%)	4 (67%)	2(33%)	0	1
1	1A	6/6~(100%)	6 (100%)	0	100	100
1	2	6/6~(100%)	6 (100%)	0	100	100
1	2A	6/6~(100%)	5 (83%)	1 (17%)	2	8
1	3	6/6~(100%)	5 (83%)	1 (17%)	2	8
1	3A	6/6~(100%)	6 (100%)	0	100	100
1	4	6/6~(100%)	6 (100%)	0	100	100
1	4A	6/6~(100%)	6 (100%)	0	100	100
1	5	6/6~(100%)	4 (67%)	2 (33%)	0	1
1	5A	6/6~(100%)	4 (67%)	2 (33%)	0	1
1	6	6/6~(100%)	6 (100%)	0	100	100
1	6A	6/6~(100%)	5 (83%)	1 (17%)	2	8
1	7	6/6~(100%)	5 (83%)	1 (17%)	2	8
1	7A	6/6~(100%)	6 (100%)	0	100	100
1	8	6/6~(100%)	4 (67%)	2 (33%)	0	1
1	8A	6/6~(100%)	6 (100%)	0	100	100
1	9	6/6~(100%)	6 (100%)	0	100	100
1	9A	6/6~(100%)	5 (83%)	1 (17%)	2	8
1	А	6/6~(100%)	6 (100%)	0	100	100
1	AA	6/6 (100%)	5 (83%)	1 (17%)	2	8
1	AB	6/6~(100%)	6 (100%)	0	100	100
1	В	6/6 (100%)	6 (100%)	0	100	100
1	BA	6/6~(100%)	6 (100%)	0	100	100
1	BB	6/6~(100%)	6 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	С	6/6~(100%)	6 (100%)	0	100 100		
1	CA	6/6~(100%)	4 (67%)	2(33%)	0 1		
1	CB	6/6~(100%)	4 (67%)	2(33%)	0 1		
1	D	6/6~(100%)	6 (100%)	0	100 100		
1	DA	6/6~(100%)	6 (100%)	0	100 100		
1	DB	6/6~(100%)	5 (83%)	1 (17%)	2 8		
1	Ε	6/6~(100%)	6 (100%)	0	100 100		
1	EA	6/6~(100%)	5 (83%)	1 (17%)	2 8		
1	EB	6/6~(100%)	6 (100%)	0	100 100		
1	F	6/6~(100%)	6 (100%)	0	100 100		
1	FA	6/6~(100%)	4 (67%)	2(33%)	0 1		
1	FB	6/6~(100%)	6 (100%)	0	100 100		
1	G	6/6~(100%)	6 (100%)	0	100 100		
1	GA	6/6~(100%)	6 (100%)	0	100 100		
1	GB	6/6~(100%)	5 (83%)	1 (17%)	2 8		
1	Н	6/6~(100%)	6 (100%)	0	100 100		
1	HA	6/6~(100%)	5 (83%)	1 (17%)	2 8		
1	HB	6/6~(100%)	6 (100%)	0	100 100		
1	Ι	6/6~(100%)	6 (100%)	0	100 100		
1	IA	6/6~(100%)	6 (100%)	0	100 100		
1	IB	6/6~(100%)	6 (100%)	0	100 100		
1	J	6/6~(100%)	4~(67%)	2(33%)	0 1		
1	JA	6/6~(100%)	4~(67%)	2(33%)	0 1		
1	JB	6/6~(100%)	5 (83%)	1 (17%)	2 8		
1	Κ	6/6~(100%)	6 (100%)	0	100 100		
1	KA	6/6~(100%)	6 (100%)	0	100 100		
1	KB	6/6 (100%)	5 (83%)	1 (17%)	2 8		
1	L	6/6 (100%)	5 (83%)	1 (17%)	2 8		
1	LA	6/6~(100%)	5 (83%)	1 (17%)	2 8		
1	LB	6/6~(100%)	6 (100%)	0	100 100		
1	М	6/6~(100%)	6 (100%)	0	100 100		

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	9	1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	MA	6/6~(100%)	4 (67%)	2 (33%)	0	1	
1	MB	6/6~(100%)	6 (100%)	0	100	100	
1	Ν	6/6~(100%)	4 (67%)	2(33%)	0	1	
1	NA	6/6~(100%)	6 (100%)	0	100	100	
1	NB	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	Ο	6/6~(100%)	6 (100%)	0	100	100	
1	OA	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	OB	6/6~(100%)	6 (100%)	0	100	100	
1	Р	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	PA	6/6~(100%)	6 (100%)	0	100	100	
1	PB	6/6~(100%)	6 (100%)	0	100	100	
1	Q	6/6~(100%)	4 (67%)	2 (33%)	0	1	
1	QA	6/6~(100%)	4 (67%)	2 (33%)	0	1	
1	QB	6/6~(100%)	4 (67%)	2 (33%)	0	1	
1	R	6/6~(100%)	6 (100%)	0	100	100	
1	RA	6/6~(100%)	6 (100%)	0	100	100	
1	RB	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	S	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	SA	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	SB	6/6~(100%)	6 (100%)	0	100	100	
1	Т	6/6~(100%)	6 (100%)	0	100	100	
1	ТА	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	TB	6/6~(100%)	6 (100%)	0	100	100	
1	U	6/6~(100%)	4 (67%)	2 (33%)	0	1	
1	UA	6/6~(100%)	6 (100%)	0	100	100	
1	V	6/6~(100%)	6 (100%)	0	100	100	
1	VA	6/6~(100%)	6 (100%)	0	100	100	
1	W	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	WA	6/6~(100%)	4 (67%)	2 (33%)	0	1	
1	Х	6/6~(100%)	4 (67%)	2 (33%)	0	1	
1	XA	6/6 (100%)	5 (83%)	1 (17%)	2	8	

α $\cdot \cdot$ \cdot	e		
Continued	from	previous	page

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	Y	6/6~(100%)	6 (100%)	0	100	100
1	YA	6/6~(100%)	6~(100%)	0	100	100
1	Z	6/6~(100%)	5~(83%)	1 (17%)	2	8
1	ZA	6/6~(100%)	6 (100%)	0	100	100
1	a	6/6~(100%)	4 (67%)	2 (33%)	0	1
1	aA	6/6~(100%)	5 (83%)	1 (17%)	2	8
1	b	6/6~(100%)	5(83%)	1 (17%)	2	8
1	bA	6/6~(100%)	6 (100%)	0	100	100
1	с	6/6~(100%)	4 (67%)	2 (33%)	0	1
1	cA	6/6~(100%)	6 (100%)	0	100	100
1	d	6/6~(100%)	4 (67%)	2 (33%)	0	1
1	dA	6/6~(100%)	4 (67%)	2(33%)	0	1
1	е	6/6~(100%)	4 (67%)	2(33%)	0	1
1	eA	6/6~(100%)	5 (83%)	1 (17%)	2	8
1	f	6/6~(100%)	4 (67%)	2(33%)	0	1
1	fA	6/6~(100%)	6 (100%)	0	100	100
1	g	6/6~(100%)	4~(67%)	2 (33%)	0	1
1	gA	6/6~(100%)	6 (100%)	0	100	100
1	h	6/6~(100%)	5~(83%)	1 (17%)	2	8
1	hA	6/6~(100%)	5~(83%)	1 (17%)	2	8
1	i	6/6~(100%)	4~(67%)	2(33%)	0	1
1	iA	6/6~(100%)	6 (100%)	0	100	100
1	j	6/6~(100%)	6 (100%)	0	100	100
1	jА	6/6~(100%)	6 (100%)	0	100	100
1	k	6/6~(100%)	4~(67%)	2(33%)	0	1
1	kA	6/6~(100%)	4 (67%)	2(33%)	0	1
1	1	6/6~(100%)	6 (100%)	0	100	100
1	lA	$6/6$ ($\overline{100\%}$)	5 (83%)	1 (17%)	2	8
1	m	6/6 (100%)	5 (83%)	1 (17%)	2	8
1	mA	$6/6$ ($\overline{100\%}$)	6 (100%)	0	100	100
1	n	$6/6 \ (100\%)$	4 (67%)	2(33%)	0	1

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	nA	6/6~(100%)	6 (100%)	0	100	100	
1	О	6/6~(100%)	6 (100%)	0	100	100	
1	oA	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	р	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	рА	6/6~(100%)	6 (100%)	0	100	100	
1	q	6/6~(100%)	6 (100%)	0	100	100	
1	qA	6/6~(100%)	6 (100%)	0	100	100	
1	r	6/6~(100%)	4 (67%)	2 (33%)	0	1	
1	rA	6/6~(100%)	4 (67%)	2 (33%)	0	1	
1	S	6/6~(100%)	6 (100%)	0	100	100	
1	sA	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	t	6/6~(100%)	5(83%)	1 (17%)	2	8	
1	tA	6/6~(100%)	6 (100%)	0	100	100	
1	u	6/6~(100%)	4 (67%)	2 (33%)	0	1	
1	uA	6/6~(100%)	6 (100%)	0	100	100	
1	v	6/6~(100%)	6 (100%)	0	100	100	
1	vA	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	W	6/6~(100%)	5 (83%)	1 (17%)	2	8	
1	wA	6/6~(100%)	6 (100%)	0	100	100	
1	х	6/6~(100%)	6~(100%)	0	100	100	
1	хA	6/6~(100%)	6 (100%)	0	100	100	
1	У	6/6~(100%)	4~(67%)	2(33%)	0	1	
1	yА	6/6~(100%)	5~(83%)	1 (17%)	2	8	
1	Z	6/6 (100%)	6 (100%)	0	100	100	
1	zA	6/6~(100%)	5 (83%)	1 (17%)	2	8	
All	All	864/864 (100%)	$760 \ (88\%)$	104 (12%)	8	19	

5 of 104 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	WA	1002	LYS
1	d	2	LYS
1	i	4	GLU

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
1	XA	1104	GLU
1	с	2	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. There are no such side chains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

288 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	Bo	ond leng	ths	B	ond ang	les
WIOI	туре	Ullaili	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	GMA	AA	308	1	9,9,9	1.17	1 (11%)	10,11,11	1.26	0
1	5CR	sA	1101	1	13,14,15	1.21	1 (7%)	16,17,19	1.25	2 (12%)
1	5CR	tA	1201	1	13,14,15	1.23	1 (7%)	16,17,19	1.14	1 (6%)
1	5CR	f	1	1	13,14,15	1.28	2 (15%)	16,17,19	1.74	4 (25%)
1	5CR	AB	201	1	13,14,15	1.22	1 (7%)	16,17,19	1.15	1 (6%)
1	5CR	CB	1001	1	13,14,15	1.28	2 (15%)	16,17,19	1.74	4 (25%)
1	5CR	h	1	1	13,14,15	1.28	1 (7%)	16,17,19	1.73	4 (25%)
1	5CR	RB	1101	1	13,14,15	1.21	1 (7%)	16,17,19	1.25	2 (12%)
1	GMA	V	1208	1	9,9,9	1.18	1 (11%)	10,11,11	1.26	1 (10%)
1	GMA	1	108	1	9,9,9	1.13	1 (11%)	10,11,11	1.22	1 (10%)
1	GMA	5	1108	1	9,9,9	1.13	0	10,11,11	1.22	1 (10%)
1	5CR	9	201	1	13,14,15	1.24	1 (7%)	16,17,19	1.33	2 (12%)
1	GMA	FA	108	1	9,9,9	1.15	1 (11%)	10,11,11	1.24	1 (10%)
1	GMA	VA	308	1	9,9,9	1.16	1 (11%)	10,11,11	1.33	0
1	GMA	fA	1208	1	9,9,9	1.18	1 (11%)	10,11,11	1.11	0

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	Bond angles		
NIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	GMA	vA	108	1	$9,\!9,\!9$	1.15	1 (11%)	10,11,11	1.18	0
1	5CR	5	1101	1	$13,\!14,\!15$	1.23	1 (7%)	$16,\!17,\!19$	1.51	2 (12%)
1	5CR	bA	201	1	13,14,15	1.21	1 (7%)	16,17,19	1.14	1 (6%)
1	GMA	В	8	1	9,9,9	1.15	1 (11%)	10,11,11	1.25	0
1	5CR	n	101	1	13,14,15	1.23	1 (7%)	16,17,19	1.51	2 (12%)
1	5CR	GB	101	1	13,14,15	1.23	1 (7%)	16,17,19	1.24	2 (12%)
1	5CR	U	1101	1	13,14,15	1.22	1 (7%)	16,17,19	1.52	2 (12%)
1	GMA	V	208	1	9,9,9	1.16	1 (11%)	10,11,11	1.25	0
1	GMA	2A	108	1	9,9,9	1.15	1 (11%)	10,11,11	1.17	0
1	5CR	Р	1301	1	13,14,15	1.23	2 (15%)	16,17,19	1.28	3 (18%)
1	5CR	YA	1201	1	13,14,15	1.22	1 (7%)	16,17,19	1.14	1 (6%)
1	GMA	FB	1308	1	9,9,9	1.14	1 (11%)	10,11,11	1.32	0
1	5CR	zA	1101	1	13,14,15	1.21	1 (7%)	16,17,19	1.26	2 (12%)
1	5CR	LB	1201	1	13,14,15	1.22	1 (7%)	16,17,19	1.14	1 (6%)
1	GMA	Z	1208	1	9,9,9	1.17	1 (11%)	10,11,11	1.26	1 (10%)
1	5CR	6	1201	1	13,14,15	1.25	2 (15%)	16,17,19	1.34	2 (12%)
1	5CR	х	1001	1	13,14,15	1.22	2 (15%)	16,17,19	1.69	3 (18%)
1	5CR	с	1	1	13,14,15	1.27	1 (7%)	16,17,19	1.73	4 (25%)
1	GMA	IA	1008	1	9,9,9	1.15	0	10,11,11	1.26	0
1	GMA	N	1108	1	9,9,9	1.15	1 (11%)	10,11,11	1.24	1 (10%)
1	5CR	8	101	1	13,14,15	1.24	1 (7%)	16,17,19	1.51	2 (12%)
1	GMA	Ι	8	1	$9,\!9,\!9$	1.16	1 (11%)	10,11,11	1.27	1 (10%)
1	GMA	bA	208	1	$9,\!9,\!9$	1.18	1 (11%)	10,11,11	1.12	0
1	GMA	b	8	1	$9,\!9,\!9$	1.19	1 (11%)	10,11,11	1.16	0
1	GMA	KB	1108	1	$9,\!9,\!9$	1.15	1 (11%)	10,11,11	1.18	0
1	GMA	RB	1108	1	$9,\!9,\!9$	1.14	1 (11%)	10,11,11	1.17	0
1	GMA	2	208	1	$9,\!9,\!9$	1.17	1 (11%)	10,11,11	1.26	1 (10%)
1	5CR	1	1201	1	13,14,15	1.24	2(15%)	16,17,19	1.34	2 (12%)
1	5CR	У	1101	1	13,14,15	1.23	1 (7%)	16,17,19	1.51	2 (12%)
1	GMA	W	308	1	9,9,9	1.15	1 (11%)	10,11,11	1.23	0
1	GMA	R	208	1	9,9,9	1.18	1 (11%)	10,11,11	1.27	1 (10%)
1	5CR	AA	301	1	13,14,15	1.22	2 (15%)	16,17,19	1.28	3 (18%)
1	5CR	fA	1201	1	13,14,15	1.22	1 (7%)	16,17,19	1.13	1 (6%)
1	5CR	BB	301	1	13,14,15	1.22	1 (7%)	16,17,19	1.03	1 (6%)
1	GMA	CB	1008	1	9,9,9	1.19	1 (11%)	10,11,11	1.14	0

Mal	Trung	Chain	Dec	Tinle	Bo	ond leng	ths	В	ond ang	les
WIOI	Type	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	GMA	BA	1008	1	9,9,9	1.13	0	10,11,11	1.25	0
1	5CR	TB	1301	1	13,14,15	1.22	1 (7%)	16,17,19	1.03	1 (6%)
1	5CR	EA	1301	1	13,14,15	1.22	2(15%)	16,17,19	1.29	3 (18%)
1	5CR	3A	201	1	13,14,15	1.23	1 (7%)	16,17,19	1.14	1 (6%)
1	GMA	KA	1208	1	9,9,9	1.18	1 (11%)	10,11,11	1.27	2 (20%)
1	5CR	Е	1	1	13,14,15	1.22	1 (7%)	$16,\!17,\!19$	1.69	3 (18%)
1	5CR	W	1301	1	$13,\!14,\!15$	1.22	2 (15%)	$16,\!17,\!19$	1.28	3 (18%)
1	GMA	XA	1108	1	$9,\!9,\!9$	1.16	1 (11%)	$10,\!11,\!11$	1.19	0
1	GMA	6	1208	1	9,9,9	1.17	1 (11%)	10,11,11	1.26	1 (10%)
1	5CR	Z	1201	1	13,14,15	1.25	1 (7%)	$16,\!17,\!19$	1.33	2 (12%)
1	GMA	zA	1108	1	9,9,9	1.15	1 (11%)	10,11,11	1.18	0
1	5CR	i	1	1	13,14,15	1.28	2 (15%)	16,17,19	1.73	4 (25%)
1	GMA	xA	308	1	9,9,9	1.14	1 (11%)	10,11,11	1.32	0
1	GMA	i	8	1	9,9,9	1.19	1 (11%)	10,11,11	1.16	0
1	5CR	Q	101	1	13,14,15	1.21	1 (7%)	16,17,19	1.52	2 (12%)
1	5CR	В	1	1	13,14,15	1.23	2 (15%)	16,17,19	1.70	3 (18%)
1	5CR	4	1001	1	13,14,15	1.22	1 (7%)	16,17,19	1.70	3 (18%)
1	5CR	SA	1301	1	13,14,15	1.23	2 (15%)	16,17,19	1.28	3 (18%)
1	5CR	hA	101	1	13,14,15	1.23	1 (7%)	16,17,19	1.26	2 (12%)
1	5CR	u	101	1	13,14,15	1.23	1 (7%)	16,17,19	1.51	2 (12%)
1	GMA	DB	1108	1	9,9,9	1.16	1 (11%)	10,11,11	1.19	0
1	5CR	С	1	1	13,14,15	1.22	2 (15%)	16,17,19	1.69	3 (18%)
1	5CR	SB	1201	1	13,14,15	1.21	1 (7%)	16,17,19	1.14	1 (6%)
1	5CR	V	1201	1	13,14,15	1.24	1 (7%)	16,17,19	1.34	2 (12%)
1	5CR	mA	1201	1	13,14,15	1.23	1 (7%)	16,17,19	1.14	1 (6%)
1	GMA	CA	1108	1	9,9,9	1.13	0	10,11,11	1.21	0
1	5CR	0	1301	1	13,14,15	1.24	2 (15%)	$16,\!17,\!19$	1.27	3 (18%)
1	GMA	sA	1108	1	9,9,9	1.15	1 (11%)	10,11,11	1.18	0
1	5CR	xA	301	1	13,14,15	1.21	1 (7%)	16,17,19	1.03	1 (6%)
1	5CR	JA	1101	1	13,14,15	1.23	1 (7%)	$16,\!17,\!19$	1.50	2 (12%)
1	5CR	w	301	1	13,14,15	1.23	2 (15%)	16,17,19	1.27	3 (18%)
1	5CR	IB	301	1	13,14,15	1.23	1 (7%)	16,17,19	1.02	1 (6%)
1	GMA	J	108	1	9,9,9	1.15	1 (11%)	10,11,11	1.23	1 (10%)
1	5CR	GA	201	1	13,14,15	1.23	1 (7%)	16,17,19	1.34	3 (18%)
1	GMA	EA	1308	1	9,9,9	1.16	1 (11%)	10,11,11	1.25	0

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	les
	туре	Ullain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	5CR	DB	1101	1	13,14,15	1.23	1 (7%)	16,17,19	1.25	2 (12%)
1	5CR	CA	1101	1	$13,\!14,\!15$	1.24	1 (7%)	$16,\!17,\!19$	1.52	2 (12%)
1	GMA	6A	1108	1	$9,\!9,\!9$	1.15	1 (11%)	10,11,11	1.18	0
1	GMA	У	1108	1	9,9,9	1.14	0	10,11,11	1.22	0
1	5CR	рА	201	1	13,14,15	1.23	1 (7%)	16,17,19	1.15	1 (6%)
1	5CR	EB	1201	1	13,14,15	1.22	1 (7%)	16,17,19	1.14	1 (6%)
1	GMA	d	8	1	$9,\!9,\!9$	1.18	1 (11%)	10,11,11	1.15	0
1	GMA	О	208	1	$9,\!9,\!9$	1.16	1 (11%)	10,11,11	1.26	0
1	5CR	Ο	1201	1	$13,\!14,\!15$	1.23	1 (7%)	16,17,19	1.33	2 (12%)
1	5CR	Х	101	1	13,14,15	1.24	1 (7%)	16,17,19	1.51	2 (12%)
1	GMA	gA	1308	1	9,9,9	1.15	1 (11%)	10,11,11	1.33	0
1	GMA	р	308	1	9,9,9	1.16	1 (11%)	10,11,11	1.23	0
1	GMA	3	308	1	9,9,9	1.17	1 (11%)	10,11,11	1.24	0
1	GMA	НА	308	1	9,9,9	1.17	1 (11%)	10,11,11	1.24	0
1	5CR	2	201	1	13,14,15	1.25	2 (15%)	16,17,19	1.33	2 (12%)
1	5CR	yА	1001	1	13,14,15	1.28	2 (15%)	16,17,19	1.73	4 (25%)
1	GMA	s	1208	1	9,9,9	1.17	1 (11%)	10,11,11	1.26	1 (10%)
1	GMA	lA	1108	1	9,9,9	1.14	1 (11%)	10,11,11	1.18	0
1	5CR	OA	301	1	13,14,15	1.23	2 (15%)	16,17,19	1.28	3 (18%)
1	GMA	7A	1208	1	9,9,9	1.18	1 (11%)	10,11,11	1.14	0
1	5CR	BA	1001	1	13,14,15	1.21	1 (7%)	16,17,19	1.70	3 (18%)
1	GMA	kA	1008	1	9,9,9	1.18	1 (11%)	10,11,11	1.14	0
1	GMA	AB	208	1	9,9,9	1.18	1 (11%)	10,11,11	1.13	0
1	5CR	wA	201	1	13,14,15	1.21	1 (7%)	16,17,19	1.15	1 (6%)
1	5CR	DA	1201	1	13,14,15	1.24	1 (7%)	16,17,19	1.33	2 (12%)
1	5CR	m	1301	1	13,14,15	1.24	2 (15%)	16,17,19	1.27	3 (18%)
1	5CR	6A	1101	1	13,14,15	1.21	1 (7%)	16,17,19	1.25	2 (12%)
1	GMA	Р	1308	1	9,9,9	1.17	1 (11%)	10,11,11	1.24	0
1	GMA	L	308	1	9,9,9	1.17	1 (11%)	10,11,11	1.25	0
1	GMA	x	1008	1	9,9,9	1.16	1 (11%)	10,11,11	1.26	0
1	5CR	K	201	1	13,14,15	1.24	1 (7%)	16,17,19	1.32	2 (12%)
1	5CR	aA	101	1	13,14,15	1.21	1 (7%)	16,17,19	1.25	2 (12%)
1	GMA	qA	308	1	9,9,9	1.14	1 (11%)	10,11,11	1.32	0
1	GMA	HB	208	1	9,9,9	1.19	1 (11%)	10,11,11	1.14	0
1	GMA	е	8	1	9,9,9	1.20	1 (11%)	10,11,11	1.15	0

Mal	Type	Chain	Dog	Link	Bo	ond leng	ths	В	ond ang	gles
	Type	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	GMA	Т	1008	1	$9,\!9,\!9$	1.15	1 (11%)	10,11,11	1.26	1 (10%)
1	GMA	LB	1208	1	$9,\!9,\!9$	1.19	1 (11%)	10,11,11	1.14	0
1	5CR	НА	301	1	$13,\!14,\!15$	1.21	2 (15%)	$16,\!17,\!19$	1.28	3 (18%)
1	GMA	JB	1008	1	9,9,9	1.18	1 (11%)	10,11,11	1.14	0
1	GMA	G	8	1	9,9,9	1.13	0	10,11,11	1.25	0
1	5CR	VA	301	1	13,14,15	1.23	1 (7%)	16,17,19	1.02	1 (6%)
1	GMA	hA	108	1	9,9,9	1.14	1 (11%)	10,11,11	1.18	0
1	5CR	WA	1001	1	13,14,15	1.28	2 (15%)	$16,\!17,\!19$	1.74	4 (25%)
1	5CR	dA	1001	1	$13,\!14,\!15$	1.27	2 (15%)	$16,\!17,\!19$	1.74	4 (25%)
1	GMA	eA	1108	1	9,9,9	1.15	1 (11%)	10,11,11	1.20	0
1	GMA	PA	1008	1	$9,\!9,\!9$	1.16	1 (11%)	10,11,11	1.27	1 (10%)
1	5CR	qA	301	1	13,14,15	1.24	1 (7%)	16,17,19	1.01	1 (6%)
1	GMA	М	1008	1	9,9,9	1.14	1 (11%)	10,11,11	1.24	0
1	GMA	SB	1208	1	9,9,9	1.19	1 (11%)	10,11,11	1.12	0
1	GMA	q	1008	1	9,9,9	1.16	1 (11%)	10,11,11	1.26	0
1	GMA	cA	308	1	9,9,9	1.16	1 (11%)	10,11,11	1.33	0
1	5CR	QA	1101	1	13,14,15	1.23	1 (7%)	16,17,19	1.51	2 (12%)
1	GMA	yА	1008	1	9,9,9	1.20	1 (11%)	10,11,11	1.16	0
1	GMA	SA	1308	1	9,9,9	1.17	1 (11%)	10,11,11	1.24	0
1	5CR	G	1	1	13,14,15	1.20	1 (7%)	16,17,19	1.70	3 (18%)
1	5CR	IA	1001	1	13,14,15	1.23	2 (15%)	16,17,19	1.69	3 (18%)
1	GMA	JA	1108	1	9,9,9	1.14	1 (11%)	10,11,11	1.23	1 (10%)
1	GMA	U	1108	1	9,9,9	1.14	1 (11%)	10,11,11	1.23	1 (10%)
1	5CR	Т	1001	1	13,14,15	1.23	2 (15%)	16,17,19	1.70	3 (18%)
1	GMA	WA	1008	1	9,9,9	1.18	1 (11%)	10,11,11	1.14	0
1	GMA	rA	1008	1	9,9,9	1.19	1 (11%)	10,11,11	1.14	0
1	GMA	GB	108	1	9,9,9	1.15	1 (11%)	10,11,11	1.18	0
1	5CR	LA	1301	1	13,14,15	1.21	2 (15%)	16,17,19	1.28	3 (18%)
1	5CR	Y	201	1	13,14,15	1.24	2 (15%)	16,17,19	1.34	2 (12%)
1	5CR	b	1	1	13,14,15	1.27	2 (15%)	16,17,19	1.74	4 (25%)
1	5CR	ZA	1301	1	13,14,15	1.23	1 (7%)	16,17,19	1.02	1 (6%)
1	5CR	eA	1101	1	13,14,15	1.21	1 (7%)	16,17,19	1.25	2 (12%)
1	GMA	Q	108	1	9,9,9	1.15	1 (11%)	10,11,11	1.23	1 (10%)
1	GMA	W	1308	1	9,9,9	1.18	1 (11%)	10,11,11	1.25	0
1	5CR	7	1301	1	13,14,15	1.23	2 (15%)	16,17,19	1.29	3 (18%)

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	les
NIOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	GMA	j	1008	1	$9,\!9,\!9$	1.15	1 (11%)	10,11,11	1.26	0
1	GMA	n	108	1	$9,\!9,\!9$	1.13	1 (11%)	10,11,11	1.23	1 (10%)
1	GMA	UA	208	1	$9,\!9,\!9$	1.19	1 (11%)	10,11,11	1.14	0
1	5CR	PA	1001	1	13,14,15	1.22	2 (15%)	16,17,19	1.71	3 (18%)
1	5CR	NB	101	1	13,14,15	1.21	1 (7%)	16,17,19	1.24	2 (12%)
1	GMA	wA	208	1	9,9,9	1.18	1 (11%)	10,11,11	1.13	0
1	GMA	BB	308	1	9,9,9	1.14	1 (11%)	10,11,11	1.31	0
1	GMA	k	1108	1	9,9,9	1.14	0	10,11,11	1.22	0
1	5CR	MB	1301	1	$13,\!14,\!15$	1.23	1 (7%)	$16,\!17,\!19$	1.03	1 (6%)
1	5CR	HB	201	1	$13,\!14,\!15$	1.22	1 (7%)	$16,\!17,\!19$	1.14	1 (6%)
1	GMA	h	8	1	$9,\!9,\!9$	1.18	1 (11%)	10,11,11	1.13	0
1	5CR	q	1001	1	13,14,15	1.22	2(15%)	16,17,19	1.69	3 (18%)
1	5CR	jА	301	1	13,14,15	1.23	1 (7%)	16,17,19	1.02	1 (6%)
1	5CR	a	1	1	13,14,15	1.28	2 (15%)	16,17,19	1.74	4 (25%)
1	5CR	UA	201	1	13,14,15	1.22	1 (7%)	16,17,19	1.14	1 (6%)
1	5CR	uA	1301	1	13,14,15	1.23	1 (7%)	16,17,19	1.01	1 (6%)
1	GMA	YA	1208	1	9,9,9	1.19	1 (11%)	10,11,11	1.14	0
1	5CR	d	1	1	13,14,15	1.29	1 (7%)	16,17,19	1.73	4 (25%)
1	GMA	NB	108	1	9,9,9	1.13	1 (11%)	10,11,11	1.17	0
1	5CR	s	1201	1	13,14,15	1.24	1 (7%)	16,17,19	1.35	2 (12%)
1	GMA	7	1308	1	9,9,9	1.17	1 (11%)	10,11,11	1.24	0
1	5CR	k	1101	1	13,14,15	1.23	1 (7%)	16,17,19	1.51	2 (12%)
1	5CR	5A	1001	1	13,14,15	1.28	2 (15%)	16,17,19	1.74	4 (25%)
1	GMA	С	8	1	9,9,9	1.15	1 (11%)	10,11,11	1.26	0
1	5CR	N	1101	1	13,14,15	1.23	1 (7%)	16,17,19	1.51	2 (12%)
1	5CR	lA	1101	1	13,14,15	1.22	1 (7%)	16,17,19	1.26	2 (12%)
1	5CR	OB	201	1	13,14,15	1.21	1 (7%)	16,17,19	1.14	1 (6%)
1	GMA	S	308	1	9,9,9	1.17	1 (11%)	10,11,11	1.24	0
1	GMA	Z	308	1	9,9,9	1.16	1 (11%)	10,11,11	1.24	0
1	5CR	KB	1101	1	13,14,15	1.23	1 (7%)	16,17,19	1.24	2 (12%)
1	GMA	g	8	1	9,9,9	1.19	1 (11%)	10,11,11	1.15	0
1	5CR	j	1001	1	13,14,15	1.22	2 (15%)	16,17,19	1.69	3 (18%)
1	GMA	PB	308	1	9,9,9	1.14	1 (11%)	10,11,11	1.32	0
1	GMA	ТВ	1308	1	9,9,9	1.15	1 (11%)	10,11,11	1.33	0
1	GMA	0	1308	1	9,9,9	1.15	1 (11%)	10,11,11	1.23	0

Mal	Tune	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	les
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	5CR	1A	1301	1	13,14,15	1.21	1 (7%)	16,17,19	1.03	1 (6%)
1	5CR	S	301	1	13,14,15	1.22	2 (15%)	16,17,19	1.29	3 (18%)
1	5CR	F	1	1	13,14,15	1.22	1 (7%)	16,17,19	1.69	3 (18%)
1	5CR	KA	1201	1	13,14,15	1.24	1 (7%)	16,17,19	1.34	3 (18%)
1	GMA	рА	208	1	9,9,9	1.18	1 (11%)	10,11,11	1.13	0
1	GMA	Ο	1208	1	9,9,9	1.18	1 (11%)	10,11,11	1.27	0
1	GMA	DA	1208	1	9,9,9	1.19	1 (11%)	10,11,11	1.28	2 (20%)
1	GMA	OA	308	1	9,9,9	1.18	1 (11%)	10,11,11	1.25	0
1	5CR	g	1	1	13,14,15	1.28	2 (15%)	16,17,19	1.74	4 (25%)
1	5CR	iA	201	1	13,14,15	1.23	1 (7%)	16,17,19	1.15	1 (6%)
1	GMA	iA	208	1	9,9,9	1.19	1 (11%)	10,11,11	1.14	0
1	5CR	Н	1	1	13,14,15	1.23	2 (15%)	16,17,19	1.69	3 (18%)
1	5CR	v	201	1	13,14,15	1.24	1 (7%)	16,17,19	1.34	2 (12%)
1	GMA	QA	1108	1	9,9,9	1.15	1 (11%)	10,11,11	1.23	1 (10%)
1	5CR	gA	1301	1	13,14,15	1.22	1 (7%)	16,17,19	1.02	1 (6%)
1	GMA	dA	1008	1	9,9,9	1.18	1 (11%)	10,11,11	1.15	0
1	GMA	GA	208	1	9,9,9	1.17	1 (11%)	10,11,11	1.27	2 (20%)
1	GMA	ТА	108	1	9,9,9	1.15	1 (11%)	10,11,11	1.19	0
1	GMA	ZA	1308	1	9,9,9	1.15	1 (11%)	10,11,11	1.32	0
1	5CR	vA	101	1	13,14,15	1.21	1 (7%)	16,17,19	1.26	2 (12%)
1	GMA	mA	1208	1	9,9,9	1.19	1 (11%)	10,11,11	1.14	0
1	GMA	4A	308	1	9,9,9	1.14	1 (11%)	10,11,11	1.30	0
1	5CR	r	1101	1	13,14,15	1.22	1 (7%)	16,17,19	1.50	2 (12%)
1	GMA	F	8	1	9,9,9	1.14	1 (11%)	10,11,11	1.26	0
1	GMA	Y	208	1	9,9,9	1.18	1 (11%)	10,11,11	1.27	2 (20%)
1	GMA	t	1308	1	9,9,9	1.17	1 (11%)	10,11,11	1.24	0
1	5CR	ТА	101	1	13,14,15	1.21	1 (7%)	16,17,19	1.25	2 (12%)
1	GMA	f	8	1	9,9,9	1.20	1 (11%)	10,11,11	1.15	0
1	5CR	nA	1301	1	13,14,15	1.23	1 (7%)	16,17,19	1.02	1 (6%)
1	5CR	9A	101	1	13,14,15	1.23	1 (7%)	16,17,19	1.25	2 (12%)
1	GMA	А	8	1	9,9,9	1.14	0	10,11,11	1.24	0
1	5CR	t	1301	1	13,14,15	1.22	2(15%)	16,17,19	1.28	3 (18%)
1	GMA	LA	1308	1	9,9,9	1.17	1 (11%)	10,11,11	1.24	0
1	5CR	4A	301	1	13,14,15	1.22	1 (7%)	16,17,19	1.02	1 (6%)
1	5CR	RA	1201	1	13,14,15	1.24	1 (7%)	16,17,19	1.34	2 (12%)

Mal	Type	Chain	Dog	Link	Bo	ond leng	ths	B	ond ang	les
10101	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	5CR	0A	1201	1	13,14,15	1.22	1 (7%)	16,17,19	1.15	1 (6%)
1	5CR	7A	1201	1	13,14,15	1.23	1 (7%)	16,17,19	1.14	1 (6%)
1	GMA	RA	1208	1	$9,\!9,\!9$	1.18	1 (11%)	10,11,11	1.28	2 (20%)
1	5CR	М	1001	1	13,14,15	1.22	1 (7%)	16,17,19	1.70	3 (18%)
1	5CR	R	201	1	13,14,15	1.24	2(15%)	16,17,19	1.34	2 (12%)
1	5CR	р	301	1	13,14,15	1.22	2 (15%)	16,17,19	1.28	3 (18%)
1	5CR	е	1	1	13,14,15	1.29	2 (15%)	16,17,19	1.73	4 (25%)
1	GMA	nA	1308	1	9,9,9	1.14	1 (11%)	10,11,11	1.33	0
1	GMA	9A	108	1	9,9,9	1.15	1 (11%)	10,11,11	1.19	0
1	GMA	IB	308	1	9,9,9	1.16	1 (11%)	10,11,11	1.34	0
1	GMA	u	108	1	9,9,9	1.14	0	10,11,11	1.22	0
1	5CR	J	101	1	$13,\!14,\!15$	1.22	1 (7%)	16,17,19	1.51	2 (12%)
1	5CR	А	1	1	13,14,15	1.22	1 (7%)	16,17,19	1.71	3 (18%)
1	GMA	MA	108	1	9,9,9	1.15	1 (11%)	10,11,11	1.23	0
1	GMA	3A	208	1	9,9,9	1.18	1 (11%)	10,11,11	1.13	0
1	GMA	EB	1208	1	9,9,9	1.18	1 (11%)	10,11,11	1.13	0
1	GMA	uA	1308	1	9,9,9	1.14	1 (11%)	10,11,11	1.31	0
1	5CR	rA	1001	1	13,14,15	1.29	2 (15%)	16,17,19	1.73	4 (25%)
1	GMA	0A	1208	1	9,9,9	1.18	1 (11%)	10,11,11	1.14	0
1	GMA	1	1208	1	9,9,9	1.18	1 (11%)	10,11,11	1.27	2 (20%)
1	5CR	JB	1001	1	13,14,15	1.28	1 (7%)	16,17,19	1.74	4 (25%)
1	GMA	5A	1008	1	9,9,9	1.19	1 (11%)	10,11,11	1.15	0
1	GMA	D	8	1	9,9,9	1.16	0	10,11,11	1.26	0
1	5CR	QB	1001	1	$13,\!14,\!15$	1.28	1 (7%)	16,17,19	1.74	4 (25%)
1	GMA	a	8	1	$9,\!9,\!9$	1.18	1 (11%)	10,11,11	1.14	0
1	5CR	NA	201	1	13,14,15	1.24	1 (7%)	16,17,19	1.34	2 (12%)
1	GMA	MB	1308	1	9,9,9	1.15	1 (11%)	10,11,11	1.33	0
1	GMA	8A	1308	1	9,9,9	1.14	1 (11%)	10,11,11	1.31	0
1	5CR	0	201	1	13,14,15	1.24	1 (7%)	16,17,19	1.34	2 (12%)
1	5CR	cA	301	1	13,14,15	1.22	1 (7%)	16,17,19	1.01	1 (6%)
1	GMA	m	1308	1	9,9,9	1.17	1 (11%)	10,11,11	1.24	0
1	GMA	1A	1308	1	9,9,9	1.14	1 (11%)	10,11,11	1.32	0
1	5CR	kA	1001	1	13,14,15	1.28	1 (7%)	16,17,19	1.73	4 (25%)
1	5CR	D	1	1	13,14,15	1.22	2 (15%)	16,17,19	1.70	3 (18%)
1	5CR	oA	101	1	13,14,15	1.21	1 (7%)	16,17,19	1.25	2 (12%)

Mol	Tuno	Chain	Dog	Link	Bond lengths		B	ond ang	gles	
IVIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	GMA	4	1008	1	$9,\!9,\!9$	1.15	1 (11%)	10,11,11	1.27	1 (10%)
1	GMA	8	108	1	9,9,9	1.13	1 (11%)	10,11,11	1.22	0
1	GMA	tA	1208	1	9,9,9	1.18	1 (11%)	10,11,11	1.13	0
1	5CR	PB	301	1	13,14,15	1.22	1 (7%)	16,17,19	1.03	1 (6%)
1	GMA	Х	108	1	9,9,9	1.13	0	10,11,11	1.22	0
1	GMA	с	8	1	9,9,9	1.18	1 (11%)	10,11,11	1.14	0
1	5CR	L	301	1	13,14,15	1.23	2 (15%)	16,17,19	1.28	3 (18%)
1	5CR	8A	1301	1	13,14,15	1.22	1 (7%)	16,17,19	1.02	1 (6%)
1	5CR	Z	301	1	13,14,15	1.24	2 (15%)	16,17,19	1.27	3 (18%)
1	5CR	FB	1301	1	13,14,15	1.22	1 (7%)	16,17,19	1.03	1 (6%)
1	GMA	aA	108	1	9,9,9	1.15	1 (11%)	10,11,11	1.21	0
1	5CR	3	301	1	13,14,15	1.24	2 (15%)	16,17,19	1.29	3 (18%)
1	GMA	QB	1008	1	9,9,9	1.19	1 (11%)	10,11,11	1.15	0
1	GMA	Н	8	1	9,9,9	1.15	1 (11%)	10,11,11	1.26	0
1	5CR	Ι	1	1	13,14,15	1.22	1 (7%)	16,17,19	1.71	3 (18%)
1	GMA	oA	108	1	9,9,9	1.15	1 (11%)	10,11,11	1.18	0
1	5CR	XA	1101	1	13,14,15	1.21	1 (7%)	16,17,19	1.25	2 (12%)
1	5CR	MA	101	1	13,14,15	1.23	1 (7%)	16,17,19	1.51	2 (12%)
1	5CR	1	101	1	13,14,15	1.23	1 (7%)	16,17,19	1.51	2 (12%)
1	5CR	2A	101	1	13,14,15	1.21	1 (7%)	16,17,19	1.25	2 (12%)
1	GMA	jА	308	1	9,9,9	1.15	1 (11%)	10,11,11	1.34	0
1	GMA	OB	208	1	9,9,9	1.20	1 (11%)	10,11,11	1.13	0
1	GMA	r	1108	1	9,9,9	1.13	1 (11%)	10,11,11	1.22	1 (10%)
1	GMA	9	208	1	9,9,9	1.20	1 (11%)	10,11,11	1.28	2 (20%)
1	5CR	FA	101	1	13,14,15	1.23	1 (7%)	16,17,19	1.51	2 (12%)
1	GMA	NA	208	1	9,9,9	1.19	1 (11%)	10,11,11	1.29	2 (20%)
1	GMA	K	208	1	9,9,9	1.17	1 (11%)	10,11,11	1.26	0
1	GMA	Е	8	1	9,9,9	1.17	1 (11%)	10,11,11	1.26	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	GMA	AA	308	1	-	1/9/9/9	-

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	J	1	I J

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	5CR	sA	1101	1	-	1/9/10/12	0/1/1/1
1	5CR	tA	1201	1	-	2/9/10/12	0/1/1/1
1	5CR	f	1	1	-	6/9/10/12	0/1/1/1
1	5CR	AB	201	1	-	2/9/10/12	0/1/1/1
1	5CR	CB	1001	1	-	6/9/10/12	0/1/1/1
1	5CR	h	1	1	-	6/9/10/12	0/1/1/1
1	5CR	RB	1101	1	-	1/9/10/12	0/1/1/1
1	GMA	V	1208	1	-	1/9/9/9	-
1	GMA	1	108	1	-	3/9/9/9	-
1	GMA	5	1108	1	-	3/9/9/9	-
1	5CR	9	201	1	-	4/9/10/12	0/1/1/1
1	GMA	FA	108	1	_	3/9/9/9	-
1	GMA	VA	308	1	-	0/9/9/9	-
1	GMA	fA	1208	1	_	4/9/9/9	-
1	GMA	vA	108	1	-	0/9/9/9	-
1	5CR	5	1101	1	-	2/9/10/12	0/1/1/1
1	5CR	bA	201	1	-	2/9/10/12	0/1/1/1
1	GMA	В	8	1	-	1/9/9/9	-
1	5CR	n	101	1	-	2/9/10/12	0/1/1/1
1	5CR	GB	101	1	-	1/9/10/12	0/1/1/1
1	5CR	U	1101	1	-	2/9/10/12	0/1/1/1
1	GMA	V	208	1	-	1/9/9/9	-
1	GMA	2A	108	1	-	0/9/9/9	-
1	5CR	Р	1301	1	-	3/9/10/12	0/1/1/1
1	5CR	YA	1201	1	-	2/9/10/12	0/1/1/1
1	GMA	FB	1308	1	_	0/9/9/9	-
1	5CR	zA	1101	1	-	1/9/10/12	0/1/1/1
1	5CR	LB	1201	1	-	2/9/10/12	0/1/1/1
1	GMA	Z	1208	1	-	1/9/9/9	-
1	5CR	6	1201	1	-	4/9/10/12	0/1/1/1
1	5CR	X	1001	1	-	0/9/10/12	0/1/1/1
1	5CR	с	1	1	-	6/9/10/12	0/1/1/1
1	GMA	IA	1008	1	-	1/9/9/9	-
1	GMA	N	1108	1	-	3/9/9/9	-
1	5CR	8	101	1	-	2/9/10/12	0/1/1/1
1	GMA	Ι	8	1	-	1/9/9/9	-
1	GMA	bA	208	1	-	4/9/9/9	-

\mathbf{Mol}	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
1	GMA	b	8	1	-	8/9/9/9	-
1	GMA	KB	1108	1	-	0/9/9/9	-
1	GMA	RB	1108	1	-	0/9/9/9	-
1	GMA	2	208	1	-	1/9/9/9	-
1	5CR	1	1201	1	-	4/9/10/12	0/1/1/1
1	5CR	У	1101	1	-	2/9/10/12	0/1/1/1
1	GMA	W	308	1	-	1/9/9/9	-
1	GMA	R	208	1	-	1/9/9/9	-
1	5CR	AA	301	1	-	3/9/10/12	0/1/1/1
1	5CR	fA	1201	1	-	2/9/10/12	0/1/1/1
1	5CR	BB	301	1	-	4/9/10/12	0/1/1/1
1	GMA	CB	1008	1	-	8/9/9/9	-
1	GMA	BA	1008	1	-	1/9/9/9	-
1	5CR	ΤB	1301	1	-	4/9/10/12	0/1/1/1
1	5CR	EA	1301	1	-	3/9/10/12	0/1/1/1
1	5CR	3A	201	1	-	2/9/10/12	0/1/1/1
1	GMA	KA	1208	1	-	1/9/9/9	-
1	5CR	Е	1	1	-	0/9/10/12	0/1/1/1
1	5CR	W	1301	1	-	3/9/10/12	0/1/1/1
1	GMA	XA	1108	1	-	0/9/9/9	-
1	GMA	6	1208	1	-	1/9/9/9	-
1	5CR	Z	1201	1	-	4/9/10/12	0/1/1/1
1	GMA	zA	1108	1	-	0/9/9/9	-
1	5CR	i	1	1	-	6/9/10/12	0/1/1/1
1	GMA	xA	308	1	-	0/9/9/9	-
1	GMA	i	8	1	-	8/9/9/9	-
1	5CR	Q	101	1	-	2/9/10/12	0/1/1/1
1	5CR	В	1	1	-	0/9/10/12	0/1/1/1
1	5CR	4	1001	1	-	0/9/10/12	0/1/1/1
1	5CR	SA	1301	1	-	3/9/10/12	0/1/1/1
1	5CR	hA	101	1	-	1/9/10/12	0/1/1/1
1	5CR	u	101	1	-	2/9/10/12	0/1/1/1
1	GMA	DB	1108	1	-	0/9/9/9	-
1	5CR	С	1	1	-	0/9/10/12	0/1/1/1
1	5CR	SB	1201	1		2/9/10/12	0/1/1/1
1	5CR	V	1201	1	-	4/9/10/12	0/1/1/1
1	5CR	mA	1201	1	_	$\frac{2}{9}/10/12$	0/1/1/1

Continued on next page...

1

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
• • • • • • • • • • • •	J	P · · · · · · · · · · · · · · · · · · ·	r - g - · · ·

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	GMA	CA	1108	1	-	3/9/9/9	-
1	5CR	0	1301	1	-	3/9/10/12	0/1/1/1
1	GMA	sA	1108	1	-	0/9/9/9	-
1	5CR	xA	301	1	-	4/9/10/12	0/1/1/1
1	5CR	JA	1101	1	-	2/9/10/12	0/1/1/1
1	5CR	W	301	1	-	3/9/10/12	0/1/1/1
1	5CR	IB	301	1	-	4/9/10/12	0/1/1/1
1	GMA	J	108	1	-	3/9/9/9	-
1	5CR	GA	201	1	-	4/9/10/12	0/1/1/1
1	GMA	EA	1308	1	-	1/9/9/9	-
1	5CR	DB	1101	1	-	1/9/10/12	0/1/1/1
1	5CR	CA	1101	1	-	2/9/10/12	0/1/1/1
1	GMA	6A	1108	1	-	0/9/9/9	-
1	GMA	у	1108	1	-	3/9/9/9	-
1	5CR	рА	201	1	-	2/9/10/12	0/1/1/1
1	5CR	EB	1201	1	-	2/9/10/12	0/1/1/1
1	GMA	d	8	1	-	8/9/9/9	-
1	GMA	0	208	1	-	1/9/9/9	-
1	5CR	0	1201	1	-	4/9/10/12	0/1/1/1
1	5CR	Х	101	1	-	2/9/10/12	0/1/1/1
1	GMA	gA	1308	1	-	0/9/9/9	-
1	GMA	р	308	1	-	1/9/9/9	-
1	GMA	3	308	1	-	1/9/9/9	-
1	GMA	HA	308	1	-	1/9/9/9	-
1	5CR	2	201	1	-	4/9/10/12	0/1/1/1
1	5CR	yА	1001	1	-	6/9/10/12	0/1/1/1
1	GMA	S	1208	1	-	1/9/9/9	-
1	GMA	lA	1108	1	-	0/9/9/9	-
1	5CR	OA	301	1	-	3/9/10/12	0/1/1/1
1	GMA	7A	1208	1	-	4/9/9/9	-
1	5CR	BA	1001	1	-	0/9/10/12	0/1/1/1
1	GMA	kA	1008	1	-	8/9/9/9	-
1	GMA	AB	208	1	-	4/9/9/9	-
1	5CR	wA	201	1	-	2/9/10/12	0/1/1/1
1	5CR	DA	1201	1	-	4/9/10/12	0/1/1/1
1	5CR	m	1301	1	-	3/9/10/12	0/1/1/1
1	5CR	6A	1101	1	-	1/9/10/12	0/1/1/1

α $\cdot \cdot$ \cdot	c		
Continued	from	previous	page

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	GMA	Р	1308	1	-	1/9/9/9	-
1	GMA	L	308	1	-	1/9/9/9	-
1	GMA	х	1008	1	-	1/9/9/9	-
1	5CR	K	201	1	-	4/9/10/12	0/1/1/1
1	5CR	aA	101	1	-	1/9/10/12	0/1/1/1
1	GMA	qA	308	1	-	0/9/9/9	-
1	GMA	HB	208	1	-	4/9/9/9	-
1	GMA	е	8	1	-	8/9/9/9	-
1	GMA	Т	1008	1	-	1/9/9/9	-
1	GMA	LB	1208	1	-	4/9/9/9	-
1	5CR	НА	301	1	_	3/9/10/12	0/1/1/1
1	GMA	JB	1008	1	-	8/9/9/9	-
1	GMA	G	8	1	-	1/9/9/9	-
1	5CR	VA	301	1	-	4/9/10/12	0/1/1/1
1	GMA	hA	108	1	-	0/9/9/9	-
1	5CR	WA	1001	1	_	6/9/10/12	0/1/1/1
1	5CR	dA	1001	1	-	6/9/10/12	0/1/1/1
1	GMA	eA	1108	1	-	0/9/9/9	-
1	GMA	PA	1008	1	-	1/9/9/9	-
1	5CR	qA	301	1	-	4/9/10/12	0/1/1/1
1	GMA	М	1008	1	-	1/9/9/9	-
1	GMA	SB	1208	1	-	4/9/9/9	-
1	GMA	q	1008	1	_	1/9/9/9	-
1	GMA	cA	308	1	-	0/9/9/9	-
1	5CR	QA	1101	1	-	2/9/10/12	0/1/1/1
1	GMA	yА	1008	1	-	8/9/9/9	-
1	GMA	SA	1308	1	-	1/9/9/9	-
1	5CR	G	1	1	-	0/9/10/12	0/1/1/1
1	5CR	IA	1001	1	-	0/9/10/12	0/1/1/1
1	GMA	JA	1108	1	-	3/9/9/9	-
1	GMA	U	1108	1	-	3/9/9/9	-
1	5CR	Т	1001	1	-	0/9/10/12	0/1/1/1
1	GMA	WA	1008	1	-	8/9/9/9	-
1	GMA	rA	1008	1	-	8/9/9/9	-
1	GMA	GB	108	1	-	0/9/9/9	-
1	5CR	LA	1301	1	-	3/9/10/12	0/1/1/1
1	5CR	Y	201	1	-	4/9/10/12	0/1/1/1
1	5CR	b	1	1	-	6/9/10/12	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	5CR	ZA	1301	1	-	4/9/10/12	0/1/1/1
1	5CR	eA	1101	1	-	1/9/10/12	0/1/1/1
1	GMA	Q	108	1	-	3/9/9/9	-
1	GMA	W	1308	1	-	1/9/9/9	-
1	5CR	7	1301	1	-	3/9/10/12	0/1/1/1
1	GMA	j	1008	1	-	1/9/9/9	-
1	GMA	n	108	1	-	3/9/9/9	-
1	GMA	UA	208	1	-	4/9/9/9	-
1	5CR	PA	1001	1	-	0/9/10/12	0/1/1/1
1	5CR	NB	101	1	-	1/9/10/12	0/1/1/1
1	GMA	wA	208	1	-	4/9/9/9	-
1	GMA	BB	308	1	-	0/9/9/9	-
1	GMA	k	1108	1	-	3/9/9/9	-
1	5CR	MB	1301	1	-	4/9/10/12	0/1/1/1
1	5CR	HB	201	1	-	2/9/10/12	0/1/1/1
1	GMA	h	8	1	-	8/9/9/9	-
1	5CR	q	1001	1	-	0/9/10/12	0/1/1/1
1	5CR	jА	301	1	-	4/9/10/12	0/1/1/1
1	5CR	a	1	1	-	6/9/10/12	0/1/1/1
1	5CR	UA	201	1	-	2/9/10/12	0/1/1/1
1	5CR	uA	1301	1	-	4/9/10/12	0/1/1/1
1	GMA	YA	1208	1	-	4/9/9/9	-
1	5CR	d	1	1	-	6/9/10/12	0/1/1/1
1	GMA	NB	108	1	-	0/9/9/9	-
1	5CR	s	1201	1	-	4/9/10/12	0/1/1/1
1	GMA	7	1308	1	-	1/9/9/9	-
1	5CR	k	1101	1	-	2/9/10/12	0/1/1/1
1	5CR	5A	1001	1	-	6/9/10/12	0/1/1/1
1	GMA	С	8	1	-	1/9/9/9	-
1	5CR	N	1101	1	-	2/9/10/12	0/1/1/1
1	5CR	lA	1101	1	-	1/9/10/12	0/1/1/1
1	5CR	OB	201	1	-	2/9/10/12	0/1/1/1
1	GMA	S	308	1	-	1/9/9/9	-
1	GMA	Ζ	308	1	-	1/9/9/9	-
1	5CR	KB	1101	1	-	1/9/10/12	0/1/1/1
1	GMA	g	8	1	-	8/9/9/9	-
1	5CR	j	1001	1	-	0/9/10/12	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	GMA	PB	308	1	-	0/9/9/9	-
1	GMA	TB	1308	1	-	0/9/9/9	-
1	GMA	0	1308	1	-	1/9/9/9	-
1	5CR	1A	1301	1	-	4/9/10/12	0/1/1/1
1	5CR	S	301	1	-	3/9/10/12	0/1/1/1
1	5CR	F	1	1	-	0/9/10/12	0/1/1/1
1	5CR	KA	1201	1	-	4/9/10/12	0/1/1/1
1	GMA	рА	208	1	-	4/9/9/9	-
1	GMA	0	1208	1	-	1/9/9/9	-
1	GMA	DA	1208	1	-	1/9/9/9	-
1	GMA	OA	308	1	-	1/9/9/9	-
1	5CR	g	1	1	-	6/9/10/12	0/1/1/1
1	5CR	iA	201	1	-	2/9/10/12	0/1/1/1
1	GMA	iA	208	1	-	4/9/9/9	-
1	5CR	Н	1	1	-	0/9/10/12	0/1/1/1
1	5CR	v	201	1	-	4/9/10/12	0/1/1/1
1	GMA	QA	1108	1	-	3/9/9/9	-
1	5CR	gA	1301	1	-	4/9/10/12	0/1/1/1
1	GMA	dA	1008	1	-	8/9/9/9	-
1	GMA	GA	208	1	-	1/9/9/9	-
1	GMA	TA	108	1	-	0/9/9/9	-
1	GMA	ZA	1308	1	-	0/9/9/9	-
1	5CR	vA	101	1	-	1/9/10/12	0/1/1/1
1	GMA	mA	1208	1	-	4/9/9/9	-
1	GMA	4A	308	1	-	0/9/9/9	-
1	5CR	r	1101	1	-	2/9/10/12	0/1/1/1
1	GMA	F	8	1	-	1/9/9/9	-
1	GMA	Y	208	1	-	1/9/9/9	-
1	GMA	t	1308	1	-	1/9/9/9	-
1	5CR	TA	101	1	-	1/9/10/12	0/1/1/1
1	GMA	f	8	1	-	8/9/9/9	-
1	5CR	nA	1301	1	-	4/9/10/12	0/1/1/1
1	5CR	9A	101	1	-	1/9/10/12	0/1/1/1
1	GMA	А	8	1	-	1/9/9/9	-
1	5CR	t	1301	1	-	3/9/10/12	0/1/1/1
1	GMA	LA	1308	1	-	1/9/9/9	-
1	5CR	4A	301	1	-	4/9/10/12	0/1/1/1
1	5CR	RA	1201	1	-	4/9/10/12	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	5CR	0A	1201	1	-	2/9/10/12	0/1/1/1
1	5CR	7A	1201	1	-	2/9/10/12	0/1/1/1
1	GMA	RA	1208	1	_	1/9/9/9	-
1	5CR	М	1001	1	-	0/9/10/12	0/1/1/1
1	5CR	R	201	1	-	4/9/10/12	0/1/1/1
1	5CR	р	301	1	-	3/9/10/12	0/1/1/1
1	5CR	е	1	1	-	6/9/10/12	0/1/1/1
1	GMA	nA	1308	1	-	0/9/9/9	-
1	GMA	9A	108	1	-	0/9/9/9	-
1	GMA	IB	308	1	-	0/9/9/9	-
1	GMA	u	108	1	-	3/9/9/9	-
1	5CR	J	101	1	-	2/9/10/12	0/1/1/1
1	5CR	А	1	1	-	0/9/10/12	0/1/1/1
1	GMA	MA	108	1	-	3/9/9/9	-
1	GMA	3A	208	1	-	4/9/9/9	-
1	GMA	EB	1208	1	-	4/9/9/9	-
1	GMA	uA	1308	1	-	0/9/9/9	-
1	5CR	rA	1001	1	-	6/9/10/12	0/1/1/1
1	GMA	0A	1208	1	-	4/9/9/9	-
1	GMA	1	1208	1	-	1/9/9/9	-
1	5CR	JB	1001	1	-	6/9/10/12	0/1/1/1
1	GMA	5A	1008	1	-	8/9/9/9	-
1	GMA	D	8	1	-	1/9/9/9	-
1	5CR	QB	1001	1	-	6/9/10/12	0/1/1/1
1	GMA	a	8	1	-	8/9/9/9	-
1	5CR	NA	201	1	-	4/9/10/12	0/1/1/1
1	GMA	MB	1308	1	-	0/9/9/9	-
1	GMA	8A	1308	1	-	0/9/9/9	-
1	5CR	0	201	1	-	4/9/10/12	0/1/1/1
1	5CR	cA	301	1	-	4/9/10/12	0/1/1/1
1	GMA	m	1308	1	-	1/9/9/9	-
1	GMA	1A	1308	1	-	0/9/9/9	-
1	5CR	kA	1001	1	-	6/9/10/12	0/1/1/1
1	5CR	D	1	1	-	0/9/10/12	0/1/1/1
1	5CR	oA	101	1	-	1/9/10/12	0/1/1/1
1	GMA	4	1008	1	-	1/9/9/9	-
1	GMA	8	108	1	-	3/9/9/9	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	GMA	tA	1208	1	-	4/9/9/9	-
1	5CR	PB	301	1	-	4/9/10/12	0/1/1/1
1	GMA	Х	108	1	-	3/9/9/9	-
1	GMA	с	8	1	-	8/9/9/9	-
1	5CR	L	301	1	-	3/9/10/12	0/1/1/1
1	5CR	8A	1301	1	-	4/9/10/12	0/1/1/1
1	5CR	Z	301	1	-	3/9/10/12	0/1/1/1
1	5CR	FB	1301	1	-	4/9/10/12	0/1/1/1
1	GMA	aA	108	1	-	0/9/9/9	-
1	5CR	3	301	1	-	3/9/10/12	0/1/1/1
1	GMA	QB	1008	1	-	8/9/9/9	-
1	GMA	Н	8	1	-	1/9/9/9	-
1	5CR	Ι	1	1	-	0/9/10/12	0/1/1/1
1	GMA	oA	108	1	-	0/9/9/9	-
1	5CR	XA	1101	1	-	1/9/10/12	0/1/1/1
1	5CR	MA	101	1	-	2/9/10/12	0/1/1/1
1	5CR	1	101	1	-	2/9/10/12	0/1/1/1
1	5CR	2A	101	1	-	1/9/10/12	0/1/1/1
1	GMA	jА	308	1	-	0/9/9/9	-
1	GMA	OB	208	1	-	4/9/9/9	-
1	GMA	r	1108	1	-	3/9/9/9	-
1	GMA	9	208	1	-	1/9/9/9	-
1	5CR	FA	101	1	-	2/9/10/12	0/1/1/1
1	GMA	NA	208	1	-	1/9/9/9	-
1	GMA	K	208	1	-	1/9/9/9	-
1	GMA	Е	8	1	-	1/9/9/9	-

The worst 5 of 322 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	d	1	5CR	CAL-N	3.50	1.46	1.34
1	е	1	5CR	CAL-N	3.49	1.46	1.34
1	rA	1001	5CR	CAL-N	3.49	1.46	1.34
1	yА	1001	5CR	CAL-N	3.48	1.46	1.34
1	i	1	5CR	CAL-N	3.48	1.46	1.34

The worst 5 of 363 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	b	1	5CR	CAA-CAL-N	5.15	124.81	116.10
1	f	1	5CR	CAA-CAL-N	5.14	124.80	116.10
1	5A	1001	5CR	CAA-CAL-N	5.13	124.79	116.10
1	a	1	5CR	CAA-CAL-N	5.13	124.79	116.10
1	WA	1001	5CR	CAA-CAL-N	5.13	124.79	116.10

There are no chirality outliers.

5 of 720 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	J	101	5CR	C-CA-N-CAL
1	J	101	5CR	N-CA-CB-CG
1	Κ	201	5CR	N-CA-CB-CG
1	L	301	5CR	N-CA-CB-CG
1	L	301	5CR	C-CA-CB-CG

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-23486. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.273. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 153 nm^3 ; this corresponds to an approximate mass of 138 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.294 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-23486 and PDB model 7LQH. Per-residue inclusion information can be found in section 3 on page 17.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.273 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.273).

9.4 Atom inclusion (i)

At the recommended contour level, 68% of all backbone atoms, 42% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.273) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.4240	0.4250
0	0.4760	0.4280
0A	0.3810	0.4720
1	0.4640	0.4080
1A	0.3570	0.3700
2	0.5120	0.4480
2A	0.3810	0.4170
3	0.5000	0.4400
3A	0.4170	0.4720
4	0.4290	0.4290
4A	0.3690	0.3700
5	0.4410	0.4020
5A	0.3930	0.4440
6	0.5120	0.4570
6A	0.3570	0.4020
7	0.4880	0.4310
7A	0.3810	0.4510
8	0.4640	0.4030
8A	0.3330	0.3940
9	0.5000	0.4580
9A	0.3570	0.4260
А	0.4170	0.4240
AA	0.5240	0.4250
AB	0.4170	0.4470
В	0.4290	0.4130
BA	0.4050	0.3970
BB	0.3690	0.3980
С	0.4290	0.4190
CA	0.4170	0.3950
CB	0.3810	0.4370
D	0.4170	0.4170
DA	0.5590	0.4420
DB	0.3690	0.4080
E	0.4290	0.4240
EA	0.5000	0.4400

0.0 <0.0

1.0

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
EB	0.3930	0.4530
F	0.4170	0.4240
FA	0.4410	0.4000
FB	0.3570	0.3740
G	0.4640	0.4260
GA	0.5240	0.4540
GB	0.3570	0.4140
Н	0.4290	0.4210
НА	0.5120	0.4470
HB	0.4290	0.4600
Ι	0.4290	0.4190
IA	0.4290	0.4200
IB	0.3810	0.3890
J	0.4170	0.4060
JA	0.4410	0.3990
JB	0.3930	0.4170
К	0.5000	0.4440
KA	0.4760	0.4550
KB	0.3570	0.4100
L	0.5000	0.4450
LA	0.5000	0.4420
LB	0.4170	0.4380
M	0.4290	0.4120
MA	0.4410	0.3900
MB	0.3330	0.3890
N	0.4520	0.3940
NA	0.5240	0.4590
NB	0.3810	0.4100
0	0.4880	0.4430
OA	0.5000	0.4220
OB	0.4050	0.4590
P	0.5000	0.4450
PA	0.4170	0.4180
PB	0.3810	0.4000
Q	0.4410	0.4040
QA	0.4170	0.3850
QB	0.4170	0.4390
R	0.4760	0.4560
RA	0.4880	0.4450
RB	0.3570	0.3950
S	0.4760	0.4340
SA	0.5240	0.4480

Continued on next page...

Chain	Atom inclusion	Q-score
SB	0.3810	0.4610
Т	0.4410	0.4230
ТА	0.3690	0.4300
ТВ	0.3570	0.3750
U	0.4290	0.4010
UA	0.3810	0.4770
V	0.5000	0.4470
VA	0.3810	0.3840
W	0.4880	0.4290
WA	0.3810	0.4290
Х	0.4410	0.3970
XA	0.3930	0.4050
Y	0.5000	0.4430
YA	0.4050	0.4580
Z	0.5120	0.4230
ZA	0.3570	0.3800
a	0.3930	0.4520
aA	0.3810	0.4120
b	0.4050	0.4480
bA	0.4290	0.4580
с	0.4290	0.4450
cA	0.3810	0.3910
d	0.4170	0.4490
dA	0.3570	0.4400
е	0.3810	0.4410
eA	0.3570	0.4220
f	0.3810	0.4550
fA	0.3810	0.4560
g	0.4170	0.4590
gA	0.3450	0.3690
h	0.4290	0.4500
hA	0.3690	0.4140
i	0.4410	0.4660
iA	0.4170	0.4540
j	0.4290	0.4170
jA	0.3930	0.3680
k	0.4050	0.3840
kA	0.3810	0.4440
1	0.5000	0.4560
lA	0.3810	0.3960
m	0.5120	0.4470
mA	0.3690	0.4550

Continued from previous page...

Continued on next page...

Chain	Atom inclusion	Q-score
n	0.4290	0.4070
nA	0.3810	0.3840
0	0.5000	0.4560
oA	0.3570	0.4040
р	0.5120	0.4470
pА	0.4170	0.4580
q	0.4170	0.4150
qA	0.3930	0.3860
r	0.4410	0.3930
rA	0.3930	0.4360
S	0.5000	0.4430
sA	0.3570	0.4020
t	0.4640	0.4350
tA	0.3690	0.4600
u	0.4410	0.3940
uA	0.3330	0.3710
V	0.5000	0.4390
vA	0.3690	0.4240
W	0.5360	0.4180
wA	0.3810	0.4590
X	0.4290	0.4060
xA	0.3810	0.3930
У	0.4520	0.3930
yA	0.3570	0.4460
Z	0.4640	0.4490
zA	0.3450	0.4120

Continued from previous page...

