

wwPDB EM Validation Summary Report (i)

Feb 24, 2024 – 09:57 PM EST

PDB ID	:	7M4X
EMDB ID	:	EMD-23669
Title	:	A. baumannii Ribosome-Eravacycline complex: P-site tRNA 70S
Authors	:	Morgan, C.E.; Yu, E.W.
Deposited on	:	2021-03-22
Resolution	:	2.66 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	$0.0.1. m{dev}70$
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.66 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	0	51	96%	•
2	1	44	100%	
3	2	64	98%	•
4	3	38	100%	
5	А	2918	77% 16	% 6%
6	В	115	84%	16%
7	С	274	99%	
8	D	212	99%	•

Continued on next page...

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
9	Е	200	100%	
10	F	178	98%	·
11	G	177	97%	•••
12	Н	148	31% 41% 59%	
13	Ι	142	• 100%	
14	J	122	• 100%	
15	Κ	146	99%	
16	L	137	•• 99%	·
17	М	125	9 5%	5%
18	Ν	116	16%	·
19	Ο	122	95%	5%
20	Р	119	● 98%	·
21	Q	103	100%	
22	R	109	100%	
23	S	106	10%	14%
24	Т	105	98%	·
25	U	98	9%	
26	V	85	96%	·
27	W	78	<u>6%</u> 99%	
28	Х	65	92%	8%
29	Y	58	5%	
30	Z	61	90%	10%
31	a	1544	84%	15% •
32	b	250	33%	10%
33	с	250	86%	14%

Continued on next page...

Mol	Chain	Length	Quality of chain	
34	d	208	5%	
35	е	165	94%	6%
36	f	127	81%	18%
37	g	156	97%	•
38	h	131	99%	•
39	i	128	98%	• •
40	j	103	• 96%	•
41	k	128	91%	9%
42	1	124	98%	••
43	m	118	97%	•
44	n	101	99%	•
45	0	89	99%	•
46	р	101	81%	19%
47	q	85	93%	7%
48	r	75	69% 31	%
49	s	91	90%	10%
50	t	88	98%	•
51	u	71	89%	11%
52	v	77	61% 34%	5%
53	W	3	100%	

Continued from previous page...

2 Entry composition (i)

There are 57 unique types of molecules in this entry. The entry contains 139446 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	0	49	Total 409	C 263	N 74	O 70	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 2 is a protein called 50S ribosomal protein L34.

	es	Atoms					Irace
2 1 44	Total	C 222	N 85	0 54	${ m S}_2$	0	0

• Molecule 3 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	63	Total 509	C 319	N 110	O 76	${f S}$ 4	0	0

• Molecule 4 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	3	38	Total 295	C 179	N 64	0 48	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 5 is a RNA chain called 23s ribosomal RNA.

Mol	Chain	Residues		-	AltConf	Trace			
5	А	2730	Total 58566	C 26143	N 10721	O 18972	Р 2730	0	0

• Molecule 6 is a RNA chain called 5s ribosomal RNA.

Mol	Chain	Residues		At	AltConf	Trace			
6	В	115	Total 2450	C 1095	N 440	O 800	Р 115	0	0

• Molecule 7 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	С	272	Total 2111	C 1302	N 436	O 365	S 8	0	0

• Molecule 8 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	D	210	Total 1566	C 969	N 296	O 298	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	Е	200	Total 1516	C 952	N 281	0 278	${ m S}{ m 5}$	0	0

• Molecule 10 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	F	174	Total 1370	C 871	N 243	0 248	S 8	0	0

• Molecule 11 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	G	174	Total 1318	C 832	N 236	0 249	S 1	0	0

• Molecule 12 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
12	Н	60	Total 458	C 287	N 84	O 86	S 1	0	0

• Molecule 13 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	Ι	142	Total 1125	C 718	N 200	O 203	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 14 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	J	122	Total 946	C 592	N 180	0 169	${f S}{5}$	0	0

• Molecule 15 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
15	K	144	Total 1071	C 663	N 213	O 195	0	0

• Molecule 16 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	L	137	Total 1087	C 687	N 210	0 185	${ m S}{ m 5}$	0	0

• Molecule 17 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	М	119	Total 942	C 590	N 186	0 163	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	Ν	114	Total 857	C 528	N 173	0 155	S 1	0	0

• Molecule 19 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
19	О	116	Total 913	C 575	N 176	O 162	0	0

• Molecule 20 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Р	117	Total 934	C 589	N 197	0 146	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 21 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	Q	103	Total 807	$\begin{array}{c} \mathrm{C} \\ 506 \end{array}$	N 155	0 143	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	R	109	Total 826	C 514	N 158	O 150	${S \atop 4}$	0	0

• Molecule 23 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	S	91	Total 710	C 452	N 128	0 129	S 1	0	0

• Molecule 24 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
24	Т	103	Total 766	C 476	N 142	0 148	0	0

• Molecule 25 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	U	97	Total 760	C 477	N 143	O 139	S 1	0	0

• Molecule 26 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms		AltConf	Trace	
26	V	82	Total 616	C 382	N 119	0 113	${ m S} { m 2}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	W	77	Total 632	C 395	N 130	0 105	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
28	Х	60	Total 486	C 302	N 93	O 90	S 1	0	0

• Molecule 29 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
29	Y	58	Total 463	C 286	N 88	O 85	$\frac{S}{4}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	Z	55	Total 456	С 271	N 102	O 82	S 1	0	0

• Molecule 31 is a RNA chain called 16s Ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
31	a	1528	Total 32782	C 14631	N 5994	O 10630	Р 1527	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
a	1007	U	С	conflict	GB 1211343212
a	1034	С	U	conflict	GB 1211343212

• Molecule 32 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		At	AltConf	Trace			
32	b	225	Total 1769	C 1110	N 328	O 325	S 6	0	0

• Molecule 33 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		Ate	AltConf	Trace			
33	С	215	Total 1690	C 1065	N 318	O 299	S 8	0	0

• Molecule 34 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		Ate	AltConf	Trace			
34	d	207	Total 1631	C 1017	N 313	O 299	${ m S} { m 2}$	0	0

• Molecule 35 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	AltConf	Trace			
35	е	155	Total 1129	C 700	N 217	O 207	${S \atop 5}$	0	0

• Molecule 36 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	AltConf	Trace			
36	f	104	Total 867	С 546	N 158	0 159	$\frac{S}{4}$	0	0

• Molecule 37 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	AltConf	Trace			
37	g	151	Total 1188	C 743	N 225	0 213	${f S}{7}$	0	0

• Molecule 38 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	AltConf	Trace			
38	h	130	Total 985	C 615	N 177	0 187	S 6	0	0

• Molecule 39 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	AltConf	Trace			
39	i	126	Total 991	C 618	N 197	0 175	S 1	0	0

• Molecule 40 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	j	99	Total 793	C 496	N 148	0 146	${ m S} { m 3}$	0	0

• Molecule 41 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	k	117	Total 862	C 535	N 167	0 159	S 1	0	0

• Molecule 42 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	1	122	Total 945	C 580	N 193	0 167	${ m S}{ m 5}$	0	0

• Molecule 43 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	m	115	Total 903	$\begin{array}{c} \mathrm{C} \\ 558 \end{array}$	N 184	0 158	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	n	100	Total 792	C 493	N 158	0 137	S 4	0	0

• Molecule 45 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	0	88	Total 705	C 434	N 144	0 126	S 1	0	0

• Molecule 46 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	р	82	Total 644	C 403	N 128	0 112	S 1	0	0

• Molecule 47 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	q	79	Total 621	C 390	N 116	0 114	S 1	0	0

• Molecule 48 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
48	r	52	Total 426	C 273	N 74	O 79	0	0

• Molecule 49 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
49	s	82	Total 646	C 412	N 125	O 107	${S \over 2}$	0	0

• Molecule 50 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms		AltConf	Trace	
50	t	86	Total 663	C 409	N 139	0 113	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 51 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
51	u	63	Total 522	C 327	N 105	O 89	S 1	0	0

• Molecule 52 is a RNA chain called tRNA-met.

Mol	Chain	Residues		_	Atom	s			AltConf	Trace
52	V	77	Total 1636	С 733	N 291	O 535	Р 76	S 1	0	0

• Molecule 53 is a RNA chain called mRNA.

Mol	Chain	Residues		At	\mathbf{oms}		AltConf	Trace	
53	W	3	Total 65	C 29	N 12	0 21	Р 3	0	0

• Molecule 54 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
54	3	1	Total Zn 1 1	0

• Molecule 55 is Eravacycline (three-letter code: YQM) (formula: $C_{27}H_{31}FN_4O_8$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf	
55	Λ	1	Total	С	F	Ν	Ο	0
00	Л	T	40	27	1	4	8	0
55	Λ	1	Total	С	F	Ν	Ο	0
00	Л	T	40	27	1	4	8	0
55	0	1	Total	С	F	Ν	Ο	0
- 55	a	T	40	27	1	4	8	0

• Molecule 56 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
56	А	134	Total Mg 134 134	0
56	В	1	Total Mg 1 1	0
56	С	1	Total Mg 1 1	0
56	D	1	Total Mg 1 1	0
56	K	1	Total Mg 1 1	0
56	a	51	Total Mg 51 51	0
56	t	1	Total Mg 1 1	0

• Molecule 57 is water.

Mol	Chain	Residues	Atoms	AltConf
57	2	1	Total O 1 1	0
57	А	392	Total O 392 392	0
57	В	3	Total O 3 3	0
57	С	7	Total O 7 7	0
57	D	3	Total O 3 3	0
57	Е	2	Total O 2 2	0
57	Ι	1	Total O 1 1	0
57	К	5	Total O 5 5	0
57	R	2	Total O 2 2	0
57	Z	1	Total O 1 1	0
57	a	131	Total O 131 131	0
57	n	4	$\begin{array}{cc} \text{Total} & \text{O} \\ 4 & 4 \end{array}$	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L33

U2399 C2399 U2419 U2419 C2420 C2420 C2420 C2425 A2425 A2425 A2431 A2430 A2431 U2437	2441 22442 22443 72445 72445 72445 72465 72461 72465 72461 72465 72465 72465 72465 72471 72475 72471 72475 72471 72475 72457 72457 72457 72457 72457 72457 72457 72457 72457 72457 72457 72457 72457 72457 72457 72455 72457 72455 72457 7245557 724557 724557 724557 724557 7245577 724557777777777	C2494 C2494 C2497 C2497 C2500 C2500 C2501 C2503 C2503 C2516 C2516 C2516 C2516 C2516 C2516 C2516 C2516 C2516 C2516 C2516 C2543 C2543 C2543
G2549 U3550 A2563 C2563 C2563 C2569 A2598 A2598 A2598 U2601 U2601 U2605 C2606	U2625 U2625 A5635 C2642 C2661 A2661 A2661 U2665 C2667 C2667 C2667 C2709 C2657 C2709 C2700 C2700 C2700 C2700 C2700 C2700 C2700 C2700 C2700 C2700 C2700	A2729 U2735 C7740 A2744 A2744 C2748 C2748 C2765 C2765 A2774 A2774
U2786 A2787 A2787 A2790 U2793 U2795 V2795 V2795 C2705 C2705	A28331 A2831 C2845 C2845 C2845 U2857 U2857 A2863 C2876 U2881 U2881 U2888	りょりょょじょ こ じ じ ょ 4 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
• Molecule 6: 5s ribosor ^{10%} Chain B:	mal RNA 84%	16%
G1 C2 C2 C2 C2 012 012 013 013 013 013 013 013 013 013 013 013	ASO ASO ASI ASI ASI AS2 AS4 AS4 AS1 AS1 AS1 AS1 AS1 AS1 AS1 AS1 AS1 AS1	
• Molecule 7: 50S ribos Chain C:	omal protein L2 99%	
MET 13 13 168 168 168 173 1 V273		
• Molecule 8: 50S ribos	omal protein L3	
Chain D:	99%	·
• Molecule 9: 50S ribos	omal protein L4	
Chain E:	100%	
• Molecule 10: 50S ribc	somal protein L5 75%	
Chain F:	K15 116 017 E18 821 821 N24 M26 M26 M26 M26 M26 M26 M26 M26 M26 M26	I34 641 641 A42 A43 A44 A44 A45 A662 A63

• Molecule 16: 50S ribosomal protein L16

- Chain L: 99% • Molecule 17: 50S ribosomal protein L17 Chain M: 95% 5% VAL ASN THR SER ALA GLU • Molecule 18: 50S ribosomal protein L18 16% Chain N: 98% I6 E6 A6 A5 S58 L59 R60 • Molecule 19: 50S ribosomal protein L19 Chain O: 95% 5% • Molecule 20: 50S ribosomal protein L20 Chain P: 98% • Molecule 21: 50S ribosomal protein L21 Chain Q: 100%
- Molecule 22: 50S ribosomal protein L22

Chain R:	100%	
• Molecule 23: 50S riboso	mal protein L23	
10%	-	
Chain S:	86%	14%
M1 N2 N2 N3 R68 R71 R71 R71 R71 R71 R71 R71 R71 R71 R71	VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA	
• Molecule 24: 50S riboso	mal protein L24	
Chain T:	98%	.
MET A2 K5 K5 K4 K4 K4 K4 K4 K5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5	K77 186 987 688 688 688 688 480 103 103 103 103 103	
• Molecule 25: 50S riboso	mal protein L25	
^{9%} Chain U:	99%	
MET A2 N3 N3 N38 R49 E63 E63 E63 D71 K72 A98		
• Molecule 26: 50S riboso	mal protein L27	
Chain V:	96%	
MET ALA THR K4 K5 A6 G7 G3 C3 V85		
• Molecule 27: 50S riboso	mal protein L28	
Chain W:	99%	
MET 22 24 1 1 7 1 7 1 7 17 8		
• Molecule 28: 50S riboso	mal protein L29	
Chain X:	92%	8%
MET K2 K3 K4 K4 K3 K5 K3 K1 K1 K2 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3	G38 K39 G41 G17 G17 ASN G17 G17 G17 G17	
	WORLDWIDE PROTEIN DATA BANK	

Chain b:

90%

10%

MET ALA ASP ASP ASP M5 W6 W5 M6 M5 M10 C11 C11 C11 C11 C11 C11 C11 C11 C12 C15 C15 C15 C15 C15 C15 C15 C15 C15 C15	F34 F34 F34 F34 F34 F34 F34 F34 F40 H41 F46 F46 A51 L52 D54 D54 N53 N57	M60 P61 L62 A63 S64 K65 K65 K65 K65 K65	A78 S79 S182 R182 R182 R182 R183 R186 A89 A89 A89 A89 A89 A89
R110 R115 L116 K117 D118 R123 R123 R123 R123 R126 R126 R126 R126 R128 R128 R128	L131 T132 K133 K133 R134 E135 A135 L137 E135 R139 R141 E142 M143 L146 H143 E142 E142 E142 E142 E142 E142	N155	A216 A216 M219 A220 A2221 A223 I223 I223 A225 K227 K227 K227 K227 A1A
GLN SER GLN ALA ASN ASN CLY CLY ALA ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL			
• Molecule 33: 30S ribosoma	al protein S3		
Chain c:	86%	14%	
MET G2 C2 K79 K79 ALA PR0 ALA ALA ALA ALA ALA ALA ALC ALY ALC ALY ALZ	ARG GLUY GLUY GLU GLU GLU GLN ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG		
• Molecule 34: 30S ribosoma	al protein S4		
Chain d:	100%		•
MET A2 Q20 Q20 445 647 647 647 648 648 649 649 749 749 749 74151 4151 4150 7160	K179		
• Molecule 35: 30S ribosoma	al protein S5		
Chain e:	94%	6%	
MET ALA ALA LLYS CLU GLU GLU GLU GLY GLY GLY GLY			
• Molecule 36: 30S ribosoma	al protein S6		
Chain f:	81%	• 18%	
M1 S15 K30 B33 K30 B33 K404 G10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C	ALA ALA GLU GLU GLU ALA ALA ALA ALA ALA ALA GLU GLU		
• Molecule 37: 30S ribosoma	al protein S7		
Chain g:	97%	·	
	Al protein S8		
	- F- Store SO		

•

82 8131 8131	
• Molecule 39: 30S ribosomal protein S	9
Chain i:	98% ···
MET 13 R104 R128	
• Molecule 40: 30S ribosomal protein S	10
Chain j:	96%
MET ASN ASN ASN AA A C C C C C C C C C C	
• Molecule 41: 30S ribosomal protein S	11
Chain k:	% 9%
MET ALA ASP ASP ASC ARG THR LVS LVS LVS CVAL CVAL CV2 AC CV2 CV2 CV2 CV2 CV2 CV2 CV2 CV2 CV2 CV	
• Molecule 42: 30S ribosomal protein S	12
Chain l:	98%
MET A2 K123 LYS	
• Molecule 43: 30S ribosomal protein S	13
Chain m:	97%
MET A2 III6 LYS LYS	
• Molecule 44: 30S ribosomal protein S	14
Chain n:	99% •
MET A2 H101	
• Molecule 45: 30S ribosomal protein S	15
Chain o:	99% .
	WORLDWIDE PROTEIN DATA BANK

MET A2 R89		
• Molecule 46: 30S	ribosomal protein S16	
Chain p:	81%	19%
MET LEU PRO PRO MET VAL GLY GLY ILE ILE ILE ILE ILE ARG ASN ASN	ALA PHE ILE M19 K97 ALA	
• Molecule 47: 30S	ribosomal protein S17	
Chain q:	93%	7%
MET SER GLU TS A83 A83 GLU		
• Molecule 48: 30S	ribosomal protein S18	
Chain r:	69%	31%
MET ALA ALA ALA ARG TYR ARG ARG CYS CYS ARG CYS PHE CYS THR	GLU GLU GLU ASN ASN ASN TTYR ASN TTYR ASN HIJS ASN HIJS ASN HIJS LVS LVS	
• Molecule 49: 30S	ribosomal protein S19	
Chain s:	90%	10%
MET P2 GLY VAL LYS SER LYS SER LYS ARG		
• Molecule 50: 30S	ribosomal protein S20	
Chain t:	98%	
MET 42 A87 A88		
• Molecule 51: 30S	ribosomal protein S21	
Chain u:	89%	11%
MET P2 Q3 Q3 L6 K7 E10 P11 V12 V12 D13	V14 R17 R2 R21 R21 R25 A26 A26 C27 C28 A26 C27 C28 R26 R33 R33 R33 R55 R55 R55 R55 R55 R55 R55	VAL ARG THR THR ARG LEU TYR
• Molecule 52: tRN	A-met	
Chain v:	49% 61%	34% 5%
	WORLDWIDE PROTEIN DATA BANK	

• Molecule 53: mRNA

Chain w:

100%

There are no outlier residues recorded for this chain.

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	40679	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	46	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 $(6k \times 4k)$	Depositor
Maximum map value	5.097	Depositor
Minimum map value	-0.386	Depositor
Average map value	0.008	Depositor
Map value standard deviation	0.063	Depositor
Recommended contour level	0.15	Depositor
Map size (Å)	434.176, 434.176, 434.176	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.848, 0.848, 0.848	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OMG, OMU, 4OC, MA6, 5MU, 6MZ, G7M, YQM, 4SU, ZN, MG, PSU, 2MG, H2U, 2MA, 5MC, UR3, 3TD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	0	0.25	0/416	0.53	0/552	
2	1	0.25	0/367	0.66	0/481	
3	2	0.23	0/515	0.60	0/678	
4	3	0.25	0/296	0.59	0/389	
5	А	0.18	0/65229	0.74	2/101736~(0.0%)	
6	В	0.17	0/2739	0.74	0/4266	
7	С	0.24	0/2152	0.58	0/2891	
8	D	0.24	0/1584	0.54	0/2135	
9	Е	0.24	0/1537	0.51	0/2073	
10	F	0.27	0/1390	0.57	0/1863	
11	G	0.25	0/1337	0.48	0/1807	
12	Н	0.26	0/461	0.52	0/616	
13	Ι	0.24	0/1151	0.46	0/1551	
14	J	0.25	0/956	0.57	0/1286	
15	Κ	0.24	0/1079	0.57	0/1439	
16	L	0.26	0/1104	0.59	0/1475	
17	М	0.25	0/956	0.57	0/1282	
18	Ν	0.25	0/865	0.58	0/1156	
19	0	0.28	0/925	0.58	0/1241	
20	Р	0.25	0/947	0.57	0/1262	
21	Q	0.24	0/818	0.54	0/1094	
22	R	0.24	0/831	0.52	0/1113	
23	S	0.26	0/716	0.52	0/957	
24	Т	0.24	0/770	0.50	0/1034	
25	U	0.24	0/770	0.52	0/1036	
26	V	0.26	0/624	0.56	0/832	
27	W	0.22	0/642	0.56	0/856	
28	Х	0.24	0/487	0.50	0/646	
29	Y	0.24	0/468	0.51	0/624	
30	Ζ	0.23	0/462	0.61	0/615	
31	a	0.23	0/36476	0.75	2/56895~(0.0%)	

Mol Chain		Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
32	b	0.25	0/1799	0.50	0/2429	
33	с	0.27	0/1714	0.56	0/2304	
34	d	0.24	0/1653	0.51	0/2213	
35	е	0.24	0/1141	0.55	0/1537	
36	f	0.28	0/882	0.55	0/1189	
37	g	0.24	0/1205	0.54	0/1614	
38	h	0.24	0/993	0.52	0/1331	
39	i	0.25	0/1002	0.59	0/1339	
40	j	0.24	0/803	0.55	0/1085	
41	k	0.25	0/878	0.54	0/1189	
42	l	0.25	0/958	0.59	0/1284	
43	m	0.24	0/913	0.58	0/1226	
44	n	0.26	0/803	0.57	0/1071	
45	0	0.24	0/715	0.53	0/958	
46	р	0.24	0/655	0.56	0/879	
47	q	0.23	0/628	0.54	0/847	
48	r	0.25	0/432	0.50	0/583	
49	s	0.25	0/664	0.50	0/897	
50	t	0.26	0/669	0.53	0/892	
51	u	0.25	0/528	0.54	0/697	
52	V	0.20	0/1739	0.80	$1/\overline{2709}~(0.0\%)$	
53	W	0.27	0/72	0.76	0/110	
All	All	0.22	0/149916	0.70	5/224264 (0.0%)	

There are no bond length outliers.

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
31	a	1394	C	C2-N1-C1'	6.69	126.16	118.80
52	V	16	U	C2-N1-C1'	6.11	125.03	117.70
5	А	727	G	O4'-C1'-N9	5.71	112.77	108.20
5	А	788	U	C2-N1-C1'	5.71	124.55	117.70
31	a	1394	С	N1-C2-O2	5.55	122.23	118.90

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	0	47/51~(92%)	47 (100%)	0	0	100	100
2	1	42/44~(96%)	42 (100%)	0	0	100	100
3	2	61/64~(95%)	59~(97%)	2(3%)	0	100	100
4	3	36/38~(95%)	35~(97%)	1 (3%)	0	100	100
7	С	270/274~(98%)	259 (96%)	10 (4%)	1 (0%)	34	48
8	D	208/212~(98%)	201 (97%)	7 (3%)	0	100	100
9	Е	198/200~(99%)	198 (100%)	0	0	100	100
10	F	172/178~(97%)	157 (91%)	15 (9%)	0	100	100
11	G	172/177~(97%)	166 (96%)	4 (2%)	2 (1%)	13	19
12	Н	58/148~(39%)	55 (95%)	3(5%)	0	100	100
13	Ι	140/142~(99%)	137 (98%)	3 (2%)	0	100	100
14	J	120/122~(98%)	116 (97%)	4 (3%)	0	100	100
15	K	142/146~(97%)	140 (99%)	2(1%)	0	100	100
16	L	135/137~(98%)	132 (98%)	2(2%)	1 (1%)	22	33
17	М	117/125~(94%)	113 (97%)	4 (3%)	0	100	100
18	Ν	112/116~(97%)	112 (100%)	0	0	100	100
19	Ο	114/122~(93%)	112 (98%)	2(2%)	0	100	100
20	Р	115/119~(97%)	113 (98%)	2(2%)	0	100	100
21	Q	101/103~(98%)	97~(96%)	4 (4%)	0	100	100
22	R	107/109~(98%)	106 (99%)	1 (1%)	0	100	100
23	S	89/106~(84%)	87 (98%)	2(2%)	0	100	100
24	Т	101/105~(96%)	98 (97%)	3 (3%)	0	100	100
25	U	95/98~(97%)	93 (98%)	2 (2%)	0	100	100
26	V	$\overline{80/85}\ (94\%)$	80 (100%)	0	0	100	100
27	W	75/78~(96%)	75 (100%)	0	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Favoured Allowed		Perce	ntiles
28	Х	58/65~(89%)	57~(98%)	1 (2%)	0	100	100
29	Υ	56/58~(97%)	55~(98%)	1 (2%)	0	100	100
30	Z	53/61~(87%)	50 (94%)	3~(6%)	0	100	100
32	b	223/250~(89%)	215~(96%)	8 (4%)	0	100	100
33	с	213/250~(85%)	203~(95%)	10~(5%)	0	100	100
34	d	205/208~(99%)	199~(97%)	6 (3%)	0	100	100
35	е	153/165~(93%)	153~(100%)	0	0	100	100
36	f	102/127~(80%)	98~(96%)	3~(3%)	1 (1%)	15	23
37	g	149/156~(96%)	144 (97%)	5(3%)	0	100	100
38	h	128/131~(98%)	125~(98%)	3~(2%)	0	100	100
39	i	124/128~(97%)	120~(97%)	4(3%)	0	100	100
40	j	97/103~(94%)	94~(97%)	3~(3%)	0	100	100
41	k	115/128~(90%)	109~(95%)	6~(5%)	0	100	100
42	1	120/124~(97%)	115~(96%)	4(3%)	1 (1%)	19	29
43	m	113/118~(96%)	109~(96%)	4 (4%)	0	100	100
44	n	98/101~(97%)	96~(98%)	2(2%)	0	100	100
45	О	86/89~(97%)	86 (100%)	0	0	100	100
46	р	80/101~(79%)	80 (100%)	0	0	100	100
47	q	77/85~(91%)	76~(99%)	1 (1%)	0	100	100
48	r	50/75~(67%)	50 (100%)	0	0	100	100
49	s	80/91 (88%)	80 (100%)	0	0	100	100
50	t	84/88~(96%)	84 (100%)	0	0	100	100
51	u	61/71 (86%)	61 (100%)	0	0	100	100
All	All	5432/5872 (92%)	5289 (97%)	137 (2%)	6 (0%)	54	69

Continued from previous page...

5 of 6 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
11	G	81	GLU
16	L	79	LEU
36	f	33	ASP
11	G	13	ASN
42	1	88	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	0	45/47~(96%)	45 (100%)	0	100	100
2	1	36/36~(100%)	36 (100%)	0	100	100
3	2	52/53~(98%)	52 (100%)	0	100	100
4	3	33/33~(100%)	33 (100%)	0	100	100
7	С	218/220~(99%)	218 (100%)	0	100	100
8	D	166/167~(99%)	166 (100%)	0	100	100
9	Е	155/155~(100%)	155 (100%)	0	100	100
10	F	144/147~(98%)	144 (100%)	0	100	100
11	G	139/142~(98%)	138 (99%)	1 (1%)	84	91
12	Н	45/112~(40%)	45 (100%)	0	100	100
13	Ι	118/118 (100%)	118 (100%)	0	100	100
14	J	103/103~(100%)	103 (100%)	0	100	100
15	K	106/108 (98%)	106 (100%)	0	100	100
16	L	113/113~(100%)	113 (100%)	0	100	100
17	М	96/101~(95%)	96 (100%)	0	100	100
18	Ν	83/85~(98%)	83 (100%)	0	100	100
19	О	98/102~(96%)	98 (100%)	0	100	100
20	Р	85/86~(99%)	85 (100%)	0	100	100
21	Q	84/84 (100%)	84 (100%)	0	100	100
22	R	88/88 (100%)	88 (100%)	0	100	100
23	S	77/87~(88%)	77 (100%)	0	100	100
24	Т	83/85~(98%)	83 (100%)	0	100	100
25	U	79/80~(99%)	79 (100%)	0	100	100
26	V	62/64~(97%)	62 (100%)	0	100	100
27	W	69/70~(99%)	69 (100%)	0	100	100
28	Х	53/56~(95%)	53 (100%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
29	Y	54/54~(100%)	54 (100%)	0	100	100	
30	Z	47/50~(94%)	47 (100%)	0	100	100	
32	b	185/200~(92%)	184 (100%)	1 (0%)	88	94	
33	с	175/198~(88%)	175 (100%)	0	100	100	
34	d	170/171~(99%)	170 (100%)	0	100	100	
35	е	113/120 (94%)	113 (100%)	0	100	100	
36	f	94/111 (85%)	94 (100%)	0	100	100	
37	g	123/128~(96%)	123 (100%)	0	100	100	1
38	h	108/109 (99%)	108 (100%)	0	100	100	
39	i	99/100 (99%)	98~(99%)	1 (1%)	76	86	
40	j	$88/91 \ (97\%)$	88 (100%)	0	100	100	
41	k	88/98~(90%)	88 (100%)	0	100	100	1
42	1	104/106~(98%)	104 (100%)	0	100	100	
43	m	95/98~(97%)	95 (100%)	0	100	100	1
44	n	81/82~(99%)	81 (100%)	0	100	100	
45	0	71/72~(99%)	71 (100%)	0	100	100	
46	р	63/77~(82%)	63 (100%)	0	100	100	
47	q	71/76~(93%)	71 (100%)	0	100	100	
48	r	46/66~(70%)	46 (100%)	0	100	100	
49	S	70/78~(90%)	70 (100%)	0	100	100	
50	t	65/67~(97%)	65~(100%)	0	100	100	
51	u	54/62~(87%)	54 (100%)	0	100	100	Ĺ
All	All	$449\overline{4/4756}$ (94%)	4491 (100%)	3(0%)	93	97	

Continued from previous page...

All (3) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
11	G	69	ARG
32	b	115	ARG
39	i	104	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such sidechains are listed below:

Mol	Chain	Res	Type
7	С	21	HIS
25	U	92	HIS
30	Ζ	37	HIS
34	d	102	ASN
50	t	75	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
31	a	1524/1544~(98%)	226 (14%)	0
5	А	2723/2918~(93%)	442 (16%)	34(1%)
52	V	76/77~(98%)	30~(39%)	0
53	W	2/3~(66%)	0	0
6	В	114/115~(99%)	18 (15%)	1 (0%)
All	All	4439/4657~(95%)	716 (16%)	35~(0%)

5 of 716 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
5	А	10	U
5	А	41	U
5	А	53	G
5	А	56	А
5	А	58	G

5 of 35 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
5	А	1616	А
5	А	1816	U
5	А	2419	U
5	А	782	G
5	А	721	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

28 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond

3.6.1	m		D	T • 1	Bo	ond leng	ths	В	ond ang	les
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
31	UR3	a	1495	31	19,22,23	2.90	7 (36%)	26,32,35	1.31	2 (7%)
31	PSU	a	513	31	18,21,22	1.10	1 (5%)	22,30,33	1.79	5 (22%)
52	PSU	V	56	52	18,21,22	1.10	1 (5%)	22,30,33	1.80	4 (18%)
31	5MC	a	964	31	18,22,23	0.58	0	26,32,35	0.55	0
52	5MU	V	55	52	19,22,23	0.45	0	28,32,35	0.49	0
52	H2U	V	20	52	18,21,22	0.53	0	21,30,33	1.10	1 (4%)
5	2MA	А	2499	56,5	17,25,26	2.56	5 (29%)	17,37,40	1.33	2 (11%)
5	G7M	А	2065	5	20,26,27	2.42	3 (15%)	17,39,42	0.56	0
5	PSU	А	2500	5	18,21,22	1.12	1 (5%)	22,30,33	1.81	5 (22%)
31	MA6	a	1515	31	19,26,27	1.02	2 (10%)	18,38,41	3.48	2 (11%)
5	6MZ	А	2026	5	18,25,26	1.85	3 (16%)	16,36,39	3.44	4 (25%)
5	OMU	А	2548	5	19,22,23	3.08	8 (42%)	26,31,34	1.71	5 (19%)
5	PSU	А	1913	5	18,21,22	1.09	1 (5%)	22,30,33	1.76	5 (22%)
5	PSU	А	2601	5	18,21,22	1.07	1 (5%)	22,30,33	1.82	5 (22%)
5	PSU	А	2576	5	18,21,22	1.10	1 (5%)	22,30,33	1.84	6 (27%)
52	4SU	V	8	52	18,21,22	4.27	8 (44%)	26,30,33	2.25	5 (19%)
5	5MU	А	1935	5	19,22,23	0.41	0	28,32,35	0.52	0
5	PSU	А	2453	5	18,21,22	1.08	1 (5%)	22,30,33	1.79	6 (27%)
31	4OC	a	1399	31	20,23,24	3.18	8 (40%)	26,32,35	0.83	1 (3%)
31	G7M	a	524	31	20,26,27	2.43	3 (15%)	17,39,42	0.49	0
31	2MG	a	963	31	18,26,27	1.14	2 (11%)	16,38,41	0.92	1 (6%)
31	MA6	a	1516	31	19,26,27	1.04	2 (10%)	18,38,41	3.45	2 (11%)
5	OMG	А	2247	52,5	18,26,27	1.11	2 (11%)	19,38,41	0.88	1 (5%)
5	3TD	А	1911	5	18,22,23	4.36	6 (33%)	22,32,35	1.66	2 (9%)
5	PSU	А	1907	5	18,21,22	1.10	1 (5%)	22,30,33	1.80	5 (22%)
5	PSU	А	952	5	18,21,22	1.09	1 (5%)	22,30,33	1.75	4 (18%)
31	2MG	a	1204	31	18,26,27	1.13	2 (11%)	16,38,41	0.91	1 (6%)
5	2MG	А	2441	5	18,26,27	1.13	2 (11%)	16,38,41	0.88	1 (6%)

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
31	UR3	a	1495	31	-	0/7/25/26	0/2/2/2
31	PSU	a	513	31	-	3/7/25/26	0/2/2/2
52	PSU	V	56	52	-	4/7/25/26	0/2/2/2
31	5MC	a	964	31	-	0/7/25/26	0/2/2/2
52	5MU	v	55	52	-	2/7/25/26	0/2/2/2
52	H2U	V	20	52	-	4/7/38/39	0/2/2/2
5	2MA	А	2499	$56,\!5$	-	2/3/25/26	0/3/3/3
5	G7M	А	2065	5	-	1/3/25/26	0/3/3/3
5	PSU	А	2500	5	-	0/7/25/26	0/2/2/2
31	MA6	a	1515	31	-	0/7/29/30	0/3/3/3
5	6MZ	А	2026	5	-	1/5/27/28	0/3/3/3
5	OMU	А	2548	5	-	2/9/27/28	0/2/2/2
5	PSU	А	1913	5	-	2/7/25/26	0/2/2/2
5	PSU	А	2601	5	-	0/7/25/26	0/2/2/2
5	PSU	А	2576	5	-	0/7/25/26	0/2/2/2
52	4SU	v	8	52	-	2/7/25/26	0/2/2/2
5	5MU	А	1935	5	-	0/7/25/26	0/2/2/2
5	PSU	А	2453	5	-	0/7/25/26	0/2/2/2
31	4OC	a	1399	31	-	2/9/29/30	0/2/2/2
31	G7M	a	524	31	-	3/3/25/26	0/3/3/3
31	2MG	a	963	31	-	2/5/27/28	0/3/3/3
31	MA6	a	1516	31	-	1/7/29/30	0/3/3/3
5	OMG	А	2247	52,5	-	0/5/27/28	0/3/3/3
5	3TD	А	1911	5	-	2/7/25/26	0/2/2/2
5	PSU	А	1907	5	-	1/7/25/26	0/2/2/2
5	PSU	А	952	5	-	0/7/25/26	0/2/2/2
31	2MG	a	1204	31	-	0/5/27/28	0/3/3/3
5	2MG	A	2441	5	-	0/5/27/28	0/3/3/3

The worst 5 of 72 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	Ideal(Å)
5	А	1911	3TD	C6-C5	12.83	1.50	1.35
5	А	1911	3TD	C2-N1	10.14	1.50	1.37
52	V	8	4SU	C2-N1	9.15	1.53	1.38
52	V	8	4SU	C4-N3	8.69	1.46	1.37
5	А	2499	2MA	C2-N3	7.51	1.47	1.31

The worst 5 of 75 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
31	a	1515	MA6	N1-C6-N6	-13.55	102.80	117.06
31	a	1516	MA6	N1-C6-N6	-13.34	103.01	117.06
5	А	2026	6MZ	C1'-N9-C4	-11.78	105.95	126.64
52	V	8	4SU	C4-N3-C2	-7.49	120.07	127.34
5	А	2026	6MZ	N3-C2-N1	-5.52	120.06	128.68

There are no chirality outliers.

5 of 34 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
31	a	513	PSU	C2'-C1'-C5-C4
31	a	524	G7M	C3'-C4'-C5'-O5'
31	a	963	2MG	O4'-C4'-C5'-O5'
31	a	1399	4OC	O4'-C4'-C5'-O5'
31	a	1399	4OC	C3'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 194 ligands modelled in this entry, 191 are monoatomic - leaving 3 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Bog Link Bond lengths			E	ond ang	gles	
MOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
55	YQM	А	3202	56	42,44,44	<mark>3.54</mark>	22 (52%)	47,69,69	2.86	20 (42%)
55	YQM	А	3201	56	42,44,44	<mark>3.58</mark>	22 (52%)	47,69,69	2.98	21 (44%)
55	YQM	a	1601	56	42,44,44	<mark>3.25</mark>	22 (52%)	47,69,69	2.70	21 (44%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
55	YQM	А	3202	56	-	3/16/81/81	0/5/5/5
55	YQM	А	3201	56	-	3/16/81/81	0/5/5/5
55	YQM	a	1601	56	-	9/16/81/81	0/5/5/5

The worst 5 of 66 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
55	А	3202	YQM	C19-C20	13.94	1.64	1.52
55	А	3201	YQM	C19-C20	13.90	1.64	1.52
55	a	1601	YQM	C19-C20	12.98	1.63	1.52
55	А	3201	YQM	C19-C17	8.34	1.66	1.55
55	А	3202	YQM	C19-C17	8.17	1.66	1.55

The worst 5 of 62 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
55	А	3201	YQM	C34-N35-C39	-7.70	103.03	113.25
55	А	3202	YQM	C34-C32-N31	7.08	127.44	114.12
55	a	1601	YQM	C34-C32-N31	6.90	127.09	114.12
55	А	3201	YQM	C34-C32-N31	6.77	126.84	114.12
55	А	3201	YQM	C39-N35-C36	6.46	110.33	104.04

There are no chirality outliers.

5 of 15 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
55	a	1601	YQM	C20-C21-C24-N26
55	a	1601	YQM	C20-C21-C24-O25
55	a	1601	YQM	C22-C21-C24-N26
55	a	1601	YQM	C22-C21-C24-O25
55	a	1601	YQM	C32-C34-N35-C36

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In

addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-23669. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 280

Y Index: 274

Z Index: 340

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.15. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 860 nm^3 ; this corresponds to an approximate mass of 777 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.376 ${\rm \AA}^{-1}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-23669 and PDB model 7M4X. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.15 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.15).

9.4 Atom inclusion (i)

At the recommended contour level, 85% of all backbone atoms, 87% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.15) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8690	0.5910
0	0.8470	0.6180
1	0.9590	0.6990
2	0.9670	0.6970
3	0.8950	0.6140
А	0.8980	0.6020
В	0.6970	0.5120
С	0.9380	0.5810
D	0.9300	0.6710
Е	0.8150	0.6190
F	0.2600	0.2860
G	0.5510	0.4800
Н	0.2270	0.3540
Ι	0.9200	0.6690
J	0.9050	0.6320
К	0.9010	0.6630
L	0.8760	0.6250
М	0.9510	0.6760
Ν	0.6300	0.5060
0	0.8750	0.6120
Р	0.9560	0.6910
Q	0.8490	0.6430
R	0.9160	0.6670
S	0.7450	0.5840
Т	0.5910	0.5150
U	0.7480	0.5800
V	0.8650	0.6580
W	0.8710	0.6460
Х	0.5800	0.4930
Y	0.8650	0.6340
Z	0.8390	0.6470
a	0.9290	0.6020
b	0.4850	0.3610
С	0.9040	0.5990
d	0.7570	0.5340

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
е	0.9140	0.6100
f	0.7820	0.5130
g	0.7690	0.4880
h	0.9270	0.6520
i	0.9400	0.6340
j	0.8690	0.5970
k	0.8150	0.5150
1	0.8790	0.5910
m	0.9230	0.6080
n	0.9540	0.6530
0	0.9280	0.6180
р	0.8910	0.6410
q	0.7870	0.5270
r	0.9130	0.6100
S	0.9520	0.6560
t	0.9050	0.5890
u	0.5300	0.4580
V	0.4890	0.3630
W	0.9540	0.5810

