

# wwPDB EM Validation Summary Report (i)

#### Nov 19, 2022 – 11:05 PM EST

PDB ID 7MIZ : EMDB ID EMD-23869 : Title : Atomic structure of cortical microtubule from Toxoplasma gondii Authors Wang, X.; Brown, A.; Sibley, L.D.; Zhang, R. : Deposited on 2021-04-18 : 3.40 Å(reported) Resolution : Based on initial models 4FYU, 6U42, 3JAS :

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1. dev 43                                                      |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| MolProbity                     | : | 4.02b-467                                                          |
| buster-report                  | : | 1.1.7 (2018)                                                       |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.9                                                              |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.31.2                                                             |

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Motric                | Whole archive        | EM structures       |  |  |
|-----------------------|----------------------|---------------------|--|--|
| INTEGI IC             | $(\# {\rm Entries})$ | $(\# { m Entries})$ |  |  |
| Clashscore            | 158937               | 4297                |  |  |
| Ramachandran outliers | 154571               | 4023                |  |  |
| Sidechain outliers    | 154315               | 3826                |  |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |
|-----|-------|--------|------------------|
| 1   | 0     | 351    | 5% • 94%         |
| 1   | 1     | 351    | 5% • 94%         |
| 1   | 10    | 351    | 5% • 94%         |
| 1   | 11    | 351    | 6% 94%           |
| 1   | 12    | 351    | 5% • 94%         |
| 1   | 13    | 351    | 6% 94%           |
| 1   | 14    | 351    | 6% 94%           |
| 1   | 15    | 351    | 6% 94%           |



| Mol | Chain | Length | Quality of chain |     |      |
|-----|-------|--------|------------------|-----|------|
| 1   | 16    | 351    | 6% • 94%         |     |      |
| 1   | 17    | 351    | 6% • 94%         |     |      |
| 1   | 18    | 351    | 6% 94%           |     |      |
| 1   | 19    | 351    | <b>6%</b> • 94%  |     |      |
| 1   | 2     | 351    | 6% 94%           |     |      |
| 1   | 20    | 351    | 6% • 94%         |     |      |
| 1   | 21    | 351    | 6% • 94%         |     |      |
| 1   | 22    | 351    | 5% • 94%         |     |      |
| 1   | 23    | 351    | 5% • 94%         |     |      |
| 1   | 3     | 351    | 6% • 94%         |     |      |
| 1   | 4     | 351    | 6% • 94%         |     |      |
| 1   | 5     | 351    | 6% 94%           |     |      |
| 1   | 6     | 351    | 6% 94%           |     |      |
| 1   | 7     | 351    | 5% • 94%         |     |      |
| 1   | 8     | 351    | 6% 94%           |     |      |
| 1   | 9     | 351    | 5% • 94%         |     |      |
| 2   | A0    | 453    | 76%              | 18% | 6%   |
| 2   | A2    | 453    | 75%              | 19% | 6%   |
| 2   | A4    | 453    | 80%              | 14% | • 6% |
| 2   | A6    | 453    | 78%              | 17% | 6%   |
| 2   | A8    | 453    | 76%              | 18% | 6%   |
| 2   | B0    | 453    | 79%              | 15% | 6%   |
| 2   | B2    | 453    | 80%              | 15% | 6%   |
| 2   | B4    | 453    | 74%              | 20% | 6%   |
| 2   | B6    | 453    | 77%              | 17% | • 6% |



| Mol      | Chain | Length | Quality of chain |      |          |
|----------|-------|--------|------------------|------|----------|
| 2        | B8    | 453    | 74%              | 19%  | • 6%     |
| 2        | C0    | 453    | 74%              | 21%  | 6%       |
| 2        | C2    | 453    | 74%              | 20%  | 6%       |
| 2        | C4    | 453    | <b>6</b> 8%      | 26%  | 6%       |
| 2        | C6    | 453    | •<br>70%         | 25%  | 6%       |
| 2        | C8    | 453    | • 80%            | 14%  | 6%       |
| 2        | D0    | 453    | 82%              | 12%  | 6%       |
| 2        | D2    | 453    | 81%              | 13%  | 6%       |
| 2        | D4    | 453    | 20%              | 1/1% | 6%       |
| 2        | D6    | 453    | 70%              | 159/ | 6%       |
| 2        | D0    | 453    | /9%              | 12%  | 0%       |
| 2        | Do    | 455    | 82%              | 13%  | 6%       |
| 2        | EU    | 453    | 82%              | 13%  | 6%       |
| 2        | E2    | 453    | 80%              | 14%  | 6%       |
| 2        | E4    | 453    | 77%              | 16%  | • 6%     |
| 2        | E6    | 453    | 78%              | 16%  | 6%       |
| 2        | E8    | 453    | 72%              | 23%  | 6%       |
| 2        | F0    | 453    | 75%              | 19%  | 6%       |
| 3        | A1    | 449    | 74%              | 21%  | 5%       |
| 3        | A3    | 449    | 76%              | 18%  | 5%       |
| 3        | A5    | 449    | 76%              | 19%  | 5%       |
| 3        | A7    | 449    | 80%              | 15%  | 5%       |
| 3        | A9    | 449    | 74%              | 20%  | 5%       |
| <u>२</u> | R1    | //0    | 700/             | 170/ | E 0/     |
| <u>ა</u> |       | 449    | /8%              | 1/%  | <u> </u> |
| 3        | В3    | 449    | 77%              | 18%  | 5%       |
| 3        | B5    | 449    | 78%              | 17%  | 5%       |



| Mol           | Chain  | Length | Quality of chain |      |      |
|---------------|--------|--------|------------------|------|------|
| 3             | B7     | 449    | 78%              | 16%  | 5%   |
| 3             | B9     | 449    | 77%              | 17%  | 5%   |
| 3             | C1     | 449    | 72%              | 22%  | 5%   |
| 3             | C3     | 449    | 72%              | 23%  | 5%   |
| 3             | C5     | 449    | 72%              | 23%  | 5%   |
| 3             | C7     | 449    | 71%              | 24%  | 5%   |
| 3             | С9     | 449    | 77%              | 18%  | 5%   |
| 3             | D1     | 449    | 78%              | 17%  | 5%   |
| 3             | D3     | 449    | 78%              | 17%  | 5%   |
| 3             | D5     | 449    | 73%              | 22%  | • 5% |
| 3             | D7     | 449    | 75%              | 20%  | 5%   |
| 3             | D9     | 449    | 77%              | 17%  | 5%   |
| 3             | E1     | 449    | 82%              | 13%  | 5%   |
| 3             | E3     | 449    | 79%              | 16%  | 5%   |
| 3             | E5     | 449    | 73%              | 21%  | 5%   |
| 3             | E7     | 449    | 78%              | 16%  | • 5% |
| 3             | E9     | 449    | 73%              | 21%  | 5%   |
| 3             | F1     | 449    | 71%              | 23%  | 5%   |
| 4             | a      | 220    | 67%              | 32%  |      |
| 4             | h      | 220    | 5%               | 32%  |      |
| 1             | 0      | 220    |                  | 5270 | 0%   |
| <u>т</u><br>Л | d      | 220    | 91%              |      | 970  |
| - <u>+</u>    | u      | 220    | <b>9</b> 1%      |      | 9%   |
| 4             | e<br>r | 220    | 90%              |      | 9%   |
| 4             | 1      | 220    | 90%              | · ·  | 9%   |
| 4             | g      | 220    | 90%              | •    | 9%   |



| Mol | Chain | Length | Quality of chain |      |
|-----|-------|--------|------------------|------|
| 4   | h     | 220    | 90%              | • 9% |
| 4   | i     | 220    | 91%              | 9%   |
| 4   | j     | 220    | 91%              | 9%   |
| 4   | m     | 220    | 90%              | • 9% |
| 4   | n     | 220    | 89%              | • 9% |
| 4   | 0     | 220    | 90%              | • 9% |
| 4   | р     | 220    | 90%              | • 9% |
| 4   | q     | 220    | 90%              | • 9% |
| 4   | r     | 220    | 90%              | • 9% |
| 4   | s     | 220    | 91%              | 9%   |
| 4   | t     | 220    | 90%              | • 9% |
| 4   | u     | 220    | 90%              | • 9% |
| 4   | v     | 220    | 90%              | • 9% |
| 5   | k     | 189    | 73% •            | 26%  |
| 5   | l     | 189    | 71% . 2          | 26%  |
| 5   | W     | 189    | 75%              | 24%  |
| 5   | х     | 189    | 75% •            | 24%  |



# 2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 214754 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol  | Chain | Residues |       | Ato                | $\mathbf{ms}$ |              |              | AltConf  | Trace |
|------|-------|----------|-------|--------------------|---------------|--------------|--------------|----------|-------|
| 1    | 0     | 22       | Total | С                  | Ν             | Ο            | S            | 0        | 0     |
| 1    | 0     | 22       | 174   | 114                | 28            | 31           | 1            | 0        | 0     |
| 1    | 1     | 00       | Total | С                  | Ν             | Ο            | S            | 0        | 0     |
|      | 1     | 22       | 174   | 114                | 28            | 31           | 1            | 0        | 0     |
| 1    | 0     | 22       | Total | С                  | Ν             | Ο            | S            | 0        | 0     |
| 1    | 2     | 22       | 174   | 114                | 28            | 31           | 1            | 0        | 0     |
| 1    | 2     | 22       | Total | С                  | Ν             | Ο            | S            | 0        | 0     |
|      | 5     |          | 174   | 114                | 28            | 31           | 1            | 0        | 0     |
| 1    | 4     | 22       | Total | С                  | Ν             | Ο            | S            | 0        | 0     |
| 1    | 4     |          | 174   | 114                | 28            | 31           | 1            | 0        | 0     |
| 1    | 5     | <u> </u> | Total | С                  | Ν             | Ο            | S            | 0        | 0     |
| 1    | 5     |          | 174   | 114                | 28            | 31           | 1            | 0        | 0     |
| 1    | 6     | 99       | Total | С                  | Ν             | Ο            | $\mathbf{S}$ | 0        | 0     |
|      | 0     |          | 174   | 114                | 28            | 31           | 1            | 0        | 0     |
| 1    | 7     | 22       | Total | С                  | Ν             | Ο            | $\mathbf{S}$ | 0        | 0     |
| -    | •     |          | 174   | 114                | 28            | 31           | 1            |          | 0     |
| 1    | 8     | 22       | Total | С                  | Ν             | Ο            | $\mathbf{S}$ | 0        | 0     |
|      | 0     |          | 174   | 114                | 28            | 31           | 1            |          |       |
| 1    | 9     | 22       | Total | С                  | Ν             | Ο            | $\mathbf{S}$ | 0        | 0     |
| -    |       |          | 174   | 114                | 28            | 31           | 1            |          |       |
| 1    | 10    | 22       | Total | С                  | Ν             | Ο            | $\mathbf{S}$ | 0        | 0     |
|      | 10    |          | 174   | 114                | 28            | 31           | 1            |          |       |
| 1    | 11    | 22       | Total | С                  | Ν             | Ο            | S            | 0        | 0     |
|      |       |          | 174   | 114                | 28            | 31           | 1            | <u> </u> |       |
| 1    | 12    | 22       | Total | С                  | Ν             | 0            | S            | 0        | 0     |
|      |       |          | 174   | 114                | 28            | 31           | 1            |          |       |
| 1    | 13    | 22       | Total | С                  | N             | 0            | S            | 0        | 0     |
|      |       |          | 174   | 114                | 28            | 31           | 1            | _        |       |
| 1    | 14    | 22       | Total | C                  | N             | U<br>ai      | S            | 0        | 0     |
|      |       |          | 174   | 114                | 28            | 31           | 1<br>        |          |       |
| 1    | 15    | 22       | Total | C                  | N             | U<br>01      | S            | 0        | 0     |
|      |       |          | 174   | 114                | 28            | 31           | <u>I</u>     |          |       |
| 1    | 16    | 22       | Total | $\mathbf{C}_{114}$ | N             | $\mathbf{O}$ | S            | 0        | 0     |
| 1 10 | 10 22 | 174      | 114   | 28                 | 31            | T            |              | ~        |       |

• Molecule 1 is a protein called Microtubule associated protein SPM1.



| Mol | Chain    | Residues |       | Atc | $\mathbf{ms}$ |    |              | AltConf | Trace |
|-----|----------|----------|-------|-----|---------------|----|--------------|---------|-------|
| 1   | 17       | 22       | Total | С   | Ν             | Ο  | S            | 0       | 0     |
|     | 1 11     |          | 174   | 114 | 28            | 31 | 1            | 0       | 0     |
| 1   | 18       | 22       | Total | С   | Ν             | Ο  | $\mathbf{S}$ | 0       | 0     |
| 1   | 10       |          | 174   | 114 | 28            | 31 | 1            | 0       | 0     |
| 1   | 10       | 22       | Total | С   | Ν             | Ο  | $\mathbf{S}$ | 0       | 0     |
| 1   | 1 19     |          | 174   | 114 | 28            | 31 | 1            | 0       | 0     |
| 1   | 20       | 22       | Total | С   | Ν             | Ο  | $\mathbf{S}$ | 0       | 0     |
| 1   | 20       |          | 174   | 114 | 28            | 31 | 1            |         | 0     |
| 1   | 91       | 22       | Total | С   | Ν             | Ο  | $\mathbf{S}$ | 0       | 0     |
| 1   | 21       |          | 174   | 114 | 28            | 31 | 1            | 0       | 0     |
| 1   | <u> </u> | 20       | Total | С   | Ν             | Ο  | S            | 0       | 0     |
|     | 20       | 160      | 105   | 26  | 28            | 1  | 0            | U       |       |
| 1   | 93       | 20       | Total | С   | N             | 0  | S            | 0       | 0     |
|     | 23       |          | 160   | 105 | 26            | 28 | 1            |         | U     |

There are 24 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment  | Reference      |
|-------|---------|----------|--------|----------|----------------|
| 0     | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 1     | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 2     | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 3     | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 4     | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 5     | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 6     | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 7     | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 8     | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 9     | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 10    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 11    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 12    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 13    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 14    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 15    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 16    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 17    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 18    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 19    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 20    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 21    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 22    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |
| 23    | 93      | ARG      | PRO    | conflict | UNP A0A7J6K285 |



• Molecule 2 is a protein called Tubulin alpha chain.

| Mol | Chain       | Residues |       | At           | oms |     |              | AltConf | Trace |
|-----|-------------|----------|-------|--------------|-----|-----|--------------|---------|-------|
| 9   | 4.0         | 128      | Total | С            | Ν   | 0   | S            | 0       | 0     |
|     | AU          | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       |       |
| 2   | Δ.2         | 428      | Total | С            | Ν   | 0   | S            | 0       | 0     |
| 2   | $\Lambda 2$ | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | ΔΛ          | 428      | Total | С            | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| 2   | 114         | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | A6          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     | 110         | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | Δ.8         | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     | 110         | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | BO          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     | D0          | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | B2          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     |             | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | B4          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     | DT          | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | B6          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     | D0          | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | B8          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     | <b>D</b> 0  | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | CO          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     | 00          | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | C2          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     |             | 420      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | C4          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     |             | 120      | 3325  | 2105         | 569 | 625 | 26           | 0       |       |
| 2   | C6          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     | 00          | 120      | 3325  | 2105         | 569 | 625 | 26           | 0       |       |
| 2   | C8          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
| _   |             |          | 3325  | 2105         | 569 | 625 | 26           | Ŭ       |       |
| 2   | D0          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     | DU          | 120      | 3325  | 2105         | 569 | 625 | 26           | 0       | 0     |
| 2   | D2          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     |             |          | 3325  | 2105         | 569 | 625 | 26           | Ŭ       |       |
| 2   | D4          | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
|     |             | 120      | 3325  | 2105         | 569 | 625 | 26           | Ŭ       |       |
| 2   | D6          | 428      | Total | С            | Ν   | Ο   | S            | 0       | 0     |
|     | D0 428      | 3325     | 2105  | 569          | 625 | 26  |              |         |       |
| 2   | 2 D8        | 428      | Total | С            | Ν   | Ο   | S            | 0       | 0     |
|     |             |          | 3325  | 2105         | 569 | 625 | 26           |         |       |
| 2   | 2 E0        | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | S            | 0       | 0     |
|     |             |          | 3325  | 2105         | 569 | 625 | 26           |         |       |



| Mol  | Chain      | Residues |        | At    | oms |     |              | AltConf      | Trace |   |
|------|------------|----------|--------|-------|-----|-----|--------------|--------------|-------|---|
| 9 F9 | 428        | Total    | С      | Ν     | 0   | S   | 0            | 0            |       |   |
| 2    | 112        | 420      | 3325   | 2105  | 569 | 625 | 26           | 0            | 0     |   |
| 2    | E4         | 428      | Total  | С     | Ν   | Ο   | $\mathbf{S}$ | 0            | 0     |   |
|      | 124        | 420      | 3325   | 2105  | 569 | 625 | 26           | 0            | 0     |   |
| 9    | $\Gamma c$ | 2 F6     | F6 428 | Total | С   | Ν   | 0            | $\mathbf{S}$ | 0     | 0 |
|      | EO         | 420      | 3325   | 2105  | 569 | 625 | 26           | 0            | 0     |   |
| 9    | F8         | 428      | Total  | С     | Ν   | 0   | $\mathbf{S}$ | 0            | 0     |   |
|      | Eo         | 420      | 3325   | 2105  | 569 | 625 | 26           | 0            | 0     |   |
| 2 F( | FO         | 498      | Total  | С     | Ν   | 0   | S            | 0            | 0     |   |
|      | I'U        | 420      | 3325   | 2105  | 569 | 625 | 26           | 0            |       |   |

• Molecule 3 is a protein called Tubulin beta chain.

| Mol | Chain | Residues |       | At   | oms |     |              | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|--------------|---------|-------|
| 0   | Λ 1   | 496      | Total | С    | Ν   | 0   | S            | 0       | 0     |
| 3   | AI    | 420      | 3331  | 2094 | 569 | 641 | 27           | 0       | 0     |
| 2   | ٨.2   | 496      | Total | С    | Ν   | 0   | S            | 0       | 0     |
| 0   | AJ    | 420      | 3331  | 2094 | 569 | 641 | 27           | 0       | 0     |
| 2   | 15    | 496      | Total | С    | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| 0   | AJ    | 420      | 3331  | 2094 | 569 | 641 | 27           | 0       | 0     |
| 2   | Δ7    | 496      | Total | С    | Ν   | 0   | S            | 0       | 0     |
| 0   | A     | 420      | 3331  | 2094 | 569 | 641 | 27           | 0       | 0     |
| 3   | 4.0   | 496      | Total | С    | Ν   | 0   | S            | 0       | 0     |
| 0   | A9    | 420      | 3331  | 2094 | 569 | 641 | 27           | 0       | 0     |
| 3   | R1    | 496      | Total | С    | Ν   | 0   | S            | 0       | 0     |
| 0   | DI    | 420      | 3331  | 2094 | 569 | 641 | 27           | 0       | 0     |
| 3   | B3    | 496      | Total | С    | Ν   | 0   | S            | 0       | 0     |
| 0   | D0    | 420      | 3331  | 2094 | 569 | 641 | 27           | 0       | 0     |
| 3   | R5    | 496      | Total | С    | Ν   | 0   | S            | 0       | 0     |
| 0   | D0    | 420      | 3331  | 2094 | 569 | 641 | 27           | 0       | 0     |
| 3   | B7    | 496      | Total | С    | Ν   | 0   | S            | 0       | 0     |
| 0   | Di    | 420      | 3331  | 2094 | 569 | 641 | 27           | 0       | 0     |
| 3   | B0    | 496      | Total | С    | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| 0   | D9    | 420      | 3331  | 2094 | 569 | 641 | 27           | 0       | 0     |
| 3   | C1    | 496      | Total | С    | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| 0   | UI    | 420      | 3331  | 2094 | 569 | 641 | 27           | 0       | 0     |
| 3   | C3    | 496      | Total | С    | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| J   | U.J   | 420      | 3331  | 2094 | 569 | 641 | 27           | U       | U     |
| 3   | C5    | 426      | Total | С    | Ν   | 0   | S            | 0       | 0     |
| J   | 0.5   | 420      | 3331  | 2094 | 569 | 641 | 27           | U       | 0     |
| 3   | C7    | 426      | Total | C    | Ν   | 0   | S            | 0       | 0     |
| J   | UI    | 420      | 3331  | 2094 | 569 | 641 | 27           | U       | U     |



| Mol      | Chain            | Residues |       | At   | oms |     |    | AltConf | Trace |
|----------|------------------|----------|-------|------|-----|-----|----|---------|-------|
| 9        | CO               | 496      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| 0        | 09               | 420      | 3331  | 2094 | 569 | 641 | 27 | 0       | 0     |
| 9        | D1               | 496      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| 0        | DI               | 420      | 3331  | 2094 | 569 | 641 | 27 | 0       | 0     |
| 2        | D2               | 496      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| 0        | Do               | 420      | 3331  | 2094 | 569 | 641 | 27 | 0       | 0     |
| 2        | D5               | 496      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| 0        | D0               | 420      | 3331  | 2094 | 569 | 641 | 27 | 0       | 0     |
| 2        | D7               | 496      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| 5        | Di               | 420      | 3331  | 2094 | 569 | 641 | 27 | 0       | 0     |
| 2        | ро               | 496      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| 5        | D9               | 420      | 3331  | 2094 | 569 | 641 | 27 | 0       | 0     |
| 2        | F1               | 426      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| 5        | 171              | 420      | 3331  | 2094 | 569 | 641 | 27 | 0       | 0     |
| 2        | F3               | 496      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| 5        | E9               | 420      | 3331  | 2094 | 569 | 641 | 27 | 0       | 0     |
| 2        | F5               | 496      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| 5        | E9               | 420      | 3331  | 2094 | 569 | 641 | 27 | 0       | 0     |
| 2        | $\mathbf{F}^{7}$ | 496      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| 5        |                  | 420      | 3331  | 2094 | 569 | 641 | 27 | 0       | 0     |
| 2        | FO               | 496      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| <b>J</b> | <u>Б</u> Э       | 420      | 3331  | 2094 | 569 | 641 | 27 | U       | 0     |
| 2        | F1               | 426      | Total | С    | Ν   | 0   | S  | 0       | 0     |
| 0        |                  | 420      | 3331  | 2094 | 569 | 641 | 27 | U       |       |

• Molecule 4 is a protein called PDI family protein.

| Mol | Chain | Residues |       | At   | oms |     |   | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|---|---------|-------|
| 4   | 9     | 150      | Total | С    | Ν   | 0   | S | 0       | 0     |
| 4   | a     | 150      | 1198  | 763  | 213 | 217 | 5 | 0       | 0     |
| 4   | h     | 150      | Total | С    | Ν   | 0   | S | 0       | 0     |
| 4   | D     | 150      | 1198  | 763  | 213 | 217 | 5 | 0       | 0     |
| 4   | 0     | 201      | Total | С    | Ν   | 0   | S | 0       | 0     |
| 4   | C     | 201      | 1608  | 1021 | 283 | 297 | 7 | 0       | 0     |
| 4   | d     | 201      | Total | С    | Ν   | 0   | S | 0       | 0     |
| 4   | u     | 201      | 1608  | 1021 | 283 | 297 | 7 | 0       | 0     |
| 4   | 0     | 201      | Total | С    | Ν   | 0   | S | 0       | 0     |
| 4   | е     | 201      | 1608  | 1021 | 283 | 297 | 7 | 0       | 0     |
| 4   | f     | 201      | Total | С    | Ν   | 0   | S | 0       | 0     |
| 4   | 1     | 201      | 1608  | 1021 | 283 | 297 | 7 | 0       | 0     |
| 4   | ď     | 201      | Total | С    | Ν   | 0   | S | 0       | 0     |
| 4   | g     | 201      | 1608  | 1021 | 283 | 297 | 7 | 0       | U     |



| Mol | Chain    | Residues |       | At   | oms |     |                | AltConf | Trace |
|-----|----------|----------|-------|------|-----|-----|----------------|---------|-------|
| 4   | 1        | 001      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | n        | 201      | 1608  | 1021 | 283 | 297 | $\overline{7}$ | 0       | 0     |
| 4   | <u>.</u> | 901      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | 1        | 201      | 1608  | 1021 | 283 | 297 | 7              | 0       | 0     |
| 4   | <u>.</u> | 901      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | J        | 201      | 1608  | 1021 | 283 | 297 | 7              | 0       | 0     |
| 4   | -        | 201      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | 0        | 201      | 1608  | 1021 | 283 | 297 | 7              | 0       | 0     |
| 4   |          | 201      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | р        | 201      | 1608  | 1021 | 283 | 297 | 7              | 0       | 0     |
| 4   | ~        | 201      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | q        | 201      | 1608  | 1021 | 283 | 297 | 7              | 0       | U     |
| 4   |          | 201      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | 1        | 201      | 1608  | 1021 | 283 | 297 | 7              | 0       |       |
| 4   | G        | 201      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | 5        | 201      | 1608  | 1021 | 283 | 297 | $\overline{7}$ | 0       | U     |
| 4   | +        | 201      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | U        | 201      | 1608  | 1021 | 283 | 297 | $\overline{7}$ | 0       | 0     |
| 4   |          | 201      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | u        | 201      | 1608  | 1021 | 283 | 297 | 7              | 0       | 0     |
| 4   |          | 201      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | V        | 201      | 1608  | 1021 | 283 | 297 | 7              | 0       | 0     |
| 4   | n        | 201      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | 11       | 201      | 1608  | 1021 | 283 | 297 | 7              | 0       | U     |
| 4   | m        | 201      | Total | С    | Ν   | 0   | S              | 0       | 0     |
| 4   | 111      | 201      | 1608  | 1021 | 283 | 297 | 7              |         | U     |

• Molecule 5 is a protein called PDI family protein.

| Mol | Chain | Residues | Atoms |     |     |     |   | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|---|---------|-------|
| 5   | ŀ     | 120      | Total | С   | Ν   | 0   | S | 0       | 0     |
| 0   | K     | 159      | 1140  | 738 | 203 | 195 | 4 | 0       | 0     |
| 5   | 1     | 120      | Total | С   | Ν   | 0   | S | 0       | 0     |
| 0   | 1     | 159      | 1140  | 738 | 203 | 195 | 4 | 0       | 0     |
| Б   |       | 149      | Total | С   | Ν   | 0   | S | 0       | 0     |
| 0   | W     | 140      | 1172  | 755 | 207 | 205 | 5 | 0       | 0     |
| F   |       | 149      | Total | С   | Ν   | 0   | S | 0       | 0     |
| 0   | X     | 140      | 1172  | 755 | 207 | 205 | 5 | 0       | 0     |

There are 92 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment   | Reference      |
|-------|---------|----------|--------|-----------|----------------|
| k     | 167     | SER      | -      | insertion | UNP A0A7J6K232 |



| Continu | ieu jioni pre | corous page |        |           |                |
|---------|---------------|-------------|--------|-----------|----------------|
| Chain   | Residue       | Modelled    | Actual | Comment   | Reference      |
| k       | 168           | ALA         | -      | insertion | UNP A0A7J6K232 |
| k       | 169           | GLN         | -      | insertion | UNP A0A7J6K232 |
| k       | 170           | ARG         | -      | insertion | UNP A0A7J6K232 |
| k       | 171           | LEU         | -      | insertion | UNP A0A7J6K232 |
| k       | 172           | ARG         | -      | insertion | UNP A0A7J6K232 |
| k       | 173           | THR         | -      | insertion | UNP A0A7J6K232 |
| k       | 174           | LEU         | -      | insertion | UNP A0A7J6K232 |
| k       | 175           | ASN         | -      | insertion | UNP A0A7J6K232 |
| k       | 176           | ASP         | -      | insertion | UNP A0A7J6K232 |
| k       | 177           | ALA         | -      | insertion | UNP A0A7J6K232 |
| k       | 178           | THR         | -      | insertion | UNP A0A7J6K232 |
| k       | 179           | ASP         | -      | insertion | UNP A0A7J6K232 |
| k       | 180           | PRO         | -      | insertion | UNP A0A7J6K232 |
| k       | 181           | TRP         | -      | insertion | UNP A0A7J6K232 |
| k       | 182           | LYS         | -      | insertion | UNP A0A7J6K232 |
| k       | 183           | LYS         | -      | insertion | UNP A0A7J6K232 |
| k       | 184           | ARG         | -      | insertion | UNP A0A7J6K232 |
| k       | 185           | LEU         | -      | insertion | UNP A0A7J6K232 |
| k       | 186           | PRO         | -      | insertion | UNP A0A7J6K232 |
| k       | 187           | GLN         | -      | insertion | UNP A0A7J6K232 |
| k       | 188           | ASN         | -      | insertion | UNP A0A7J6K232 |
| k       | 189           | VAL         | -      | insertion | UNP A0A7J6K232 |
| 1       | 167           | SER         | -      | insertion | UNP A0A7J6K232 |
| 1       | 168           | ALA         | -      | insertion | UNP A0A7J6K232 |
| 1       | 169           | GLN         | -      | insertion | UNP A0A7J6K232 |
| 1       | 170           | ARG         | -      | insertion | UNP A0A7J6K232 |
| 1       | 171           | LEU         | -      | insertion | UNP A0A7J6K232 |
| 1       | 172           | ARG         | -      | insertion | UNP A0A7J6K232 |
| 1       | 173           | THR         | -      | insertion | UNP A0A7J6K232 |
| 1       | 174           | LEU         | -      | insertion | UNP A0A7J6K232 |
| 1       | 175           | ASN         | -      | insertion | UNP A0A7J6K232 |
| 1       | 176           | ASP         | -      | insertion | UNP A0A7J6K232 |
| 1       | 177           | ALA         | -      | insertion | UNP A0A7J6K232 |
| 1       | 178           | THR         | -      | insertion | UNP A0A7J6K232 |
| 1       | 179           | ASP         | -      | insertion | UNP A0A7J6K232 |
| 1       | 180           | PRO         | -      | insertion | UNP A0A7J6K232 |
| 1       | 181           | TRP         | -      | insertion | UNP A0A7J6K232 |
| 1       | 182           | LYS         | -      | insertion | UNP A0A7J6K232 |
| 1       | 183           | LYS         | -      | insertion | UNP A0A7J6K232 |
| 1       | 184           | ARG         | -      | insertion | UNP A0A7J6K232 |
| 1       | 185           | LEU         | -      | insertion | UNP A0A7J6K232 |
| 1       | 186           | PRO         | -      | insertion | UNP A0A7J6K232 |



| Continu | ieu from pre | corous puye |        |           |                |
|---------|--------------|-------------|--------|-----------|----------------|
| Chain   | Residue      | Modelled    | Actual | Comment   | Reference      |
| 1       | 187          | GLN         | -      | insertion | UNP A0A7J6K232 |
| 1       | 188          | ASN         | -      | insertion | UNP A0A7J6K232 |
| 1       | 189          | VAL         | -      | insertion | UNP A0A7J6K232 |
| W       | 167          | SER         | -      | insertion | UNP A0A7J6K232 |
| W       | 168          | ALA         | -      | insertion | UNP A0A7J6K232 |
| W       | 169          | GLN         | -      | insertion | UNP A0A7J6K232 |
| W       | 170          | ARG         | -      | insertion | UNP A0A7J6K232 |
| W       | 171          | LEU         | -      | insertion | UNP A0A7J6K232 |
| W       | 172          | ARG         | -      | insertion | UNP A0A7J6K232 |
| W       | 173          | THR         | -      | insertion | UNP A0A7J6K232 |
| W       | 174          | LEU         | -      | insertion | UNP A0A7J6K232 |
| W       | 175          | ASN         | -      | insertion | UNP A0A7J6K232 |
| W       | 176          | ASP         | -      | insertion | UNP A0A7J6K232 |
| W       | 177          | ALA         | -      | insertion | UNP A0A7J6K232 |
| W       | 178          | THR         | -      | insertion | UNP A0A7J6K232 |
| W       | 179          | ASP         | -      | insertion | UNP A0A7J6K232 |
| W       | 180          | PRO         | -      | insertion | UNP A0A7J6K232 |
| W       | 181          | TRP         | -      | insertion | UNP A0A7J6K232 |
| W       | 182          | LYS         | -      | insertion | UNP A0A7J6K232 |
| W       | 183          | LYS         | -      | insertion | UNP A0A7J6K232 |
| W       | 184          | ARG         | -      | insertion | UNP A0A7J6K232 |
| W       | 185          | LEU         | -      | insertion | UNP A0A7J6K232 |
| W       | 186          | PRO         | -      | insertion | UNP A0A7J6K232 |
| W       | 187          | GLN         | -      | insertion | UNP A0A7J6K232 |
| W       | 188          | ASN         | -      | insertion | UNP A0A7J6K232 |
| W       | 189          | VAL         | -      | insertion | UNP A0A7J6K232 |
| X       | 167          | SER         | -      | insertion | UNP A0A7J6K232 |
| x       | 168          | ALA         | -      | insertion | UNP A0A7J6K232 |
| X       | 169          | GLN         | -      | insertion | UNP A0A7J6K232 |
| X       | 170          | ARG         | -      | insertion | UNP A0A7J6K232 |
| x       | 171          | LEU         | -      | insertion | UNP A0A7J6K232 |
| X       | 172          | ARG         | -      | insertion | UNP A0A7J6K232 |
| X       | 173          | THR         | -      | insertion | UNP A0A7J6K232 |
| X       | 174          | LEU         | -      | insertion | UNP A0A7J6K232 |
| X       | 175          | ASN         | -      | insertion | UNP A0A7J6K232 |
| X       | 176          | ASP         | -      | insertion | UNP A0A7J6K232 |
| X       | 177          | ALA         | -      | insertion | UNP A0A7J6K232 |
| x       | 178          | THR         | -      | insertion | UNP A0A7J6K232 |
| x       | 179          | ASP         | -      | insertion | UNP A0A7J6K232 |
| x       | 180          | PRO         | -      | insertion | UNP A0A7J6K232 |
| x       | 181          | TRP         | -      | insertion | UNP A0A7J6K232 |
| x       | 182          | LYS         | -      | insertion | UNP A0A7J6K232 |



| 00100000 |         |          |        |           |                |  |  |  |  |  |
|----------|---------|----------|--------|-----------|----------------|--|--|--|--|--|
| Chain    | Residue | Modelled | Actual | Comment   | Reference      |  |  |  |  |  |
| X        | 183     | LYS      | -      | insertion | UNP A0A7J6K232 |  |  |  |  |  |
| X        | 184     | ARG      | -      | insertion | UNP A0A7J6K232 |  |  |  |  |  |
| X        | 185     | LEU      | -      | insertion | UNP A0A7J6K232 |  |  |  |  |  |
| X        | 186     | PRO      | -      | insertion | UNP A0A7J6K232 |  |  |  |  |  |
| X        | 187     | GLN      | -      | insertion | UNP A0A7J6K232 |  |  |  |  |  |
| X        | 188     | ASN      | -      | insertion | UNP A0A7J6K232 |  |  |  |  |  |
| X        | 189     | VAL      | -      | insertion | UNP A0A7J6K232 |  |  |  |  |  |

• Molecule 6 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula:  $C_{10}H_{16}N_5O_{14}P_3$ ).



| Mol | Chain       | Residues | Atoms |    |   |    |   | AltConf |
|-----|-------------|----------|-------|----|---|----|---|---------|
| 6   | 4.0         | 1        | Total | С  | Ν | 0  | Р | 0       |
| 0   | AU          | L        | 32    | 10 | 5 | 14 | 3 | 0       |
| 6   | 12          | 1        | Total | С  | Ν | Ο  | Р | 0       |
| 0   | $\Lambda L$ | I        | 32    | 10 | 5 | 14 | 3 | 0       |
| 6   | Δ.4         | 1        | Total | С  | Ν | Ο  | Р | 0       |
| 0   | Λ4          | I        | 32    | 10 | 5 | 14 | 3 | 0       |
| 6   | 46          | 1        | Total | С  | Ν | Ο  | Р | 0       |
| 0   | ЛО          | T        | 32    | 10 | 5 | 14 | 3 | 0       |
| 6   | 4.8         | 1        | Total | С  | Ν | Ο  | Р | 0       |
| 0   | ЛО          | 1        | 32    | 10 | 5 | 14 | 3 | 0       |
| 6   | BU          | 1        | Total | С  | Ν | Ο  | Р | 0       |
| 0   | DU          | 1        | 32    | 10 | 5 | 14 | 3 | 0       |
| 6   | BJ          | 1        | Total | С  | Ν | Ο  | Р | 0       |
| 0   |             | 1        | 32    | 10 | 5 | 14 | 3 | 0       |



Continued from previous page...

| Mol | Chain         | Residues |       | Ato | oms |    |   | AltConf |
|-----|---------------|----------|-------|-----|-----|----|---|---------|
| G   | D4            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | D4            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| G   | De            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | B0            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| G   | Do            | 1        | Total | С   | Ν   | Ο  | Р | 0       |
| 0   | Dð            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| G   | CO            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | CO            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| 6   | Co            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | 02            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| 6   | C4            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | 04            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| 6   | CG            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | CO            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| 6   | Co            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | 08            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| G   | D0            | 1        | Total | С   | Ν   | Ο  | Р | 0       |
| 0   | D0            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| G   | Da            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | D2            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| G   | D4            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | D4            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| 6   | De            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | D0            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| 6   | ٦٩            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | D8            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| 6   | FO            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | EU            | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| 6   | ГO            | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | $\mathbf{E}Z$ | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| 6   | <b>F</b> 4    | 1        | Total | С   | Ν   | 0  | Р | 0       |
| 0   | £/4           | 1        | 32    | 10  | 5   | 14 | 3 | 0       |
| 6   | FG            | 1        | Total | С   | Ν   | Ο  | Р | Ο       |
| U   | ĽО            | 1        | 32    | 10  | 5   | 14 | 3 | U       |
| G   | гo            | 1        | Total | С   | Ν   | Ο  | Р | 0       |
|     | ĽО            | 1        | 32    | 10  | 5   | 14 | 3 | U       |
| 6   | FO            | 1        | Total | С   | Ν   | Ο  | Р | Ο       |
| 0   | ΓU            | L        | 32    | 10  | 5   | 14 | 3 | U       |

• Molecule 7 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).



| Mol | Chain | Residues | Ator       | ns      | AltConf |
|-----|-------|----------|------------|---------|---------|
| 7   | A0    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | A2    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | A4    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | A6    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | A8    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | B0    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | B2    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | Β4    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | B6    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | B8    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | С0    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | C2    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | C4    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | C6    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | C8    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | D0    | 1        | Total      | Mg<br>1 | 0       |
| 7   | D2    | 1        | Total      | Mg<br>1 | 0       |
| 7   | D4    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | D6    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | D8    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | E0    | 1        | Total<br>1 | Mg<br>1 | 0       |
| 7   | E2    | 1        | Total<br>1 | Mg      | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 7   | E4    | 1        | Total Mg<br>1 1 | 0       |
| 7   | E6    | 1        | Total Mg<br>1 1 | 0       |
| 7   | E8    | 1        | Total Mg<br>1 1 | 0       |
| 7   | F0    | 1        | Total Mg<br>1 1 | 0       |

• Molecule 8 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula:  $C_{10}H_{15}N_5O_{11}P_2$ ).



| Mol | Chain       | Residues |       | AltConf |   |    |   |   |
|-----|-------------|----------|-------|---------|---|----|---|---|
| 0   | Δ.1         | 1        | Total | С       | Ν | 0  | Р | 0 |
| 0   | AI          | L        | 28    | 10      | 5 | 11 | 2 | 0 |
| 8   | Λ 3         | 1        | Total | С       | Ν | 0  | Р | 0 |
| 0   | Aə          | T        | 28    | 10      | 5 | 11 | 2 | 0 |
| 0   | 15          | 1        | Total | С       | Ν | 0  | Р | 0 |
| 0   | Að          | 1        | 28    | 10      | 5 | 11 | 2 | 0 |
| 0   | Δ7          | 1        | Total | С       | Ν | 0  | Р | 0 |
| 0   | $\Lambda$ ( | L        | 28    | 10      | 5 | 11 | 2 | 0 |
| 8   | 4.0         | 1        | Total | С       | Ν | 0  | Р | 0 |
| 0   | A9          | T        | 28    | 10      | 5 | 11 | 2 | 0 |
| 8   | R1          | 1        | Total | С       | Ν | Ο  | Р | 0 |
| 0   | DI          | L        | 28    | 10      | 5 | 11 | 2 | 0 |
| 8   | B3          | 1        | Total | С       | N | 0  | Р | 0 |
|     | D9          | L        | 28    | 10      | 5 | 11 | 2 | 0 |



Continued from previous page...

| Mol | Chain         | Residues | _     | AltConf      |   |    |   |   |
|-----|---------------|----------|-------|--------------|---|----|---|---|
| 0   | DF            | 1        | Total | С            | Ν | Ο  | Р | 0 |
| 0   | B9            | 1        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | D7            | 1        | Total | С            | Ν | Ο  | Р | 0 |
|     | Bí            | 1        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | DO            | 1        | Total | С            | Ν | Ο  | Р | 0 |
|     | D9            | L        | 28    | 10           | 5 | 11 | 2 | 0 |
| 0   | C1            | 1        | Total | С            | Ν | Ο  | Р | 0 |
| 0   | U1            | L        | 28    | 10           | 5 | 11 | 2 | 0 |
| 0   | <u>C</u> 2    | 1        | Total | Total C N    |   | 0  | Р | 0 |
| 0   | $\bigcirc$    | L        | 28    | 10           | 5 | 11 | 2 | 0 |
| 0   | C5            | 1        | Total | С            | Ν | Ο  | Р | 0 |
| 0   | 03            | L        | 28    | 10           | 5 | 11 | 2 | 0 |
| 0   | C7            | 1        | Total | С            | Ν | 0  | Р | 0 |
| 0   | 01            | L        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | CO            | 1        | Total | С            | Ν | Ο  | Р | 0 |
| 0   | 09            | T        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | D1            | 1        | Total | С            | Ν | 0  | Р | 0 |
|     |               | 1        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | D3            | 1        | Total | С            | Ν | Ο  | Р | 0 |
|     |               | T        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | D5            | 1        | Total | С            | Ν | Ο  | Р | 0 |
| 0   | D0            | T        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | D7            | 1        | Total | С            | Ν | Ο  | Р | 0 |
| 0   | Di            | T        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | DQ            | 1        | Total | С            | Ν | Ο  | Р | 0 |
| 0   | 20            | I        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | E1            | 1        | Total | $\mathbf{C}$ | Ν | Ο  | Р | 0 |
| 0   | 1.71          | I        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | E3            | 1        | Total | $\mathbf{C}$ | Ν | Ο  | Р | 0 |
|     | <u>Е</u> Э    | T        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | $\mathbf{E5}$ | 1        | Total | $\mathbf{C}$ | Ν | Ο  | Р | 0 |
| 0   | L0            | I        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | $\mathbf{E7}$ | 1        | Total | $\mathbf{C}$ | Ν | Ο  | Р | 0 |
|     |               | 1        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | EQ            | 1        | Total | $\mathbf{C}$ | Ν | Ο  | Р | 0 |
|     | LU            | 1        | 28    | 10           | 5 | 11 | 2 | 0 |
| 8   | F1            | 1        | Total | $\mathbf{C}$ | Ν | Ο  | Р | 0 |
| ð   | L T T         |          | 28    | 10           | 5 | 11 | 2 | 0 |



#### 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Microtubule associated protein SPM1





• Molecule 1: Microtubule associated protein SPM1

Chain 2: 6% 94% SISTER SI NAME OF A DESCRIPTION O • Molecule 1: Microtubule associated protein SPM1 Chain 3: 6% 94% A CALLED AND A CALLED A CALL • Molecule 1: Microtubule associated protein SPM1 Chain 4: 6% • 94%



• Molecule 1: Microtubule associated protein SPM1 Chain 5: 6% 94% • Molecule 1: Microtubule associated protein SPM1 Chain 6: 6% 94% MET MET ASN ASN ASN ASN ASN ASN ASN LLYS SER ASN CLYS SER TTYR CGUU CGUU CGUU CGUU CGUU CCYS SER ASS ASS CCYS SER AASN TTYR TTYR TTYR TTYR TTYR AASN CGUU CGUU CGUU CCS SER CCYS SER SER CCYS SER CCYS SER CCYS SE 



• Molecule 1: Microtubule associated protein SPM1



MET MET GLY GLY SERRA SE





• Molecule 1: Microtubule associated protein SPM1

Chain 12: 5% 94% PRICE AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDR • Molecule 1: Microtubule associated protein SPM1 Chain 13: 6% 94% PRO VALI TTHR GUNAL CULU VAL LLEU PRO GUU PRO FLEU PRO GUU PRO GUU PRO GUU VAL LLEU VAL R PRO GUU VAL R PRO CO CO PRO CO PRO CO PRO CO PRO CO PRO CO C • Molecule 1: Microtubule associated protein SPM1 Chain 14: 6% 94% 



• Molecule 1: Microtubule associated protein SPM1

 Chain 15:
 6%
 94%

 111
 6%
 94%

 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 <

• Molecule 1: Microtubule associated protein SPM1

• Molecule 1: Microtubule associated protein SPM1



| Cha                | in 1                | 7:         | 6%•               |                   |            |                   |                    |            |            |            |            |                   | 94%               | Ď          |            |            |            |            |            |            |            |                    |             |            |                           |
|--------------------|---------------------|------------|-------------------|-------------------|------------|-------------------|--------------------|------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|-------------|------------|---------------------------|
| MET<br>SER<br>GLY  | GLY<br>ASN<br>SFF   | ASN<br>THR | PRO<br>LYS<br>LYS | LEU<br>PRO<br>SER | GLU<br>GLU | GLY<br>SER<br>ASD | TYR<br>CI.V        | TYR<br>PRO | GLN<br>GLN | PR0<br>GLN | LYS<br>TYR | PRO<br>LEU        | SER<br>GLU        | ALA<br>GLU | PRO<br>ASP | TYR<br>SER | ALA<br>CYS | CYS<br>LYS | GLY<br>ASN | ASP<br>ALA | TYR<br>LYS | GLY<br>ALA<br>SEP  | HIS<br>01.Y | THR<br>VAL | GLN                       |
| SER<br>HIS<br>PRO  | GLU<br>GLU<br>ATA   | GLN        | TYR<br>ALA<br>GLY | ALA<br>ALA<br>ALA | GLY<br>ALA | GLU<br>THR        | GLN                | GLY<br>ARG | GLU<br>ARG | VAL<br>ALA | ALA<br>ASP | GLN<br>PRD        | ARG<br>ALA        | GLY<br>ASP | VAL<br>PRO | ALA<br>ARG | ARG<br>LEU | LEU        | ASP        | VAL<br>ASP | GLU<br>ALA | ARG                | GLN         | PRO<br>SER | ARG<br>HIS                |
| PRO<br>GLY<br>TYR  | CYS<br>VAL<br>GUII  | GLU        | CYS<br>THR<br>CYS | GLY<br>MET<br>HIS | LYS<br>CYS | ILE<br>PRO<br>SED | ARG<br>ALA         | PRO<br>VAL | PRO<br>PHE | THR<br>GLY | SER<br>THR | GLN<br>TYR<br>ARG | GLU<br>GLU        | VAL        | LYS<br>PRO | LEU<br>PRO | PRO<br>PRO | GLN        | VAL<br>SER | GLN<br>VAL | THR        | PRO<br>PRO<br>SED  | LEU<br>PRO  | GLU        | ALA<br>GLU                |
| SER<br>SER<br>TYR  | ARG<br>THR<br>GI II | PHE<br>VAL | ALA<br>LYS<br>PRO | LEU<br>PRO<br>PRO | PRO<br>ALA | LYS<br>PHE<br>SFB | GLU<br>VAL         | LYS        | PRO<br>PRO | THR<br>LEU | PRO<br>PHE | GLU<br>SLH        | SER<br>ALA<br>TVD | ARG<br>THR | ASP<br>TYR | VAL<br>PRO | LYS<br>PRO | LEU<br>PRO | GLU<br>VAL | ALA<br>LYS | PRO<br>VAL | GLU<br>VAL<br>T VS | LEU<br>PRO  | P237       | <mark>0244</mark><br>Տ245 |
| C246<br>P258       | PRO<br>VAL<br>GI M  | THR<br>VAL | GLU<br>VAL<br>LYS | LEU<br>PRO<br>PRO | SER<br>LEU | PRO<br>PHE        | GLY<br>SFR         | THR        | TYR<br>ARG | ASP<br>GLU | PHE<br>GLN | VAL<br>LYS<br>PRO | LEU<br>PRO        | ALA<br>THR | LYS<br>VAL | THR<br>GLU | VAL<br>LYS | PRO        | PRO<br>SER | PRO        | PHE        | ALA<br>THR<br>SEP  | MET         | ARG        | ASP<br>TYR                |
| VAL<br>ALA<br>LYS  | SER<br>ASN<br>PRO   | ILE<br>CYS | PRO<br>VAL<br>SER | LYS<br>LEU<br>PRO | GLN<br>TYR | PRO<br>ALA<br>ATA | THR<br>TYR         | PRO<br>GLN | ASN<br>HIS | VAL<br>PHE | TRP<br>ASP | ASP<br>THR        | CLN<br>GLN        | TYR        |            |            |            |            |            |            |            |                    |             |            |                           |
| • M                | olec                | ule        | 1: N              | Aicr              | otu        | ıbul              | le a               | sso        | cia        | teo        | ł pr       | ote               | in S              | PM         | <b>1</b> 1 |            |            |            |            |            |            |                    |             |            |                           |
| Cha                | in 1                | 8:         | 6%                |                   |            |                   |                    |            |            |            |            |                   | 94%               |            |            |            |            |            |            |            |            |                    |             |            |                           |
| MET<br>SER<br>GLY  | GLY<br>ASN<br>SFR   | ASN<br>THR | PRO<br>LYS<br>LYS | LEU<br>PRO<br>SER | GLU<br>GLU | GLY<br>SER<br>ASD | TYR<br>CI.Y        | TYR<br>PRO | GLN<br>GLN | PR0<br>GLN | LYS<br>TYR | PRO<br>T.YS       | SER<br>GLU        | ALA<br>GLU | PRO<br>ASP | TYR<br>SER | ALA<br>CYS | CYS<br>LYS | GLY<br>ASN | ASP<br>ALA | TYR<br>LYS | GLY<br>ALA<br>SEP  | HIS<br>ULY  | THR<br>VAL | GLN                       |
| SER<br>HIS<br>PRO  | GLU<br>GLU          | GLN        | TYR<br>ALA<br>GLY | ALA<br>ALA<br>ALA | GLY<br>ALA | GLU<br>THR        | GLN                | GLY<br>ARG | GLU<br>ARG | VAL<br>ALA | ALA<br>ASP | GLN<br>GLN        | ALA               | GLY<br>ASP | VAL<br>PRO | ALA<br>ARG | ARG<br>LEU | LEU        | ASP        | VAL<br>ASP | GLU<br>ALA | ARG                | GLN         | PRO<br>SER | ARG<br>HIS                |
| PRO<br>GLY<br>TYR  | CYS<br>VAL<br>GIII  | GLU        | CYS<br>THR<br>CYS | GLY<br>MET<br>HIS | LYS<br>CYS | ILE<br>PRO<br>SED | ARG<br>ALA         | PRO<br>VAL | PRO<br>PHE | THR<br>GLY | SER<br>THR | GLN<br>ARG        | GLU<br>GLU        | VAL        | LYS<br>PRO | LEU<br>PRO | PRO<br>PRO | GLN        | VAL<br>SER | GLN        | THR        | PRO<br>PRO<br>SED  | LEU<br>PRO  | PHE<br>GLU | ALA<br>GLU                |
| SER<br>SER<br>TYR  | ARG<br>THR<br>GI II | PHE        | ALA<br>LYS<br>PRO | LEU<br>PRO<br>PRO | PR0<br>ALA | LYS<br>PHE<br>EFD | GLU<br>VAI.        | LYS<br>LEU | PRO<br>PRO | THR<br>LEU | PRO<br>PHE | GLU<br>SLH        | SER<br>ALA<br>TVD | ARG<br>THR | ASP<br>TYR | VAL<br>PRO | LYS<br>PRO | LEU<br>PRO | VAL        | ALA<br>LYS | PR0<br>VAL | GLU<br>VAL<br>TVS  | LEU<br>PRO  | P237       | P255                      |
| P258<br>PRO<br>VAL | GLN<br>THR<br>VAI   | GLU<br>VAL | LYS<br>LEU<br>PRO | PRO<br>SER<br>LEU | PRO<br>PHE | GLY<br>GLY        | THR                | TYR        | ASP<br>GLU | PHE        | VAL<br>LYS | LEU<br>PRO        | PRO<br>ALA        | LYS<br>VAL | THR<br>GLU | VAL<br>LYS | LEU<br>PRO | PRO<br>SER | PRO        | PHE<br>ASP | ALA<br>THR | SER<br>MET<br>TVD  | ARG         | ASP<br>TYR | VAL<br>ALA                |
| LYS<br>SER<br>ASN  | PRO<br>ILE<br>CVS   | PRO<br>VAL | SER<br>LYS<br>LEU | PRO<br>GLN<br>TYR | PRO<br>ALA | ALA<br>THR<br>TVB | PRO<br>GLN         | ASN<br>HIS | VAL<br>PHE | TRP<br>ASP | PRO<br>ASP | LYS               | TRP<br>TYR        |            |            |            |            |            |            |            |            |                    |             |            |                           |
| • M                | olec                | ule        | 1: N              | Aicr              | otu        | ıbul              | le a               | sso        | cia        | teo        | ł pr       | ote               | in S              | PM         | <b>[</b> 1 |            |            |            |            |            |            |                    |             |            |                           |
| Cha                | in 1                | 9:         | 6%•               |                   | -          |                   | -                  | -          | -          | -          |            | -                 | 94%               | ò          | -          | -          | -          | -          | -          | -          | -          | -                  | -           |            |                           |
| MET<br>SER<br>GLY  | GLY<br>ASN<br>SFR   | ASN<br>THR | PRO<br>LYS<br>LYS | LEU<br>PRO<br>SER | GLU<br>GLU | GLY<br>SER<br>ASD | TYR<br>TYR<br>CI.Y | TYR<br>PRO | GLN<br>GLN | PR0<br>GLN | LYS<br>TYR | PRO<br>T.YS       | SER<br>GLU        | ALA<br>GLU | PRO        | TYR<br>SER | ALA<br>CYS | CYS        | GLY<br>ASN | ASP<br>ALA | TYR<br>LYS | GLY<br>ALA<br>SEP  | HIS<br>111  | THR<br>VAL | GLN                       |
| SER<br>HIS<br>PRO  | GLU<br>GLU          | GLN        | TYR<br>ALA<br>GLY | ALA<br>ALA<br>ALA | GLY<br>ALA | GLU<br>THR        | GLN                | GLY<br>ARG | GLU<br>ARG | VAL<br>ALA | ALA<br>ASP | GLN<br>GLN<br>PRD | ALA               | GLY<br>ASP | VAL        | ALA<br>ARG | ARG<br>LEU | HIS        | ASP        | VAL<br>ASP | GLU<br>ALA | ARG                | GLN<br>SER  | PRO<br>SER | ARG<br>HIS                |
| PRO<br>GLY<br>TYR  | CYS<br>VAL          | GLU        | CYS<br>THR<br>CYS | GLY<br>MET<br>HIS | LYS<br>CYS | TLE<br>PRO<br>SEE | ARG                | PRO<br>VAL | PRO<br>PHE | THR<br>GLY | SER<br>THR | GLN<br>TYR<br>ARG | GLU<br>GLU        | VAL        | LYS<br>PRO | LEU<br>PRO | PRO<br>PRO | GLN        | VAL<br>SER | GLN        | LEU        | PRO<br>PRO<br>SEE  | LEU<br>PRO  | PHE        | ALA<br>GLU                |





















# M266 C1448 P274 C161 P274 C161 P286 L164 R200 E165 P286 L164 P286 L164 P306 E165 P306 L167 P306 L167 P306 L167 P306 L167 P306 L167 P306 L167 P306 P175 P306 P176 P306 P176 P306 P176 P306 P202 P306 P203 P306</

#### 1437 GLU THR ALA GLU GLU GLU GLU GLU GLU GLV ASP GLV TYR TYR

• Molecule 2: Tubulin alpha chain



• Molecule 2: Tubulin alpha chain









• Molecule 2: Tubulin alpha chain



# R214 M1 R215 G29 R215 G29 R216 G17 R216 G14 R264 G17 R264 G17 R264 G17 R264 G17 R264 G17 R265 G17 R264 G47 R265 G16 R266 R49 R266 R79 R2306 B68 R331 M100 R331 L125 G332 R106 R333 R156 R333 R164 R333 L126 R336 R49 R336 R49 R333 L126 R334 L136

#### 

• Molecule 2: Tubulin alpha chain




• Molecule 3: Tubulin beta chain





#### GLU GLY ALA

• Molecule 3: Tubulin beta chain



![](_page_38_Picture_6.jpeg)

ALA THR ALA GLU

## R153 K154 K155 K156 K156 K156 K156 V195 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 198 121 121 121 121 121 121 121 121 123 1318 1318 1318 1318

 $\bullet$  Molecule 3: Tubulin beta chain

GLU GLU GLU GLU FHE ASP ASP GLU GLU MET ALA ALA ALA

![](_page_39_Figure_6.jpeg)

23%

5%

Molecule 3: Tubulin beta chain
Chain C5: 72%

![](_page_40_Figure_4.jpeg)

#### -----

ASP ALA ALA ALA ALA CGLU CGLU CGLU CGLU CGLU MET MET MET ALA ALA ALA ALA ALA

• Molecule 3: Tubulin beta chain

![](_page_40_Figure_7.jpeg)

#### THR ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU MET ALA ALA ALA ALA

• Molecule 3: Tubulin beta chain

![](_page_40_Figure_10.jpeg)

Chain D1: 78% 17% 5%

![](_page_40_Picture_12.jpeg)

# V169 M1 P173 V7 V180 C10 V180 C10 V199 V7 N124 N14 V199 R46 V199 R46 V203 E53 V203 D67 N204 E63 N204 N66 A206 N67 N204 M66 A206 N67 N204 N99 V120 N14 V21 N14 V21 N14 V21 N24 V21 N173 L215 N173 L216 N173 L216 N101 Y23 N101 Y23 N101 Y23 N101 Y24 N101 Y23 U103 Y24 N101 Y23 U232 Y24 N101 Y24 N101

## 

 $\bullet$  Molecule 3: Tubulin beta chain

![](_page_41_Figure_6.jpeg)

![](_page_41_Picture_8.jpeg)

![](_page_42_Figure_3.jpeg)

• Molecule 3: Tubulin beta chain

![](_page_42_Figure_5.jpeg)

![](_page_42_Picture_6.jpeg)

## S145 S145 R282 M447 R285 M447 R286 M447 R286 M447 R286 M447 V286 F167 V286 F167 R304 W175 R305 W175 R306 W175 R306 W175 R306 W176 R303 W176 R304 W176 R305 W176 R306 W176 R307 W176 R303 W176 R304 W176 R324 W176 R324 W176 R324 W176 R324 W176 R324 W176 R324</t

#### 

 $\bullet$  Molecule 3: Tubulin beta chain

![](_page_43_Figure_6.jpeg)

![](_page_43_Picture_7.jpeg)

| 2248<br>12249<br>12260<br>1250<br>1256<br>12568<br>1266<br>1266<br>1266<br>1266<br>1266<br>1266<br>1266<br>12                                                           | q279<br>q280<br>x281<br>A283<br>A283<br>2285<br>C285<br>C285<br>C285<br>C285<br>C285<br>C285<br>C285      | N238<br>R306<br>7310<br>1311<br>1312<br>A313<br>R320                          | K324<br>D327<br>M330               | V342<br>V342<br>K350<br>C354<br>D355<br>D355             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------|
| L361<br>F367<br>F367<br>F367<br>F379<br>C379<br>C379<br>C379<br>C379<br>C379<br>C379<br>C379<br>C                                                                       | THR<br>ALA<br>GLU<br>GLU<br>GLU<br>GLU<br>GLU<br>GLU<br>GLU                                               | MEI<br>GLY<br>GLU<br>GLU<br>ALA<br>ALA                                        |                                    |                                                          |
| • Molecule 4: PDI family p                                                                                                                                              | rotein                                                                                                    |                                                                               |                                    |                                                          |
| Chain a:                                                                                                                                                                | 67%                                                                                                       | ·                                                                             | 32%                                | -                                                        |
| MET<br>SER<br>CL/M<br>CL/M<br>PR(O<br>PR(O<br>PR(O<br>PR(O<br>PR(O<br>PR(O<br>PR(O<br>PR(O                                                                              | ARG<br>ARA<br>LEU<br>MET<br>LEU<br>MET<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CLU<br>GLU<br>CLU<br>CLU     | ALSM<br>LLLE<br>GLIN<br>LLEU<br>PRO<br>PRO<br>ASN<br>ASP<br>MET<br>ASP<br>ASP | LEU<br>148<br>R117<br>R126<br>R126 | R149<br>V150<br>M151<br>K152<br>GLU<br>TYR<br>GLU        |
| VAL<br>PRO<br>THR<br>TTR<br>TTR<br>CLY<br>TVR<br>CLY<br>TVR<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CL<br>CL<br>CLY<br>CLY<br>C                                    | ASP<br>ASP<br>GLN<br>PHE<br>HIS<br>HIS<br>ARG<br>PRO<br>PRO<br>THR<br>THR<br>LEU<br>CLU<br>GLU<br>GLU     |                                                                               |                                    |                                                          |
| • Molecule 4: PDI family p                                                                                                                                              | rotein                                                                                                    |                                                                               |                                    |                                                          |
| Chain b:                                                                                                                                                                | 68%                                                                                                       |                                                                               | 32%                                | -                                                        |
| MET<br>SER<br>CLIN<br>PRO<br>PRO<br>PRO<br>PRO<br>ALL<br>VAL<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLE                                             | ARG<br>ALA<br>LEU<br>MET<br>CILN<br>GLN<br>ALA<br>ALA<br>ALA<br>ALA<br>CLN<br>GLY<br>CLV<br>CLV           | ASM<br>TLE<br>GIN<br>CGIN<br>PRO<br>PRO<br>ASP<br>ASP<br>MET<br>ASP           | LEU<br>148<br>E120                 | R149<br>V150<br>M151<br>K152<br>GLU<br>TYR<br>GLU<br>GLU |
| VAL<br>PRO<br>THR<br>TTR<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLA<br>GL7<br>T165<br>M175<br>M175<br>M175<br>M175<br>M175<br>M175<br>M175<br>M17                        | E190                                                                                                      | 01D                                                                           |                                    |                                                          |
| • Molecule 4: PDI family p                                                                                                                                              | rotein                                                                                                    |                                                                               |                                    |                                                          |
| Chain c:                                                                                                                                                                | 91%                                                                                                       |                                                                               | 9%                                 | -                                                        |
| MET<br>S2<br>S2<br>S2<br>M29<br>GLY<br>GLY<br>GLY<br>GLY<br>M12<br>B<br>D1 16<br>D1 16 | E155                                                                                                      | VAL<br>VAL<br>ARG<br>PRO<br>THR<br>LEU<br>LEU<br>GLU<br>GLN                   |                                    |                                                          |
| • Molecule 4: PDI family p                                                                                                                                              | orotein                                                                                                   |                                                                               |                                    |                                                          |
| Chain d:                                                                                                                                                                | 91%                                                                                                       |                                                                               | 9%                                 | 2                                                        |
| MET<br>S2<br>S2<br>M29<br>GLY<br>GLY<br>VAL<br>VAL<br>M35<br>M35<br>B137<br>E137<br>C154<br>M35<br>S154<br>M35                                                          | C188<br>C188<br>A207<br>SER<br>A207<br>SER<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C18 | ALLA<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>ALL                   |                                    |                                                          |
| • Molecule 4: PDI family p                                                                                                                                              | orotein                                                                                                   |                                                                               |                                    |                                                          |
| Chain e:                                                                                                                                                                | 90%                                                                                                       |                                                                               | • 9%                               | -                                                        |

![](_page_44_Picture_4.jpeg)

![](_page_45_Figure_3.jpeg)

• Molecule 4: PDI family protein

![](_page_45_Figure_5.jpeg)

• Molecule 4: PDI family protein

![](_page_45_Picture_7.jpeg)

| Chain p:                                                  | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • 9% |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| MET<br>82<br>117<br>117<br>627<br>617<br>617<br>617       | CLY<br>VAL<br>NAL<br>NAL<br>NAL<br>ASP<br>CLN<br>ASP<br>CLN<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| • Molecule 4                                              | 4: PDI family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Chain q:                                                  | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • 9% |
| MET<br>S2<br>A29<br>GLY<br>GLY<br>GLU<br>GLV<br>VAL       | NIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| • Molecule 4                                              | 4: PDI family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Chain r:                                                  | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9%   |
| MET<br>82<br>617<br>617<br>617<br>617<br>617<br>71        | N35<br>R97<br>R97<br>R97<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>AC7<br>SER<br>AC7<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| • Molecule 4                                              | 4: PDI family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Chain s:                                                  | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9%   |
| MET<br>S2<br>A29<br>GLY<br>GLY<br>GLY<br>VAL              | N35<br>R125<br>SER<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| • Molecule 4                                              | 4: PDI family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Chain t:                                                  | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9%   |
| MET<br>22<br>22<br>429<br>6LY<br>6LY<br>6LV<br>7AL<br>VAL | N35<br>R126<br>R126<br>R194<br>A207<br>A207<br>A207<br>A207<br>A207<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| • Molecule 4                                              | 4: PDI family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Chain u:                                                  | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • 9% |
| MET<br>S2<br>A29<br>GLY<br>GLY<br>GLU<br>GLU<br>VAL       | N35<br>R126<br>E155<br>V161<br>C188<br>A207<br>SER<br>A207<br>SER<br>A207<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A16<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A17<br>C188<br>A18<br>C188<br>A18<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188<br>C188 |      |
| • Molecule 4                                              | 4: PDI family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Chain v:                                                  | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • 9% |
| MET<br>S2<br>A29<br>GLY<br>GLY<br>CLY<br>VAL              | N94<br>N126<br>R126<br>T155<br>T154<br>T154<br>T155<br>A207<br>SER<br>A207<br>SER<br>A207<br>SER<br>A207<br>SER<br>A207<br>SER<br>A207<br>SER<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |

![](_page_47_Figure_3.jpeg)

![](_page_48_Figure_3.jpeg)

![](_page_48_Picture_4.jpeg)

## 4 Experimental information (i)

| Property                           | Value                                       | Source    |
|------------------------------------|---------------------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE                             | Depositor |
| Imposed symmetry                   | POINT, C1                                   | Depositor |
| Number of particles used           | 220139                                      | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF                           | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE                | Depositor |
|                                    | CORRECTION; CTF amplitude correction        |           |
|                                    | was performed as part of the 3D reconstruc- |           |
|                                    | tion.                                       |           |
| Microscope                         | FEI TITAN KRIOS                             | Depositor |
| Voltage (kV)                       | 300                                         | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 63.7                                        | Depositor |
| Minimum defocus (nm)               | 1000                                        | Depositor |
| Maximum defocus (nm)               | 3500                                        | Depositor |
| Magnification                      | 105000                                      | Depositor |
| Image detector                     | GATAN K3 BIOQUANTUM (6k x 4k)               | Depositor |
| Maximum map value                  | 2.228                                       | Depositor |
| Minimum map value                  | 0.000                                       | Depositor |
| Average map value                  | 0.014                                       | Depositor |
| Map value standard deviation       | 0.081                                       | Depositor |
| Recommended contour level          | 0.1                                         | Depositor |
| Map size (Å)                       | 438.4, 438.4, 438.4                         | wwPDB     |
| Map dimensions                     | 400, 400, 400                               | wwPDB     |
| Map angles ( $^{\circ}$ )          | 90.0, 90.0, 90.0                            | wwPDB     |
| Pixel spacing (Å)                  | 1.096, 1.096, 1.096                         | Depositor |

![](_page_49_Picture_5.jpeg)

### 5 Model quality (i)

#### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GDP, MG, GTP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Chain |         | Bond lengths |          | Bond angles |               |  |
|-----------|---------|--------------|----------|-------------|---------------|--|
|           | Ullalli | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5      |  |
| 1         | 0       | 0.47         | 0/181    | 0.55        | 0/248         |  |
| 1         | 1       | 0.42         | 0/181    | 0.58        | 0/248         |  |
| 1         | 10      | 0.49         | 0/181    | 0.61        | 0/248         |  |
| 1         | 11      | 0.53         | 0/181    | 0.60        | 0/248         |  |
| 1         | 12      | 0.47         | 0/181    | 0.51        | 0/248         |  |
| 1         | 13      | 0.50         | 0/181    | 0.50        | 0/248         |  |
| 1         | 14      | 0.47         | 0/181    | 0.48        | 0/248         |  |
| 1         | 15      | 0.53         | 0/181    | 0.42        | 0/248         |  |
| 1         | 16      | 0.40         | 0/181    | 0.49        | 0/248         |  |
| 1         | 17      | 0.47         | 0/181    | 0.51        | 0/248         |  |
| 1         | 18      | 0.44         | 0/181    | 0.48        | 0/248         |  |
| 1         | 19      | 0.57         | 0/181    | 0.53        | 0/248         |  |
| 1         | 2       | 0.54         | 0/181    | 0.59        | 0/248         |  |
| 1         | 20      | 0.39         | 0/181    | 0.59        | 0/248         |  |
| 1         | 21      | 0.43         | 0/181    | 0.52        | 0/248         |  |
| 1         | 22      | 0.42         | 0/166    | 0.48        | 0/227         |  |
| 1         | 23      | 0.46         | 0/166    | 0.47        | 0/227         |  |
| 1         | 3       | 0.53         | 0/181    | 0.49        | 0/248         |  |
| 1         | 4       | 0.51         | 0/181    | 0.50        | 0/248         |  |
| 1         | 5       | 0.55         | 0/181    | 0.52        | 0/248         |  |
| 1         | 6       | 0.49         | 0/181    | 0.46        | 0/248         |  |
| 1         | 7       | 0.48         | 0/181    | 0.48        | 0/248         |  |
| 1         | 8       | 0.47         | 0/181    | 0.65        | 0/248         |  |
| 1         | 9       | 0.45         | 0/181    | 0.63        | 0/248         |  |
| 2         | A0      | 0.42         | 0/3398   | 0.61        | 2/4606~(0.0%) |  |
| 2         | A2      | 0.39         | 0/3398   | 0.61        | 1/4606~(0.0%) |  |
| 2         | A4      | 0.53         | 0/3398   | 0.63        | 2/4606~(0.0%) |  |
| 2         | A6      | 0.48         | 0/3398   | 0.62        | 0/4606        |  |
| 2         | A8      | 0.50         | 0/3398   | 0.60        | 2/4606~(0.0%) |  |
| 2         | B0      | 0.50         | 0/3398   | 0.62        | 4/4606~(0.1%) |  |
| 2         | B2      | 0.53         | 0/3398   | 0.62        | 1/4606~(0.0%) |  |
| 2         | B4      | 0.52         | 0/3398   | 0.63        | 2/4606~(0.0%) |  |

![](_page_50_Picture_8.jpeg)

| Mal | Chain | Bond | lengths  | Bond angles |               |  |
|-----|-------|------|----------|-------------|---------------|--|
|     | Unain | RMSZ | # Z  > 5 | RMSZ        | # Z  > 5      |  |
| 2   | B6    | 0.53 | 0/3398   | 0.63        | 6/4606~(0.1%) |  |
| 2   | B8    | 0.55 | 0/3398   | 0.66        | 6/4606~(0.1%) |  |
| 2   | C0    | 0.44 | 0/3398   | 0.61        | 1/4606~(0.0%) |  |
| 2   | C2    | 0.45 | 0/3398   | 0.65        | 0/4606        |  |
| 2   | C4    | 0.43 | 0/3398   | 0.65        | 4/4606~(0.1%) |  |
| 2   | C6    | 0.44 | 0/3398   | 0.68        | 3/4606~(0.1%) |  |
| 2   | C8    | 0.45 | 0/3398   | 0.60        | 1/4606~(0.0%) |  |
| 2   | D0    | 0.50 | 0/3398   | 0.61        | 0/4606        |  |
| 2   | D2    | 0.45 | 0/3398   | 0.62        | 5/4606~(0.1%) |  |
| 2   | D4    | 0.52 | 0/3398   | 0.62        | 2/4606~(0.0%) |  |
| 2   | D6    | 0.42 | 0/3398   | 0.61        | 3/4606~(0.1%) |  |
| 2   | D8    | 0.52 | 0/3398   | 0.62        | 1/4606~(0.0%) |  |
| 2   | E0    | 0.37 | 0/3398   | 0.56        | 1/4606~(0.0%) |  |
| 2   | E2    | 0.44 | 0/3398   | 0.59        | 0/4606        |  |
| 2   | E4    | 0.38 | 0/3398   | 0.65        | 6/4606~(0.1%) |  |
| 2   | E6    | 0.45 | 0/3398   | 0.58        | 0/4606        |  |
| 2   | E8    | 0.39 | 0/3398   | 0.59        | 0/4606        |  |
| 2   | F0    | 0.45 | 0/3398   | 0.60        | 2/4606~(0.0%) |  |
| 3   | A1    | 0.47 | 0/3404   | 0.66        | 6/4606~(0.1%) |  |
| 3   | A3    | 0.40 | 0/3404   | 0.62        | 3/4606~(0.1%) |  |
| 3   | A5    | 0.50 | 0/3404   | 0.65        | 2/4606~(0.0%) |  |
| 3   | A7    | 0.45 | 0/3404   | 0.61        | 3/4606~(0.1%) |  |
| 3   | A9    | 0.52 | 0/3404   | 0.68        | 6/4606~(0.1%) |  |
| 3   | B1    | 0.46 | 0/3404   | 0.65        | 3/4606~(0.1%) |  |
| 3   | B3    | 0.54 | 0/3404   | 0.62        | 2/4606~(0.0%) |  |
| 3   | B5    | 0.48 | 0/3404   | 0.61        | 1/4606~(0.0%) |  |
| 3   | B7    | 0.54 | 0/3404   | 0.63        | 3/4606~(0.1%) |  |
| 3   | B9    | 0.50 | 0/3404   | 0.63        | 3/4606~(0.1%) |  |
| 3   | C1    | 0.46 | 0/3404   | 0.66        | 3/4606~(0.1%) |  |
| 3   | C3    | 0.44 | 0/3404   | 0.68        | 3/4606~(0.1%) |  |
| 3   | C5    | 0.44 | 0/3404   | 0.65        | 1/4606~(0.0%) |  |
| 3   | C7    | 0.44 | 0/3404   | 0.63        | 2/4606~(0.0%) |  |
| 3   | C9    | 0.52 | 0/3404   | 0.64        | 2/4606~(0.0%) |  |
| 3   | D1    | 0.49 | 0/3404   | 0.64        | 1/4606~(0.0%) |  |
| 3   | D3    | 0.50 | 0/3404   | 0.63        | 2/4606~(0.0%) |  |
| 3   | D5    | 0.50 | 0/3404   | 0.66        | 6/4606~(0.1%) |  |
| 3   | D7    | 0.51 | 0/3404   | 0.65        | 4/4606~(0.1%) |  |
| 3   | D9    | 0.51 | 0/3404   | 0.64        | 4/4606~(0.1%) |  |
| 3   | E1    | 0.41 | 0/3404   | 0.58        | 2/4606~(0.0%) |  |
| 3   | E3    | 0.45 | 0/3404   | 0.62        | 5/4606~(0.1%) |  |
| 3   | E5    | 0.41 | 0/3404   | 0.64        | 3/4606~(0.1%) |  |
| 3   | E7    | 0.45 | 0/3404   | 0.61        | 3/4606~(0.1%) |  |
| 3   | E9    | 0.41 | 0/3404   | 0.64        | 4/4606~(0.1%) |  |

![](_page_51_Picture_4.jpeg)

| Mol Chain |         | Bond lengths |          | Bond angles |                   |  |
|-----------|---------|--------------|----------|-------------|-------------------|--|
|           | Ullalli | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5          |  |
| 3         | F1      | 0.45         | 0/3404   | 0.69        | 7/4606~(0.2%)     |  |
| 4         | a       | 0.46         | 0/1225   | 0.62        | 0/1654            |  |
| 4         | b       | 0.39         | 0/1225   | 0.55        | 0/1654            |  |
| 4         | с       | 0.50         | 0/1645   | 0.64        | 0/2225            |  |
| 4         | d       | 0.44         | 0/1645   | 0.65        | 0/2225            |  |
| 4         | е       | 0.50         | 0/1645   | 0.63        | 0/2225            |  |
| 4         | f       | 0.47         | 0/1645   | 0.61        | 1/2225~(0.0%)     |  |
| 4         | g       | 0.50         | 0/1645   | 0.65        | 1/2225~(0.0%)     |  |
| 4         | h       | 0.48         | 0/1645   | 0.58        | 0/2225            |  |
| 4         | i       | 0.48         | 0/1645   | 0.66        | 0/2225            |  |
| 4         | j       | 0.47         | 0/1645   | 0.67        | 1/2225~(0.0%)     |  |
| 4         | m       | 0.41         | 0/1645   | 0.62        | 1/2225~(0.0%)     |  |
| 4         | n       | 0.41         | 0/1645   | 0.66        | 3/2225~(0.1%)     |  |
| 4         | 0       | 0.49         | 0/1645   | 0.65        | 1/2225~(0.0%)     |  |
| 4         | р       | 0.47         | 0/1645   | 0.64        | 1/2225~(0.0%)     |  |
| 4         | q       | 0.45         | 0/1645   | 0.60        | 0/2225            |  |
| 4         | r       | 0.49         | 0/1645   | 0.60        | 1/2225~(0.0%)     |  |
| 4         | s       | 0.41         | 0/1645   | 0.61        | 0/2225            |  |
| 4         | t       | 0.48         | 0/1645   | 0.62        | 0/2225            |  |
| 4         | u       | 0.36         | 0/1645   | 0.57        | 1/2225~(0.0%)     |  |
| 4         | V       | 0.45         | 0/1645   | 0.63        | 0/2225            |  |
| 5         | k       | 0.37         | 0/1168   | 0.59        | 0/1578            |  |
| 5         | 1       | 0.37         | 0/1168   | 0.69        | 2/1578~(0.1%)     |  |
| 5         | W       | 0.35         | 0/1201   | 0.55        | 0/1623            |  |
| 5         | Х       | 0.37         | 0/1201   | 0.54        | 0/1623            |  |
| All       | All     | 0.47         | 0/217964 | 0.63        | 152/295182~(0.1%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 2   | A2    | 0                   | 1                   |
| 2   | A4    | 0                   | 2                   |
| 2   | A8    | 0                   | 1                   |
| 2   | B4    | 0                   | 1                   |
| 2   | B6    | 0                   | 1                   |
| 2   | C8    | 0                   | 1                   |
| 2   | D2    | 0                   | 1                   |
| 3   | A1    | 0                   | 1                   |
| 3   | B3    | 0                   | 1                   |

![](_page_52_Picture_7.jpeg)

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 3   | B9    | 0                   | 1                   |
| 3   | E5    | 0                   | 2                   |
| 5   | 1     | 0                   | 1                   |
| All | All   | 0                   | 14                  |

There are no bond length outliers.

The worst 5 of 152 bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 2   | C6    | 30  | ILE  | C-N-CA    | 10.74 | 148.56           | 121.70        |
| 3   | A9    | 383 | ASP  | CB-CG-OD1 | 8.05  | 125.55           | 118.30        |
| 3   | E9    | 130 | LEU  | CA-CB-CG  | 7.97  | 133.64           | 115.30        |
| 3   | A9    | 73  | MET  | CG-SD-CE  | -7.75 | 87.80            | 100.20        |
| 3   | D5    | 41  | ASP  | CB-CG-OD1 | 7.71  | 125.24           | 118.30        |

There are no chirality outliers.

5 of 14 planarity outliers are listed below:

| Mol | Chain | $\operatorname{Res}$ | Type | Group   |
|-----|-------|----------------------|------|---------|
| 3   | A1    | 191                  | GLN  | Peptide |
| 2   | A2    | 401                  | LYS  | Peptide |
| 2   | A4    | 254                  | GLU  | Peptide |
| 2   | A4    | 401                  | LYS  | Peptide |
| 2   | A8    | 401                  | LYS  | Peptide |

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | 0     | 174   | 0        | 171      | 3       | 0            |
| 1   | 1     | 174   | 0        | 171      | 5       | 0            |
| 1   | 10    | 174   | 0        | 171      | 3       | 0            |
| 1   | 11    | 174   | 0        | 171      | 1       | 0            |
| 1   | 12    | 174   | 0        | 171      | 3       | 0            |
| 1   | 13    | 174   | 0        | 171      | 1       | 0            |
| 1   | 14    | 174   | 0        | 171      | 0       | 0            |

![](_page_53_Picture_15.jpeg)

| Conti | nueu jron | <i>i previous</i> | page     |          |         |              |
|-------|-----------|-------------------|----------|----------|---------|--------------|
| Mol   | Chain     | Non-H             | H(model) | H(added) | Clashes | Symm-Clashes |
| 1     | 15        | 174               | 0        | 171      | 1       | 0            |
| 1     | 16        | 174               | 0        | 171      | 2       | 0            |
| 1     | 17        | 174               | 0        | 171      | 2       | 0            |
| 1     | 18        | 174               | 0        | 171      | 1       | 0            |
| 1     | 19        | 174               | 0        | 171      | 2       | 0            |
| 1     | 2         | 174               | 0        | 171      | 1       | 0            |
| 1     | 20        | 174               | 0        | 171      | 2       | 0            |
| 1     | 21        | 174               | 0        | 171      | 3       | 0            |
| 1     | 22        | 160               | 0        | 156      | 3       | 0            |
| 1     | 23        | 160               | 0        | 156      | 3       | 0            |
| 1     | 3         | 174               | 0        | 171      | 2       | 0            |
| 1     | 4         | 174               | 0        | 171      | 2       | 0            |
| 1     | 5         | 174               | 0        | 171      | 2       | 0            |
| 1     | 6         | 174               | 0        | 171      | 1       | 0            |
| 1     | 7         | 174               | 0        | 171      | 3       | 0            |
| 1     | 8         | 174               | 0        | 171      | 1       | 0            |
| 1     | 9         | 174               | 0        | 171      | 2       | 0            |
| 2     | A0        | 3325              | 0        | 3251     | 54      | 0            |
| 2     | A2        | 3325              | 0        | 3252     | 54      | 0            |
| 2     | A4        | 3325              | 0        | 3252     | 43      | 0            |
| 2     | A6        | 3325              | 0        | 3252     | 48      | 0            |
| 2     | A8        | 3325              | 0        | 3252     | 54      | 0            |
| 2     | B0        | 3325              | 0        | 3252     | 47      | 0            |
| 2     | B2        | 3325              | 0        | 3252     | 44      | 0            |
| 2     | B4        | 3325              | 0        | 3252     | 62      | 0            |
| 2     | B6        | 3325              | 0        | 3252     | 47      | 0            |
| 2     | B8        | 3325              | 0        | 3252     | 61      | 0            |
| 2     | C0        | 3325              | 0        | 3252     | 65      | 0            |
| 2     | C2        | 3325              | 0        | 3252     | 69      | 0            |
| 2     | C4        | 3325              | 0        | 3252     | 74      | 0            |
| 2     | C6        | 3325              | 0        | 3251     | 69      | 0            |
| 2     | C8        | 3325              | 0        | 3252     | 45      | 0            |
| 2     | D0        | 3325              | 0        | 3252     | 38      | 0            |
| 2     | D2        | 3325              | 0        | 3252     | 39      | 0            |
| 2     | D4        | 3325              | 0        | 3252     | 41      | 0            |
| 2     | D6        | 3325              | 0        | 3252     | 43      | 0            |
| 2     | D8        | 3325              | 0        | 3252     | 38      | 0            |
| 2     | E0        | 3325              | 0        | 3252     | 35      | 0            |
| 2     | E2        | 3325              | 0        | 3252     | 45      | 0            |
| 2     | E4        | 3325              | 0        | 3252     | 55      | 0            |
| 2     | E6        | 3325              | 0        | 3252     | 50      | 0            |
| 2     | E8        | 3325              | 0        | 3252     | 71      | 0            |

![](_page_54_Picture_6.jpeg)

| Conti | nuea jron | <i>i previous</i> | page     |          |         |              |
|-------|-----------|-------------------|----------|----------|---------|--------------|
| Mol   | Chain     | Non-H             | H(model) | H(added) | Clashes | Symm-Clashes |
| 2     | F0        | 3325              | 0        | 3252     | 67      | 0            |
| 3     | A1        | 3331              | 0        | 3207     | 58      | 0            |
| 3     | A3        | 3331              | 0        | 3209     | 52      | 0            |
| 3     | A5        | 3331              | 0        | 3207     | 53      | 0            |
| 3     | A7        | 3331              | 0        | 3207     | 41      | 0            |
| 3     | A9        | 3331              | 0        | 3207     | 58      | 0            |
| 3     | B1        | 3331              | 0        | 3209     | 47      | 0            |
| 3     | B3        | 3331              | 0        | 3207     | 50      | 0            |
| 3     | B5        | 3331              | 0        | 3207     | 48      | 0            |
| 3     | B7        | 3331              | 0        | 3209     | 47      | 0            |
| 3     | B9        | 3331              | 0        | 3209     | 44      | 0            |
| 3     | C1        | 3331              | 0        | 3209     | 72      | 0            |
| 3     | C3        | 3331              | 0        | 3209     | 62      | 0            |
| 3     | C5        | 3331              | 0        | 3209     | 65      | 0            |
| 3     | C7        | 3331              | 0        | 3209     | 66      | 0            |
| 3     | C9        | 3331              | 0        | 3209     | 59      | 0            |
| 3     | D1        | 3331              | 0        | 3209     | 50      | 0            |
| 3     | D3        | 3331              | 0        | 3207     | 56      | 0            |
| 3     | D5        | 3331              | 0        | 3207     | 61      | 0            |
| 3     | D7        | 3331              | 0        | 3207     | 63      | 0            |
| 3     | D9        | 3331              | 0        | 3207     | 49      | 0            |
| 3     | E1        | 3331              | 0        | 3207     | 39      | 0            |
| 3     | E3        | 3331              | 0        | 3209     | 44      | 0            |
| 3     | E5        | 3331              | 0        | 3207     | 60      | 0            |
| 3     | E7        | 3331              | 0        | 3207     | 50      | 0            |
| 3     | E9        | 3331              | 0        | 3206     | 68      | 0            |
| 3     | F1        | 3331              | 0        | 3207     | 72      | 0            |
| 4     | a         | 1198              | 0        | 1194     | 0       | 0            |
| 4     | b         | 1198              | 0        | 1194     | 0       | 0            |
| 4     | с         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | d         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | е         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | f         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | g         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | h         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | i         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | j         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | m         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | n         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | 0         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | р         | 1608              | 0        | 1590     | 0       | 0            |
| 4     | q         | 1608              | 0        | 1590     | 0       | 0            |

![](_page_55_Picture_6.jpeg)

|     | nuea fron | <i>previous</i> |          | TT( 11 1) |         | a al l       |
|-----|-----------|-----------------|----------|-----------|---------|--------------|
| Mol | Chain     | Non-H           | H(model) | H(added)  | Clashes | Symm-Clashes |
| 4   | r         | 1608            | 0        | 1590      | 0       | 0            |
| 4   | S         | 1608            | 0        | 1590      | 0       | 0            |
| 4   | t         | 1608            | 0        | 1590      | 0       | 0            |
| 4   | u         | 1608            | 0        | 1590      | 0       | 0            |
| 4   | V         | 1608            | 0        | 1590      | 0       | 0            |
| 5   | k         | 1140            | 0        | 1143      | 0       | 0            |
| 5   | 1         | 1140            | 0        | 1143      | 0       | 0            |
| 5   | W         | 1172            | 0        | 1171      | 0       | 0            |
| 5   | X         | 1172            | 0        | 1171      | 0       | 0            |
| 6   | A0        | 32              | 0        | 12        | 2       | 0            |
| 6   | A2        | 32              | 0        | 12        | 0       | 0            |
| 6   | A4        | 32              | 0        | 12        | 0       | 0            |
| 6   | A6        | 32              | 0        | 12        | 0       | 0            |
| 6   | A8        | 32              | 0        | 12        | 1       | 0            |
| 6   | B0        | 32              | 0        | 12        | 1       | 0            |
| 6   | B2        | 32              | 0        | 12        | 1       | 0            |
| 6   | B4        | 32              | 0        | 12        | 0       | 0            |
| 6   | B6        | 32              | 0        | 12        | 2       | 0            |
| 6   | B8        | 32              | 0        | 12        | 1       | 0            |
| 6   | C0        | 32              | 0        | 12        | 2       | 0            |
| 6   | C2        | 32              | 0        | 12        | 0       | 0            |
| 6   | C4        | 32              | 0        | 12        | 1       | 0            |
| 6   | C6        | 32              | 0        | 12        | 3       | 0            |
| 6   | C8        | 32              | 0        | 12        | 1       | 0            |
| 6   | D0        | 32              | 0        | 12        | 0       | 0            |
| 6   | D2        | 32              | 0        | 12        | 0       | 0            |
| 6   | D4        | 32              | 0        | 12        | 1       | 0            |
| 6   | D6        | 32              | 0        | 12        | 0       | 0            |
| 6   | D8        | 32              | 0        | 12        | 1       | 0            |
| 6   | E0        | 32              | 0        | 12        | 0       | 0            |
| 6   | E2        | 32              | 0        | 12        | 1       | 0            |
| 6   | E4        | 32              | 0        | 12        | 0       | 0            |
| 6   | E6        | 32              | 0        | 12        | 3       | 0            |
| 6   | E8        | 32              | 0        | 12        | 2       | 0            |
| 6   | F0        | 32              | 0        | 12        | 1       | 0            |
| 7   | A0        | 1               | 0        | 0         | 0       | 0            |
| 7   | A2        | 1               | 0        | 0         | 0       | 0            |
| 7   | A4        | 1               | 0        | 0         | 0       | 0            |
| 7   | A6        | 1               | 0        | 0         | 0       | 0            |
| 7   | A8        | 1               | 0        | 0         | 0       | 0            |
| 7   | B0        | 1               | 0        | 0         | 0       | 0            |
| 7   | B2        | 1               | 0        | 0         | 0       | 0            |

![](_page_56_Picture_6.jpeg)

| MoiChainNon-HH(model)H(added)ClashesSymm-Clashes7B4100007B81000007B8100007C0100007C2100007C4100007C4100007C6100007D0100007D2100007D4100007D5100007B8100007E0100007E2100007E4100007E4100007E5100007E6100008A128012208A328012008B328012108B328012108B7280120<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conti | nuea fron | <i>i previous</i> | page     |          |         |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|-------------------|----------|----------|---------|--------------|
| 7       B4       1       0       0       0       0         7       B6       1       0       0       0       0         7       B8       1       0       0       0       0         7       C0       1       0       0       0       0         7       C2       1       0       0       0       0         7       C4       1       0       0       0       0         7       C6       1       0       0       0       0         7       D0       1       0       0       0       0         7       D2       1       0       0       0       0         7       D4       1       0       0       0       0         7       D5       1       0       0       0       0         7       D6       1       0       0       0       0         7       E0       1       0       0       0       0         7       E6       1       0       0       0       0         7       F0       1       0 <td< th=""><th>Mol</th><th>Chain</th><th>Non-H</th><th>H(model)</th><th>H(added)</th><th>Clashes</th><th>Symm-Clashes</th></td<>                                                                                  | Mol   | Chain     | Non-H             | H(model) | H(added) | Clashes | Symm-Clashes |
| 7       B6       1       0       0       0       0         7       B8       1       0       0       0       0         7       C0       1       0       0       0       0         7       C2       1       0       0       0       0         7       C4       1       0       0       0       0         7       C6       1       0       0       0       0         7       C6       1       0       0       0       0         7       D0       1       0       0       0       0         7       D4       1       0       0       0       0         7       D4       1       0       0       0       0         7       D6       1       0       0       0       0         7       E0       1       0       0       0       0         7       E4       1       0       0       0       0         7       E6       1       0       0       0       0         7       F0       1       0 <td< td=""><td>7</td><td>B4</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>                                                                                                                          | 7     | B4        | 1                 | 0        | 0        | 0       | 0            |
| 7       B8       1       0       0       0       0       0         7       C0       1       0       0       0       0       0         7       C2       1       0       0       0       0       0         7       C4       1       0       0       0       0       0         7       C6       1       0       0       0       0       0         7       D0       1       0       0       0       0       0         7       D2       1       0       0       0       0       0         7       D4       1       0       0       0       0       0         7       D6       1       0       0       0       0       0         7       D6       1       0       0       0       0       0         7       E2       1       0       0       0       0       0         7       E6       1       0       0       0       0       0         7       F0       1       0       0       0       0       0      <                                                                                                                                                                                                  | 7     | B6        | 1                 | 0        | 0        | 0       | 0            |
| 7         C0         1         0         0         0         0         0           7         C2         1         0         0         0         0         0           7         C4         1         0         0         0         0         0           7         C6         1         0         0         0         0         0           7         C8         1         0         0         0         0         0           7         D0         1         0         0         0         0         0           7         D4         1         0         0         0         0         0           7         D6         1         0         0         0         0         0           7         D8         1         0         0         0         0         0           7         E0         1         0         0         0         0         0           7         E4         1         0         0         0         0         0           7         F0         1         0         0         0         0                                                                                        | 7     | B8        | 1                 | 0        | 0        | 0       | 0            |
| 7         C2         1         0         0         0         0         0           7         C4         1         0         0         0         0         0           7         C6         1         0         0         0         0         0           7         C8         1         0         0         0         0         0           7         D0         1         0         0         0         0         0           7         D2         1         0         0         0         0         0           7         D4         1         0         0         0         0         0           7         D6         1         0         0         0         0         0           7         D8         1         0         0         0         0         0           7         E0         1         0         0         0         0         0           7         E4         1         0         0         0         0         0           8         A1         28         0         12         2         0                                                                                      | 7     | CO        | 1                 | 0        | 0        | 0       | 0            |
| 7       C4       1       0       0       0       0         7       C6       1       0       0       0       0         7       C8       1       0       0       0       0         7       D0       1       0       0       0       0         7       D2       1       0       0       0       0         7       D4       1       0       0       0       0         7       D6       1       0       0       0       0         7       D6       1       0       0       0       0         7       D8       1       0       0       0       0         7       E0       1       0       0       0       0         7       E2       1       0       0       0       0         7       E4       1       0       0       0       0         7       F6       1       0       0       0       0         8       A1       28       0       12       0       0         8       A3       28       0                                                                                                                                                                                                                | 7     | C2        | 1                 | 0        | 0        | 0       | 0            |
| 7       C6       1       0       0       0       0         7       C8       1       0       0       0       0         7       D0       1       0       0       0       0         7       D2       1       0       0       0       0         7       D4       1       0       0       0       0         7       D6       1       0       0       0       0         7       D6       1       0       0       0       0         7       D8       1       0       0       0       0         7       E0       1       0       0       0       0         7       E4       1       0       0       0       0         7       E8       1       0       0       0       0         7       F0       1       0       0       0       0         8       A1       28       0       12       2       0         8       A3       28       0       12       0       0         8       B1       28       0                                                                                                                                                                                                              | 7     | C4        | 1                 | 0        | 0        | 0       | 0            |
| 7       C8       1       0       0       0       0         7       D0       1       0       0       0       0         7       D2       1       0       0       0       0         7       D4       1       0       0       0       0         7       D6       1       0       0       0       0         7       D8       1       0       0       0       0         7       D8       1       0       0       0       0         7       E0       1       0       0       0       0         7       E0       1       0       0       0       0         7       E4       1       0       0       0       0         7       E6       1       0       0       0       0         7       F0       1       0       0       0       0         8       A1       28       0       12       0       0         8       A3       28       0       12       0       0         8       A7       28       0                                                                                                                                                                                                              | 7     | C6        | 1                 | 0        | 0        | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7     | C8        | 1                 | 0        | 0        | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7     | D0        | 1                 | 0        | 0        | 0       | 0            |
| 7         D4         1         0         0         0         0 $7$ D6         1         0         0         0         0 $7$ D8         1         0         0         0         0 $7$ E0         1         0         0         0         0 $7$ E2         1         0         0         0         0 $7$ E4         1         0         0         0         0 $7$ E6         1         0         0         0         0 $7$ E8         1         0         0         0         0 $7$ F0         1         0         0         0         0 $8$ A1         28         0         12         2         0 $8$ A3         28         0         12         0         0 $8$ A7         28         0         12         1         0 $8$ B3         28         0         12         1         0 <td< td=""><td>7</td><td>D2</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>                                                                                                                                                                                                                            | 7     | D2        | 1                 | 0        | 0        | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7     | D4        | 1                 | 0        | 0        | 0       | 0            |
| 7         D8         1         0         0         0         0         0           7         E0         1         0         0         0         0         0           7         E2         1         0         0         0         0         0           7         E4         1         0         0         0         0         0           7         E6         1         0         0         0         0         0           7         E8         1         0         0         0         0         0           7         F0         1         0         0         0         0         0           8         A1         28         0         12         2         0           8         A3         28         0         12         0         0           8         A7         28         0         12         0         0           8         B1         28         0         12         1         0           8         B3         28         0         12         1         0           8         B9         28 </td <td>7</td> <td>D6</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> | 7     | D6        | 1                 | 0        | 0        | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7     | D8        | 1                 | 0        | 0        | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7     | EO        | 1                 | 0        | 0        | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7     | E2        | 1                 | 0        | 0        | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7     | E4        | 1                 | 0        | 0        | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7     | E6        | 1                 | 0        | 0        | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7     | E8        | 1                 | 0        | 0        | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7     | F0        | 1                 | 0        | 0        | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | A1        | 28                | 0        | 12       | 2       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | A3        | 28                | 0        | 12       | 2       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | A5        | 28                | 0        | 12       | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | A7        | 28                | 0        | 12       | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | A9        | 28                | 0        | 12       | 1       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | B1        | 28                | 0        | 12       | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | B3        | 28                | 0        | 12       | 1       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | B5        | 28                | 0        | 12       | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | B7        | 28                | 0        | 12       | 1       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | B9        | 28                | 0        | 12       | 0       | 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | C1        | 28                | 0        | 12       | 1       | 0            |
| 8       C5       28       0       12       1       0         8       C7       28       0       12       0       0         8       C9       28       0       12       0       0         8       D1       28       0       12       0       0         8       D3       28       0       12       0       0         8       D5       28       0       12       1       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | C3        | 28                | 0        | 12       | 2       | 0            |
| 8         C7         28         0         12         0         0           8         C9         28         0         12         0         0           8         D1         28         0         12         0         0           8         D3         28         0         12         0         0           8         D3         28         0         12         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8     | C5        | 28                | 0        | 12       | 1       | 0            |
| 8         C9         28         0         12         0         0           8         D1         28         0         12         0         0           8         D3         28         0         12         0         0           8         D5         28         0         12         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8     | C7        | 28                | 0        | 12       | 0       | 0            |
| 8         D1         28         0         12         0         0           8         D3         28         0         12         0         0           8         D5         28         0         12         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8     | C9        | 28                | 0        | 12       | 0       | 0            |
| 8         D3         28         0         12         0         0           8         D5         28         0         12         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8     | D1        | 28                | 0        | 12       | 0       | 0            |
| 8 D5 28 0 12 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8     | D3        | 28                | 0        | 12       | 0       | 0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8     | D5        | 28                | 0        | 12       | 1       | 0            |
| 8   D7   28   0   12   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8     | D7        | 28                | 0        | 12       | 0       | 0            |
| 8 D9 28 0 12 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8     | D9        | 28                | 0        | 12       | 0       | 0            |
| 8 E1 28 0 12 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8     | E1        | 28                | 0        | 12       | 0       | 0            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8     | E3        | 28                | 0        | 12       | 3       | 0            |
| 8 E5 28 0 12 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8     | E5        | 28                | 0        | 12       | 0       | 0            |

![](_page_57_Picture_6.jpeg)

|     | J             | 1      | $I \rightarrow J$ |          |         |              |
|-----|---------------|--------|-------------------|----------|---------|--------------|
| Mol | Chain         | Non-H  | H(model)          | H(added) | Clashes | Symm-Clashes |
| 8   | $\mathrm{E7}$ | 28     | 0                 | 12       | 0       | 0            |
| 8   | E9            | 28     | 0                 | 12       | 0       | 0            |
| 8   | F1            | 28     | 0                 | 12       | 1       | 0            |
| All | All           | 214754 | 0                 | 208287   | 2539    | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

The worst 5 of 2539 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
| 2:D4:151:CYS:HG  | 2:D4:193:SER:HG  | 1.23                        | 0.83                 |
| 3:A9:248:SER:HA  | 3:A9:252:LYS:HG2 | 1.67                        | 0.77                 |
| 2:E2:88:HIS:HB3  | 2:E2:91:GLN:HG2  | 1.65                        | 0.77                 |
| 2:C6:6:SER:HA    | 2:C6:136:LEU:HB2 | 1.67                        | 0.76                 |
| 2:D0:142:GLY:HA3 | 2:D0:183:GLU:HG2 | 1.66                        | 0.76                 |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed    | Favoured      | Allowed | Outliers | Perce | $\mathbf{ntiles}$ |
|-----|-------|-------------|---------------|---------|----------|-------|-------------------|
| 1   | 0     | 20/351~(6%) | 19~(95%)      | 1 (5%)  | 0        | 100   | 100               |
| 1   | 1     | 20/351~(6%) | 19~(95%)      | 1 (5%)  | 0        | 100   | 100               |
| 1   | 10    | 20/351~(6%) | 16 (80%)      | 4 (20%) | 0        | 100   | 100               |
| 1   | 11    | 20/351~(6%) | 17~(85%)      | 3~(15%) | 0        | 100   | 100               |
| 1   | 12    | 20/351~(6%) | 18 (90%)      | 2(10%)  | 0        | 100   | 100               |
| 1   | 13    | 20/351~(6%) | $19 \ (95\%)$ | 1 (5%)  | 0        | 100   | 100               |
| 1   | 14    | 20/351~(6%) | 19 (95%)      | 1 (5%)  | 0        | 100   | 100               |

![](_page_58_Picture_15.jpeg)

| Mol | Chain | Analysed      | Favoured  | Allowed | Outliers | Perce | ntiles |
|-----|-------|---------------|-----------|---------|----------|-------|--------|
| 1   | 15    | 20/351~(6%)   | 18 (90%)  | 2(10%)  | 0        | 100   | 100    |
| 1   | 16    | 20/351~(6%)   | 19~(95%)  | 1 (5%)  | 0        | 100   | 100    |
| 1   | 17    | 20/351~(6%)   | 19~(95%)  | 1 (5%)  | 0        | 100   | 100    |
| 1   | 18    | 20/351~(6%)   | 19 (95%)  | 1 (5%)  | 0        | 100   | 100    |
| 1   | 19    | 20/351~(6%)   | 19 (95%)  | 1 (5%)  | 0        | 100   | 100    |
| 1   | 2     | 20/351~(6%)   | 19 (95%)  | 1 (5%)  | 0        | 100   | 100    |
| 1   | 20    | 20/351~(6%)   | 18 (90%)  | 2 (10%) | 0        | 100   | 100    |
| 1   | 21    | 20/351~(6%)   | 19 (95%)  | 1 (5%)  | 0        | 100   | 100    |
| 1   | 22    | 18/351~(5%)   | 16 (89%)  | 2 (11%) | 0        | 100   | 100    |
| 1   | 23    | 18/351~(5%)   | 16 (89%)  | 2 (11%) | 0        | 100   | 100    |
| 1   | 3     | 20/351~(6%)   | 18 (90%)  | 2 (10%) | 0        | 100   | 100    |
| 1   | 4     | 20/351~(6%)   | 19 (95%)  | 1 (5%)  | 0        | 100   | 100    |
| 1   | 5     | 20/351~(6%)   | 18 (90%)  | 2 (10%) | 0        | 100   | 100    |
| 1   | 6     | 20/351~(6%)   | 19 (95%)  | 1 (5%)  | 0        | 100   | 100    |
| 1   | 7     | 20/351~(6%)   | 19 (95%)  | 1 (5%)  | 0        | 100   | 100    |
| 1   | 8     | 20/351~(6%)   | 18 (90%)  | 2 (10%) | 0        | 100   | 100    |
| 1   | 9     | 20/351~(6%)   | 19 (95%)  | 1 (5%)  | 0        | 100   | 100    |
| 2   | A0    | 424/453~(94%) | 402 (95%) | 22 (5%) | 0        | 100   | 100    |
| 2   | A2    | 424/453~(94%) | 397 (94%) | 27 (6%) | 0        | 100   | 100    |
| 2   | A4    | 424/453~(94%) | 398 (94%) | 26 (6%) | 0        | 100   | 100    |
| 2   | A6    | 424/453~(94%) | 397 (94%) | 27 (6%) | 0        | 100   | 100    |
| 2   | A8    | 424/453~(94%) | 407 (96%) | 17 (4%) | 0        | 100   | 100    |
| 2   | B0    | 424/453~(94%) | 406 (96%) | 18 (4%) | 0        | 100   | 100    |
| 2   | B2    | 424/453~(94%) | 405 (96%) | 19 (4%) | 0        | 100   | 100    |
| 2   | B4    | 424/453~(94%) | 409 (96%) | 15 (4%) | 0        | 100   | 100    |
| 2   | B6    | 424/453~(94%) | 409 (96%) | 15 (4%) | 0        | 100   | 100    |
| 2   | B8    | 424/453~(94%) | 401 (95%) | 23 (5%) | 0        | 100   | 100    |
| 2   | C0    | 424/453~(94%) | 404 (95%) | 20 (5%) | 0        | 100   | 100    |
| 2   | C2    | 424/453~(94%) | 400 (94%) | 24 (6%) | 0        | 100   | 100    |
| 2   | C4    | 424/453~(94%) | 385 (91%) | 39 (9%) | 0        | 100   | 100    |
| 2   | C6    | 424/453~(94%) | 396~(93%) | 28 (7%) | 0        | 100   | 100    |

![](_page_59_Picture_6.jpeg)

| Continued | from  | nrevious | naae |
|-----------|-------|----------|------|
| Continucu | jioni | previous | payc |

| Mol | Chain | Analysed                    | Favoured  | Allowed | Outliers | Perce | ntiles |
|-----|-------|-----------------------------|-----------|---------|----------|-------|--------|
| 2   | C8    | 424/453~(94%)               | 404 (95%) | 20 (5%) | 0        | 100   | 100    |
| 2   | D0    | 424/453~(94%)               | 402 (95%) | 22~(5%) | 0        | 100   | 100    |
| 2   | D2    | 424/453~(94%)               | 409 (96%) | 15~(4%) | 0        | 100   | 100    |
| 2   | D4    | 424/453~(94%)               | 407 (96%) | 17~(4%) | 0        | 100   | 100    |
| 2   | D6    | 424/453~(94%)               | 410 (97%) | 14 (3%) | 0        | 100   | 100    |
| 2   | D8    | 424/453~(94%)               | 408 (96%) | 16 (4%) | 0        | 100   | 100    |
| 2   | E0    | 424/453~(94%)               | 403 (95%) | 21 (5%) | 0        | 100   | 100    |
| 2   | E2    | 424/453~(94%)               | 404 (95%) | 20 (5%) | 0        | 100   | 100    |
| 2   | E4    | 424/453~(94%)               | 401 (95%) | 23~(5%) | 0        | 100   | 100    |
| 2   | E6    | 424/453~(94%)               | 403 (95%) | 21 (5%) | 0        | 100   | 100    |
| 2   | E8    | 424/453~(94%)               | 403 (95%) | 21 (5%) | 0        | 100   | 100    |
| 2   | F0    | 424/453~(94%)               | 403 (95%) | 21 (5%) | 0        | 100   | 100    |
| 3   | A1    | 424/449~(94%)               | 391 (92%) | 33 (8%) | 0        | 100   | 100    |
| 3   | A3    | 424/449~(94%)               | 403 (95%) | 21 (5%) | 0        | 100   | 100    |
| 3   | A5    | 424/449~(94%)               | 388 (92%) | 36 (8%) | 0        | 100   | 100    |
| 3   | A7    | 424/449~(94%)               | 402 (95%) | 22~(5%) | 0        | 100   | 100    |
| 3   | A9    | 424/449~(94%)               | 398 (94%) | 26 (6%) | 0        | 100   | 100    |
| 3   | B1    | 424/449~(94%)               | 400 (94%) | 24 (6%) | 0        | 100   | 100    |
| 3   | B3    | 424/449~(94%)               | 401 (95%) | 23~(5%) | 0        | 100   | 100    |
| 3   | B5    | 424/449~(94%)               | 400 (94%) | 24 (6%) | 0        | 100   | 100    |
| 3   | B7    | 424/449~(94%)               | 401 (95%) | 23 (5%) | 0        | 100   | 100    |
| 3   | B9    | 424/449~(94%)               | 405 (96%) | 19 (4%) | 0        | 100   | 100    |
| 3   | C1    | 424/449~(94%)               | 402 (95%) | 22 (5%) | 0        | 100   | 100    |
| 3   | C3    | 424/449~(94%)               | 396 (93%) | 28 (7%) | 0        | 100   | 100    |
| 3   | C5    | 424/449~(94%)               | 401 (95%) | 23 (5%) | 0        | 100   | 100    |
| 3   | C7    | 424/449~(94%)               | 394 (93%) | 30 (7%) | 0        | 100   | 100    |
| 3   | C9    | $\overline{424/449}~(94\%)$ | 398 (94%) | 26 (6%) | 0        | 100   | 100    |
| 3   | D1    | 424/449~(94%)               | 401 (95%) | 23 (5%) | 0        | 100   | 100    |
| 3   | D3    | $\overline{424/449}~(94\%)$ | 395 (93%) | 29 (7%) | 0        | 100   | 100    |
| 3   | D5    | 424/449~(94%)               | 399 (94%) | 25 (6%) | 0        | 100   | 100    |
| 3   | D7    | $\overline{424/449}~(94\%)$ | 401 (95%) | 23 (5%) | 0        | 100   | 100    |

![](_page_60_Picture_6.jpeg)

| Continued | from | nrevious | naae |
|-----------|------|----------|------|
| Commueu   | jrom | previous | page |

| Mol | Chain         | Analysed      | Favoured  | Allowed | Outliers | Perce | ntiles |
|-----|---------------|---------------|-----------|---------|----------|-------|--------|
| 3   | D9            | 424/449~(94%) | 401 (95%) | 23~(5%) | 0        | 100   | 100    |
| 3   | E1            | 424/449~(94%) | 403 (95%) | 21 (5%) | 0        | 100   | 100    |
| 3   | E3            | 424/449~(94%) | 399~(94%) | 25~(6%) | 0        | 100   | 100    |
| 3   | E5            | 424/449~(94%) | 399~(94%) | 25~(6%) | 0        | 100   | 100    |
| 3   | $\mathrm{E7}$ | 424/449~(94%) | 402 (95%) | 22~(5%) | 0        | 100   | 100    |
| 3   | E9            | 424/449~(94%) | 395 (93%) | 29 (7%) | 0        | 100   | 100    |
| 3   | F1            | 424/449~(94%) | 388 (92%) | 36 (8%) | 0        | 100   | 100    |
| 4   | a             | 146/220~(66%) | 136 (93%) | 10 (7%) | 0        | 100   | 100    |
| 4   | b             | 146/220~(66%) | 135 (92%) | 11 (8%) | 0        | 100   | 100    |
| 4   | с             | 197/220~(90%) | 187 (95%) | 10 (5%) | 0        | 100   | 100    |
| 4   | d             | 197/220~(90%) | 183 (93%) | 14 (7%) | 0        | 100   | 100    |
| 4   | е             | 197/220~(90%) | 186 (94%) | 11 (6%) | 0        | 100   | 100    |
| 4   | f             | 197/220~(90%) | 187 (95%) | 10 (5%) | 0        | 100   | 100    |
| 4   | g             | 197/220~(90%) | 184 (93%) | 13 (7%) | 0        | 100   | 100    |
| 4   | h             | 197/220~(90%) | 185 (94%) | 12 (6%) | 0        | 100   | 100    |
| 4   | i             | 197/220~(90%) | 185 (94%) | 12 (6%) | 0        | 100   | 100    |
| 4   | j             | 197/220~(90%) | 184 (93%) | 13 (7%) | 0        | 100   | 100    |
| 4   | m             | 197/220~(90%) | 184 (93%) | 13 (7%) | 0        | 100   | 100    |
| 4   | n             | 197/220~(90%) | 187 (95%) | 10 (5%) | 0        | 100   | 100    |
| 4   | О             | 197/220~(90%) | 181 (92%) | 16 (8%) | 0        | 100   | 100    |
| 4   | р             | 197/220~(90%) | 186 (94%) | 11 (6%) | 0        | 100   | 100    |
| 4   | q             | 197/220~(90%) | 185 (94%) | 12 (6%) | 0        | 100   | 100    |
| 4   | r             | 197/220~(90%) | 186 (94%) | 11 (6%) | 0        | 100   | 100    |
| 4   | s             | 197/220~(90%) | 184 (93%) | 13 (7%) | 0        | 100   | 100    |
| 4   | t             | 197/220~(90%) | 186 (94%) | 11 (6%) | 0        | 100   | 100    |
| 4   | u             | 197/220~(90%) | 188 (95%) | 9 (5%)  | 0        | 100   | 100    |
| 4   | v             | 197/220~(90%) | 181 (92%) | 16 (8%) | 0        | 100   | 100    |
| 5   | k             | 133/189~(70%) | 128 (96%) | 5 (4%)  | 0        | 100   | 100    |
| 5   | 1             | 133/189~(70%) | 128 (96%) | 5 (4%)  | 0        | 100   | 100    |
| 5   | W             | 139/189~(74%) | 134 (96%) | 5 (4%)  | 0        | 100   | 100    |
| 5   | x             | 139/189~(74%) | 129 (93%) | 10 (7%) | 0        | 100   | 100    |

![](_page_61_Picture_6.jpeg)

Continued from previous page...

| Mol | Chain | Analysed          | Favoured    | Allowed   | Outliers | Percer | ntiles |
|-----|-------|-------------------|-------------|-----------|----------|--------|--------|
| All | All   | 26906/37032~(73%) | 25394~(94%) | 1512 (6%) | 0        | 100    | 100    |

There are no Ramachandran outliers to report.

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed    | Rotameric | Outliers | Perce | Percentiles |  |
|-----|-------|-------------|-----------|----------|-------|-------------|--|
| 1   | 0     | 20/305~(7%) | 20~(100%) | 0        | 100   | 100         |  |
| 1   | 1     | 20/305~(7%) | 20~(100%) | 0        | 100   | 100         |  |
| 1   | 10    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 11    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 12    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 13    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 14    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 15    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 16    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 17    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 18    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 19    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 2     | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 20    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 21    | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 22    | 18/305~(6%) | 18 (100%) | 0        | 100   | 100         |  |
| 1   | 23    | 18/305~(6%) | 18 (100%) | 0        | 100   | 100         |  |
| 1   | 3     | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 4     | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 5     | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |
| 1   | 6     | 20/305~(7%) | 20 (100%) | 0        | 100   | 100         |  |

![](_page_62_Picture_11.jpeg)

| Mol | Chain | Analysed      | Rotameric  | Outliers | Perce | ntiles |
|-----|-------|---------------|------------|----------|-------|--------|
| 1   | 7     | 20/305~(7%)   | 20~(100%)  | 0        | 100   | 100    |
| 1   | 8     | 20/305~(7%)   | 20~(100%)  | 0        | 100   | 100    |
| 1   | 9     | 20/305~(7%)   | 20~(100%)  | 0        | 100   | 100    |
| 2   | A0    | 359/379~(95%) | 358~(100%) | 1 (0%)   | 92    | 97     |
| 2   | A2    | 359/379~(95%) | 359~(100%) | 0        | 100   | 100    |
| 2   | A4    | 359/379~(95%) | 357~(99%)  | 2 (1%)   | 86    | 94     |
| 2   | A6    | 359/379~(95%) | 359~(100%) | 0        | 100   | 100    |
| 2   | A8    | 359/379~(95%) | 359 (100%) | 0        | 100   | 100    |
| 2   | B0    | 359/379~(95%) | 358 (100%) | 1 (0%)   | 92    | 97     |
| 2   | B2    | 359/379~(95%) | 359 (100%) | 0        | 100   | 100    |
| 2   | B4    | 359/379~(95%) | 359~(100%) | 0        | 100   | 100    |
| 2   | B6    | 359/379~(95%) | 358 (100%) | 1 (0%)   | 92    | 97     |
| 2   | B8    | 359/379~(95%) | 358 (100%) | 1 (0%)   | 92    | 97     |
| 2   | C0    | 359/379~(95%) | 358 (100%) | 1 (0%)   | 92    | 97     |
| 2   | C2    | 359/379~(95%) | 358 (100%) | 1 (0%)   | 92    | 97     |
| 2   | C4    | 359/379~(95%) | 355~(99%)  | 4 (1%)   | 73    | 86     |
| 2   | C6    | 359/379~(95%) | 357~(99%)  | 2 (1%)   | 86    | 94     |
| 2   | C8    | 359/379~(95%) | 359 (100%) | 0        | 100   | 100    |
| 2   | D0    | 359/379~(95%) | 359 (100%) | 0        | 100   | 100    |
| 2   | D2    | 359/379~(95%) | 358 (100%) | 1 (0%)   | 92    | 97     |
| 2   | D4    | 359/379~(95%) | 358 (100%) | 1 (0%)   | 92    | 97     |
| 2   | D6    | 359/379~(95%) | 359 (100%) | 0        | 100   | 100    |
| 2   | D8    | 359/379~(95%) | 359 (100%) | 0        | 100   | 100    |
| 2   | E0    | 359/379~(95%) | 358 (100%) | 1 (0%)   | 92    | 97     |
| 2   | E2    | 359/379~(95%) | 358 (100%) | 1 (0%)   | 92    | 97     |
| 2   | E4    | 359/379~(95%) | 357~(99%)  | 2 (1%)   | 86    | 94     |
| 2   | E6    | 359/379~(95%) | 357~(99%)  | 2 (1%)   | 86    | 94     |
| 2   | E8    | 359/379~(95%) | 358 (100%) | 1 (0%)   | 92    | 97     |
| 2   | F0    | 359/379~(95%) | 358 (100%) | 1 (0%)   | 92    | 97     |
| 3   | A1    | 364/381~(96%) | 362 (100%) | 2 (0%)   | 88    | 94     |
| 3   | A3    | 364/381~(96%) | 360~(99%)  | 4 (1%)   | 73    | 86     |

![](_page_63_Picture_6.jpeg)

| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | from | previous | page |
|                                  |      | 1        | 1 0  |

| Mol | Chain         | Analysed      | Rotameric  | Outliers | Perce | ntiles |
|-----|---------------|---------------|------------|----------|-------|--------|
| 3   | A5            | 364/381~(96%) | 364~(100%) | 0        | 100   | 100    |
| 3   | A7            | 364/381~(96%) | 363~(100%) | 1 (0%)   | 92    | 97     |
| 3   | A9            | 364/381~(96%) | 364~(100%) | 0        | 100   | 100    |
| 3   | B1            | 364/381~(96%) | 364 (100%) | 0        | 100   | 100    |
| 3   | B3            | 364/381~(96%) | 362~(100%) | 2 (0%)   | 88    | 94     |
| 3   | B5            | 364/381~(96%) | 363 (100%) | 1 (0%)   | 92    | 97     |
| 3   | B7            | 364/381~(96%) | 362 (100%) | 2 (0%)   | 88    | 94     |
| 3   | B9            | 364/381~(96%) | 363 (100%) | 1 (0%)   | 92    | 97     |
| 3   | C1            | 364/381~(96%) | 364 (100%) | 0        | 100   | 100    |
| 3   | C3            | 364/381~(96%) | 362 (100%) | 2 (0%)   | 88    | 94     |
| 3   | C5            | 364/381~(96%) | 362 (100%) | 2 (0%)   | 88    | 94     |
| 3   | C7            | 364/381~(96%) | 363 (100%) | 1 (0%)   | 92    | 97     |
| 3   | C9            | 364/381~(96%) | 363 (100%) | 1 (0%)   | 92    | 97     |
| 3   | D1            | 364/381~(96%) | 362 (100%) | 2 (0%)   | 88    | 94     |
| 3   | D3            | 364/381~(96%) | 363 (100%) | 1 (0%)   | 92    | 97     |
| 3   | D5            | 364/381~(96%) | 363 (100%) | 1 (0%)   | 92    | 97     |
| 3   | D7            | 364/381~(96%) | 363 (100%) | 1 (0%)   | 92    | 97     |
| 3   | D9            | 364/381~(96%) | 363 (100%) | 1 (0%)   | 92    | 97     |
| 3   | E1            | 364/381~(96%) | 364 (100%) | 0        | 100   | 100    |
| 3   | E3            | 364/381~(96%) | 363~(100%) | 1 (0%)   | 92    | 97     |
| 3   | E5            | 364/381~(96%) | 363 (100%) | 1 (0%)   | 92    | 97     |
| 3   | $\mathrm{E7}$ | 364/381~(96%) | 360~(99%)  | 4 (1%)   | 73    | 86     |
| 3   | E9            | 364/381~(96%) | 363 (100%) | 1 (0%)   | 92    | 97     |
| 3   | F1            | 364/381~(96%) | 364 (100%) | 0        | 100   | 100    |
| 4   | a             | 130/190~(68%) | 128 (98%)  | 2 (2%)   | 65    | 82     |
| 4   | b             | 130/190~(68%) | 129 (99%)  | 1 (1%)   | 81    | 91     |
| 4   | с             | 174/190~(92%) | 173 (99%)  | 1 (1%)   | 86    | 94     |
| 4   | d             | 174/190~(92%) | 173 (99%)  | 1 (1%)   | 86    | 94     |
| 4   | е             | 174/190~(92%) | 172 (99%)  | 2 (1%)   | 73    | 86     |
| 4   | f             | 174/190~(92%) | 172 (99%)  | 2 (1%)   | 73    | 86     |
| 4   | g             | 174/190~(92%) | 172 (99%)  | 2 (1%)   | 73    | 86     |

![](_page_64_Picture_6.jpeg)

| Mol | Chain | Analysed          | Rotameric    | Outliers | Perce | ntiles |
|-----|-------|-------------------|--------------|----------|-------|--------|
| 4   | h     | 174/190~(92%)     | 170 (98%)    | 4 (2%)   | 50    | 74     |
| 4   | i     | 174/190~(92%)     | 173~(99%)    | 1 (1%)   | 86    | 94     |
| 4   | j     | 174/190~(92%)     | 174 (100%)   | 0        | 100   | 100    |
| 4   | m     | 174/190~(92%)     | 171 (98%)    | 3~(2%)   | 60    | 80     |
| 4   | n     | 174/190~(92%)     | 172 (99%)    | 2(1%)    | 73    | 86     |
| 4   | О     | 174/190~(92%)     | 173 (99%)    | 1 (1%)   | 86    | 94     |
| 4   | р     | 174/190~(92%)     | 173 (99%)    | 1 (1%)   | 86    | 94     |
| 4   | q     | 174/190~(92%)     | 172 (99%)    | 2(1%)    | 73    | 86     |
| 4   | r     | 174/190~(92%)     | 173 (99%)    | 1 (1%)   | 86    | 94     |
| 4   | S     | 174/190~(92%)     | 173 (99%)    | 1 (1%)   | 86    | 94     |
| 4   | t     | 174/190~(92%)     | 172 (99%)    | 2 (1%)   | 73    | 86     |
| 4   | u     | 174/190~(92%)     | 173 (99%)    | 1 (1%)   | 86    | 94     |
| 4   | v     | 174/190~(92%)     | 171 (98%)    | 3~(2%)   | 60    | 80     |
| 5   | k     | 122/164~(74%)     | 121 (99%)    | 1 (1%)   | 81    | 91     |
| 5   | 1     | 122/164~(74%)     | 121 (99%)    | 1 (1%)   | 81    | 91     |
| 5   | W     | 127/164~(77%)     | 126 (99%)    | 1 (1%)   | 81    | 91     |
| 5   | х     | 127/164~(77%)     | 126 (99%)    | 1 (1%)   | 81    | 91     |
| All | All   | 23164/31536~(74%) | 23071 (100%) | 93 (0%)  | 91    | 95     |

5 of 93 residues with a non-rotameric sidechain are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 4   | a     | 126            | ARG  |
| 4   | i     | 117            | ARG  |
| 4   | с     | 126            | ARG  |
| 4   | g     | 126            | ARG  |
| 4   | р     | 126            | ARG  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 64 such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 4   | t     | 11  | ASN  |
| 4   | t     | 181 | GLN  |
| 3   | C7    | 347 | ASN  |
| 3   | C7    | 134 | GLN  |

![](_page_65_Picture_10.jpeg)

Continued from previous page...

| Mol | Chain | $\operatorname{Res}$ | Type |
|-----|-------|----------------------|------|
| 4   | u     | 181                  | GLN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 5.6 Ligand geometry (i)

Of 78 ligands modelled in this entry, 26 are monoatomic - leaving 52 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Turne | Chain | Dec   | Timle  | Bond ler |          | ths     | В        | ond ang  | les     |
|-----|-------|-------|-------|--------|----------|----------|---------|----------|----------|---------|
|     |       | nes   | LIIIK | Counts | RMSZ     | # Z  > 2 | Counts  | RMSZ     | # Z  > 2 |         |
| 6   | GTP   | A2    | 501   | 7      | 26,34,34 | 1.28     | 2 (7%)  | 32,54,54 | 1.64     | 7 (21%) |
| 6   | GTP   | C4    | 501   | 7      | 26,34,34 | 1.36     | 3 (11%) | 32,54,54 | 1.70     | 7 (21%) |
| 6   | GTP   | E6    | 501   | 7      | 26,34,34 | 1.32     | 3 (11%) | 32,54,54 | 1.69     | 7 (21%) |
| 6   | GTP   | E8    | 501   | 7      | 26,34,34 | 1.29     | 3 (11%) | 32,54,54 | 1.80     | 7 (21%) |
| 6   | GTP   | C0    | 501   | 7      | 26,34,34 | 1.35     | 3 (11%) | 32,54,54 | 1.77     | 7 (21%) |
| 8   | GDP   | C3    | 501   | -      | 24,30,30 | 1.01     | 1 (4%)  | 30,47,47 | 1.37     | 4 (13%) |
| 8   | GDP   | C9    | 501   | -      | 24,30,30 | 1.04     | 1 (4%)  | 30,47,47 | 1.42     | 5 (16%) |
| 8   | GDP   | E7    | 501   | -      | 24,30,30 | 1.03     | 1 (4%)  | 30,47,47 | 1.28     | 4 (13%) |
| 8   | GDP   | B1    | 501   | -      | 24,30,30 | 1.05     | 1 (4%)  | 30,47,47 | 1.33     | 3 (10%) |
| 8   | GDP   | F1    | 501   | -      | 24,30,30 | 1.05     | 1 (4%)  | 30,47,47 | 1.42     | 4 (13%) |

![](_page_66_Picture_15.jpeg)

| Mol | Type | Chain  | Bos | Link | Bo       | ond leng | ths      | B        | ond ang | les     |
|-----|------|--------|-----|------|----------|----------|----------|----------|---------|---------|
|     | Type | Cilain | nes |      | Counts   | RMSZ     | # Z  > 2 | Counts   | RMSZ    | # Z >2  |
| 8   | GDP  | B9     | 501 | -    | 24,30,30 | 1.06     | 1 (4%)   | 30,47,47 | 1.39    | 4 (13%) |
| 8   | GDP  | B3     | 501 | -    | 24,30,30 | 1.09     | 1 (4%)   | 30,47,47 | 1.30    | 3 (10%) |
| 6   | GTP  | B0     | 501 | 7    | 26,34,34 | 1.33     | 2 (7%)   | 32,54,54 | 1.65    | 7 (21%) |
| 6   | GTP  | D8     | 501 | 7    | 26,34,34 | 1.35     | 2 (7%)   | 32,54,54 | 1.57    | 6 (18%) |
| 8   | GDP  | C1     | 501 | -    | 24,30,30 | 1.07     | 1 (4%)   | 30,47,47 | 1.30    | 4 (13%) |
| 8   | GDP  | A5     | 501 | -    | 24,30,30 | 1.08     | 2 (8%)   | 30,47,47 | 1.34    | 4 (13%) |
| 8   | GDP  | B5     | 501 | -    | 24,30,30 | 1.06     | 1 (4%)   | 30,47,47 | 1.36    | 4 (13%) |
| 6   | GTP  | E2     | 501 | 7    | 26,34,34 | 1.38     | 3 (11%)  | 32,54,54 | 1.70    | 7 (21%) |
| 8   | GDP  | D1     | 501 | -    | 24,30,30 | 1.09     | 1 (4%)   | 30,47,47 | 1.42    | 5 (16%) |
| 6   | GTP  | A4     | 501 | 7    | 26,34,34 | 1.43     | 3 (11%)  | 32,54,54 | 1.75    | 6 (18%) |
| 6   | GTP  | B8     | 501 | 7    | 26,34,34 | 1.42     | 3 (11%)  | 32,54,54 | 1.77    | 7 (21%) |
| 6   | GTP  | F0     | 501 | 7    | 26,34,34 | 1.33     | 3 (11%)  | 32,54,54 | 1.76    | 7 (21%) |
| 8   | GDP  | E5     | 501 | -    | 24,30,30 | 1.03     | 1 (4%)   | 30,47,47 | 1.33    | 5 (16%) |
| 8   | GDP  | B7     | 501 | -    | 24,30,30 | 1.07     | 1 (4%)   | 30,47,47 | 1.35    | 3 (10%) |
| 6   | GTP  | C8     | 501 | 7    | 26,34,34 | 1.38     | 3 (11%)  | 32,54,54 | 1.76    | 7 (21%) |
| 6   | GTP  | D2     | 501 | 7    | 26,34,34 | 1.35     | 2 (7%)   | 32,54,54 | 1.73    | 7 (21%) |
| 8   | GDP  | E9     | 501 | -    | 24,30,30 | 1.00     | 1 (4%)   | 30,47,47 | 1.34    | 4 (13%) |
| 6   | GTP  | A6     | 501 | 7    | 26,34,34 | 1.37     | 3 (11%)  | 32,54,54 | 1.74    | 7 (21%) |
| 6   | GTP  | D0     | 501 | 7    | 26,34,34 | 1.40     | 3 (11%)  | 32,54,54 | 1.74    | 7 (21%) |
| 8   | GDP  | D5     | 501 | -    | 24,30,30 | 1.03     | 1 (4%)   | 30,47,47 | 1.37    | 5 (16%) |
| 6   | GTP  | C2     | 501 | 7    | 26,34,34 | 1.34     | 2 (7%)   | 32,54,54 | 1.74    | 6 (18%) |
| 8   | GDP  | D9     | 501 | -    | 24,30,30 | 1.07     | 1 (4%)   | 30,47,47 | 1.38    | 4 (13%) |
| 8   | GDP  | E3     | 501 | -    | 24,30,30 | 1.05     | 1 (4%)   | 30,47,47 | 1.33    | 4 (13%) |
| 6   | GTP  | E0     | 501 | 7    | 26,34,34 | 1.31     | 2 (7%)   | 32,54,54 | 1.76    | 7 (21%) |
| 8   | GDP  | A1     | 501 | -    | 24,30,30 | 1.06     | 1 (4%)   | 30,47,47 | 1.39    | 5 (16%) |
| 8   | GDP  | C7     | 501 | -    | 24,30,30 | 1.02     | 1 (4%)   | 30,47,47 | 1.32    | 4 (13%) |
| 8   | GDP  | D3     | 501 | -    | 24,30,30 | 1.04     | 1 (4%)   | 30,47,47 | 1.37    | 4 (13%) |
| 6   | GTP  | C6     | 501 | 7    | 26,34,34 | 1.37     | 3 (11%)  | 32,54,54 | 1.77    | 6 (18%) |
| 8   | GDP  | A9     | 501 | -    | 24,30,30 | 1.08     | 1 (4%)   | 30,47,47 | 1.22    | 4 (13%) |
| 6   | GTP  | A0     | 501 | 7    | 26,34,34 | 1.33     | 3 (11%)  | 32,54,54 | 1.54    | 7 (21%) |
| 8   | GDP  | D7     | 501 | -    | 24,30,30 | 1.10     | 1 (4%)   | 30,47,47 | 1.36    | 4 (13%) |
| 8   | GDP  | E1     | 501 | -    | 24,30,30 | 1.02     | 1 (4%)   | 30,47,47 | 1.35    | 4 (13%) |
| 8   | GDP  | A7     | 501 | -    | 24,30,30 | 1.07     | 1 (4%)   | 30,47,47 | 1.40    | 4 (13%) |
| 8   | GDP  | C5     | 501 | -    | 24,30,30 | 1.00     | 1 (4%)   | 30,47,47 | 1.19    | 4 (13%) |
| 6   | GTP  | D4     | 501 | 7    | 26,34,34 | 1.43     | 2 (7%)   | 32,54,54 | 1.54    | 6 (18%) |

![](_page_67_Picture_4.jpeg)

| Mal   | Turne      | Chain | Dec | Jink   | Bond lengths |        |         | Bond angles |          |         |
|-------|------------|-------|-----|--------|--------------|--------|---------|-------------|----------|---------|
| IVIOI | Type Chain | nes   |     | Counts | RMSZ         | # Z >2 | Counts  | RMSZ        | # Z  > 2 |         |
| 6     | GTP        | A8    | 501 | 7      | 26,34,34     | 1.37   | 2 (7%)  | 32,54,54    | 1.65     | 7 (21%) |
| 6     | GTP        | B6    | 501 | 7      | 26,34,34     | 1.44   | 3 (11%) | 32,54,54    | 1.79     | 6 (18%) |
| 6     | GTP        | D6    | 501 | 7      | 26,34,34     | 1.26   | 2 (7%)  | 32,54,54    | 1.60     | 6 (18%) |
| 6     | GTP        | E4    | 501 | 7      | 26,34,34     | 1.26   | 1 (3%)  | 32,54,54    | 1.65     | 7 (21%) |
| 8     | GDP        | A3    | 501 | -      | 24,30,30     | 1.05   | 1 (4%)  | 30,47,47    | 1.38     | 3 (10%) |
| 6     | GTP        | B2    | 501 | 7      | 26,34,34     | 1.43   | 3 (11%) | 32,54,54    | 1.77     | 7 (21%) |
| 6     | GTP        | B4    | 501 | 7      | 26,34,34     | 1.44   | 4 (15%) | 32,54,54    | 1.74     | 7 (21%) |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|-----|------|---------|------------|---------|
| 6   | GTP  | A2    | 501 | 7    | -       | 7/18/38/38 | 0/3/3/3 |
| 6   | GTP  | C4    | 501 | 7    | -       | 5/18/38/38 | 0/3/3/3 |
| 6   | GTP  | E6    | 501 | 7    | -       | 5/18/38/38 | 0/3/3/3 |
| 6   | GTP  | E8    | 501 | 7    | -       | 6/18/38/38 | 0/3/3/3 |
| 6   | GTP  | C0    | 501 | 7    | -       | 8/18/38/38 | 0/3/3/3 |
| 8   | GDP  | C3    | 501 | -    | -       | 4/12/32/32 | 0/3/3/3 |
| 8   | GDP  | C9    | 501 | -    | -       | 3/12/32/32 | 0/3/3/3 |
| 8   | GDP  | E7    | 501 | -    | -       | 2/12/32/32 | 0/3/3/3 |
| 8   | GDP  | B1    | 501 | -    | -       | 5/12/32/32 | 0/3/3/3 |
| 8   | GDP  | F1    | 501 | -    | -       | 4/12/32/32 | 0/3/3/3 |
| 8   | GDP  | B9    | 501 | -    | -       | 3/12/32/32 | 0/3/3/3 |
| 8   | GDP  | B3    | 501 | -    | -       | 4/12/32/32 | 0/3/3/3 |
| 6   | GTP  | B0    | 501 | 7    | -       | 6/18/38/38 | 0/3/3/3 |
| 6   | GTP  | D8    | 501 | 7    | -       | 5/18/38/38 | 0/3/3/3 |
| 8   | GDP  | C1    | 501 | -    | -       | 5/12/32/32 | 0/3/3/3 |
| 8   | GDP  | A5    | 501 | -    | -       | 3/12/32/32 | 0/3/3/3 |
| 8   | GDP  | B5    | 501 | -    | -       | 3/12/32/32 | 0/3/3/3 |
| 6   | GTP  | E2    | 501 | 7    | -       | 4/18/38/38 | 0/3/3/3 |
| 8   | GDP  | D1    | 501 | -    | -       | 3/12/32/32 | 0/3/3/3 |
| 6   | GTP  | A4    | 501 | 7    | -       | 4/18/38/38 | 0/3/3/3 |
| 6   | GTP  | B8    | 501 | 7    | -       | 6/18/38/38 | 0/3/3/3 |
| 6   | GTP  | F0    | 501 | 7    | -       | 7/18/38/38 | 0/3/3/3 |

![](_page_68_Picture_7.jpeg)

| Mol | Type | Chain | Res | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|-----|------|---------|------------|---------|
| 8   | GDP  | E5    | 501 | -    | -       | 2/12/32/32 | 0/3/3/3 |
| 8   | GDP  | B7    | 501 | -    | -       | 3/12/32/32 | 0/3/3/3 |
| 6   | GTP  | C8    | 501 | 7    | -       | 3/18/38/38 | 0/3/3/3 |
| 6   | GTP  | D2    | 501 | 7    | -       | 6/18/38/38 | 0/3/3/3 |
| 8   | GDP  | E9    | 501 | -    | -       | 4/12/32/32 | 0/3/3/3 |
| 6   | GTP  | A6    | 501 | 7    | -       | 6/18/38/38 | 0/3/3/3 |
| 6   | GTP  | D0    | 501 | 7    | -       | 3/18/38/38 | 0/3/3/3 |
| 8   | GDP  | D5    | 501 | -    | -       | 6/12/32/32 | 0/3/3/3 |
| 6   | GTP  | C2    | 501 | 7    | -       | 3/18/38/38 | 0/3/3/3 |
| 8   | GDP  | D9    | 501 | -    | -       | 5/12/32/32 | 0/3/3/3 |
| 8   | GDP  | E3    | 501 | -    | -       | 0/12/32/32 | 0/3/3/3 |
| 6   | GTP  | E0    | 501 | 7    | -       | 2/18/38/38 | 0/3/3/3 |
| 8   | GDP  | A1    | 501 | -    | -       | 6/12/32/32 | 0/3/3/3 |
| 8   | GDP  | C7    | 501 | -    | -       | 3/12/32/32 | 0/3/3/3 |
| 8   | GDP  | D3    | 501 | -    | -       | 3/12/32/32 | 0/3/3/3 |
| 6   | GTP  | C6    | 501 | 7    | -       | 4/18/38/38 | 0/3/3/3 |
| 8   | GDP  | A9    | 501 | -    | -       | 5/12/32/32 | 0/3/3/3 |
| 6   | GTP  | A0    | 501 | 7    | -       | 7/18/38/38 | 0/3/3/3 |
| 8   | GDP  | D7    | 501 | -    | -       | 4/12/32/32 | 0/3/3/3 |
| 8   | GDP  | E1    | 501 | -    | -       | 2/12/32/32 | 0/3/3/3 |
| 8   | GDP  | A7    | 501 | -    | -       | 4/12/32/32 | 0/3/3/3 |
| 8   | GDP  | C5    | 501 | -    | -       | 5/12/32/32 | 0/3/3/3 |
| 6   | GTP  | D4    | 501 | 7    | -       | 4/18/38/38 | 0/3/3/3 |
| 6   | GTP  | A8    | 501 | 7    | -       | 4/18/38/38 | 0/3/3/3 |
| 6   | GTP  | B6    | 501 | 7    | -       | 6/18/38/38 | 0/3/3/3 |
| 6   | GTP  | D6    | 501 | 7    | -       | 7/18/38/38 | 0/3/3/3 |
| 6   | GTP  | E4    | 501 | 7    | -       | 6/18/38/38 | 0/3/3/3 |
| 8   | GDP  | A3    | 501 | -    | -       | 1/12/32/32 | 0/3/3/3 |
| 6   | GTP  | B2    | 501 | 7    | -       | 6/18/38/38 | 0/3/3/3 |
| 6   | GTP  | B4    | 501 | 7    | -       | 4/18/38/38 | 0/3/3/3 |

The worst 5 of 95 bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|-------|-------------|----------|
| 6   | A4    | 501 | GTP  | C5-C6 | -5.12 | 1.37        | 1.47     |
| 6   | D4    | 501 | GTP  | C5-C6 | -5.06 | 1.37        | 1.47     |

![](_page_69_Picture_8.jpeg)

| 001100 | Continuad from proceeder page |     |      |       |       |             |          |  |  |
|--------|-------------------------------|-----|------|-------|-------|-------------|----------|--|--|
| Mol    | Chain                         | Res | Type | Atoms | Z     | Observed(Å) | Ideal(Å) |  |  |
| 6      | B4                            | 501 | GTP  | C5-C6 | -4.93 | 1.37        | 1.47     |  |  |
| 6      | A6                            | 501 | GTP  | C5-C6 | -4.92 | 1.37        | 1.47     |  |  |
| 6      | C8                            | 501 | GTP  | C5-C6 | -4.92 | 1.37        | 1.47     |  |  |

The worst 5 of 280 bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 6   | B4    | 501 | GTP  | PA-O3A-PB | -5.00 | 115.67           | 132.83        |
| 6   | C8    | 501 | GTP  | PA-O3A-PB | -4.94 | 115.89           | 132.83        |
| 6   | B2    | 501 | GTP  | PA-O3A-PB | -4.92 | 115.95           | 132.83        |
| 6   | B6    | 501 | GTP  | PA-O3A-PB | -4.92 | 115.95           | 132.83        |
| 6   | C2    | 501 | GTP  | PA-O3A-PB | -4.82 | 116.28           | 132.83        |

There are no chirality outliers.

5 of 226 torsion outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms          |
|-----|-------|----------------|------|----------------|
| 6   | A0    | 501            | GTP  | PB-O3A-PA-O5'  |
| 6   | A0    | 501            | GTP  | C5'-O5'-PA-O3A |
| 6   | A0    | 501            | GTP  | C5'-O5'-PA-O2A |
| 6   | A2    | 501            | GTP  | C5'-O5'-PA-O1A |
| 6   | A2    | 501            | GTP  | C5'-O5'-PA-O2A |

There are no ring outliers.

27 monomers are involved in 40 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 6   | C4    | 501 | GTP  | 1       | 0            |
| 6   | E6    | 501 | GTP  | 3       | 0            |
| 6   | E8    | 501 | GTP  | 2       | 0            |
| 6   | C0    | 501 | GTP  | 2       | 0            |
| 8   | C3    | 501 | GDP  | 2       | 0            |
| 8   | F1    | 501 | GDP  | 1       | 0            |
| 8   | B3    | 501 | GDP  | 1       | 0            |
| 6   | B0    | 501 | GTP  | 1       | 0            |
| 6   | D8    | 501 | GTP  | 1       | 0            |
| 8   | C1    | 501 | GDP  | 1       | 0            |
| 6   | E2    | 501 | GTP  | 1       | 0            |
| 6   | B8    | 501 | GTP  | 1       | 0            |
| 6   | F0    | 501 | GTP  | 1       | 0            |
| 8   | B7    | 501 | GDP  | 1       | 0            |

![](_page_70_Picture_14.jpeg)

| Mol | Chain | $\operatorname{Res}$ | Type | Clashes | Symm-Clashes |  |  |  |  |
|-----|-------|----------------------|------|---------|--------------|--|--|--|--|
| 6   | C8    | 501                  | GTP  | 1       | 0            |  |  |  |  |
| 8   | D5    | 501                  | GDP  | 1       | 0            |  |  |  |  |
| 8   | E3    | 501                  | GDP  | 3       | 0            |  |  |  |  |
| 8   | A1    | 501                  | GDP  | 2       | 0            |  |  |  |  |
| 6   | C6    | 501                  | GTP  | 3       | 0            |  |  |  |  |
| 8   | A9    | 501                  | GDP  | 1       | 0            |  |  |  |  |
| 6   | A0    | 501                  | GTP  | 2       | 0            |  |  |  |  |
| 8   | C5    | 501                  | GDP  | 1       | 0            |  |  |  |  |
| 6   | D4    | 501                  | GTP  | 1       | 0            |  |  |  |  |
| 6   | A8    | 501                  | GTP  | 1       | 0            |  |  |  |  |
| 6   | B6    | 501                  | GTP  | 2       | 0            |  |  |  |  |
| 8   | A3    | 501                  | GDP  | 2       | 0            |  |  |  |  |
| 6   | B2    | 501                  | GTP  | 1       | 0            |  |  |  |  |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

![](_page_71_Picture_6.jpeg)








































































































## 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-23869. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

### 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



The images above show the map projected in three orthogonal directions.

### 6.2 Central slices (i)

#### 6.2.1 Primary map



The images above show central slices of the map in three orthogonal directions.

### 6.3 Largest variance slices (i)

#### 6.3.1 Primary map



The images above show the largest variance slices of the map in three orthogonal directions.

### 6.4 Orthogonal surface views (i)

#### 6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.1. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.



## 6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



## 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

### 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



### 7.2 Volume estimate (i)



The volume at the recommended contour level is  $3014 \text{ nm}^3$ ; this corresponds to an approximate mass of 2723 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



### 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.294  $\rm \AA^{-1}$ 



# 8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.



## 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-23869 and PDB model 7MIZ. Per-residue inclusion information can be found in section 3 on page 20.

### 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.1 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.1).


## 9.4 Atom inclusion (i)



At the recommended contour level, 97% of all backbone atoms, 88% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

## 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.1) and Q-score for the entire model and for each chain.

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| All   | 0.8772         | 0.4600  |
| 0     | 0.8647         | 0.4810  |
| 1     | 0.8353         | 0.4680  |
| 10    | 0.9059         | 0.4870  |
| 11    | 0.9059         | 0.4880  |
| 12    | 0.8824         | 0.4790  |
| 13    | 0.8765         | 0.4810  |
| 14    | 0.8706         | 0.4930  |
| 15    | 0.8529         | 0.4860  |
| 16    | 0.8647         | 0.4610  |
| 17    | 0.8824         | 0.4620  |
| 18    | 0.9353         | 0.4860  |
| 19    | 0.9412         | 0.4850  |
| 2     | 0.8353         | 0.4640  |
| 20    | 0.6941         | 0.4110  |
| 21    | 0.7353         | 0.4290  |
| 22    | 0.5897         | 0.3640  |
| 23    | 0.6154         | 0.3760  |
| 3     | 0.8412         | 0.4650  |
| 4     | 0.8235         | 0.4800  |
| 5     | 0.8412         | 0.4860  |
| 6     | 0.8588         | 0.4920  |
| 7     | 0.8588         | 0.4880  |
| 8     | 0.8235         | 0.4230  |
| 9     | 0.8294         | 0.4280  |
| A0    | 0.7810         | 0.3990  |
| A1    | 0.8961         | 0.4390  |
| A2    | 0.7865         | 0.3920  |
| A3    | 0.8564         | 0.4180  |
| A4    | 0.8826         | 0.4680  |
| A5    | 0.9018         | 0.4770  |
| A6    | 0.8920         | 0.4680  |
| A7    | 0.8821         | 0.4700  |
| A8    | 0.9039         | 0.4900  |
| A9    | 0.8970         | 0.4830  |

Continued on next page...



Continued from previous page...

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| B0    | 0.8948         | 0.4860  |
| B1    | 0.8858         | 0.4820  |
| B2    | 0.9105         | 0.5040  |
| B3    | 0.8942         | 0.5030  |
| B4    | 0.9093         | 0.5030  |
| B5    | 0.8873         | 0.4990  |
| B6    | 0.9105         | 0.4990  |
| B7    | 0.8982         | 0.5050  |
| B8    | 0.9175         | 0.5000  |
| B9    | 0.9048         | 0.4990  |
| C0    | 0.8769         | 0.4160  |
| C1    | 0.8491         | 0.4190  |
| C2    | 0.8823         | 0.4190  |
| C3    | 0.8552         | 0.4150  |
| C4    | 0.8617         | 0.4020  |
| C5    | 0.8627         | 0.4040  |
| C6    | 0.8562         | 0.4050  |
| C7    | 0.8676         | 0.4040  |
| C8    | 0.8972         | 0.4740  |
| C9    | 0.9067         | 0.4830  |
| D0    | 0.8863         | 0.4810  |
| D1    | 0.9188         | 0.4890  |
| D2    | 0.8972         | 0.4870  |
| D3    | 0.9203         | 0.5010  |
| D4    | 0.8805         | 0.4960  |
| D5    | 0.9221         | 0.5020  |
| D6    | 0.9078         | 0.4910  |
| D7    | 0.9227         | 0.4990  |
| D8    | 0.8987         | 0.5050  |
| D9    | 0.9200         | 0.5020  |
| E0    | 0.8957         | 0.4680  |
| E1    | 0.9115         | 0.4820  |
| E2    | 0.9099         | 0.4810  |
| E3    | 0.9148         | 0.4910  |
| E4    | 0.8999         | 0.4530  |
| E5    | 0.9079         | 0.4680  |
| E6    | 0.9178         | 0.4730  |
| E7    | 0.9064         | 0.4790  |
| E8    | 0.8714         | 0.4230  |
| E9    | 0.8509         | 0.4190  |
| F0    | 0.8990         | 0.4420  |
| F1    | 0.8530         | 0.4330  |

Continued on next page...



| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| a     | 0.7829         | 0.4260  |
| b     | 0.7786         | 0.4120  |
| с     | 0.8408         | 0.4650  |
| d     | 0.8490         | 0.4550  |
| е     | 0.8777         | 0.4830  |
| f     | 0.8904         | 0.4800  |
| g     | 0.8841         | 0.4870  |
| h     | 0.8815         | 0.4840  |
| i     | 0.8822         | 0.4470  |
| j     | 0.8822         | 0.4450  |
| k     | 0.6916         | 0.2870  |
| l     | 0.6826         | 0.2870  |
| m     | 0.6828         | 0.3280  |
| n     | 0.6803         | 0.3290  |
| 0     | 0.8892         | 0.4830  |
| р     | 0.8847         | 0.4830  |
| q     | 0.8955         | 0.4800  |
| r     | 0.8936         | 0.4950  |
| S     | 0.8987         | 0.4730  |
| t     | 0.8975         | 0.4920  |
| u     | 0.8745         | 0.4490  |
| V     | 0.8771         | 0.4640  |
| W     | 0.5565         | 0.2960  |
| Х     | 0.6152         | 0.3200  |

Continued from previous page...

