

Nov 7, 2022 – 07:28 PM EST

| PDB ID       | : | 6MSJ                                                                   |
|--------------|---|------------------------------------------------------------------------|
| EMDB ID      | : | EMD-9221                                                               |
| Title        | : | Cryo-EM structures and dynamics of substrate-engaged human 26S protea- |
|              |   | some                                                                   |
| Authors      | : | Mao, Y.D.                                                              |
| Deposited on | : | 2018-10-16                                                             |
| Resolution   | : | 3.30  Å(reported)                                                      |
|              |   |                                                                        |

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1. dev 43                                                      |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| MolProbity                     | : | 4.02b-467                                                          |
| buster-report                  | : | 1.1.7 (2018)                                                       |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.9                                                              |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.31.2                                                             |

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 3.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | Whole archive<br>(#Entries) | ${f EM} {f structures} \ (\#{f Entries})$ |
|-----------------------|-----------------------------|-------------------------------------------|
| Ramachandran outliers | 154571                      | 4023                                      |
| Sidechain outliers    | 154315                      | 3826                                      |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |        |
|-----|-------|--------|------------------|--------|
|     |       |        | 37%              |        |
| 1   | U     | 953    | 90%              | • 8%   |
|     |       |        | 56%              |        |
| 2   | V     | 533    | 88%              | • 10%  |
|     |       |        | 48%              |        |
| 3   | W     | 456    | 95%              | 5%     |
|     |       |        | 42%              |        |
| 4   | Х     | 422    | 89%              | • 10%  |
|     |       |        | 23%              |        |
| 5   | Y     | 389    | 95%              | • •    |
|     |       |        | 31%              |        |
| 6   | Z     | 324    | 84%              | •• 12% |
|     |       |        | 54%              |        |
| 7   | a     | 376    | 97%              | ••     |
|     |       |        | 41%              |        |
| 8   | b     | 377    | <b>50%</b> • 49% |        |
|     |       |        | 29%              |        |
| 9   | с     | 309    | 88%              | • • 7% |



| Conti | nued fron | n previous | page             |       |
|-------|-----------|------------|------------------|-------|
| Mol   | Chain     | Length     | Quality of chain |       |
|       |           |            | 62%              |       |
| 10    | d         | 349        | 72% .            | 26%   |
|       |           | -          | 40%              |       |
| 11    | е         | 70         | 53% • 43%        |       |
| 10    | r         | 202        | 70%              |       |
| 12    | I         | 892        | 95%              | • •   |
| 13    | А         | 433        | 020/             | . 5%  |
| 10    |           | 100        | 25%              | ٥,٢ • |
| 14    | В         | 440        | 91%              | • 7%  |
|       |           |            | 17%              |       |
| 15    | С         | 398        | 95%              | 5% •  |
|       |           |            | 13%              |       |
| 16    | D         | 418        | 86%              | •• 9% |
| 17    | Б         | 402        | 28%              |       |
| 11    | E         | 403        | 92%              | • •   |
| 18    | F         | /30        | 070/             | 100/  |
| 10    | T,        | 400        | 78%              | • 10% |
| 19    | v         | 36         | 100%             |       |
|       |           |            | 7%               |       |
| 20    | G         | 245        | 95%              | • •   |
|       |           |            | <u>.</u>         |       |
| 21    | Н         | 233        | 99%              | •     |
| 0.1   | ,         | 222        | 15%              |       |
| 21    | h         | 233        | 100%             |       |
|       | т         | 260        | 10%              | 50/   |
|       | 1         | 200        | 24%              | • 5%  |
| 22    | i         | 260        | 96%              | ·     |
|       | -         | 200        |                  | -     |
| 23    | J         | 247        | 96%              | • •   |
|       |           |            | 31%              |       |
| 23    | j         | 247        | 97%              | •     |
|       |           | 2.42       | 7%               |       |
| 24    | K         | 240        | 92%              | • 5%  |
| 04    | 1_        | 240        | 21%              |       |
| 24    | K         | 240        | 94%<br>5%        | • 5%  |
| 25    | T.        | 268        | 900/             | 110/  |
| 20    | Ľ         | 200        | 12%              | 11%   |
| 25    | 1         | 268        | 89%              | 11%   |
|       | _         |            | 6%               |       |
| 26    | М         | 254        | 94%              | 6%    |
|       |           |            | 14%              |       |
| 26    | m         | 254        | 94%              | 6%    |
| ~-    | 7.1       | 260        | •                |       |
| 27    | N         | 238        | 80%              | 20%   |
| 97    | r         | 990        |                  | 2004  |
| 21    | 11        | 200        | 80%              | 20%   |



| Mol | Chain | Length | Quality of chain  |     |
|-----|-------|--------|-------------------|-----|
| 28  | Ο     | 276    | 79%               | 20% |
| 28  | 0     | 276    | 8%                | 20% |
| 29  | Р     | 204    | <b>•</b> 100%     |     |
| 29  | р     | 204    | 100%              |     |
| 30  | Q     | 201    | 99%               | •   |
| 30  | q     | 201    | <b>•••</b><br>99% | •   |
| 31  | R     | 262    | 77%               | 23% |
| 31  | r     | 262    | 77%               | 23% |
| 32  | S     | 240    | 88%               | 11% |
| 32  | s     | 240    | 5%<br>88%         | 11% |
| 33  | Т     | 263    | <b>•</b> 81%      | 18% |
| 33  | t     | 263    | <b>•</b> 81%      | 18% |
| 34  | g     | 240    | 16%               |     |



## 2 Entry composition (i)

There are 38 unique types of molecules in this entry. The entry contains 105316 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 26S proteasome non-ATPase regulatory subunit 1.

| Mol | Chain | Residues |               | Α         | AltConf   | Trace     |         |   |   |
|-----|-------|----------|---------------|-----------|-----------|-----------|---------|---|---|
| 1   | U     | 872      | Total<br>6828 | C<br>4328 | N<br>1157 | O<br>1298 | S<br>45 | 0 | 0 |

• Molecule 2 is a protein called 26S proteasome non-ATPase regulatory subunit 3.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 2   | V     | 480      | Total<br>3852 | C<br>2444 | N<br>684 | 0<br>710 | S<br>14 | 0       | 0     |

• Molecule 3 is a protein called 26S proteasome non-ATPase regulatory subunit 12.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 3   | W     | 456      | Total<br>3703 | C<br>2339 | N<br>635 | 0<br>704 | S<br>25 | 0 | 0 |

• Molecule 4 is a protein called 26S proteasome non-ATPase regulatory subunit 11.

| Mol | Chain | Residues |               | At        |          | AltConf  | Trace   |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 4   | Х     | 380      | Total<br>3009 | C<br>1918 | N<br>509 | 0<br>570 | S<br>12 | 0 | 0 |

• Molecule 5 is a protein called 26S proteasome non-ATPase regulatory subunit 6.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 5   | Y     | 378      | Total<br>3115 | C<br>1987 | N<br>533 | 0<br>578 | S<br>17 | 0 | 0 |

• Molecule 6 is a protein called 26S proteasome non-ATPase regulatory subunit 7.

| Mol | Chain | Residues | Atoms         |           |          |          |                        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|------------------------|---------|-------|
| 6   | Z     | 286      | Total<br>2281 | C<br>1457 | N<br>392 | 0<br>427 | $\frac{\mathrm{S}}{5}$ | 0       | 0     |



• Molecule 7 is a protein called 26S proteasome non-ATPase regulatory subunit 13.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 7   | a     | 373      | Total<br>2995 | C<br>1911 | N<br>510 | O<br>559 | S<br>15 | 0 | 0 |

• Molecule 8 is a protein called 26S proteasome non-ATPase regulatory subunit 4.

| Mol | Chain | Residues | Atoms         |          |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 8   | b     | 191      | Total<br>1458 | C<br>910 | N<br>261 | 0<br>279 | S<br>8 | 0       | 0     |

• Molecule 9 is a protein called 26S proteasome non-ATPase regulatory subunit 14.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 9   | с     | 287      | Total<br>2260 | C<br>1430 | N<br>389 | O<br>422 | S<br>19 | 0 | 0 |

• Molecule 10 is a protein called 26S proteasome non-ATPase regulatory subunit 8.

| Mol | Chain | Residues |               | At        |          | AltConf  | Trace  |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---|---|
| 10  | d     | 257      | Total<br>2116 | C<br>1371 | N<br>346 | O<br>390 | S<br>9 | 0 | 0 |

• Molecule 11 is a protein called 26S proteasome complex subunit SEM1.

| Mol | Chain | Residues |              | Atc      | $\mathbf{ms}$ |         |                                                         | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------------|---------|---------------------------------------------------------|---------|-------|
| 11  | е     | 40       | Total<br>334 | C<br>200 | N<br>55       | 0<br>77 | $\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$ | 0       | 0     |

• Molecule 12 is a protein called 26S proteasome non-ATPase regulatory subunit 2.

| Mol | Chain | Residues |               | Α         | AltConf   | Trace     |         |   |   |
|-----|-------|----------|---------------|-----------|-----------|-----------|---------|---|---|
| 12  | f     | 889      | Total<br>6866 | C<br>4315 | N<br>1174 | 0<br>1331 | S<br>46 | 0 | 0 |

• Molecule 13 is a protein called 26S proteasome regulatory subunit 7.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 13  | А     | 413      | Total<br>3229 | C<br>2034 | N<br>566 | 0<br>611 | S<br>18 | 0       | 0     |

• Molecule 14 is a protein called Rpt2, NP\_002793.2 (26SHA chain B).



| Mol | Chain | Residues |               | At        | oms      |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 14  | В     | 411      | Total<br>3207 | C<br>2022 | N<br>548 | O<br>622 | S<br>15 | 0       | 0     |

• Molecule 15 is a protein called 26S proteasome regulatory subunit 8.

| Mol | Chain | Residues |               | At        | oms      |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 15  | С     | 396      | Total<br>3105 | C<br>1954 | N<br>558 | O<br>576 | S<br>17 | 0       | 0     |

• Molecule 16 is a protein called 26S proteasome regulatory subunit 6B.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 16  | D     | 380      | Total<br>3040 | C<br>1923 | N<br>524 | 0<br>580 | S<br>13 | 0 | 0 |

• Molecule 17 is a protein called 26S proteasome regulatory subunit 10B.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 17  | Е     | 389      | Total<br>3097 | C<br>1947 | N<br>552 | 0<br>581 | S<br>17 | 0 | 0 |

• Molecule 18 is a protein called 26S proteasome regulatory subunit 6A.

| Mol | Chain | Residues |               | At        | oms      |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 18  | F     | 395      | Total<br>3098 | C<br>1951 | N<br>533 | O<br>596 | S<br>18 | 0       | 0     |

• Molecule 19 is a protein called substrate.

| Mol | Chain | Residues |              | Aton     | ıs      | AltConf | Trace |   |
|-----|-------|----------|--------------|----------|---------|---------|-------|---|
| 19  | V     | 36       | Total<br>180 | C<br>108 | N<br>36 | O<br>36 | 0     | 0 |

• Molecule 20 is a protein called Proteasome subunit alpha type-6.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 20  | G     | 239      | Total<br>1836 | C<br>1168 | N<br>305 | O<br>350 | S<br>13 | 0 | 0 |

• Molecule 21 is a protein called Proteasome subunit alpha type-2.



| Mol | Chain | Residues |               | At        |          | AltConf  | Trace         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------------|---|---|
| 21  | Н     | 230      | Total<br>1723 | C<br>1097 | N<br>289 | O<br>332 | ${f S}{5}$    | 0 | 0 |
| 21  | h     | 232      | Total<br>1708 | C<br>1081 | N<br>289 | 0<br>333 | ${S \atop 5}$ | 0 | 0 |

• Molecule 22 is a protein called Proteasome subunit alpha type-4.

| Mol | Chain | Residues |       | Ate  |     | AltConf | Trace |   |   |
|-----|-------|----------|-------|------|-----|---------|-------|---|---|
|     | т     | 248      | Total | С    | Ν   | 0       | S     | 0 | 0 |
|     | 1     | 240      | 1908  | 1204 | 326 | 369     | 9     | 0 | 0 |
|     | :     | 250      | Total | С    | Ν   | 0       | S     | 0 | 0 |
|     | 1     | 230      | 1912  | 1204 | 329 | 371     | 8     | 0 | 0 |

• Molecule 23 is a protein called Proteasome subunit alpha type-7.

| Mol | Chain | Residues |               | Ate       |          | AltConf  | Trace         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------------|---|---|
| 23  | J     | 239      | Total<br>1739 | C<br>1077 | N<br>317 | 0<br>340 | ${f S}{5}$    | 0 | 0 |
| 23  | j     | 239      | Total<br>1704 | C<br>1056 | N<br>308 | O<br>335 | ${S \atop 5}$ | 0 | 0 |

• Molecule 24 is a protein called Proteasome subunit alpha type-5.

| Mol  | Chain | Residues |       | At   | oms |     |              | AltConf | Trace |
|------|-------|----------|-------|------|-----|-----|--------------|---------|-------|
| 24   | K     | 228      | Total | С    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
| 24 K | 220   | 1729     | 1086  | 284  | 349 | 10  | 0            | 0       |       |
| 24   | Ŀ     | 228      | Total | С    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
| 24   | ĸ     | 220      | 1722  | 1080 | 284 | 348 | 10           | 0       | 0     |

• Molecule 25 is a protein called Proteasome subunit alpha type-1.

| Mol  | Chain | Residues |       | At   | oms |     |              | AltConf | Trace |
|------|-------|----------|-------|------|-----|-----|--------------|---------|-------|
| 25   | т     | 228      | Total | С    | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| 20 L |       | 230      | 1850  | 1159 | 334 | 346 | 11           | 0       | 0     |
| 25   | 1     | 228      | Total | С    | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| 2.0  |       | 230      | 1850  | 1159 | 334 | 346 | 11           | U       | U     |

• Molecule 26 is a protein called Proteasome subunit alpha type-3.

| Mol | Chain | Residues |               | At        | Atoms    |          |         |   |   |  |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|--|
| 26  | М     | 240      | Total<br>1856 | C<br>1178 | N<br>314 | O<br>353 | S<br>11 | 0 | 0 |  |



Continued from previous page...

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 26  | m     | 240      | Total<br>1856 | C<br>1178 | N<br>314 | O<br>353 | S<br>11 | 0 | 0 |

• Molecule 27 is a protein called Proteasome subunit beta type-6.

| Mol | Chain | Residues |       | $\mathbf{A}$ | toms |     | AltConf      | Trace |   |
|-----|-------|----------|-------|--------------|------|-----|--------------|-------|---|
| 27  | N     | 191      | Total | С            | Ν    | Ο   | $\mathbf{S}$ | 0     | 0 |
| 21  | 11    | N 191    | 1430  | 893          | 245  | 280 | 12           | 0     | 0 |
| 97  | n     | 101      | Total | С            | Ν    | 0   | S            | 0     | 0 |
|     | 11    | 191      | 1430  | 893          | 245  | 280 | 12           | 0     |   |

• Molecule 28 is a protein called Proteasome subunit beta type-7.

| Mol | Chain | Residues |       | At   |     | AltConf | Trace        |   |   |
|-----|-------|----------|-------|------|-----|---------|--------------|---|---|
| 20  | 0     | 220      | Total | С    | Ν   | 0       | $\mathbf{S}$ | 0 | 0 |
| 28  | 0     | 0 220    | 1643  | 1033 | 280 | 318     | 12           | 0 | 0 |
| 20  | 0     | 220      | Total | С    | Ν   | 0       | S            | 0 | 0 |
| 20  | 0     | 220      | 1643  | 1033 | 280 | 318     | 12           | 0 | 0 |

• Molecule 29 is a protein called Proteasome subunit beta type-3.

| Mol  | Chain | Residues |       | At   | oms |     |              | AltConf | Trace |
|------|-------|----------|-------|------|-----|-----|--------------|---------|-------|
| 20   | D     | 204      | Total | С    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
| 29 F | 204   | 1585     | 1010  | 262  | 294 | 19  | 0            | 0       |       |
| 20   | n     | 204      | Total | С    | Ν   | Ο   | S            | 0       | 0     |
| 29   | þ     | 204      | 1585  | 1010 | 262 | 294 | 19           | 0       | U     |

• Molecule 30 is a protein called Proteasome subunit beta type-2.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---|---|
| 30  | Q     | 199      | Total<br>1570 | C<br>1006 | N<br>265 | O<br>290 | S<br>9 | 0 | 0 |
| 30  | q     | 199      | Total<br>1570 | C<br>1006 | N<br>265 | Ó<br>290 | S<br>9 | 0 | 0 |

• Molecule 31 is a protein called Proteasome subunit beta type-5.

| Mol | Chain | Residues |       | At  | oms | AltConf | Trace |   |   |  |
|-----|-------|----------|-------|-----|-----|---------|-------|---|---|--|
| 21  | D     | 201      | Total | С   | Ν   | 0       | S     | 0 | 0 |  |
| 51  | 11    | 201      | 1548  | 974 | 273 | 292     | 9     | 0 | U |  |
| 21  | r     | 201      | Total | С   | Ν   | 0       | S     | 0 | 0 |  |
| 51  | 1     | 201      | 1548  | 974 | 273 | 292     | 9     | 0 | 0 |  |



• Molecule 32 is a protein called Proteasome subunit beta type-1.

| Mol | Chain | Residues |       | At   | AltConf | Trace |              |   |   |  |
|-----|-------|----------|-------|------|---------|-------|--------------|---|---|--|
| 30  | S     | 213      | Total | С    | Ν       | 0     | $\mathbf{S}$ | 0 | 0 |  |
| 52  | U U   | 213      | 1641  | 1036 | 282     | 313   | 10           | 0 | 0 |  |
| 30  | G     | 212      | Total | С    | Ν       | 0     | S            | 0 | 0 |  |
| 32  | G     | 210      | 1641  | 1036 | 282     | 313   | 10           | 0 | 0 |  |

• Molecule 33 is a protein called Proteasome subunit beta type-4.

| Mol  | Chain | Residues |       | At   | AltConf | Trace |              |   |   |  |
|------|-------|----------|-------|------|---------|-------|--------------|---|---|--|
| 22   | Т     | 215      | Total | С    | Ν       | 0     | $\mathbf{S}$ | 0 | 0 |  |
| - 33 | T     | 210      | 1667  | 1052 | 285     | 318   | 12           | 0 | 0 |  |
| 22   | +     | 215      | Total | С    | Ν       | 0     | $\mathbf{S}$ | 0 | 0 |  |
| 55   | U     | 210      | 1667  | 1052 | 285     | 318   | 12           | U | U |  |

• Molecule 34 is a protein called Proteasome subunit alpha type-6.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 34  | g     | 240      | Total<br>1826 | C<br>1160 | N<br>305 | 0<br>348 | S<br>13 | 0 | 0 |

• Molecule 35 is ZINC ION (three-letter code: ZN) (formula: Zn).

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 35  | С     | 1        | Total Zn<br>1 1 | 0       |

• Molecule 36 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula:  $C_{10}H_{16}N_5O_{13}P_3$ ).





| Mol  | Chain | Residues |       |    | AltConf |    |   |   |
|------|-------|----------|-------|----|---------|----|---|---|
| 26   | ٨     | 1        | Total | С  | Ν       | 0  | Р | 0 |
| - 30 | A     | 1        | 31    | 10 | 5       | 13 | 3 | 0 |
| 26   | В     | 1        | Total | С  | Ν       | Ο  | Р | 0 |
| - 30 | D     | 1        | 31    | 10 | 5       | 13 | 3 | 0 |
| 26   | С     | 1        | Total | С  | Ν       | 0  | Р | 0 |
| - 30 | C     | 1        | 31    | 10 | 5       | 13 | 3 | 0 |
| 26   | Л     | 1        | Total | С  | Ν       | Ο  | Р | 0 |
| - 30 | D     | 1        | 31    | 10 | 5       | 13 | 3 | 0 |

• Molecule 37 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 37  | А     | 1        | Total Mg<br>1 1 | 0       |
| 37  | В     | 1        | Total Mg<br>1 1 | 0       |
| 37  | С     | 1        | Total Mg<br>1 1 | 0       |
| 37  | D     | 1        | Total Mg<br>1 1 | 0       |

• Molecule 38 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula:  $C_{10}H_{15}N_5O_{10}P_2$ ).





| Mol | Chain | Residues |       | AltConf |   |    |   |   |
|-----|-------|----------|-------|---------|---|----|---|---|
| 20  | F     | 1        | Total | С       | Ν | Ο  | Р | 0 |
| 30  | Ľ     | 1        | 27    | 10      | 5 | 10 | 2 | 0 |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 26S proteasome non-ATPase regulatory subunit 1





#### PRO PRO GLU PRO PHE GLU TYR ILE ASP ASP

• Molecule 2: 26S proteasome non-ATPase regulatory subunit 3





# 

## F337 1333 1333 1333 1333 1333 1334 1339 1339 1339 1339 1339 1339 1339 1339 1344 1344 1344 1345 1403 1403 1403 1403 1403 1403 1403 1403 1403 1403 1403 1425 1455 1455 1455 1455 1455 1455

• Molecule 4: 26S proteasome non-ATPase regulatory subunit 11









• Molecule 11: 26S proteasome complex subunit SEM1













• Molecule 15: 26S proteasome regulatory subunit 8



• Molecule 18: 26S proteasome regulatory subunit 6A







• Molecule 21: Proteasome subunit alpha type-2



• Molecule 22: Proteasome subunit alpha type-4



• Molecule 23: Proteasome subunit alpha type-7

| Ch | ain | ı J: |     | 10% | )   |     |     |     |     |      |      |      |      | 96   | 5%   |      |      |              |      |               |      |      |      |      | ••                        |                   |            |
|----|-----|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|--------------|------|---------------|------|------|------|------|---------------------------|-------------------|------------|
| S2 | R5  | K28  | G37 | R38 | E56 | R60 | D66 | D67 | D79 | R117 | D137 | F138 | N159 | R163 | K166 | E173 | D178 | E179<br>A180 | V199 | q200<br>\$201 | G202 | D214 | E238 | N239 | E240<br>LYS<br>LYS<br>LYS | GLN<br>LYS<br>LYS | ALA<br>SER |

• Molecule 23: Proteasome subunit alpha type-7



• Molecule 24: Proteasome subunit alpha type-5







| • Molecule 27:                                                                         | Proteasome subunit beta type-6                                                                                                                                                                         |                                                                                                                       |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Chain N:                                                                               | 80%                                                                                                                                                                                                    | 20%                                                                                                                   |
| ALA<br>ALA<br>ALA<br>LEU<br>LEU<br>LEU<br>ALA<br>ALA<br>ALA<br>ALA                     | PR0<br>AL1<br>TRP<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                 | 6191<br>6191<br>611<br>711<br>711<br>711<br>712<br>712<br>712<br>712<br>712<br>712<br>7                               |
| • Molecule 27:                                                                         | Proteasome subunit beta type-6                                                                                                                                                                         |                                                                                                                       |
| Chain n:                                                                               | 80%                                                                                                                                                                                                    | 20%                                                                                                                   |
| ALA<br>ALA<br>THR<br>LEU<br>LEU<br>LEU<br>LEU<br>ALA<br>ALA<br>ALA<br>ALA<br>CIY       | PR0<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>PR0<br>GUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU                                                                      | M71<br>E52<br>E92<br>E145<br>C191<br>C19<br>C19<br>C18<br>C18<br>C18<br>C18<br>C18<br>C18<br>C18<br>C18<br>C18<br>C18 |
| THR<br>LEU<br>PRO<br>ALA                                                               |                                                                                                                                                                                                        |                                                                                                                       |
| • Molecule 28:                                                                         | Proteasome subunit beta type-7                                                                                                                                                                         |                                                                                                                       |
| Chain O:                                                                               | 79%                                                                                                                                                                                                    | 20%                                                                                                                   |
| ALA<br>ALA<br>VAL<br>SER<br>VAL<br>TYR<br>TYR<br>PRO<br>PRO<br>VAL                     | GLY<br>GLY<br>PHE<br>PHE<br>ASP<br>ASP<br>ASP<br>ASP<br>ASN<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CVS<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL | T1<br>E22<br>G23<br>G23<br>A<br>F2<br>C23<br>C23<br>C204<br>C200<br>C200<br>C200<br>C200<br>C200<br>C200<br>C200      |
| d207<br>= 220<br>= 220<br>= 21U<br>= 21U<br>= 1LEU<br>= LEU<br>= CLU<br>= CLU<br>= THR | VAL<br>CLN<br>THR<br>MET<br>THR<br>SER<br>SER                                                                                                                                                          |                                                                                                                       |
| • Molecule 28:                                                                         | Proteasome subunit beta type-7                                                                                                                                                                         |                                                                                                                       |
| Chain o:                                                                               | 79%                                                                                                                                                                                                    | 20%                                                                                                                   |
| ALA<br>ALA<br>ALA<br>VAL<br>SER<br>VAL<br>TYR<br>FIO<br>PRO<br>PRO<br>VAL              | CLU<br>CLU<br>SER<br>SER<br>PHE<br>SER<br>PHE<br>SER<br>ASP<br>ASP<br>ASP<br>ASP<br>ASN<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                           | T1<br>E22<br>E22<br>E73<br>P120<br>C170<br>C170<br>C170<br>C170<br>C170<br>C170<br>C170<br>C17                        |
| K194<br>K195<br>G196<br>T197<br>R198<br>L199<br>C200<br>R201                           | Y202<br>E205<br>KZ06<br>C207<br>C207<br>C207<br>C207<br>C207<br>C207<br>C207<br>C207                                                                                                                   |                                                                                                                       |
| • Molecule 29:                                                                         | Proteasome subunit beta type-3                                                                                                                                                                         |                                                                                                                       |
| Chain P:                                                                               | 100%                                                                                                                                                                                                   |                                                                                                                       |
| S2<br>13<br>M4<br>N93<br>17<br>F117                                                    |                                                                                                                                                                                                        |                                                                                                                       |
| • Molecule 29:                                                                         | Proteasome subunit beta type-3                                                                                                                                                                         |                                                                                                                       |



| Chain p:                                                                           | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 82<br>N93<br>K115<br>F117<br>K118                                                  | D134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
| • Molecule 30:                                                                     | Proteasome subunit beta type-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Chain Q:                                                                           | 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| M1<br>P197<br>K198<br>Q199<br>GLY<br>SER                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| • Molecule 30:                                                                     | : Proteasome subunit beta type-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| Chain q:                                                                           | 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| M1<br>N24<br>E74<br>D90<br>H110                                                    | E111<br>D192<br>K195<br>Q199<br>GLY<br>SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| • Molecule 31:                                                                     | : Proteasome subunit beta type-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| Chain R:                                                                           | 77% 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                       |
| ALA<br>LEU<br>ALA<br>SER<br>VAL<br>LEU<br>GLU<br>PRO<br>PRO<br>PRO                 | VAL<br>VAL<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LEU<br>HIS<br>GLY<br>T1 |
| C23<br>R107 ♦<br>R141 ♦<br>C201 ♦<br>SER<br>THR                                    | DY4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| • Molecule 31:                                                                     | : Proteasome subunit beta type-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| Chain r:                                                                           | 77% 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
| ALA<br>LEU<br>ALA<br>SER<br>VAL<br>LEU<br>GLU<br>PRO<br>PRO                        | V ALL<br>V ALL<br>A ASN<br>A ASN<br>A ANG<br>C LLY<br>C LLEU<br>C LLEU<br>C LLEU<br>C LLEU<br>A ALA<br>A ANG<br>C LLEU<br>C L | LEU<br>HIS<br>GLY<br>T1 |
| R9<br>G23<br>E72<br>E72<br>K106<br>K105<br>K105                                    | SER<br>THR<br>PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| • Molecule 32:                                                                     | Proteasome subunit beta type-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Chain S:                                                                           | 88% 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
| LEU<br>SER<br>SER<br>SER<br>ALA<br>ALA<br>MET<br>THYR<br>SER<br>ALA<br>ALA<br>CI V | ARP<br>ARP<br>ARP<br>ARC<br>ALV<br>ARC<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A 5170                  |
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |

| • Molecule 32: Proteasome subuni                                                                                                                                               | t beta type-1                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chain s:                                                                                                                                                                       | 88%                                                                                                                                                                                                                                                                                                                                                                                                   | 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LEU<br>SER<br>SER<br>SER<br>SER<br>MET<br>THR<br>MET<br>TTR<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                               | CLN<br>LEU<br>F33<br>F33<br>F33<br>F33<br>F115<br>F116<br>F116<br>F116<br>F116<br>F116<br>F116<br>F116                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • Molecule 33: Proteasome subuni                                                                                                                                               | t beta type-4                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chain T:                                                                                                                                                                       | 81%                                                                                                                                                                                                                                                                                                                                                                                                   | 18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GLU<br>PHE<br>LLBU<br>CLBU<br>CLBU<br>SER<br>SER<br>ARG<br>GLY<br>PRO<br>GLY<br>PRO<br>GLY<br>PRO<br>GLY<br>TYR<br>TYR<br>TYR<br>SER<br>SER                                    | THR<br>ASP<br>ASP<br>PHE<br>MET<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                  | D117<br>E166<br>K166<br>E1215<br>SER<br>GLV<br>PHE<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| • Molecule 33: Proteasome subuni                                                                                                                                               | t beta type-4                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chain t:                                                                                                                                                                       | 81%                                                                                                                                                                                                                                                                                                                                                                                                   | 18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GLU<br>PHE<br>LLEU<br>LLEU<br>CLEV<br>SER<br>SER<br>SER<br>ARG<br>GLY<br>PLE<br>CLY<br>PRO<br>GLY<br>PRO<br>GLY<br>PRO<br>GLY<br>PRO<br>GLY<br>PRO<br>GLY<br>SER<br>SER<br>SER | THR<br>PRO<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP                                                                                                                                                                                                                                                                                                                      | D73<br>D117<br>E206<br>E206<br>GLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B 出<br>G L U                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • Molecule 34: Proteasome subuni                                                                                                                                               | t alpha type-6                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chain g:                                                                                                                                                                       | 100%                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S5<br>86<br>47<br>68<br>68<br>81<br>81<br>821<br>821<br>824<br>824<br>644<br>85<br>644<br>85<br>644<br>85<br>644<br>85<br>682<br>682                                           | 086     090       144     144       144     144       144     144       145     144       145     144       145     144       145     144       145     144       145     144       145     144       145     144       145     144       145     144       145     144       145     144       145     144       145     144       146     144       147     144       148     144       148     144 | 2207 +<br>2207 +<br>2208 +<br>2209 +<br>2209 +<br>2214 +<br>2232 +<br>2232 +<br>2235 +<br>2235 +<br>2236 +<br>2235 +<br>22 |
| ◆                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



## 4 Experimental information (i)

| Property                           | Value                     | Source    |
|------------------------------------|---------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE           | Depositor |
| Imposed symmetry                   | POINT, Not provided       |           |
| Number of particles used           | 288915                    | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF         | Depositor |
| CTF correction method              | NONE                      | Depositor |
| Microscope                         | FEI TITAN KRIOS           | Depositor |
| Voltage (kV)                       | 300                       | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 44                        | Depositor |
| Minimum defocus (nm)               | Not provided              |           |
| Maximum defocus (nm)               | Not provided              |           |
| Magnification                      | Not provided              |           |
| Image detector                     | GATAN K2 SUMMIT (4k x 4k) | Depositor |
| Maximum map value                  | 0.018                     | Depositor |
| Minimum map value                  | -0.005                    | Depositor |
| Average map value                  | 0.000                     | Depositor |
| Map value standard deviation       | 0.001                     | Depositor |
| Recommended contour level          | 0.006                     | Depositor |
| Map size (Å)                       | 411.0, 411.0, 411.0       | wwPDB     |
| Map dimensions                     | 600, 600, 600             | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0          | wwPDB     |
| Pixel spacing (Å)                  | 0.685, 0.685, 0.685       | Depositor |



## 5 Model quality (i)

### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, ATP, ADP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Chain |      | Bo   | ond lengths         | Bond angles |                     |  |
|-----------|------|------|---------------------|-------------|---------------------|--|
|           | Unam | RMSZ | # Z  > 5            | RMSZ        | # Z  > 5            |  |
| 1         | U    | 0.33 | 0/6945              | 0.61        | 1/9382~(0.0%)       |  |
| 2         | V    | 0.32 | 0/3929              | 0.67        | 2/5309~(0.0%)       |  |
| 3         | W    | 0.33 | 0/3751              | 0.67        | 2/5042~(0.0%)       |  |
| 4         | Х    | 0.31 | 0/3053              | 0.56        | 0/4115              |  |
| 5         | Y    | 0.36 | 0/3173              | 0.65        | 0/4273              |  |
| 6         | Ζ    | 0.33 | 0/2324              | 0.67        | 3/3150~(0.1%)       |  |
| 7         | a    | 0.32 | 0/3053              | 0.65        | 2/4133~(0.0%)       |  |
| 8         | b    | 0.29 | 0/1478              | 0.63        | 0/2001              |  |
| 9         | с    | 0.34 | 0/2302              | 0.68        | 1/3110~(0.0%)       |  |
| 10        | d    | 0.31 | 0/2162              | 0.59        | 1/2919~(0.0%)       |  |
| 11        | е    | 0.33 | 0/338               | 0.72        | 1/450~(0.2%)        |  |
| 12        | f    | 0.35 | 1/6980~(0.0%)       | 0.72        | 5/9433~(0.1%)       |  |
| 13        | А    | 0.34 | 0/3283              | 0.61        | 0/4433              |  |
| 14        | В    | 0.36 | 0/3254              | 0.61        | 0/4388              |  |
| 15        | С    | 0.40 | 0/3146              | 0.66        | 3/4226~(0.1%)       |  |
| 16        | D    | 0.40 | 0/3090              | 0.67        | 1/4168~(0.0%)       |  |
| 17        | Ε    | 0.35 | 0/3145              | 0.64        | 4/4233~(0.1%)       |  |
| 18        | F    | 0.33 | 0/3137              | 0.63        | 2/4223~(0.0%)       |  |
| 20        | G    | 0.43 | 0/1870              | 0.62        | 1/2536~(0.0%)       |  |
| 21        | Н    | 0.47 | 0/1759              | 0.59        | 0/2389              |  |
| 21        | h    | 0.38 | 0/1743              | 0.53        | 0/2372              |  |
| 22        | Ι    | 0.41 | 0/1938              | 0.67        | 3/2621~(0.1%)       |  |
| 22        | i    | 0.34 | 0/1942              | 0.58        | 0/2628              |  |
| 23        | J    | 0.43 | 0/1763              | 0.58        | 0/2398              |  |
| 23        | j    | 0.36 | 0/1728              | 0.55        | 0/2358              |  |
| 24        | Κ    | 0.41 | 0/1755              | 0.64        | 2/2375~(0.1%)       |  |
| 24        | k    | 0.34 | 0/1747              | 0.56        | 0/2364              |  |
| 25        | L    | 0.40 | $0/1\overline{885}$ | 0.59        | $0/2\overline{552}$ |  |
| 25        | 1    | 0.40 | 0/1885              | 0.59        | 0/2552              |  |
| 26        | М    | 0.40 | 0/1891              | 0.56        | 0/2552              |  |
| 26        | m    | 0.40 | 0/1891              | 0.56        | 0/2552              |  |
| 27        | N    | 0.39 | $0/1\overline{454}$ | 0.54        | $0/1\overline{967}$ |  |



| Mal  | Mol Chain |      | ond lengths     | Bond angles |                  |  |
|------|-----------|------|-----------------|-------------|------------------|--|
| WIOI |           |      | # Z  > 5        | RMSZ        | # Z  > 5         |  |
| 27   | n         | 0.39 | 0/1454          | 0.54        | 0/1967           |  |
| 28   | 0         | 0.37 | 0/1670          | 0.54        | 0/2265           |  |
| 28   | 0         | 0.37 | 0/1670          | 0.54        | 0/2265           |  |
| 29   | Р         | 0.37 | 0/1614          | 0.52        | 0/2177           |  |
| 29   | р         | 0.37 | 0/1614          | 0.52        | 0/2177           |  |
| 30   | Q         | 0.39 | 0/1603          | 0.57        | 0/2174           |  |
| 30   | q         | 0.39 | 0/1603          | 0.57        | 0/2174           |  |
| 31   | R         | 0.40 | 0/1579          | 0.48        | 0/2134           |  |
| 31   | r         | 0.40 | 0/1579          | 0.49        | 0/2134           |  |
| 32   | S         | 0.37 | 0/1671          | 0.52        | 0/2253           |  |
| 32   | s         | 0.37 | 0/1671          | 0.52        | 0/2253           |  |
| 33   | Т         | 0.39 | 0/1700          | 0.52        | 0/2305           |  |
| 33   | t         | 0.39 | 0/1700          | 0.52        | 0/2305           |  |
| 34   | g         | 0.36 | 0/1859          | 0.58        | 0/2523           |  |
| All  | All       | 0.37 | 1/106781~(0.0%) | 0.61        | 34/144310~(0.0%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | U     | 0                   | 7                   |
| 2   | V     | 0                   | 2                   |
| 3   | W     | 0                   | 2                   |
| 4   | Х     | 0                   | 1                   |
| 5   | Y     | 0                   | 4                   |
| 6   | Ζ     | 0                   | 4                   |
| 7   | a     | 0                   | 1                   |
| 9   | с     | 0                   | 4                   |
| 10  | d     | 0                   | 4                   |
| 11  | е     | 0                   | 1                   |
| 12  | f     | 0                   | 14                  |
| 13  | А     | 0                   | 2                   |
| 14  | В     | 0                   | 2                   |
| 15  | С     | 0                   | 3                   |
| 16  | D     | 0                   | 5                   |
| 17  | Ε     | 0                   | 5                   |
| 18  | F     | 0                   | 3                   |
| 20  | G     | 0                   | 3                   |
| 22  | Ι     | 0                   | 1                   |
| 24  | Κ     | 0                   | 3                   |



| Mol | Chain        | #Chirality outliers | #Planarity outliers |
|-----|--------------|---------------------|---------------------|
| 24  | k            | 0                   | 1                   |
| 28  | 0            | 0                   | 1                   |
| 28  | 0            | 0                   | 1                   |
| 33  | Т            | 0                   | 1                   |
| 33  | $\mathbf{t}$ | 0                   | 1                   |
| 34  | g            | 0                   | 1                   |
| All | All          | 0                   | 77                  |

All (1) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Ζ    | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|------|-------------|----------|
| 12  | f     | 192 | VAL  | C-N   | 6.03 | 1.45        | 1.34     |

All (34) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 11  | е     | 56  | LEU  | CA-CB-CG  | 8.38  | 134.58           | 115.30        |
| 22  | Ι     | 15  | GLU  | C-N-CA    | 7.24  | 137.50           | 122.30        |
| 6   | Ζ     | 133 | LEU  | CA-CB-CG  | 7.08  | 131.58           | 115.30        |
| 18  | F     | 235 | LEU  | CA-CB-CG  | 6.98  | 131.34           | 115.30        |
| 17  | Е     | 116 | ASP  | CB-CG-OD1 | 6.92  | 124.53           | 118.30        |
| 24  | Κ     | 21  | LEU  | C-N-CA    | 6.78  | 138.65           | 121.70        |
| 12  | f     | 759 | LEU  | CA-CB-CG  | 6.67  | 130.65           | 115.30        |
| 12  | f     | 612 | LEU  | CA-CB-CG  | 6.63  | 130.56           | 115.30        |
| 3   | W     | 425 | LEU  | CB-CG-CD2 | -6.62 | 99.75            | 111.00        |
| 7   | a     | 342 | ASP  | CB-CG-OD1 | 6.41  | 124.07           | 118.30        |
| 22  | Ι     | 38  | LEU  | CA-CB-CG  | 6.37  | 129.96           | 115.30        |
| 7   | a     | 187 | ASP  | CB-CG-OD1 | 6.36  | 124.03           | 118.30        |
| 3   | W     | 89  | LEU  | CA-CB-CG  | 6.33  | 129.87           | 115.30        |
| 18  | F     | 164 | LEU  | CA-CB-CG  | 6.25  | 129.67           | 115.30        |
| 24  | Κ     | 119 | LEU  | CA-CB-CG  | 6.07  | 129.25           | 115.30        |
| 16  | D     | 54  | LEU  | CA-CB-CG  | 6.03  | 129.16           | 115.30        |
| 22  | Ι     | 41  | ASP  | CB-CG-OD1 | 5.96  | 123.67           | 118.30        |
| 17  | Е     | 105 | LEU  | CA-CB-CG  | 5.95  | 128.99           | 115.30        |
| 12  | f     | 811 | LEU  | CA-CB-CG  | 5.95  | 128.99           | 115.30        |
| 12  | f     | 830 | LEU  | CA-CB-CG  | 5.82  | 128.69           | 115.30        |
| 2   | V     | 170 | LEU  | CA-CB-CG  | 5.60  | 128.17           | 115.30        |
| 15  | С     | 404 | LEU  | CA-CB-CG  | 5.55  | 128.07           | 115.30        |
| 6   | Ζ     | 205 | LEU  | CA-CB-CG  | 5.44  | 127.82           | 115.30        |
| 20  | G     | 16  | PHE  | C-N-CA    | 5.44  | 135.30           | 121.70        |
| 15  | С     | 139 | MET  | CA-CB-CG  | 5.41  | 122.50           | 113.30        |
| 6   | Ζ     | 65  | ASP  | CB-CG-OD1 | 5.29  | 123.06           | 118.30        |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms    | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------|------|----------|------|------------------|---------------|
| 17  | Е     | 384            | LEU  | CA-CB-CG | 5.29 | 127.46           | 115.30        |
| 9   | с     | 212            | LEU  | CA-CB-CG | 5.18 | 127.21           | 115.30        |
| 2   | V     | 353            | LEU  | CA-CB-CG | 5.17 | 127.20           | 115.30        |
| 17  | Е     | 115            | VAL  | C-N-CA   | 5.17 | 134.63           | 121.70        |
| 10  | d     | 190            | LEU  | CA-CB-CG | 5.17 | 127.18           | 115.30        |
| 1   | U     | 24             | LEU  | CA-CB-CG | 5.09 | 127.01           | 115.30        |
| 15  | С     | 198            | LEU  | CA-CB-CG | 5.04 | 126.90           | 115.30        |
| 12  | f     | 217            | LEU  | CA-CB-CG | 5.04 | 126.89           | 115.30        |

There are no chirality outliers.

All (77) planarity outliers are listed below:

| Mol | Chain | Res | Type | Group   |
|-----|-------|-----|------|---------|
| 13  | А     | 22  | ILE  | Peptide |
| 13  | А     | 310 | ASP  | Peptide |
| 14  | В     | 278 | ALA  | Peptide |
| 14  | В     | 355 | LEU  | Peptide |
| 15  | С     | 220 | VAL  | Peptide |
| 15  | С     | 262 | GLY  | Peptide |
| 15  | С     | 403 | LYS  | Peptide |
| 16  | D     | 125 | LYS  | Peptide |
| 16  | D     | 159 | LYS  | Peptide |
| 16  | D     | 265 | ASP  | Peptide |
| 16  | D     | 335 | LEU  | Peptide |
| 16  | D     | 336 | PRO  | Peptide |
| 17  | Е     | 165 | ILE  | Peptide |
| 17  | Е     | 166 | PRO  | Peptide |
| 17  | Е     | 246 | GLY  | Peptide |
| 17  | Е     | 281 | ARG  | Peptide |
| 17  | Е     | 304 | PRO  | Peptide |
| 18  | F     | 228 | PRO  | Peptide |
| 18  | F     | 295 | ARG  | Peptide |
| 18  | F     | 343 | LEU  | Peptide |
| 20  | G     | 210 | PHE  | Peptide |
| 20  | G     | 222 | VAL  | Peptide |
| 20  | G     | 242 | LEU  | Peptide |
| 22  | Ι     | 10  | THR  | Peptide |
| 24  | Κ     | 19  | GLY  | Peptide |
| 24  | K     | 232 | GLU  | Peptide |
| 24  | Κ     | 8   | TYR  | Peptide |
| 28  | 0     | 170 | GLY  | Peptide |
| 33  | Т     | 45  | VAL  | Peptide |



| Mol | Chain | Ros        |            | Group      |
|-----|-------|------------|------------|------------|
| 1   |       | <u>911</u> |            | Dentide    |
| 1   | U     | 211        |            | Pertide    |
| 1   | U     | 212        | ASP        | Peptide    |
| 1   | U     | 24         | LEU<br>OVO | Peptide    |
| 1   | U     | 806        | UYS        | Peptide    |
| 1   | U     | 821        | LYS        | Peptide    |
| 1   | 0     | 873        | PRO        | Peptide    |
| 1   | 0     | 880        | ASN        | Peptide    |
| 2   | V     | 264        | TYR        | Peptide    |
| 2   | V     | 83         | GLU        | Peptide    |
| 3   | W     | 273        | TYR        | Peptide    |
| 3   | W     | 313        | GLU        | Peptide    |
| 4   | Х     | 202        | CYS        | Peptide    |
| 5   | Y     | 169        | GLU        | Peptide    |
| 5   | Y     | 174        | TRP        | Peptide    |
| 5   | Y     | 291        | HIS        | Peptide    |
| 5   | Y     | 349        | LYS        | Peptide    |
| 6   | Ζ     | 144        | VAL        | Peptide    |
| 6   | Ζ     | 167        | ALA        | Peptide    |
| 6   | Ζ     | 183        | THR        | Peptide    |
| 6   | Ζ     | 184        | VAL        | Peptide    |
| 7   | a     | 341        | LEU        | Peptide    |
| 9   | с     | 185        | ASN        | Peptide    |
| 9   | с     | 232        | GLN        | Peptide    |
| 9   | с     | 279        | ASP        | Peptide    |
| 9   | с     | 65         | TYR        | Peptide    |
| 10  | d     | 186        | TYR        | Peptide    |
| 10  | d     | 198        | LEU        | Peptide    |
| 10  | d     | 201        | ASN        | Peptide    |
| 10  | d     | 88         | GLN        | Peptide    |
| 11  | е     | 6          | GLN        | Peptide    |
| 12  | f     | 249        | LEU        | Peptide    |
| 12  | f     | 340        | MET        | Peptide    |
| 12  | f     | 620        | PHE        | Peptide    |
| 12  | f     | 642        | ALA        | Peptide    |
| 12  | f     | 737        | ASN        | Pentide    |
| 12  | f     | 755        | ASP        | Peptide    |
| 12  | f     | 807        | ARG        | Peptide    |
| 12  | f     | 809        | ILE        | Pentide    |
| 12  | f     | 816        | TYR        | Pentide    |
| 19  | f     | 822        | VAL.       | Pentide    |
| 12  | f     | 822        | AT.A       | Pentido    |
| 19  | f     | 85/        | GLV        | Pontido    |
| 14  | 1 I   | 004        |            | I I CPUIGE |

Continued from previous page...



| Mol | Chain | Res | Type | Group   |
|-----|-------|-----|------|---------|
| 12  | f     | 870 | THR  | Peptide |
| 12  | f     | 875 | ALA  | Peptide |
| 34  | g     | 222 | VAL  | Peptide |
| 24  | k     | 232 | GLU  | Peptide |
| 28  | 0     | 170 | GLY  | Peptide |
| 33  | t     | 45  | VAL  | Peptide |

Continued from previous page...

#### 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Favoured  | Allowed   | Outliers | Perce | entiles |
|-----|-------|----------------|-----------|-----------|----------|-------|---------|
| 1   | U     | 868/953~(91%)  | 785~(90%) | 79~(9%)   | 4 (0%)   | 29    | 61      |
| 2   | V     | 478/533~(90%)  | 420 (88%) | 58 (12%)  | 0        | 100   | 100     |
| 3   | W     | 454/456~(100%) | 411 (90%) | 36 (8%)   | 7~(2%)   | 10    | 38      |
| 4   | Х     | 378/422~(90%)  | 355~(94%) | 22 (6%)   | 1 (0%)   | 41    | 71      |
| 5   | Y     | 376/389~(97%)  | 340 (90%) | 35~(9%)   | 1 (0%)   | 41    | 71      |
| 6   | Z     | 284/324~(88%)  | 242 (85%) | 39 (14%)  | 3 (1%)   | 14    | 45      |
| 7   | a     | 371/376~(99%)  | 332 (90%) | 36 (10%)  | 3~(1%)   | 19    | 51      |
| 8   | b     | 189/377~(50%)  | 164 (87%) | 22 (12%)  | 3 (2%)   | 9     | 36      |
| 9   | с     | 285/309~(92%)  | 241 (85%) | 41 (14%)  | 3~(1%)   | 14    | 45      |
| 10  | d     | 255/349~(73%)  | 215 (84%) | 39 (15%)  | 1 (0%)   | 34    | 66      |
| 11  | е     | 36/70~(51%)    | 25 (69%)  | 11 (31%)  | 0        | 100   | 100     |
| 12  | f     | 887/892~(99%)  | 715 (81%) | 158 (18%) | 14 (2%)  | 9     | 36      |
| 13  | А     | 411/433 (95%)  | 361 (88%) | 48 (12%)  | 2 (0%)   | 29    | 61      |
| 14  | В     | 409/440~(93%)  | 343 (84%) | 65 (16%)  | 1 (0%)   | 47    | 77      |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | ſ    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | from | previous | page |

| Mol | Chain | Analysed                     | Favoured  | Allowed  | Outliers | Perce | entiles |
|-----|-------|------------------------------|-----------|----------|----------|-------|---------|
| 15  | С     | 394/398~(99%)                | 340~(86%) | 49 (12%) | 5~(1%)   | 12    | 40      |
| 16  | D     | 378/418~(90%)                | 323~(85%) | 49 (13%) | 6 (2%)   | 9     | 36      |
| 17  | Ε     | 387/403~(96%)                | 341 (88%) | 46 (12%) | 0        | 100   | 100     |
| 18  | F     | 391/439~(89%)                | 347 (89%) | 42 (11%) | 2 (0%)   | 29    | 61      |
| 20  | G     | 237/245~(97%)                | 214 (90%) | 22 (9%)  | 1 (0%)   | 34    | 66      |
| 21  | Н     | 228/233~(98%)                | 222 (97%) | 6 (3%)   | 0        | 100   | 100     |
| 21  | h     | 230/233~(99%)                | 223 (97%) | 7 (3%)   | 0        | 100   | 100     |
| 22  | Ι     | 246/260~(95%)                | 228 (93%) | 18 (7%)  | 0        | 100   | 100     |
| 22  | i     | 248/260~(95%)                | 223 (90%) | 25 (10%) | 0        | 100   | 100     |
| 23  | J     | 237/247~(96%)                | 214 (90%) | 23 (10%) | 0        | 100   | 100     |
| 23  | j     | 237/247~(96%)                | 217 (92%) | 20 (8%)  | 0        | 100   | 100     |
| 24  | K     | 224/240~(93%)                | 202 (90%) | 21 (9%)  | 1 (0%)   | 34    | 66      |
| 24  | k     | 224/240~(93%)                | 204 (91%) | 20 (9%)  | 0        | 100   | 100     |
| 25  | L     | 236/268~(88%)                | 225~(95%) | 11 (5%)  | 0        | 100   | 100     |
| 25  | 1     | 236/268~(88%)                | 225 (95%) | 11 (5%)  | 0        | 100   | 100     |
| 26  | М     | 238/254~(94%)                | 219 (92%) | 19 (8%)  | 0        | 100   | 100     |
| 26  | m     | 238/254~(94%)                | 219 (92%) | 19 (8%)  | 0        | 100   | 100     |
| 27  | Ν     | 189/238~(79%)                | 180 (95%) | 9~(5%)   | 0        | 100   | 100     |
| 27  | n     | 189/238~(79%)                | 180 (95%) | 9~(5%)   | 0        | 100   | 100     |
| 28  | Ο     | 218/276~(79%)                | 202 (93%) | 16 (7%)  | 0        | 100   | 100     |
| 28  | О     | 218/276~(79%)                | 202 (93%) | 16 (7%)  | 0        | 100   | 100     |
| 29  | Р     | 202/204~(99%)                | 194 (96%) | 8 (4%)   | 0        | 100   | 100     |
| 29  | р     | 202/204~(99%)                | 194 (96%) | 8 (4%)   | 0        | 100   | 100     |
| 30  | Q     | 197/201~(98%)                | 186 (94%) | 11 (6%)  | 0        | 100   | 100     |
| 30  | q     | 197/201~(98%)                | 186 (94%) | 11 (6%)  | 0        | 100   | 100     |
| 31  | R     | 199/262~(76%)                | 190 (96%) | 9 (4%)   | 0        | 100   | 100     |
| 31  | r     | $199/262~(\overline{76\%})$  | 190 (96%) | 9 (4%)   | 0        | 100   | 100     |
| 32  | S     | 211/240 (88%)                | 201 (95%) | 10 (5%)  | 0        | 100   | 100     |
| 32  | s     | 211/240 (88%)                | 201 (95%) | 10 (5%)  | 0        | 100   | 100     |
| 33  | Т     | $213/26\overline{3\ (81\%)}$ | 204 (96%) | 9 (4%)   | 0        | 100   | 100     |
| 33  | t     | 213/263~(81%)                | 204 (96%) | 9 (4%)   | 0        | 100   | 100     |



Continued from previous page...

| Mol | Chain | Analysed          | Favoured    | Allowed   | Outliers | Perce | ntiles |
|-----|-------|-------------------|-------------|-----------|----------|-------|--------|
| 34  | g     | 238/240~(99%)     | 221~(93%)   | 17 (7%)   | 0        | 100   | 100    |
| All | All   | 13386/14838~(90%) | 12070 (90%) | 1258 (9%) | 58 (0%)  | 38    | 66     |

All (58) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | U     | 874 | ASN  |
| 7   | a     | 343 | LEU  |
| 8   | b     | 178 | SER  |
| 9   | с     | 285 | GLU  |
| 12  | f     | 665 | GLU  |
| 12  | f     | 808 | ASN  |
| 12  | f     | 853 | VAL  |
| 13  | А     | 430 | MET  |
| 16  | D     | 335 | LEU  |
| 1   | U     | 48  | LEU  |
| 3   | W     | 88  | MET  |
| 3   | W     | 178 | GLU  |
| 3   | W     | 180 | LYS  |
| 3   | W     | 239 | SER  |
| 5   | Y     | 350 | VAL  |
| 12  | f     | 118 | ASN  |
| 12  | f     | 657 | ILE  |
| 12  | f     | 876 | HIS  |
| 16  | D     | 146 | GLU  |
| 3   | W     | 238 | GLY  |
| 7   | a     | 69  | HIS  |
| 7   | a     | 342 | ASP  |
| 9   | с     | 233 | ASP  |
| 9   | с     | 284 | LEU  |
| 12  | f     | 476 | THR  |
| 12  | f     | 659 | LEU  |
| 12  | f     | 823 | ALA  |
| 14  | В     | 356 | PRO  |
| 16  | D     | 149 | SER  |
| 18  | F     | 228 | PRO  |
| 24  | Κ     | 9   | ASP  |
| 1   | U     | 820 | PRO  |
| 1   | U     | 873 | PRO  |
| 4   | Х     | 317 | PRO  |
| 10  | d     | 199 | PHE  |
| 15  | С     | 90  | HIS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 15  | С     | 253 | SER  |
| 3   | W     | 179 | LYS  |
| 6   | Ζ     | 65  | ASP  |
| 12  | f     | 475 | ASN  |
| 12  | f     | 662 | MET  |
| 12  | f     | 809 | ILE  |
| 15  | С     | 221 | GLN  |
| 16  | D     | 126 | PRO  |
| 16  | D     | 336 | PRO  |
| 12  | f     | 859 | PRO  |
| 13  | А     | 109 | PRO  |
| 16  | D     | 151 | ILE  |
| 6   | Ζ     | 134 | PRO  |
| 12  | f     | 755 | ASP  |
| 15  | С     | 91  | PRO  |
| 18  | F     | 229 | PRO  |
| 20  | G     | 212 | PRO  |
| 15  | С     | 89  | VAL  |
| 6   | Ζ     | 144 | VAL  |
| 8   | b     | 177 | PRO  |
| 3   | W     | 87  | ILE  |
| 8   | b     | 23  | PRO  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric | Outliers | Percentiles |
|-----|-------|----------------|-----------|----------|-------------|
| 1   | U     | 748/816~(92%)  | 739~(99%) | 9 (1%)   | 71 83       |
| 2   | V     | 414/459~(90%)  | 409 (99%) | 5 (1%)   | 71 83       |
| 3   | W     | 416/416~(100%) | 402 (97%) | 14 (3%)  | 37 65       |
| 4   | Х     | 327/362~(90%)  | 324~(99%) | 3 (1%)   | 78 87       |
| 5   | Y     | 334/344~(97%)  | 330~(99%) | 4 (1%)   | 71 83       |
| 6   | Ζ     | 257/295~(87%)  | 252 (98%) | 5 (2%)   | 57 77       |
| 7   | a     | 333/336~(99%)  | 329~(99%) | 4 (1%)   | 71 83       |



| Mol | Chain | Analysed       | Rotameric  | Outliers | Perce | ntiles |
|-----|-------|----------------|------------|----------|-------|--------|
| 8   | b     | 167/312~(54%)  | 167~(100%) | 0        | 100   | 100    |
| 9   | с     | 252/267~(94%)  | 243 (96%)  | 9 (4%)   | 35    | 63     |
| 10  | d     | 231/293~(79%)  | 231 (100%) | 0        | 100   | 100    |
| 11  | е     | 38/63~(60%)    | 37 (97%)   | 1 (3%)   | 46    | 71     |
| 12  | f     | 745/748~(100%) | 727 (98%)  | 18 (2%)  | 49    | 73     |
| 13  | А     | 348/372~(94%)  | 341 (98%)  | 7 (2%)   | 55    | 76     |
| 14  | В     | 357/385~(93%)  | 351 (98%)  | 6 (2%)   | 60    | 78     |
| 15  | С     | 340/346~(98%)  | 331 (97%)  | 9 (3%)   | 46    | 71     |
| 16  | D     | 333/366~(91%)  | 323 (97%)  | 10 (3%)  | 41    | 68     |
| 17  | Е     | 341/353~(97%)  | 332 (97%)  | 9 (3%)   | 46    | 71     |
| 18  | F     | 340/379~(90%)  | 334 (98%)  | 6 (2%)   | 59    | 78     |
| 20  | G     | 196/209~(94%)  | 194 (99%)  | 2 (1%)   | 76    | 86     |
| 21  | Н     | 172/190~(90%)  | 172 (100%) | 0        | 100   | 100    |
| 21  | h     | 164/190~(86%)  | 164 (100%) | 0        | 100   | 100    |
| 22  | Ι     | 195/220~(89%)  | 193 (99%)  | 2 (1%)   | 76    | 86     |
| 22  | i     | 193/220~(88%)  | 192 (100%) | 1 (0%)   | 88    | 93     |
| 23  | J     | 161/210~(77%)  | 159 (99%)  | 2 (1%)   | 71    | 83     |
| 23  | j     | 152/210~(72%)  | 152 (100%) | 0        | 100   | 100    |
| 24  | К     | 187/202~(93%)  | 187 (100%) | 0        | 100   | 100    |
| 24  | k     | 186/202~(92%)  | 185 (100%) | 1 (0%)   | 88    | 93     |
| 25  | L     | 198/229~(86%)  | 198 (100%) | 0        | 100   | 100    |
| 25  | 1     | 198/229~(86%)  | 198 (100%) | 0        | 100   | 100    |
| 26  | М     | 192/211~(91%)  | 191 (100%) | 1 (0%)   | 88    | 93     |
| 26  | m     | 192/211~(91%)  | 191 (100%) | 1 (0%)   | 88    | 93     |
| 27  | Ν     | 148/180 (82%)  | 148 (100%) | 0        | 100   | 100    |
| 27  | n     | 148/180 (82%)  | 148 (100%) | 0        | 100   | 100    |
| 28  | О     | 177/227~(78%)  | 177 (100%) | 0        | 100   | 100    |
| 28  | О     | 177/227~(78%)  | 177 (100%) | 0        | 100   | 100    |
| 29  | Р     | 172/173~(99%)  | 171 (99%)  | 1 (1%)   | 86    | 91     |
| 29  | р     | 172/173~(99%)  | 171 (99%)  | 1 (1%)   | 86    | 91     |
| 30  | Q     | 164/171~(96%)  | 164 (100%) | 0        | 100   | 100    |



| Mol | Chain        | Analysed          | Rotameric   | Outliers | Perce | ntiles |
|-----|--------------|-------------------|-------------|----------|-------|--------|
| 30  | q            | 164/171~(96%)     | 164 (100%)  | 0        | 100   | 100    |
| 31  | R            | 153/201~(76%)     | 153~(100%)  | 0        | 100   | 100    |
| 31  | r            | 153/201~(76%)     | 153 (100%)  | 0        | 100   | 100    |
| 32  | S            | 174/198~(88%)     | 173~(99%)   | 1 (1%)   | 86    | 91     |
| 32  | S            | 174/198~(88%)     | 173~(99%)   | 1 (1%)   | 86    | 91     |
| 33  | Т            | 175/214~(82%)     | 175 (100%)  | 0        | 100   | 100    |
| 33  | $\mathbf{t}$ | 175/214~(82%)     | 175~(100%)  | 0        | 100   | 100    |
| 34  | g            | 193/205~(94%)     | 193 (100%)  | 0        | 100   | 100    |
| All | All          | 11226/12578~(89%) | 11093 (99%) | 133 (1%) | 72    | 83     |

All (133) residues with a non-rotameric side chain are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | U     | 46             | GLU  |
| 1   | U     | 55             | ARG  |
| 1   | U     | 118            | LEU  |
| 1   | U     | 194            | ARG  |
| 1   | U     | 629            | THR  |
| 1   | U     | 819            | VAL  |
| 1   | U     | 838            | LYS  |
| 1   | U     | 840            | LYS  |
| 1   | U     | 883            | ARG  |
| 2   | V     | 194            | LYS  |
| 2   | V     | 345            | ARG  |
| 2   | V     | 401            | ASN  |
| 2   | V     | 470            | ARG  |
| 2   | V     | 494            | MET  |
| 3   | W     | 39             | ARG  |
| 3   | W     | 55             | ARG  |
| 3   | W     | 89             | LEU  |
| 3   | W     | 92             | LYS  |
| 3   | W     | 135            | LYS  |
| 3   | W     | 174            | TYR  |
| 3   | W     | 177            | MET  |
| 3   | W     | 179            | LYS  |
| 3   | W     | 191            | ARG  |
| 3   | W     | 236            | HIS  |
| 3   | W     | 237            | GLU  |
| 3   | W     | 419            | LYS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | W     | 422 | ASN  |
| 3   | W     | 451 | MET  |
| 4   | Х     | 198 | ASN  |
| 4   | Х     | 314 | ARG  |
| 4   | Х     | 329 | ASN  |
| 5   | Y     | 48  | ASN  |
| 5   | Y     | 77  | ASN  |
| 5   | Y     | 176 | ARG  |
| 5   | Y     | 237 | ARG  |
| 6   | Ζ     | 33  | LYS  |
| 6   | Ζ     | 51  | SER  |
| 6   | Ζ     | 217 | THR  |
| 6   | Ζ     | 236 | LEU  |
| 6   | Ζ     | 247 | LYS  |
| 7   | a     | 227 | ASN  |
| 7   | a     | 230 | ARG  |
| 7   | a     | 289 | ARG  |
| 7   | a     | 339 | ARG  |
| 9   | с     | 49  | VAL  |
| 9   | с     | 154 | LYS  |
| 9   | с     | 175 | ARG  |
| 9   | с     | 185 | ASN  |
| 9   | с     | 197 | ASN  |
| 9   | с     | 198 | ARG  |
| 9   | с     | 254 | ASN  |
| 9   | с     | 274 | ASN  |
| 9   | с     | 284 | LEU  |
| 11  | е     | 57  | ARG  |
| 12  | f     | 80  | ARG  |
| 12  | f     | 83  | ARG  |
| 12  | f     | 131 | MET  |
| 12  | f     | 267 | ARG  |
| 12  | f     | 297 | MET  |
| 12  | f     | 327 | ASN  |
| 12  | f     | 344 | VAL  |
| 12  | f     | 396 | ASN  |
| 12  | f     | 457 | ASN  |
| 12  | f     | 531 | ASN  |
| 12  | f     | 565 | ASN  |
| 12  | f     | 569 | LYS  |
| 12  | f     | 657 | ILE  |
| 12  | f     | 662 | MET  |



| Mol | Chain | Res              | Type |
|-----|-------|------------------|------|
| 12  | f     | 703              | ARG  |
| 12  | f     | 746              | ARG  |
| 12  | f     | 822              | VAL  |
| 12  | f     | 826              | GLN  |
| 13  | А     | 43               | ARG  |
| 13  | А     | 304              | ASN  |
| 13  | А     | 314              | ASN  |
| 13  | А     | 360              | ARG  |
| 13  | А     | 369              | ARG  |
| 13  | А     | 403              | ILE  |
| 13  | А     | 422              | LYS  |
| 14  | В     | 35               | LYS  |
| 14  | В     | 125              | THR  |
| 14  | В     | 164              | MET  |
| 14  | В     | 190              | LEU  |
| 14  | В     | 292              | THR  |
| 14  | В     | 429              | LYS  |
| 15  | С     | 78               | ARG  |
| 15  | С     | 91               | PRO  |
| 15  | С     | 142              | LYS  |
| 15  | С     | 184              | LYS  |
| 15  | С     | 210              | THR  |
| 15  | С     | 219              | LEU  |
| 15  | С     | 248              | MET  |
| 15  | С     | 287              | LYS  |
| 15  | С     | 307              | ARG  |
| 16  | D     | 115              | ILE  |
| 16  | D     | 148              | ASP  |
| 16  | D     | 151              | ILE  |
| 16  | D     | 152              | MET  |
| 16  | D     | 153              | MET  |
| 16  | D     | 163              | MET  |
| 16  | D     | 229              | ARG  |
| 16  | D     | 273              | LYS  |
| 16  | D     | 323              | ARG  |
| 16  | D     | 409              | LYS  |
| 17  | Е     | 1                | MET  |
| 17  | E     | 5                | ARG  |
| 17  | E     | 25               | ARG  |
| 17  | E     | 87               | LEU  |
| 17  | E     | $12\overline{2}$ | MET  |
| 17  | E     | 138              | LEU  |



| <u>рания</u> |       |     |      |
|--------------|-------|-----|------|
| Nol          | Chain | Kes | Type |
| 17           | Е     | 262 | ASN  |
| 17           | Е     | 284 | THR  |
| 17           | Е     | 339 | ASN  |
| 18           | F     | 46  | ARG  |
| 18           | F     | 245 | LYS  |
| 18           | F     | 250 | LYS  |
| 18           | F     | 293 | THR  |
| 18           | F     | 416 | THR  |
| 18           | F     | 432 | LYS  |
| 20           | G     | 11  | ARG  |
| 20           | G     | 21  | ARG  |
| 22           | Ι     | 166 | ASN  |
| 22           | Ι     | 167 | ASN  |
| 23           | J     | 28  | LYS  |
| 23           | J     | 163 | ARG  |
| 26           | М     | 40  | ARG  |
| 29           | Р     | 93  | ASN  |
| 32           | S     | 1   | ARG  |
| 22           | i     | 17  | ARG  |
| 24           | k     | 119 | LEU  |
| 26           | m     | 40  | ARG  |
| 29           | р     | 93  | ASN  |
| 32           | S     | 1   | ARG  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (116) such sidechains are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | U     | 18             | GLN  |
| 1   | U     | 89             | ASN  |
| 1   | U     | 189            | GLN  |
| 1   | U     | 207            | ASN  |
| 1   | U     | 218            | GLN  |
| 1   | U     | 366            | HIS  |
| 1   | U     | 377            | HIS  |
| 1   | U     | 421            | GLN  |
| 1   | U     | 541            | HIS  |
| 1   | U     | 596            | ASN  |
| 1   | U     | 632            | GLN  |
| 1   | U     | 665            | ASN  |
| 1   | U     | 768            | GLN  |
| 1   | U     | 888            | GLN  |
| 2   | V     | 62             | HIS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | V     | 177 | ASN  |
| 2   | V     | 214 | HIS  |
| 2   | V     | 257 | ASN  |
| 2   | V     | 473 | GLN  |
| 3   | W     | 84  | ASN  |
| 3   | W     | 228 | ASN  |
| 3   | W     | 257 | GLN  |
| 3   | W     | 362 | ASN  |
| 4   | Х     | 62  | GLN  |
| 4   | Х     | 198 | ASN  |
| 4   | Х     | 329 | ASN  |
| 5   | Y     | 48  | ASN  |
| 5   | Y     | 71  | ASN  |
| 5   | Y     | 77  | ASN  |
| 5   | Y     | 136 | HIS  |
| 6   | Ζ     | 12  | HIS  |
| 6   | Ζ     | 229 | GLN  |
| 6   | Ζ     | 278 | ASN  |
| 7   | a     | 86  | GLN  |
| 7   | a     | 143 | ASN  |
| 7   | a     | 152 | HIS  |
| 7   | a     | 227 | ASN  |
| 7   | a     | 332 | HIS  |
| 7   | a     | 370 | GLN  |
| 8   | b     | 76  | HIS  |
| 8   | b     | 137 | ASN  |
| 9   | с     | 92  | GLN  |
| 9   | с     | 128 | ASN  |
| 9   | С     | 130 | GLN  |
| 9   | С     | 149 | GLN  |
| 9   | с     | 185 | ASN  |
| 9   | с     | 197 | ASN  |
| 9   | с     | 241 | ASN  |
| 9   | с     | 254 | ASN  |
| 9   | с     | 274 | ASN  |
| 10  | d     | 116 | HIS  |
| 10  | d     | 245 | GLN  |
| 11  | е     | 63  | HIS  |
| 12  | f     | 43  | GLN  |
| 12  | f     | 112 | ASN  |
| 12  | f     | 118 | ASN  |
| 12  | f     | 291 | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 12  | f     | 327 | ASN  |
| 12  | f     | 378 | ASN  |
| 12  | f     | 382 | ASN  |
| 12  | f     | 396 | ASN  |
| 12  | f     | 457 | ASN  |
| 12  | f     | 531 | ASN  |
| 12  | f     | 565 | ASN  |
| 12  | f     | 614 | HIS  |
| 12  | f     | 737 | ASN  |
| 12  | f     | 752 | HIS  |
| 12  | f     | 786 | GLN  |
| 12  | f     | 815 | HIS  |
| 13  | А     | 38  | GLN  |
| 13  | А     | 60  | ASN  |
| 13  | А     | 314 | ASN  |
| 13  | А     | 358 | HIS  |
| 13  | А     | 414 | ASN  |
| 14  | В     | 57  | GLN  |
| 14  | В     | 195 | GLN  |
| 14  | В     | 332 | ASN  |
| 15  | С     | 36  | ASN  |
| 15  | С     | 53  | ASN  |
| 15  | С     | 205 | HIS  |
| 15  | С     | 278 | ASN  |
| 15  | С     | 377 | HIS  |
| 15  | С     | 380 | GLN  |
| 16  | D     | 67  | ASN  |
| 16  | D     | 173 | GLN  |
| 16  | D     | 237 | GLN  |
| 16  | D     | 257 | ASN  |
| 16  | D     | 302 | ASN  |
| 16  | D     | 414 | HIS  |
| 17  | Е     | 194 | ASN  |
| 17  | E     | 225 | HIS  |
| 17  | Е     | 226 | GLN  |
| 17  | Е     | 262 | ASN  |
| 17  | E     | 300 | HIS  |
| 17  | Е     | 339 | ASN  |
| 18  | F     | 207 | ASN  |
| 18  | F     | 333 | ASN  |
| 20  | G     | 123 | GLN  |
| 21  | Н     | 119 | GLN  |



| Mal   | Chain | Dec | Trupa |
|-------|-------|-----|-------|
| IVIOI | Chain | Res | Type  |
| 22    | Ι     | 119 | GLN   |
| 22    | Ι     | 146 | GLN   |
| 22    | Ι     | 166 | ASN   |
| 22    | Ι     | 167 | ASN   |
| 24    | Κ     | 155 | HIS   |
| 24    | Κ     | 214 | ASN   |
| 28    | 0     | 172 | ASN   |
| 31    | R     | 38  | ASN   |
| 22    | i     | 119 | GLN   |
| 22    | i     | 167 | ASN   |
| 23    | j     | 116 | GLN   |
| 24    | k     | 23  | GLN   |
| 24    | k     | 155 | HIS   |
| 24    | k     | 214 | ASN   |
| 25    | 1     | 152 | ASN   |
| 28    | 0     | 172 | ASN   |
| 31    | r     | 38  | ASN   |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 5 are monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).



| Mal   | Turne | Chain | Dec | Tinle | Bo       | ond leng | $_{\rm ths}$ | B        | ond ang | les      |
|-------|-------|-------|-----|-------|----------|----------|--------------|----------|---------|----------|
| IVIOI | туре  | Chain | nes | LIIIK | Counts   | RMSZ     | # Z  > 2     | Counts   | RMSZ    | # Z  > 2 |
| 36    | ATP   | D     | 440 | 37    | 26,33,33 | 0.93     | 1 (3%)       | 31,52,52 | 1.82    | 5 (16%)  |
| 36    | ATP   | В     | 441 | 37    | 26,33,33 | 0.93     | 1 (3%)       | 31,52,52 | 1.70    | 5 (16%)  |
| 36    | ATP   | А     | 434 | 37    | 26,33,33 | 0.90     | 1 (3%)       | 31,52,52 | 1.73    | 7 (22%)  |
| 36    | ATP   | С     | 407 | 37    | 26,33,33 | 0.88     | 1 (3%)       | 31,52,52 | 1.77    | 7 (22%)  |
| 38    | ADP   | Е     | 419 | -     | 24,29,29 | 0.95     | 1 (4%)       | 29,45,45 | 1.60    | 4 (13%)  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|-----|------|---------|------------|---------|
| 36  | ATP  | D     | 440 | 37   | -       | 0/18/38/38 | 0/3/3/3 |
| 36  | ATP  | В     | 441 | 37   | -       | 3/18/38/38 | 0/3/3/3 |
| 36  | ATP  | А     | 434 | 37   | -       | 1/18/38/38 | 0/3/3/3 |
| 36  | ATP  | С     | 407 | 37   | -       | 0/18/38/38 | 0/3/3/3 |
| 38  | ADP  | Е     | 419 | -    | -       | 0/12/32/32 | 0/3/3/3 |

All (5) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms |      | $Observed(\text{\AA})$ | $\mathrm{Ideal}(\mathrm{\AA})$ |
|-----|-------|-----|------|-------|------|------------------------|--------------------------------|
| 36  | А     | 434 | ATP  | C5-C4 | 2.34 | 1.47                   | 1.40                           |
| 36  | D     | 440 | ATP  | C5-C4 | 2.29 | 1.47                   | 1.40                           |
| 38  | Ε     | 419 | ADP  | C5-C4 | 2.26 | 1.46                   | 1.40                           |
| 36  | В     | 441 | ATP  | C5-C4 | 2.16 | 1.46                   | 1.40                           |
| 36  | С     | 407 | ATP  | C5-C4 | 2.13 | 1.46                   | 1.40                           |

All (28) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 36  | С     | 407 | ATP  | PA-O3A-PB   | -5.57 | 113.70           | 132.83        |
| 36  | D     | 440 | ATP  | PB-O3B-PG   | -4.85 | 116.17           | 132.83        |
| 36  | В     | 441 | ATP  | PA-O3A-PB   | -4.80 | 116.34           | 132.83        |
| 36  | D     | 440 | ATP  | PA-O3A-PB   | -4.70 | 116.71           | 132.83        |
| 38  | Е     | 419 | ADP  | PA-O3A-PB   | -4.53 | 117.29           | 132.83        |
| 36  | С     | 407 | ATP  | C3'-C2'-C1' | 3.96  | 106.94           | 100.98        |
| 36  | D     | 440 | ATP  | C3'-C2'-C1' | 3.94  | 106.90           | 100.98        |
| 36  | А     | 434 | ATP  | PB-O3B-PG   | -3.82 | 119.73           | 132.83        |
| 36  | А     | 434 | ATP  | PA-O3A-PB   | -3.81 | 119.75           | 132.83        |
| 36  | A     | 434 | ATP  | C3'-C2'-C1' | 3.76  | 106.64           | 100.98        |
| 36  | В     | 441 | ATP  | C3'-C2'-C1' | 3.69  | 106.53           | 100.98        |



| Mol | Chain | Res | Type | Atoms       |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 36  | В     | 441 | ATP  | PB-O3B-PG   | -3.66 | 120.28           | 132.83        |
| 38  | Е     | 419 | ADP  | C3'-C2'-C1' | 3.47  | 106.20           | 100.98        |
| 36  | С     | 407 | ATP  | N3-C2-N1    | -3.47 | 123.26           | 128.68        |
| 36  | А     | 434 | ATP  | N3-C2-N1    | -3.15 | 123.75           | 128.68        |
| 36  | D     | 440 | ATP  | N3-C2-N1    | -3.10 | 123.83           | 128.68        |
| 36  | В     | 441 | ATP  | N3-C2-N1    | -3.03 | 123.94           | 128.68        |
| 38  | Е     | 419 | ADP  | C4-C5-N7    | -2.84 | 106.44           | 109.40        |
| 38  | Е     | 419 | ADP  | N3-C2-N1    | -2.84 | 124.24           | 128.68        |
| 36  | D     | 440 | ATP  | C4-C5-N7    | -2.43 | 106.86           | 109.40        |
| 36  | В     | 441 | ATP  | C4-C5-N7    | -2.42 | 106.88           | 109.40        |
| 36  | С     | 407 | ATP  | PB-O3B-PG   | -2.24 | 125.15           | 132.83        |
| 36  | А     | 434 | ATP  | C1'-N9-C4   | 2.18  | 130.47           | 126.64        |
| 36  | С     | 407 | ATP  | O2B-PB-O1B  | 2.08  | 122.53           | 112.24        |
| 36  | А     | 434 | ATP  | O3G-PG-O2G  | 2.05  | 115.47           | 107.64        |
| 36  | С     | 407 | ATP  | C4-C5-N7    | -2.04 | 107.28           | 109.40        |
| 36  | C     | 407 | ATP  | C2-N1-C6    | 2.01  | 122.20           | 118.75        |
| 36  | A     | 434 | ATP  | C4-C5-N7    | -2.01 | 107.30           | 109.40        |

There are no chirality outliers.

All (4) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms          |
|-----|-------|-----|------|----------------|
| 36  | В     | 441 | ATP  | C5'-O5'-PA-O1A |
| 36  | В     | 441 | ATP  | C5'-O5'-PA-O2A |
| 36  | А     | 434 | ATP  | C5'-O5'-PA-O3A |
| 36  | В     | 441 | ATP  | C5'-O5'-PA-O3A |

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.



















## 5.7 Other polymers (i)

There are no such residues in this entry.

#### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-9221. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

#### 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



The images above show the map projected in three orthogonal directions.

#### 6.2 Central slices (i)

#### 6.2.1 Primary map



X Index: 300



Y Index: 300



Z Index: 300



The images above show central slices of the map in three orthogonal directions.

#### 6.3 Largest variance slices (i)

#### 6.3.1 Primary map



X Index: 366

Y Index: 283

Z Index: 275

The images above show the largest variance slices of the map in three orthogonal directions.

#### 6.4 Orthogonal surface views (i)

#### 6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.006. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.



### 6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



## 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

#### 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



#### 7.2 Volume estimate (i)



The volume at the recommended contour level is 456  $\rm nm^3;$  this corresponds to an approximate mass of 412 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



#### 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.303  ${\rm \AA^{-1}}$ 



## 8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.



## 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-9221 and PDB model 6MSJ. Per-residue inclusion information can be found in section 3 on page 13.

#### 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.006 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



#### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.006).



#### 9.4 Atom inclusion (i)



At the recommended contour level, 74% of all backbone atoms, 53% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

#### 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.006) and Q-score for the entire model and for each chain.

| $\mathbf{Chain}$ | Atom inclusion | $\mathbf{Q}	extsf{-score}$ |  |  |
|------------------|----------------|----------------------------|--|--|
| All              | 0.5284         | 0.3730                     |  |  |
| А                | 0.3999         | 0.2830                     |  |  |
| В                | 0.5099         | 0.3550                     |  |  |
| С                | 0.5818         | 0.3780                     |  |  |
| D                | 0.6021         | 0.3820                     |  |  |
| Е                | 0.4995         | 0.3530                     |  |  |
| F                | 0.2689         | 0.2310                     |  |  |
| G                | 0.6955         | 0.4450                     |  |  |
| Н                | 0.7428         | 0.4760                     |  |  |
| Ι                | 0.6768         | 0.4390                     |  |  |
| J                | 0.6700         | 0.4350                     |  |  |
| K                | 0.6764         | 0.4420                     |  |  |
| $\mathbf{L}$     | 0.7205         | 0.4670                     |  |  |
| М                | 0.6962         | 0.4400                     |  |  |
| Ν                | 0.7682         | 0.5000                     |  |  |
| О                | 0.7354         | 0.4940                     |  |  |
| Р                | 0.7458         | 0.5090                     |  |  |
| Q                | 0.7388         | 0.4910                     |  |  |
| R                | 0.7637         | 0.5110                     |  |  |
| S                | 0.6978         | 0.5000                     |  |  |
| Т                | 0.7535         | 0.5010                     |  |  |
| U                | 0.4372         | 0.3230                     |  |  |
| V                | 0.3018         | 0.2280                     |  |  |
| W                | 0.3972         | 0.2770                     |  |  |
| X                | 0.3799         | 0.2970                     |  |  |
| Y                | 0.5612         | 0.3080                     |  |  |
| Z                | 0.4495         | 0.3320                     |  |  |
| a                | 0.3635         | 0.2620                     |  |  |
| b                | 0.2103         | 0.2630                     |  |  |
| c                | 0.4928         | 0.3490                     |  |  |
| d                | 0.1700         | 0.2210                     |  |  |
| e                | 0.3273         | 0.2450                     |  |  |
| f                | 0.2594         | 0.2020                     |  |  |
| g                | 0.5896         | 0.4550                     |  |  |
| h                | 0.5918         | 0.4570                     |  |  |



| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| i     | 0.5395         | 0.4240  |
| j     | 0.5114         | 0.4090  |
| k     | 0.5498         | 0.4340  |
| 1     | 0.6425         | 0.4670  |
| m     | 0.6186         | 0.4380  |
| n     | 0.7432         | 0.5100  |
| О     | 0.6735         | 0.4930  |
| р     | 0.7182         | 0.5160  |
| q     | 0.7179         | 0.5030  |
| r     | 0.7463         | 0.5130  |
| S     | 0.7171         | 0.5090  |
| t     | 0.7523         | 0.5110  |
| V     | 0.1722         | 0.2710  |

