

wwPDB EM Validation Summary Report (i)

Nov 22, 2022 – 01:37 AM EST

PDB ID	:	7N2V
EMDB ID	:	EMD-24134
Title	:	Elongating 70S ribosome complex in a spectinomycin-stalled intermediate
		state of translocation bound to EF-G in an active, GTP conformation (INT1)
Authors	:	Rundlet, E.J.; Holm, M.; Schacherl, M.; Natchiar, K.S.; Altman, R.B.; Spahn,
		C.M.T.; Myasnikov, A.G.; Blanchard, S.C.
Deposited on	:	2021-05-29
Resolution	:	2.54 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.54 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	EM structures		
INIEUTIC	$(\# {\rm Entries})$	$(\# {\rm Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	16	1534	84%	16%
2	SB	241	88%	5% 7%
3	\mathbf{SC}	233	84%	7% 9%
4	SD	206	93%	6%
5	SE	167	90%	• 7%
6	SF	135	70% 8%	21%
7	SG	179	65% 19%	16%
8	SH	130	95%	5%•
9	SI	130	87%	11% •

Mol	Chain	Length	Quality of chain	
10	SJ	103	80%	17% •
11	SK	129	88%	• 8%
12	SL	124	92%	7% •
13	SM	118	83%	11% •••
14	SN	101	80%	16% • •
15	SO	89	91%	8% •
16	SP	82	96%	
17	SO	84	86%	10% 5%
18	SB	75	700/	110/0 570
10	SIC	02	79%	11% 11%
19		92	70% 2	1% • 9%
20	51	87	93%	5% •
21	SU	71	92%	7% •
22	mR	60	17% · 80%	
23	23	2904	81%	19%
23 24	23 5	2904 120	81%	19% 13%
23 24 25	23 5 LB	2904 120 273	81% 87% 95%	19% 13% 5% •
$\begin{array}{r} 23 \\ \hline 24 \\ \hline 25 \\ \hline 26 \end{array}$	23 5 LB LC	2904 120 273 209	81% 87% 95% 96%	19% 13% 5% •
$ \begin{array}{r} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ \end{array} $	23 5 LB LC LD	2904 120 273 209 201	81% 87% 95% 96% 97%	19% 13% 5% •
$ \begin{array}{r} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ \end{array} $	23 5 LB LC LD LE	2904 120 273 209 201 179	81% 87% 95% 96% 97% 92%	19% 13% 5% • • •
$ \begin{array}{r} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ \end{array} $	23 5 LB LC LD LE LF	2904 120 273 209 201 179 177	81% 87% 95% 96% 97% 92%	19% 13% 5% • • 7% ••
$ \begin{array}{r} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ \end{array} $	23 5 LB LC LD LE LF LI	2904 120 273 209 201 179 177 149	81% 87% 95% 96% 97% 92% 94% 91%	19% 13% 5% • • 7% •• 6% •
$ \begin{array}{r} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ \end{array} $	23 5 LB LC LD LE LF LI	2904 120 273 209 201 179 177 149 165	81% 87% 95% 96% 97% 92% 94% 91%	19% 13% 5% • • 7% •• 6% • 8% •
$ \begin{array}{c} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ \end{array} $	23 5 LB LC LD LE LF LI LJ	2904 120 273 209 201 179 177 149 165 142	81% 87% 95% 96% 97% 92% 92% 91% 91%	19% 13% 5% • • • 7% •• 6% • 8% • 21%
$ \begin{array}{c} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 22 \\ 22 \\ 30 \\ 31 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32$	23 5 LB LC LD LE LF LI LJ LK	2904 120 273 209 201 179 177 149 165 142 142	81% 87% 95% 96% 97% 97% 92% 94% 91% 10% 82%	19% 13% 5% • • • 7% •• 6% • 8% • 21% 12% 6%
$ \begin{array}{c} 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ \end{array} $	23 5 LB LC LD LE LF LI LJ LK LM	2904 120 273 209 201 179 177 149 165 142 142 142	81% 87% 95% 96% 97% 97% 92% 94% 91% 10% 82%	19% 13% 5% • • • 7% •• 6% • 8% • 21% 12% 6% 5%

Mol	Chain	Length	Quali	ty of chain	
35	LO	144	S	96%	•
36	LP	136	93	3%	7%
37	LQ	127	89%	5	5% • 6%
38	LR	117	93	3%	6% •
39	LS	115	<u> </u>	•••	
40	LT	118	<u> </u>	••	
41	LU	103	94	4%	5%•
42	LV	110	9	5%	5%
43	LW	100	83%		10% 7%
44	LX	104	93	3%	
45	LY	94	93	7%	
46	La	85	86%	• 11%	
47	Lb	78	94	4%	5%•
48	Lc	63		97%	••
49	Ld	59	92'	%	7% •
50	Le	70	80%		17% •
51	Lf	57	9	5%	• • •
52	Lg	55	85%		9% 5%
53	Lh	46		96%	·
54	Li	65	9	5%	• •
55	Lj	38		97%	•
56	EF	704	94	4%	6%
57	Pp	3	33%	67%	
58	Pt	106	56%	14% •	28%
59	Dt	106	52%	17% ·	28%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
64	ATP	23	3003	X	-	-	-

2 Entry composition (i)

There are 67 unique types of molecules in this entry. The entry contains 154120 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	16	1534	Total 32929	C 14693	N 6041	O 10661	Р 1534	0	0

• Molecule 2 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	SB	224	Total 1753	C 1109	N 315	0 321	S 8	0	0

• Molecule 3 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	SC	211	Total 1653	C 1046	N 310	O 293	${S \atop 4}$	0	0

• Molecule 4 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	SD	205	Total 1643	C 1026	N 315	O 298	${S \atop 4}$	0	0

• Molecule 5 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	SE	155	Total 1144	С 711	N 216	0 211	${ m S}{ m 6}$	0	0

• Molecule 6 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	SF	106	Total 862	$\begin{array}{c} \mathrm{C} \\ 545 \end{array}$	N 156	0 154	${f S}{7}$	0	0

• Molecule 7 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms		AltConf	Trace	
7	SG	151	Total 1181	C 735	N 227	0 215	${f S}$ 4	0	0

• Molecule 8 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	SH	129	Total 979	C 616	N 173	0 184	S 6	0	0

• Molecule 9 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	SI	127	Total 1022	C 634	N 206	0 179	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	SJ	99	Total 795	C 498	N 152	0 144	S 1	0	0

• Molecule 11 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	SK	119	Total 895	C 551	N 179	0 162	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
12	SL	123	Total 957	C 591	N 196	0 165	${ m S}{ m 5}$	0	0

• Molecule 13 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	SM	114	Total 883	C 546	N 178	0 156	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	SN	100	Total 805	C 499	N 164	O 139	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms		AltConf	Trace	
15	SO	88	Total 714	C 439	N 144	0 130	S 1	0	0

• Molecule 16 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms		AltConf	Trace	
16	SP	82	Total 649	C 406	N 128	0 114	S 1	0	0

• Molecule 17 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	SQ	80	Total 648	C 411	N 121	O 113	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	SR	67	Total 555	C 351	N 106	O 97	S 1	0	0

• Molecule 19 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	SS	84	Total 668	С 427	N 127	0 112	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	ST	85	Total 664	C 411	N 137	0 113	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	SU	70	Total 589	C 366	N 125	O 97	S 1	0	0

• Molecule 22 is a RNA chain called mRNA.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
22	mR	12	Total 254	C 114	N 44	0 84	Р 12	0	0

• Molecule 23 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
23	23	2904	Total 62355	C 27824	N 11469	O 20158	Р 2904	0	0

• Molecule 24 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A		AltConf	Trace		
24	5	120	Total 2570	C 1144	N 468	0 838	Р 120	0	0

• Molecule 25 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	Atoms					
25	LB	271	Total 2082	C 1288	N 423	0 364	${ m S} 7$	0	0	

• Molecule 26 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
26	LC	209	Total 1565	C 979	N 288	O 294	$\frac{S}{4}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	LD	201	Total 1552	C 974	N 283	O 290	${ m S}{ m 5}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	LE	177	Total 1410	C 899	N 249	O 256	S 6	0	0

• Molecule 29 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		Atoms					Trace
29	LF	176	Total 1323	C 832	N 243	0 246	${ m S} { m 2}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	LI	148	Total 1101	C 694	N 196	0 210	S 1	0	0

• Molecule 31 is a protein called 50S ribosomal protein L10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	LJ	131	Total 992	C 629	N 175	0 184	${S \atop 4}$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L11.

Mol	Chain	Residues		At	AltConf	Trace			
32	LK	134	Total 979	C 619	N 169	0 185	S 6	0	0

• Molecule 33 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	LM	142	Total 1129	С 714	N 212	0 199	${S \atop 4}$	0	0

• Molecule 34 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	LN	122	Total 938	C 587	N 180	0 165	S 6	0	0

• Molecule 35 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	LO	144	Total 1053	C 654	N 207	0 190	${ m S} { m 2}$	0	0

• Molecule 36 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	LP	136	Total 1075	C 686	N 205	0 178	S 6	0	0

• Molecule 37 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	LQ	120	Total 960	C 593	N 196	0 166	${ m S}{ m 5}$	0	0

• Molecule 38 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
38	LR	116	Total 892	C 552	N 178	O 162	0	0

• Molecule 39 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	LS	114	Total 917	C 574	N 179	0 163	S 1	0	0

• Molecule 40 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
40	LT	117	Total 947	C 604	N 192	O 151	0	0

• Molecule 41 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	LU	103	Total 816	C 516	N 153	0 145	${S \over 2}$	0	0

• Molecule 42 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	LV	110	Total 857	C 532	N 166	O 156	${ m S} { m 3}$	0	0

• Molecule 43 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	LW	93	Total 738	C 466	N 139	0 131	${ m S} { m 2}$	0	0

• Molecule 44 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
44	LX	102	Total 779	C 492	N 146	0 141	0	0

• Molecule 45 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
45	LY	94	Total 753	C 479	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 46 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	La	76	Total 582	C 360	N 117	0 104	S 1	0	0

• Molecule 47 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	Lb	77	Total 625	C 388	N 129	O 106	${ m S} { m 2}$	0	0

• Molecule 48 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
48	Lc	62	Total 501	C 308	N 98	0 94	S 1	0	0

• Molecule 49 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
49	Ld	58	Total 449	C 281	N 87	O 79	${ m S} { m 2}$	0	0

• Molecule 50 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
50	Le	68	Total 533	C 330	N 101	O 96	S 6	0	0

• Molecule 51 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
51	Lf	56	Total 444	C 269	N 94	O 80	S 1	0	0

• Molecule 52 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
52	Lg	52	Total 427	C 275	N 78	0 74	0	0

• Molecule 53 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
53	Lh	46	Total 377	C 228	N 90	O 57	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 54 is a protein called 50S ribosomal protein L35.

		aucs	Atoms				AltConf	Trace	
54 Li	64	4	Total 504	C 323	N 105	0 74	${ m S}_2$	0	0

• Molecule 55 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms				AltConf	Trace	
55	Lj	38	Total 302	C 185	N 65	0 48	${S \atop 4}$	0	0

• Molecule 56 is a protein called Elongation factor G.

Mol	Chain	Residues	Atoms				AltConf	Trace	
56	EF	704	Total	C 2205	N	0	S	0	0
			5388	3395	938	1033	22		

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
EF	1	SER	-	expression tag	UNP A0A0H3PU63

• Molecule 57 is a protein called Nascent peptide.

Mol	Chain	Residues	Atoms				AltConf	Trace	
57	Pn	3	Total	С	Ν	0	S	0	0
	• P		28	20	4	3	1		0

• Molecule 58 is a RNA chain called tRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace	
58	Pt	76	Total 1636	C 733	N 284	0 542	Р 76	S 1	0	0

• Molecule 59 is a RNA chain called tRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace	
59	Dt	76	Total 1641	C 735	N 294	0 534	Р 76	${ m S} { m 2}$	0	0

• Molecule 60 is SPECTINOMYCIN (three-letter code: SCM) (formula: $C_{14}H_{24}N_2O_7$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	Aton	ns		AltConf
60	16	1	Total	С	Ν	0	0
00	10	1	46	28	4	14	0
60	16	1	Total	С	Ν	0	0
00	10	1	46	28	4	14	0
60	93	1	Total	С	Ν	0	0
00	20		23	14	2	7	U

• Molecule 61 is 1,4-DIAMINOBUTANE (three-letter code: PUT) (formula: $C_4H_{12}N_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
61	16	1	Total C N	0
01	10	T	18 12 6	0
61	16	1	Total C N	0
01	10	1	18 12 6	0
61	16	1	Total C N	0
01	10	1	18 12 6	0
61	23	1	Total C N	0
	20	1	78 52 26	0
61	23	1	Total C N	0
		-	78 52 26	Ŭ
61	23	1	Total C N	0
		_	78 52 26	
61	23	1	Total C N	0
		_	78 52 26	
61	23	1	Total C N	0
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
61	23	1	Total C N	0
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
61	23	1	Total C N	0
			78 52 26	
61	23	1	Total C N	0
			78 52 20	
61	23	1	Total C N	0
			78 52 20 Tatal C N	
61	23	1	$\begin{array}{cccc} 10tal & U & N \\ 78 & 52 & 26 \end{array}$	0
			$\begin{array}{c ccc} 70 & 52 & 20 \\ \hline Total & C & N \\ \end{array}$	
61	23	1	$\frac{100a1}{78} = \frac{0}{52} = \frac{10}{26}$	0
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
61	23	1	78 59 96	0
			Total C N	
61	23	1	78 52 26	0
			Total C N	
61	LC	1	6 4 9	0
			0 4 2	

• Molecule 62 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
62	16	63	Total Mg 63 63	0
62	SK	1	Total Mg 1 1	0

Mol	Chain	Residues	Atoms	AltConf
62	SN	1	Total Mg 1 1	0
62	SR	1	Total Mg 1 1	0
62	23	264	Total Mg 264 264	0
62	5	6	Total Mg 6 6	0
62	LB	1	Total Mg 1 1	0
62	LC	1	Total Mg 1 1	0
62	LD	1	Total Mg 1 1	0
62	LO	1	Total Mg 1 1	0
62	LQ	1	Total Mg 1 1	0
62	Lf	1	Total Mg 1 1	0
62	EF	1	Total Mg 1 1	0
62	Pt	1	Total Mg 1 1	0

Continued from previous page...

• Molecule 63 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
63	SB	1	Total Zn 1 1	0
63	Le	1	Total Zn 1 1	0
63	Lj	1	Total Zn 1 1	0

• Molecule 64 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		AltConf				
64	93	1	Total	С	Ν	Ο	Р	0
04	20	1	62	20	10	26	6	0
64	93	1	Total	С	Ν	Ο	Р	0
04	20	1	62	20	10	26	6	U

• Molecule 65 is SPERMIDINE (three-letter code: SPD) (formula: $C_7H_{19}N_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
65	23	1	Total C N 20 14 6	0

Mol	Chain	Residues	Atoms	AltConf
65	23	1	Total C N 20 14 6	0

• Molecule 66 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		AltConf				
66	EF	1	Total 32	C 10	N 5	0 14	Р 3	0

• Molecule 67 is water.

Mol	Chain	Residues	Atoms	AltConf
67	16	1	Total O 1 1	0
67	SB	1	Total O 1 1	0
67	23	22	TotalO2222	0
67	LB	1	Total O 1 1	0
67	EF	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S rRNA

• Molecule 4: 30)S ribosomal protein S4		
Chain SD:	93%		6%
MET A2 R26 R26 R44 R56 R56 R73	E78 M124 A138 A138 A138 A138 A138 A138 A138 A138		
• Molecule 5: 30)S ribosomal protein S5		
Chain SE:	90%		• 7%
MET ALA ALA ALA CLU CLU CLU ALA ALA ALA ALA ALA ALA ALA	8130 K159 T164 GLY GLY		
• Molecule 6: 30)S ribosomal protein S6		
Chain SF:	70%	8% 2	21%
M1 R2 E16 E23 E23 F53 F53 K53 L54	M62 68 07 07 07 06 01 07 01 01 02 01 02 01 01 02 01 01 02 01 01 01 01 01 01 01 01 01 01 01 01 01	ALA GLY SER GLU GLU GLU GLU GLU	
• Molecule 7: 30)S ribosomal protein S7		
Chain SG:	65%	19%	16%
MET P2 R3 R4 D15 E21 L22 F26	E40 L47 L47 R53 R55 E55 E56 E56 E56 E56 E56 E56 E56 E56 E	R111 6112 0113 X115 X115 M116 A117 L118 R119 R119	K137 R138 R143 M144 K149 A152 H15
TYR ARG TRP LEU SER LEU ARG SER PHE SER HIS GLN	ALA ALA SER SER SER SER LYS CLN ALA CLN TYR LEU LEU ASN		
• Molecule 8: 30)S ribosomal protein S8		
Chain SH:	95%		5%•
MET 22 82 82 8105 8106 8106 8107 8107	A1 14 A1 30		
• Molecule 9: 30	S ribosomal protein S9		
Chain SI:	87%		11% •
MET ALA ALA GUU G10 F11 V19 V19 V19 G40	R41 M46 L61 L61 L65 R85 R85 R85 R107 R107 R109 R123 R123 R123 R123		
• Molecule 10: 3	30S ribosomal protein S10		
Chain SJ:	80%	1	.7% •

• Molecule 18: 30S ribosomal protein S18

Chain SR:	79%	11% 11%
MET ALA ARG PHE ARG ARG RB K9 F10	C11 14 14 14 14 14 14 14 14 14 14 17 14 17 14 17 14 17 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 19 19 19 19 19 19 19 19 19 19 19 19 19	
• Molecule 19	9: 30S ribosomal protein S19	
Chain SS:	70%	21% • 9%
MET P2 R3 111 D12 L15 K18 K48	V19 V19 K29 K29 K29 K29 K29 K29 K29 K29 K29 K2	SV1
• Molecule 20): 30S ribosomal protein S20	
Chain ST:	93%	5% •
MET A2 N3 I4 R10 S23 S23 P43	ALLA ALLA	
• Molecule 21	1: 30S ribosomal protein S21	
Chain SU:	92%	7% •
MET P2 R7 D13 K20 R21	<mark>77 1</mark>	
• Molecule 22	2: mRNA	
Chain mR:	17% · 80%	
しょくじじしょく 4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	< < © つ ♡ < ⊃ ♡
• Molecule 23	3: 23S rRNA	
Chain 23:	81%	19%
G1 G2 U3 A6 A10 A14 G15 G15	44 643 644 644 644 646 646 646 646 646 6	0135 0135 0139 0136 0141 0140 0158 0159 0159 0159 0159
G178 A181 A196 A196 A199 G215 A215	A222 A222 A222 C248 C248 C267 C267 C267 C267 C267 A277 A277 A277 A277 C267 C267 C267 A279 C281 A279 C281 A279 C281 C281 C281 C281 C281 C281 C281 C281	A352 C553 C555 C5553 C5553 C555 C

-	U395 G396	A401		A404 U405	G406	A412	C435		C456	A457	6458 U459		G467	A470	62.VU	0/#5	G481	G491		A504 A505	GE06		6000	C527 4528	A529	G530 C531	A532	0546	A547	G549 G549	C550	A563		0573 A574	A575	A603	A614	CTON
A637	C645	U646 G647		A654 A655	G684	A685	N686	G704	C719	1 0211	0725 G725	G726	A727	A730			G745	0745 0747	G748	C765		G775		A782 4783	G784	G785	A789	G805		0811 C812		ADA	<mark>U827</mark>	<mark>6830</mark>	A845	U846	<mark>6859</mark>	<mark>6869</mark>
	C888 C889	C890	U895	A896 C897	1060 1		A910	A917	<mark>1931</mark>	U932	0934		A941	C946		G954	<mark>1955</mark>	C961		A973 C974	1 100	A980	A983	A984	6989	A996		6660	A1009	01012	C1013	G1026	000 11	01033	G1041	A1046 G1047		U1058
G1059	U1060 U1061	G1062	A1070	A1077	U1078 C1079	A1080	A1084	A1085	A1 080 G1 087	A1088	A1 U89	U1101	G1110	A1111	G1112	C1113 C1114	G1115	61116	<mark>U1132</mark>	A1133 A1134	C1135	G1136	A1142	C1140	0 ET TD	C1170 G1171	C1172	011/3 01174	A1175	C1178	G1179		G1206	G1212	G1236	A1237 C1238		61248 G1248
<mark>U1249</mark>	A1253	G1256		<u>61266</u>	G1271 A1272	U1273	G1300	A1301	<mark>U1313</mark>	C1314	A1321		U1329	<mark>U1352</mark>	4 1 2 C E	COCTW	<mark>G1368</mark>	A1378	U1379	01380 01380	A1383	11306		G1416 C1417	G1418	A1419 A1420		C1428	A1434	C1437		G1452	A1453	U1458	G1459 U1460	C1461	G1482	U1486
_	1493 1494	1497		1502 1503	1508	1509	1524		6701	1534 1534	1536 1536	1537	1538	1 <mark>558</mark>			1569	15/0 1571		1578 1579	1580 1580	1581	1583	1584 1585		1603	1607	1608 1609	1610	1618	, , ,	1647 1647	1648	1649	1674	1 <mark>690</mark>	1 <mark>715</mark>	1724
25	26 27 A:	28 29	30	31 32 A:	37	38 A	45 G:	č 1	و م	64 U	73 C:	5		82	83 0 4	40 4	99 A:	00 01 A:		07	A A	16	29 A:	aa aa	34	35 A:	41 C	42 V.	47 A	40 V	28	64 U	65 0.0	66 67	68 69	70 A:	72 G.	74 G:
U17	C17 C17	C17 U17	C17	617 C17	G17	G17	A17		A1(C17	A17		G17	017	A17	VTW	G17	C18 A18		G18 A18		C18	A18	α 2	U18	G18	U18	618	A18	A18	A18	U18	U18	A18 G18	C18 G18	C18 A18	A18	C18
G1875	A1876 A1877	A 1901		61906	U1911 A1912	A1913	C1914 3TD1915	4 10 10	ATATA	C1925	01926 A1927	A1928	G1929 G1930	U1931	4 0 20	N1930 U1939	U1940	C1941	G1954	U1955	A1960	C1961	U1963	G1964	C1967	A 1970	U1971	Z/619	G1975	G1980	A1981	1987	U1991	G1992 U1993	C1997	G2002		C2021
U2022	C2023	A2030 A2031	G2032	A2033	C2043	C2055	62056	A2060	42061 A2062		63025	<mark>G2</mark> 093	112113		G2116	N2118 U2118		A2126	U2131	U2132 C2133	00170	G2136	G2141	CO145	C2146 C2146	C2161	G2162	A2163 C2164	C2165	A2170	A2171	021/2 A2173	C2174	A2198	G2204	A2211		0770
A2225	G2238	G2239	<mark>U2243</mark>	G2251	<u> 42278</u>		C2283	A2287	A2200	G2303	62304 U2305	C2306	G2307 C2308	A2309	C2310	N2312 U2312		G2319 U2320	U2321	A2322	G2325		N2334	A2335 A2335	00074	C2347	C2350	C2354		19529	G2 <mark>361</mark>	U2372	0100	A23/6	G2379 C2380	G2383	U2384	02393
<mark>G2391</mark>	U2402	C2403	A2406	A2407	G2410	U2423	C2424 A2425	A2426	62428 G2428	G2429	A2430	U2441	C245		A2448	02443	U2457	A2468		U2474 C2475	42476		00520	G2484	U2491	U2492 U2493	G2494	C2498		42502 A2503	U2504	U2506		A2518	G2529	G2 <mark>535</mark> C2536	U2537	A2547
-	U2552 G2553	U2554	A2566	62567	A2572 C2573		G2576	<mark>U2580</mark>	U2585		A2602 G2603	U2604	U2605 C2606		U2609	U2613	A2614	0.2615	<mark>U2629</mark>	G2630	<mark>C2636</mark>		60074	C2646	G2 <mark>663</mark>	112689	<mark>02690</mark>	G2714	-	62/18	A2726	G2732	A2733	U2739	G2744	A2748		797
2762	2765		2778	6776	2790 2791		27.97	2799	2818 2818	2819 2600	07.87	2823	08.30	2833	2834 2835	000	2849	7820	2858	2859	2861	10.10 10	2873	1870	2880	2883	2884	7880 2886		1697	2900		2904					
<mark>ບີ</mark>	W M	ole	ecu	ile	<mark>в 8</mark> 24	1:	55	v b r	<mark>ہ</mark> RI	NA	A A	A.	11	5	0	¥	Б	A.	ប	ບ	a D		A.	A.		AS	Б	AS AS		5	A	3	<mark>.</mark>					

ww

• Molecule 25: 50S ribosomal	protein L2		
Chain LB:	95%		5% •
MET A2 A2 A2 A2 A2 A1 B13 B18 B18 B18 B18 B18 R18 R18 R18 R18 R18 R18 R18 R18 R18 R	D264 K265 R269 S272 LYS		
• Molecule 26: 50S ribosomal	protein L3		
Chain LC:	96%		•
M1 E17 S21 S21 N32 R33 R33 R33 R33 R33 R33 R33 R33 R149 T175 T197 T197			
• Molecule 27: 50S ribosomal	protein L4		
Chain LD:	97%		·
M1 K6 E16 E16 B19 D154 D154 D154 D154 D191			
• Molecule 28: 50S ribosomal	protein L5		
Chain LE:	92%		7% ••
MET A2 A2 M17 M17 N23 R17 R115 G116 G116 C117 K120 K120 E134 E134	D153 R167 F175 R175 LYS		
• Molecule 29: 50S ribosomal	protein L6		
Chain LF:	94%		6% ·
MET 82 83 83 83 83 83 83 83 86 86 89 89 89 89 89 81 84 81 84 81 84 81 84 81 84	42 TM		
• Molecule 30: 50S ribosomal	protein L9		
Chain LI:	91%		8% •
M1 L112 L115 L115 E45 E45 E45 E45 L62 L62 L62 S82 S82 S82 V106	L122 V147 A148 GLU		
• Molecule 31: 50S ribosomal	protein L10		
Chain LJ:	70%	10%	21%
MET A2 A2 D36 D36 K43 K43 K43 C54 T67 T67 T67 T67 T67 T67 T67 T67 T67 T67	K101 K105 F113 E116 L117 K125	7132 GLU GLU GLU GLU ALA ALA MET MET MET MET CLU SER SER	ALA GLY LYS LYS LEU VAL THR THR LEU ALA ALA VAL

ARG ASP ALA LYS GLU ALA ALA

• Molecule 32: 50S ribosomal protein L11

Chain LK:	82%	12%	6%
MET ALA LYS LYS VAL CYS GAN CAL GAN CAL C28 L28 K81 K81 K81 K81 K87 K87	890 K96 K97 K100 T100 T100 S102 S132 N132 M135 M136 M136 F141 F141 ASP		
• Molecule 33: 50S riboso	mal protein L13		
Chain LM:	95%		5%
M1 K7 K39 K39 K39 K39 K39 K39 K39 K39 K39 K39			
• Molecule 34: 50S riboso	mal protein L14		
Chain LN:	96%		
M1 R31 R70 E110 K114 V122 LEU			
• Molecule 35: 50S riboso	mal protein L15		
Chain LO:	96%		·
M1 842 167 167 173 173 173 173 1121			
• Molecule 36: 50S riboso	mal protein L16		
Chain LP:	93%		7%
M1 L2 Q3 Q3 K18 K18 K58 R18 40481 L102 K123 K123 M136			
• Molecule 37: 50S riboso	mal protein L17		
Chain LQ:	89%	5%	• 6%
M1 R2 814 814 815 827 827 827 829 839 8119 8119 8119 8119 8120 612 8110 8110 8110 8110 8110 8110 8110 81	ALA ALA GLU		
• Molecule 38: 50S riboso	mal protein L18		
Chain LR:	93%		6% •

• Molecule 39: 50S ribosomal protein L19

Chain LS: 96% • Molecule 40: 50S ribosomal protein L20 Chain LT: 96% . . • Molecule 41: 50S ribosomal protein L21 Chain LU: 94% 5% • • Molecule 42: 50S ribosomal protein L22 Chain LV: 5% 95% • Molecule 43: 50S ribosomal protein L23 Chain LW: 83% 10% 7% ASP PHE VAL VAL GLY GLY ALA ALA GLU • Molecule 44: 50S ribosomal protein L24 Chain LX: 93% . . . LYS MET V4 202 D81 • Molecule 45: 50S ribosomal protein L25 Chain LY: 7% 93%

• Molecule 46: 50S ribosomal protein L27

• Molecule 53: 50S ribosomal protein L34

Chain Lh: 96% • Molecule 54: 50S ribosomal protein L35 Chain Li: 95% . . • Molecule 55: 50S ribosomal protein L36 Chain Lj: 97% • Molecule 56: Elongation factor G Chain EF: 6% 94% • Molecule 57: Nascent peptide Chain Pp: 33% 67% M1 F2 K3 • Molecule 58: tRNA Chain Pt: 56% 14% 28% N R U O U A O O D D U O A A D U D O U O A U U O A U U O A U U O A U U O A U U O A U U O A U U O A U U O A U O A U 02 02 02

• Molecule 59: tRNA

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	33688	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING ONLY	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	87	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 $(6k \times 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OMU, 3AU, ZN, 4SU, MA6, SCM, MIA, D2T, 6MZ, ATP, 2MG, 7MG, 5MU, T6A, PUT, OMG, MG, 1MG, 2MA, 4D4, U8U, 5MC, 3TD, 4OC, GTP, SPD, OMC, UR3, H2U, PSU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	ond lengths	E	Bond angles
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	16	0.65	1/36619~(0.0%)	0.78	8/57122~(0.0%)
2	SB	0.40	0/1784	0.63	1/2403~(0.0%)
3	SC	0.39	0/1680	0.65	0/2263
4	SD	0.36	0/1665	0.60	0/2227
5	SE	0.42	0/1157	0.63	0/1557
6	SF	0.40	0/881	0.67	1/1189~(0.1%)
7	SG	0.46	0/1195	0.83	5/1602~(0.3%)
8	SH	0.39	0/989	0.57	0/1326
9	SI	0.53	1/1034~(0.1%)	0.71	0/1375
10	SJ	0.40	0/805	0.78	0/1089
11	SK	0.42	0/911	0.70	0/1229
12	SL	0.38	0/960	0.64	0/1286
13	SM	0.46	0/892	0.89	3/1193~(0.3%)
14	SN	0.44	0/817	0.91	3/1088~(0.3%)
15	SO	0.37	0/722	0.59	0/964
16	SP	0.39	0/659	0.61	0/884
17	SQ	0.40	0/657	0.64	0/881
18	SR	0.38	0/564	0.60	0/756
19	\mathbf{SS}	0.47	0/685	0.77	1/922~(0.1%)
20	ST	0.32	0/670	0.55	0/888
21	SU	0.50	0/597	0.67	0/792
22	mR	0.55	0/283	0.73	0/438
23	23	0.79	1/69284~(0.0%)	0.78	15/108082~(0.0%)
24	5	0.72	1/2873~(0.0%)	0.76	0/4478
25	LB	0.43	0/2121	0.62	0/2852
26	LC	0.42	0/1586	0.59	0/2134
27	LD	0.39	0/1571	0.58	0/2113
28	LE	0.48	1/1434~(0.1%)	0.72	1/1926~(0.1%)
29	LF	0.37	0/1343	0.62	0/1816
30	LI	0.37	0/1112	0.81	5/1503~(0.3%)
31	LJ	0.42	0/1006	0.67	1/1358 (0.1%)

Mal	Chain	Bo	ond lengths	Bond angles	
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
32	LK	0.51	0/993	0.66	0/1341
33	LM	0.43	0/1152	0.57	0/1551
34	LN	0.41	0/947	0.66	0/1268
35	LO	0.41	0/1062	0.63	0/1413
36	LP	0.42	0/1081	0.65	0/1443
37	LQ	0.39	0/973	0.60	0/1301
38	LR	0.41	0/902	0.63	0/1209
39	LS	0.41	0/929	0.61	0/1242
40	LT	0.43	0/960	0.56	0/1278
41	LU	0.43	0/829	0.62	0/1107
42	LV	0.39	0/864	0.59	0/1156
43	LW	0.38	0/744	0.58	0/994
44	LX	0.41	0/787	0.60	0/1051
45	LY	0.40	0/766	0.56	0/1025
46	La	0.41	0/589	0.60	0/779
47	Lb	0.44	0/635	0.69	1/848~(0.1%)
48	Lc	0.43	0/502	0.65	0/667
49	Ld	0.41	0/453	0.65	0/605
50	Le	0.45	0/543	0.72	0/726
51	Lf	0.42	0/450	0.62	0/599
52	Lg	0.42	0/434	0.65	0/576
53	Lh	0.40	0/380	0.67	0/498
54	Li	0.38	0/513	0.64	1/676~(0.1%)
55	Lj	0.39	0/303	0.62	0/397
56	\mathbf{EF}	0.40	0/5490	0.61	1/7437~(0.0%)
57	Pp	0.45	0/28	1.11	0/34
58	Pt	0.53	2/1684~(0.1%)	0.78	0/2615
59	Dt	0.60	1/1654~(0.1%)	0.80	1/2572~(0.0%)
All	All	$0.\overline{65}$	$8/16520\overline{3}\ (0.0\%)$	0.75	$48/246144 \ (0.0\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	SC	0	2
4	SD	0	3
5	SE	0	1
9	SI	0	3
10	SJ	0	2
12	SL	0	1

Mol	Chain	#Chirality outliers	#Planarity outliers
13	SM	0	4
14	SN	0	2
17	SQ	0	3
19	SS	0	1
21	SU	0	1
25	LB	0	3
27	LD	0	1
28	LE	0	3
30	LI	0	2
34	LN	0	2
36	LP	0	2
37	LQ	0	2
38	LR	0	1
41	LU	0	1
44	LX	0	1
45	LY	0	1
46	La	0	1
49	Ld	0	1
51	Lf	0	2
55	Lj	0	1
56	EF	0	3
All	All	0	50

The worst 5 of 8 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
59	Dt	1	G	OP3-P	-10.87	1.48	1.61
23	23	1	G	OP3-P	-10.70	1.48	1.61
24	5	1	U	OP3-P	-10.20	1.49	1.61
58	Pt	1	G	OP3-P	-10.15	1.49	1.61
28	LE	93	GLY	C-N	-8.57	1.14	1.34

The worst 5 of 48 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	16	1490	U	O5'-P-OP1	-29.78	74.96	110.70
1	16	1490	U	OP1-P-OP2	-26.97	79.15	119.60
1	16	1490	U	O5'-P-OP2	17.20	131.33	110.70
14	SN	25	ALA	N-CA-CB	-15.22	88.78	110.10
1	16	1489	G	OP1-P-O3'	13.97	135.93	105.20

There are no chirality outliers.

Mol	Chain	Res	Type	Group
3	SC	40	ARG	Sidechain
3	SC	88	ARG	Sidechain
4	SD	26	ARG	Sidechain
4	SD	44	ARG	Sidechain
4	SD	56	ARG	Sidechain

5 of 50 planarity outliers are listed below:

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	SB	222/241~(92%)	210~(95%)	12 (5%)	0	100	100
3	\mathbf{SC}	209/233~(90%)	200 (96%)	9 (4%)	0	100	100
4	SD	203/206~(98%)	201 (99%)	2 (1%)	0	100	100
5	SE	153/167~(92%)	150 (98%)	3 (2%)	0	100	100
6	\mathbf{SF}	104/135~(77%)	101 (97%)	3 (3%)	0	100	100
7	SG	149/179~(83%)	141 (95%)	8 (5%)	0	100	100
8	SH	127/130~(98%)	126 (99%)	1 (1%)	0	100	100
9	SI	125/130~(96%)	118 (94%)	7 (6%)	0	100	100
10	SJ	97/103~(94%)	91 (94%)	6 (6%)	0	100	100
11	SK	117/129~(91%)	111 (95%)	6 (5%)	0	100	100
12	SL	120/124~(97%)	114 (95%)	6 (5%)	0	100	100
13	SM	112/118~(95%)	108 (96%)	4 (4%)	0	100	100
14	SN	98/101~(97%)	94 (96%)	4 (4%)	0	100	100
15	SO	86/89~(97%)	83 (96%)	3 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
16	SP	80/82~(98%)	76~(95%)	4 (5%)	0	100	100
17	SQ	78/84~(93%)	77~(99%)	1 (1%)	0	100	100
18	SR	65/75~(87%)	60~(92%)	5 (8%)	0	100	100
19	SS	82/92~(89%)	75~(92%)	7 (8%)	0	100	100
20	ST	83/87~(95%)	83 (100%)	0	0	100	100
21	SU	68/71~(96%)	67~(98%)	1 (2%)	0	100	100
25	LB	269/273~(98%)	262~(97%)	7 (3%)	0	100	100
26	LC	207/209~(99%)	198 (96%)	8 (4%)	1 (0%)	29	40
27	LD	199/201~(99%)	193 (97%)	6(3%)	0	100	100
28	LE	175/179~(98%)	168 (96%)	7 (4%)	0	100	100
29	LF	174/177~(98%)	169 (97%)	5(3%)	0	100	100
30	LI	146/149~(98%)	129 (88%)	17 (12%)	0	100	100
31	LJ	129/165~(78%)	121 (94%)	8 (6%)	0	100	100
32	LK	132/142~(93%)	121 (92%)	11 (8%)	0	100	100
33	LM	140/142~(99%)	138 (99%)	2(1%)	0	100	100
34	LN	120/123~(98%)	117 (98%)	3~(2%)	0	100	100
35	LO	142/144~(99%)	137 (96%)	5(4%)	0	100	100
36	LP	133/136~(98%)	133 (100%)	0	0	100	100
37	LQ	118/127~(93%)	113 (96%)	5(4%)	0	100	100
38	LR	114/117~(97%)	107 (94%)	7~(6%)	0	100	100
39	LS	112/115~(97%)	109 (97%)	3~(3%)	0	100	100
40	LT	115/118~(98%)	115 (100%)	0	0	100	100
41	LU	101/103~(98%)	95~(94%)	6~(6%)	0	100	100
42	LV	108/110~(98%)	101 (94%)	7~(6%)	0	100	100
43	LW	91/100~(91%)	87~(96%)	4 (4%)	0	100	100
44	LX	100/104~(96%)	94 (94%)	6~(6%)	0	100	100
45	LY	92/94~(98%)	92 (100%)	0	0	100	100
46	La	74/85~(87%)	73(99%)	1 (1%)	0	100	100
47	Lb	75/78~(96%)	72 (96%)	3 (4%)	0	100	100
48	Lc	60/63~(95%)	58 (97%)	2 (3%)	0	100	100
49	Ld	$56/\overline{59}\ (95\%)$	55 (98%)	1(2%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
50	Le	66/70~(94%)	58~(88%)	8 (12%)	0	100	100
51	Lf	54/57~(95%)	54 (100%)	0	0	100	100
52	Lg	50/55~(91%)	49 (98%)	1 (2%)	0	100	100
53	Lh	44/46~(96%)	43~(98%)	1 (2%)	0	100	100
54	Li	62/65~(95%)	57~(92%)	5 (8%)	0	100	100
55	Lj	36/38~(95%)	35~(97%)	1 (3%)	0	100	100
56	\mathbf{EF}	702/704~(100%)	664 (95%)	38~(5%)	0	100	100
57	Pp	1/3~(33%)	1 (100%)	0	0	100	100
All	All	6575/6927~(95%)	6304 (96%)	270 (4%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
26	LC	149	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
2	SB	186/199~(94%)	176~(95%)	10~(5%)	22 29
3	\mathbf{SC}	172/190~(90%)	158 (92%)	14 (8%)	11 14
4	SD	172/173~(99%)	162 (94%)	10 (6%)	20 26
5	SE	118/126~(94%)	115~(98%)	3~(2%)	47 62
6	\mathbf{SF}	92/116~(79%)	82~(89%)	10 (11%)	6 6
7	SG	124/147~(84%)	94 (76%)	30 (24%)	0
8	SH	104/105~(99%)	98~(94%)	6~(6%)	20 26
9	SI	105/107~(98%)	95~(90%)	10 (10%)	8 10
10	SJ	87/90~(97%)	72(83%)	15 (17%)	2 2
11	SK	92/99~(93%)	87 (95%)	5(5%)	22 29

Mol	Chain	Analysed	Rotameric Outliers		Perce	ntiles
12	SL	102/103~(99%)	95~(93%)	7~(7%)	15	20
13	SM	92/96~(96%)	79~(86%)	13~(14%)	3	3
14	SN	83/84~(99%)	66~(80%)	17 (20%)	1	1
15	SO	76/77~(99%)	69~(91%)	7 (9%)	9	11
16	SP	65/65~(100%)	62~(95%)	3~(5%)	27	36
17	SQ	74/78~(95%)	69~(93%)	5 (7%)	16	20
18	SR	58/65~(89%)	50 (86%)	8 (14%)	3	3
19	SS	72/79~(91%)	53 (74%)	19 (26%)	0	0
20	ST	65/66~(98%)	61 (94%)	4 (6%)	18	24
21	SU	60/61~(98%)	56 (93%)	4 (7%)	16	21
25	LB	216/218~(99%)	206 (95%)	10 (5%)	27	36
26	LC	164/164~(100%)	156 (95%)	8 (5%)	25	34
27	LD	165/165~(100%)	158 (96%)	7 (4%)	30	40
28	LE	148/150~(99%)	138 (93%)	10 (7%)	16	20
29	LF	137/138~(99%)	127~(93%)	10 (7%)	14	18
30	LI	113/114~(99%)	107~(95%)	6~(5%)	22	30
31	LJ	100/123~(81%)	85 (85%)	15 (15%)	3	2
32	LK	104/110~(94%)	87 (84%)	17 (16%)	2	2
33	LM	116/116~(100%)	109 (94%)	7~(6%)	19	25
34	LN	103/104~(99%)	101 (98%)	2(2%)	57	72
35	LO	103/103~(100%)	97~(94%)	6 (6%)	20	26
36	LP	108/108 (100%)	102 (94%)	6 (6%)	21	28
37	LQ	100/103~(97%)	94 (94%)	6 (6%)	19	25
38	LR	86/87~(99%)	80 (93%)	6 (7%)	15	19
39	LS	99/100~(99%)	95~(96%)	4 (4%)	31	43
40	LT	89/90~(99%)	85 (96%)	4 (4%)	27	37
41	LU	84/84 (100%)	78~(93%)	6 (7%)	14	19
42	LV	93/93~(100%)	87 (94%)	6 (6%)	17	23
43	LW	80/84~(95%)	70 (88%)	10 (12%)	4	4
44	LX	83/85~(98%)	78 (94%)	5 (6%)	19	25
45	LY	78/78~(100%)	72 (92%)	6 (8%)	13	16

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
46	La	58/63~(92%)	56~(97%)	2(3%)	37	50	
47	Lb	67/68~(98%)	64 (96%)	3(4%)	27	37	
48	Lc	54/55~(98%)	53~(98%)	1 (2%)	57	72	
49	Ld	48/49~(98%)	45 (94%)	3~(6%)	18	23	
50	Le	60/62~(97%)	48 (80%)	12 (20%)	1	1	
51	Lf	47/48~(98%)	46 (98%)	1 (2%)	53	68	
52	Lg	47/49~(96%)	42 (89%)	5 (11%)	6	7	
53	Lh	38/38~(100%)	36~(95%)	2(5%)	22	30	
54	Li	51/52~(98%)	50 (98%)	1 (2%)	55	70	
55	Lj	34/34~(100%)	34 (100%)	0	100	100	
56	\mathbf{EF}	561/578~(97%)	522~(93%)	39~(7%)	15	19	
57	Pp	3/3~(100%)	1 (33%)	2(67%)	0	0	
All	All	5436/5642~(96%)	5008 (92%)	428 (8%)	16	15	

5 of 428 residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	\mathbf{Type}	
28	LE	134	GLU	
33	LM	60	ASP	
56	\mathbf{EF}	219	HIS	
29	LF	50	LEU	
31	LJ	101	LYS	

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 30 such side chains are listed below:

Mol	Chain	Res	Type
32	LK	31	GLN
56	\mathbf{EF}	558	GLN
37	LQ	62	ASN
56	EF	645	GLN
56	EF	55	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	16	1530/1534~(99%)	234~(15%)	10 (0%)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
22	mR	11/60~(18%)	2(18%)	0
23	23	2899/2904~(99%)	517 (17%)	28~(0%)
24	5	119/120~(99%)	15 (12%)	1 (0%)
58	Pt	73/106~(68%)	12 (16%)	0
59	Dt	73/106~(68%)	15 (20%)	0
All	All	4705/4830~(97%)	795~(16%)	39~(0%)

5 of 795 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	16	2	А
1	16	4	U
1	16	7	А
1	16	9	G
1	16	22	G

5 of 39 RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
23	23	1508	А
23	23	2536	G
23	23	1570	А
23	23	2145	С
23	23	2858	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

47 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Turno	Chain	Dec	Tink	Bond lengths			Bond angles			
IVIOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
23	PSU	23	2457	23	18,21,22	4.02	8 (44%)	22,30,33	2.15	5 (22%)
23	6MZ	23	2030	23	18,25,26	1.90	4 (22%)	16,36,39	<mark>3.27</mark>	3 (18%)
59	7MG	Dt	46	59	22,26,27	<mark>3.66</mark>	10 (45%)	29,39,42	2.00	9 (31%)

Mol	Type	Chain	Bos	Link	B	Bond lengths			Bond angles		
	туре	Chan	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
23	OMU	23	2552	23	19,22,23	2.83	8 (42%)	26,31,34	1.89	5 (19%)	
1	MA6	16	1519	1	19,26,27	1.12	2 (10%)	18,38,41	1.95	6 (33%)	
1	MA6	16	1518	1	19,26,27	1.10	2 (10%)	18,38,41	3.48	2 (11%)	
23	PSU	23	2580	23	18,21,22	4.04	8 (44%)	22,30,33	1.95	6 (27%)	
59	PSU	Dt	39	59	18,21,22	4.11	7 (38%)	22,30,33	1.91	5 (22%)	
12	D2T	SL	89	12	7,9,10	1.05	0	6,11,13	2.27	2 (33%)	
23	1MG	23	745	23	18,26,27	2.85	5 (27%)	19,39,42	1.47	4 (21%)	
23	3TD	23	1915	23	18,22,23	4.24	6 (33%)	22,32,35	1.62	2 (9%)	
1	7MG	16	527	1	22,26,27	1.38	3 (13%)	29,39,42	2.54	8 (27%)	
58	T6A	Pt	37	58	27,34,35	2.05	7 (25%)	29,49,52	2.15	7 (24%)	
23	PSU	23	2504	23	18,21,22	4.02	7 (38%)	22,30,33	1.84	5 (22%)	
23	7MG	23	2069	23	22,26,27	1.39	3 (13%)	29,39,42	2.56	7 (24%)	
1	PSU	16	516	1	18,21,22	4.08	7 (38%)	22,30,33	1.77	4 (18%)	
59	PSU	Dt	55	59	18,21,22	4.26	7 (38%)	22,30,33	1.94	5 (22%)	
23	PSU	23	955	23	18,21,22	4.02	7 (38%)	22,30,33	2.02	5 (22%)	
36	4D4	LP	81	36	9,11,12	2.45	3 (33%)	8,13,15	0.97	0	
23	PSU	23	1911	23	18,21,22	4.06	8 (44%)	22,30,33	1.75	4 (18%)	
59	4SU	Dt	8	59	18,21,22	4.13	8 (44%)	26,30,33	2.32	5 (19%)	
23	6MZ	23	1618	23	18,25,26	1.82	3 (16%)	16,36,39	2.94	4 (25%)	
58	3AU	Pt	47	58	24,28,29	1.00	1 (4%)	33,40,43	1.43	3 (9%)	
59	MIA	Dt	37	59	24,31,32	2.30	3 (12%)	26,44,47	2.55	9 (34%)	
23	PSU	23	2604	23	18,21,22	<mark>3.99</mark>	7 (38%)	22,30,33	1.94	<mark>5 (22%)</mark>	
23	5MU	23	747	23	19,22,23	4.73	7 (36%)	28,32,35	<mark>3.73</mark>	10 (35%)	
23	OMC	23	2498	62,23	19,22,23	2.83	8 (42%)	26,31,34	0.77	0	
23	2MG	23	1835	23	18,26,27	2.33	7 (38%)	16,38,41	1.55	4 (25%)	
1	2MG	16	1516	1	18,26,27	2.42	7 (38%)	16,38,41	1.42	4 (25%)	
58	7MG	Pt	46	58	22,26,27	<mark>3.78</mark>	10 (45%)	29,39,42	2.10	9 (31%)	
1	4OC	16	1402	1,62	20,23,24	2.99	8 (40%)	26,32,35	0.91	1 (3%)	
1	5MC	16	1407	1	18,22,23	<mark>3.43</mark>	7 (38%)	26,32,35	1.03	2 (7%)	
23	PSU	23	2605	23	18,21,22	4.06	8 (44%)	22,30,33	1.91	5 (22%)	
58	PSU	Pt	39	58	18,21,22	4.16	7 (38%)	22,30,33	1.93	5 (22%)	
23	2MG	23	2445	23	18,26,27	2.33	7 (38%)	16,38,41	1.54	4 (25%)	
23	5MU	23	1939	23	19,22,23	4.73	7 (36%)	28,32,35	3.82	9 (32%)	
23	5MC	23	1962	23	18,22,23	<mark>3.38</mark>	7 (38%)	26,32,35	0.99	1 (3%)	
1	2MG	16	966	1	18,26,27	2.38	7 (38%)	16,38,41	1.46	4 (25%)	

Mal	Turne	Chain	Dec	Tinle	Bond lengths			Bond angles		
NIOI	туре	Chain	nes	C5 LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
23	2MA	23	2503	62,23	17,25,26	2.39	5 (29%)	17,37,40	1.43	3 (17%)
58	U8U	Pt	34	58,22	19,24,25	1.70	3 (15%)	23,34,37	1.19	4 (17%)
1	UR3	16	1498	1	19,22,23	2.72	6 (31%)	26,32,35	1.28	1 (3%)
59	PSU	Dt	32	59	18,21,22	4.13	7 (38%)	22,30,33	1.91	5 (22%)
1	5MC	16	967	1	18,22,23	3.42	7 (38%)	26,32,35	1.03	1 (3%)
23	OMG	23	2251	58,23	18,26,27	2.37	8 (44%)	19,38,41	1.54	4 (21%)
23	H2U	23	2449	23	18,21,22	2.86	5 (27%)	21,30,33	2.15	5 (23%)
23	PSU	23	746	62,23	18,21,22	4.06	7 (38%)	22,30,33	1.70	5 (22%)
59	3AU	Dt	47	59	24,28,29	1.05	1 (4%)	33,40,43	1.49	4 (12%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
23	PSU	23	2457	23	-	0/7/25/26	0/2/2/2
23	6MZ	23	2030	23	-	2/5/27/28	0/3/3/3
59	7MG	Dt	46	59	-	2/7/37/38	0/3/3/3
23	OMU	23	2552	23	-	0/9/27/28	0/2/2/2
1	MA6	16	1519	1	-	6/7/29/30	0/3/3/3
1	MA6	16	1518	1	-	0/7/29/30	0/3/3/3
23	PSU	23	2580	23	-	1/7/25/26	0/2/2/2
59	PSU	Dt	39	59	-	0/7/25/26	0/2/2/2
12	D2T	SL	89	12	-	1/7/12/14	-
23	1MG	23	745	23	-	0/3/25/26	0/3/3/3
23	3TD	23	1915	23	-	3/7/25/26	0/2/2/2
1	7MG	16	527	1	-	3/7/37/38	0/3/3/3
58	T6A	Pt	37	58	-	10/19/41/42	0/3/3/3
23	PSU	23	2504	23	-	0/7/25/26	0/2/2/2
23	7MG	23	2069	23	-	1/7/37/38	0/3/3/3
1	PSU	16	516	1	-	0/7/25/26	0/2/2/2
59	PSU	Dt	55	59	-	0/7/25/26	0/2/2/2
23	PSU	23	955	23	-	0/7/25/26	0/2/2/2
36	4D4	LP	81	36	-	1/11/12/14	-
23	PSU	23	1911	23	-	3/7/25/26	0/2/2/2
59	4SU	Dt	8	59	-	0/7/25/26	0/2/2/2
23	6MZ	23	1618	23	-	4/5/27/28	0/3/3/3
58	3AU	Pt	47	58	-	9/16/34/35	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
59	MIA	Dt	37	59	-	6/11/33/34	0/3/3/3
23	PSU	23	2604	23	-	0/7/25/26	0/2/2/2
23	5MU	23	747	23	-	1/7/25/26	0/2/2/2
23	OMC	23	2498	62,23	-	2/9/27/28	0/2/2/2
23	2MG	23	1835	23	-	2/5/27/28	0/3/3/3
1	2MG	16	1516	1	-	0/5/27/28	0/3/3/3
58	7MG	Pt	46	58	-	4/7/37/38	0/3/3/3
1	4OC	16	1402	1,62	-	1/9/29/30	0/2/2/2
1	5MC	16	1407	1	-	0/7/25/26	0/2/2/2
23	PSU	23	2605	23	-	0/7/25/26	0/2/2/2
58	PSU	Pt	39	58	-	0/7/25/26	0/2/2/2
23	2MG	23	2445	23	-	0/5/27/28	0/3/3/3
23	5MU	23	1939	23	-	0/7/25/26	0/2/2/2
23	5MC	23	1962	23	-	2/7/25/26	0/2/2/2
1	2MG	16	966	1	-	0/5/27/28	0/3/3/3
23	2MA	23	2503	62,23	-	2/3/25/26	0/3/3/3
58	U8U	Pt	34	58,22	-	2/9/28/29	0/2/2/2
1	UR3	16	1498	1	-	2/7/25/26	0/2/2/2
59	PSU	Dt	32	59	-	0/7/25/26	0/2/2/2
1	5MC	16	967	1	-	0/7/25/26	0/2/2/2
23	OMG	23	2251	58,23	-	3/5/27/28	0/3/3/3
23	H2U	23	2449	23	-	1/7/38/39	0/2/2/2
23	PSU	23	746	62,23	-	1/7/25/26	0/2/2/2
59	3AU	Dt	47	59	-	10/16/34/35	0/2/2/2

The worst 5 of 280 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
23	23	1915	3TD	C6-C5	12.52	1.49	1.35
59	Dt	55	PSU	C6-C5	11.00	1.48	1.35
58	Pt	39	PSU	C6-C5	10.81	1.47	1.35
59	Dt	39	PSU	C6-C5	10.66	1.47	1.35
59	Dt	32	PSU	C6-C5	10.66	1.47	1.35

The worst 5 of 210 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	16	1518	MA6	N1-C6-N6	-13.49	102.86	117.06
23	23	1939	5MU	C5-C4-N3	12.84	126.27	115.31
23	23	747	5MU	C5-C4-N3	12.28	125.80	115.31

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\mathbf{Ideal}(^{o})$
23	23	2030	6MZ	C1'-N9-C4	-11.73	106.03	126.64
23	23	1939	5MU	C5-C6-N1	-10.86	112.17	123.34

There are no chirality outliers.

5 of 85 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	16	527	7MG	C3'-C4'-C5'-O5'
1	16	1519	MA6	O4'-C4'-C5'-O5'
1	16	1519	MA6	C3'-C4'-C5'-O5'
1	16	1519	MA6	C5-C6-N6-C9
1	16	1519	MA6	C5-C6-N6-C10

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 372 ligands modelled in this entry, 347 are monoatomic - leaving 25 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bond lengths			Bond angles		
INIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
61	PUT	23	3004	-	$5,\!5,\!5$	0.19	0	4,4,4	0.56	0
61	PUT	23	3006	-	$5,\!5,\!5$	0.22	0	4,4,4	0.50	0
64	ATP	23	3002	-	26,33,33	0.66	0	31,52,52	0.78	1 (3%)
64	ATP	23	3003	-	26,33,33	0.66	0	31,52,52	0.72	1 (3%)
60	SCM	23	3001	-	23,25,25	1.36	3 (13%)	26,39,39	1.56	5 (19%)
61	PUT	23	3016	-	$5,\!5,\!5$	0.23	0	4,4,4	0.49	0

Mal	Type	Chain	Dog	Link	B	ond leng	gths	B	ond ang	les
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
60	SCM	16	1602	-	23,25,25	1.35	2 (8%)	26,39,39	1.31	3 (11%)
61	PUT	LC	301	26	$5,\!5,\!5$	0.23	0	4,4,4	0.77	0
61	PUT	23	3012	-	$5,\!5,\!5$	0.23	0	4,4,4	0.49	0
65	SPD	23	3018	-	9,9,9	0.31	0	8,8,8	0.96	0
61	PUT	23	3007	-	$5,\!5,\!5$	0.16	0	4,4,4	0.20	0
61	PUT	23	3011	-	$5,\!5,\!5$	0.24	0	4,4,4	0.46	0
61	PUT	23	3009	-	$5,\!5,\!5$	0.23	0	4,4,4	0.51	0
61	PUT	23	3010	-	$5,\!5,\!5$	0.21	0	4,4,4	0.56	0
65	SPD	23	3017	-	$9,\!9,\!9$	0.31	0	8,8,8	0.91	0
61	PUT	23	3005	-	$5,\!5,\!5$	0.24	0	4,4,4	0.44	0
61	PUT	16	1605	-	$5,\!5,\!5$	0.17	0	4,4,4	0.21	0
60	SCM	16	1601	-	$23,\!25,\!25$	1.33	1 (4%)	26,39,39	1.37	3 (11%)
61	PUT	16	1604	-	$5,\!5,\!5$	0.17	0	4,4,4	0.21	0
61	PUT	23	3013	-	$5,\!5,\!5$	0.16	0	4,4,4	0.62	0
61	PUT	16	1603	-	$5,\!5,\!5$	0.24	0	4,4,4	0.50	0
66	GTP	EF	901	62	26,34,34	5.13	14 (53%)	32,54,54	1.88	7 (21%)
61	PUT	23	3014	-	$5,\!5,\!5$	0.21	0	4,4,4	0.44	0
61	PUT	23	3015	-	5, 5, 5	0.24	0	4,4,4	0.42	0
61	PUT	23	3008	-	$5,\!5,\!5$	0.24	0	4,4,4	0.51	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
61	PUT	23	3004	-	-	2/3/3/3	-
61	PUT	23	3006	-	-	1/3/3/3	-
64	ATP	23	3003	-	1/1/7/7	6/18/38/38	0/3/3/3
64	ATP	23	3002	-	-	3/18/38/38	0/3/3/3
60	SCM	23	3001	-	-	0/4/57/57	0/3/3/3
61	PUT	23	3016	-	-	1/3/3/3	-
60	SCM	16	1602	-	-	0/4/57/57	0/3/3/3
61	PUT	LC	301	26	-	1/3/3/3	-
61	PUT	23	3012	-	-	2/3/3/3	-
65	SPD	23	3018	-	-	0/7/7/7	-
61	PUT	23	3007	-	-	3/3/3/3	-
61	PUT	23	3011	-	-	1/3/3/3	-
61	PUT	23	3009	-	-	1/3/3/3	-
61	PUT	23	3010	-	-	1/3/3/3	-
65	SPD	23	3017	-	-	4/7/7/7	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
61	PUT	23	3005	-	-	0/3/3/3	-
61	PUT	16	1605	-	-	3/3/3/3	-
60	SCM	16	1601	-	-	2/4/57/57	0/3/3/3
61	PUT	16	1604	-	-	0/3/3/3	-
61	PUT	23	3013	-	-	2/3/3/3	-
61	PUT	16	1603	-	-	0/3/3/3	-
66	GTP	EF	901	62	-	2/18/38/38	0/3/3/3
61	PUT	23	3014	-	-	2/3/3/3	-
61	PUT	23	3015	-	-	2/3/3/3	-
61	PUT	23	3008	-	-	0/3/3/3	-

The worst 5 of 20 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
66	EF	901	GTP	C2'-C1'	-16.82	1.28	1.53
66	EF	901	GTP	O4'-C1'	14.42	1.61	1.41
66	EF	901	GTP	O4'-C4'	-6.48	1.30	1.45
66	EF	901	GTP	C2-N3	6.17	1.48	1.33
66	EF	901	GTP	C4-N3	4.70	1.48	1.37

The worst 5 of 20 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
66	EF	901	GTP	PA-O3A-PB	-6.50	110.52	132.83
60	16	1601	SCM	C8M-N8-C8	-4.31	108.11	114.38
66	EF	901	GTP	C5-C6-N1	3.89	120.83	113.95
60	23	3001	SCM	C1M-N10-C10	-3.46	109.34	114.38
66	EF	901	GTP	C2-N1-C6	-3.43	118.79	125.10

All (1) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
64	23	3003	ATP	C4'

5 of 39 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
60	16	1601	SCM	C9-C10-N10-C1M
60	16	1601	SCM	C11-C10-N10-C1M
64	23	3002	ATP	PB-O3B-PG-O3G

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	Atoms
64	23	3002	ATP	O4'-C4'-C5'-O5'
64	23	3003	ATP	C5'-O5'-PA-O1A

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
28	LE	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	LE	93:GLY	С	94:GLU	Ν	1.14

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-24134. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal surface views (i)

This section was not generated.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

