

Nov 22, 2022 – 06:23 AM EST

PDB ID	:	7N31
EMDB ID	:	EMD-24136
Title	:	Elongating 70S ribosome complex in a post-translocation (POST) conforma-
		tion
Authors	:	Rundlet, E.J.; Holm, M.; Schacherl, M.; Natchiar, K.S.; Altman, R.B.; Spahn,
		C.M.T.; Myasnikov, A.G.; Blanchard, S.C.
Deposited on	:	2021-05-31
Resolution	:	2.69 Å(reported)
This is	a I	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.69 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	16	1534	6% 81%	19%
2	SB	241	32%	• 5%
3	\mathbf{SC}	233	91%	9%
4	SD	206	18%	
5	SE	167	6% 92%	• 7%
6	SF	135	16% 77%	21%
7	SG	179	25%	• 14%
8	SH	130	5% 98%	

	nucu jion	i previous	page	
Mol	Chain	Length	Quality of chain	
0	CI.	120	20%	
9	51	150	38%	• •
10	SJ	103	92%	5% •
11	SK	129	89%	9%
12	SL	124	98%	
13	SM	118	97%	
14	SN	101	20%	•••
15	SO	89	10%	
16	SP	82	11%	
10		02	25%	
17	SQ	84	93%	• 5%
18	SR	75	87%	11%
19	SS	92	87%	10%
20	ST	87	99%	
01	CII	71	42%	
21	06	(1	99%	•
22	mR	60	17% • 80%	
23	23	2904	81% 19	%
24	5	120	82% 18	3%
25	LB	273	98%	••
26	LC	209	99%	•
27	LD	201	9%	
28	LE	179	27% 96%	
29	LF	177	33%	••
30	LI	149	96%	•
31	LM	142	99%	<mark>.</mark>
32	LN	123	98%	
33	LO	144	97%	•

Mol	Chain	Length	Quality of chain	
34	LP	136	97%	••
35	LQ	127	94%	• 6%
36	LR	117	9%	•
37	LS	115	<u>8%</u> 99%	·
38	LT	118	97%	••
39	LU	103	<u>6%</u> 99%	•
40	LV	110	97%	•
41	LW	100	93%	7%
42	LX	104	9%	••
43	LY	94	96%	•
44	La	85	96%	••
45	Lb	78	96%	••
46	Lc	63	95%	• •
47	Ld	59	98%	•
48	Le	70	89%	6% 6%
49	Lf	57	96%	••
50	Lg	55	95%	5%
51	Lh	46	96%	•
52	Li	65	94%	5% •
53	Lj	38	97%	•
54	Рр	3	67% 339	6
55	Pt	76	<u>66%</u> <u>30%</u>	•
56	Dt	76	68% 28%	•

2 Entry composition (i)

There are 61 unique types of molecules in this entry. The entry contains 146546 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	16	1533	Total 32908	C 14684	N 6036	O 10655	Р 1533	0	0

• Molecule 2 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	SB	229	Total 1786	C 1129	N 320	O 329	S 8	0	0

• Molecule 3 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	SC	211	Total 1653	C 1046	N 310	O 293	${f S}{4}$	0	0

• Molecule 4 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	SD	205	Total 1643	C 1026	N 315	O 298	${S \atop 4}$	0	0

• Molecule 5 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	SE	156	Total 1152	С 717	N 217	0 212	${ m S}{ m 6}$	0	0

• Molecule 6 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
6	SF	106	Total 862	C 545	N 156	0 154	S 7	0	0

• Molecule 7 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	SG	154	Total 1214	C 756	N 235	O 219	${f S}$ 4	0	0

• Molecule 8 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms		AltConf	Trace	
8	SH	129	Total 979	C 616	N 173	0 184	S 6	0	0

• Molecule 9 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	SI	127	Total 1021	C 634	N 206	0 178	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	SJ	100	Total 803	C 502	N 154	0 146	S 1	0	0

• Molecule 11 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	SK	117	Total 877	C 540	N 174	0 160	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
12	SL	123	Total 957	C 591	N 196	0 165	${ m S}{ m 5}$	0	0

• Molecule 13 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	SM	115	Total 891	$\begin{array}{c} \mathrm{C} \\ 552 \end{array}$	N 179	0 157	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	SN	100	Total 804	C 499	N 164	0 138	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	SO	88	Total 713	C 439	N 144	O 129	S 1	0	0

• Molecule 16 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	SP	82	Total 649	C 406	N 128	0 114	S 1	0	0

• Molecule 17 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	SQ	80	Total 648	C 411	N 121	O 113	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	SR	67	Total 555	C 351	N 106	O 97	S 1	0	0

• Molecule 19 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	SS	83	Total 663	C 424	N 126	0 111	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	ST	86	Total 669	C 414	N 138	0 114	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	SU	70	Total 589	C 366	N 125	O 97	S 1	0	0

• Molecule 22 is a RNA chain called mRNA.

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
22	mR	12	Total 252	C 113	N 41	O 86	Р 12	0	0

• Molecule 23 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
23	23	2904	Total 62355	C 27824	N 11469	O 20158	Р 2904	0	0

• Molecule 24 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
24	5	120	Total 2570	C 1144	N 468	0 838	P 120	0	0

• Molecule 25 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	AltConf	Trace			
25	LB	271	Total 2082	C 1288	N 423	0 364	${ m S} 7$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	LC	209	Total 1565	C 979	N 288	0 294	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	LD	201	Total 1552	C 974	N 283	O 290	${ m S}{ m 5}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	LE	177	Total 1410	C 899	N 249	O 256	S 6	0	0

• Molecule 29 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	LF	175	Total 1313	C 826	N 241	0 244	${S \over 2}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	LI	149	Total 1111	C 699	N 197	0 214	S 1	0	0

• Molecule 31 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	AltConf	Trace			
31	LM	142	Total 1128	С 714	N 212	0 198	${S \atop 4}$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	AltConf	Trace			
32	LN	123	Total 947	$\begin{array}{c} \mathrm{C} \\ 593 \end{array}$	N 181	O 167	S 6	0	0

• Molecule 33 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	LO	144	Total 1053	С 654	N 207	O 190	${S \over 2}$	0	0

• Molecule 34 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	LP	136	Total 1074	C 686	N 205	0 177	${f S}{f 6}$	0	0

• Molecule 35 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	LQ	120	Total 960	$\begin{array}{c} \mathrm{C} \\ 593 \end{array}$	N 196	O 166	${f S}{5}$	0	0

• Molecule 36 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
36	LR	116	Total 891	C 552	N 178	O 161	0	0

• Molecule 37 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	LS	114	Total 917	С 574	N 179	0 163	S 1	0	0

• Molecule 38 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
38	IΤ	117	Total	С	Ν	Ο	0	0
00		117	947	604	192	151	0	0

• Molecule 39 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	AltConf	Trace			
39	LU	103	Total 815	C 516	N 153	0 144	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 40 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	LV	110	Total 856	C 532	N 166	0 155	${ m S} { m 3}$	0	0

• Molecule 41 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	AltConf	Trace			
41	LW	93	Total 738	C 466	N 139	0 131	${S \over 2}$	0	0

• Molecule 42 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
42	LX	102	Total 779	C 492	N 146	0 141	0	0

• Molecule 43 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	LY	94	Total 753	C 479	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	La	84	Total 634	C 391	N 129	0 113	S 1	0	0

• Molecule 45 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
45	Lb	77	Total 624	C 388	N 129	O 105	${ m S} { m 2}$	0	0

• Molecule 46 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
46	Lc	61	Total 495	C 305	N 97	O 92	S 1	0	0

• Molecule 47 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
47	ГЧ	58	Total	С	Ν	Ο	\mathbf{S}	0	0
41	La		449	281	87	79	2	0	0

• Molecule 48 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Atc	\mathbf{ms}		AltConf	Trace	
48	Le	66	Total 522	C 323	N 99	0 94	S 6	0	0

• Molecule 49 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
49	Lf	56	Total 444	C 269	N 94	O 80	S 1	0	0

• Molecule 50 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
50	Lg	52	Total 427	C 275	N 78	О 74	0	0

• Molecule 51 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
51	Lh	46	Total 377	C 228	N 90	O 57	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 52 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
52	Li	64	Total 504	C 323	N 105	0 74	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 53 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
53	Lj	38	Total 301	C 185	N 65	0 47	S 4	0	0

• Molecule 54 is a protein called Polypeptide.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
54	Pn	3	Total	С	Ν	0	\mathbf{S}	0	0
04	тр	5	28	20	4	3	1	0	0

• Molecule 55 is a RNA chain called tRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace		
55	Pt	76	Total 1636	С 734	N 284	0 541	Р 76	S 1	0	0

• Molecule 56 is a RNA chain called tRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace		
56	Dt	76	Total 1634	С 734	N 291	O 532	Р 75	${ m S} { m 2}$	0	0

• Molecule 57 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
57	16	57	Total Mg 57 57	0
57	23	146	Total Mg 146 146	0
57	5	3	Total Mg 3 3	0
57	LC	1	Total Mg 1 1	0
57	LD	1	Total Mg 1 1	0
57	Lf	1	Total Mg 1 1	0

• Molecule 58 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		At	oms			AltConf
59	93	1	Total	С	Ν	Ο	Р	0
- 38	20	1	62	20	10	26	6	0
50	<u> </u>	1	Total	С	Ν	Ο	Р	0
58	23	1	62	20	10	26	6	0

• Molecule 59 is 1,4-DIAMINOBUTANE (three-letter code: PUT) (formula: $C_4H_{12}N_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
50	<u> </u>	1	Total C N	0
- 59	20	1	54 36 18	0
50	93	1	Total C N	0
- 59	20	1	54 36 18	0
50	93	1	Total C N	0
- 09	20	T	54 36 18	0
50	93	1	Total C N	0
03	20	1	54 36 18	0
50	93	1	Total C N	0
- 05	20	T	54 36 18	0
50	93	1	Total C N	0
0.5	20	1	54 36 18	0
50	93	1	Total C N	0
- 59	20	1	54 36 18	0
50	93	0.9 1	Total C N	0
- 59	20		54 36 18	
50	93	1	Total C N	0
- 59	20		54 36 18	0

• Molecule 60 is SPERMIDINE (three-letter code: SPD) (formula: $C_7H_{19}N_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
60	93	1	Total C N	0
00	20	1	40 28 12	0
60	93	1	Total C N	0
00	20	1	40 28 12	0
60) 23	1	Total C N	0
00			40 28 12	0
60	23	1	Total C N	0
			40 28 12	0

• Molecule 61 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
61	Le	1	Total Zn 1 1	0
61	Lj	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S rRNA

• Molecule 2: 30S ribosomal protein S2

Chain SL: 98% ···
MET A2 A13 K15 V16 A17 B109 A124 A124 A124
• Molecule 13: 30S ribosomal protein S13
Chain SM: 97% ···
MET A2 A2 A5 A5 A5 B1 B1 B1 A40 B11 B40 B41 B40 B40 B40 B40 B40 B40 B40 B40 B40 B40
• Molecule 14: 30S ribosomal protein S14
Chain SN: 98% ···
MET A15 A15 A15 A15 A15 A25 A26 A26 A13 B13 B13 B13 B13 B13 B13 B13 B13 B13 B
• Molecule 15: 30S ribosomal protein S15
Chain SO: 98% ···
MET S2 B11 A10 A76 B83 B89 B89 B89
• Molecule 16: 30S ribosomal protein S16
Chain SP: 100%
M1 E45 E45 E45 E48 B53 A81 A82 A82 A82
• Molecule 17: 30S ribosomal protein S17
25% Chain SQ: 93% • 5%
MET THR ASP K4 K4 C4 C4 M17 E18 M17 E18 M17 E18 K3 C54 C53 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C53 C54 C54 C55 C54 C55 C54 C55 C54 C55 C55
• Molecule 18: 30S ribosomal protein S18
Chain SR: 87% · 11%

MET ALA ALA ALA ARG ARG F10 F11 C11 F13 F13 C11 F13 C11 F13 C11 F13 C11 F13 C11 F13 C11 F13 C11 F13 C11 F13 C11 F13 C11 F13 C11 F13 F10 F10 F10 F10 F10 F10 F10 F10 F10 F10
• Molecule 19: 30S ribosomal protein S19
Chain SS: 87% · 10%
MET P2 L13 L13 L13 E20 K21 K21 K22 K22 K22 K22 K22 K22 K22 K22
• Molecule 20: 30S ribosomal protein S20
Chain ST: 99%
MET A2 A41 A41 K65 K65 K85 L86 L86 A87 A87
• Molecule 21: 30S ribosomal protein S21
Chain SU: 99%
MET NG K5 V3 V5 V6 K5 E3 F1 F1 F1 F1 F1 F1 F1 C2 F2 F2 K5 K5 K5 K5 K5 K5 K5 K5 K5 K5 K5 K5 K5
• Molecule 22: mRNA
Chain mR: 17% · 80%
0 4 0
• Molecule 23: 23S rRNA
Chain 23: 81% 19%
G1 410 M10 134 0134 013 0134 013 0135 013 014 010 015 0110 0137 0113 0137 0113 0137 0113 0137 0113 0137 0113 0137 0113 0137 0136 0137 0137 0137 0138 0137 0138 0137 0137 0137 0138 0137 0137 0137 0138 0137 0138 0137 0138 0138 0138 0139 0138 01318 0138 01318 0138 01318 0138 01318 0138 01318 0138 01318 0138 01318 0138 01318
A221 A221 A225 U228 A226 C249 C249 C249 C249 C249 C249 C249 C249
A3 62 A3 71 C3 62 A3 71 C3 62 C3 63 C3 63 C3 63 C3 63 C3 63 C4 75 C4 75

C531 A532 A532 U545 U546 C549 C549	6555 4566 4566 4563 4573 4573 4573 4573 4573	A614 A614 0615 A637 A637 A637 C645 C645 C645 U648	A654 A655 A677 A677 A677 A655 U686 C704 A705 A705	011 4722 6726 6729 4730	
C736 C736 C745 U747 A764 L765 U765	6775 6776 A782 A783 A789 A789 A789 A789 A789 A792 C805 C805 C812	A819 U827 U828 U846 U846 C858 C855 C855	A866 889 888 888 888 888 888 888 888 888		
U894 U895 A896 A896 C897 C897 A890 A890 C901	C915 C915 G916 G918 A918 U919 U933 N933 A933 A941 C946 C946	U955 6661 6962 6962 6974 6973 6983 6983 6983 6984 6983	A996 A996 U1012 C1013 G1022 G1026 A1027 A1027	C1045	
A1064 G1055 G1056 A1057 U1068 U1060 U1061 U1061	G1053 C1064 U1065 U1065 A1067 A1066 A1070 G1071 G1071 G1073 G1074	C1075 C1075 A1077 U1078 A1080 A1080 U1081 U1082 U1083 A1084 A1084	A1085 A1086 A1087 A1087 A1089 A1090 C1092 C1092 C1093 A1096 A1096	U1097 A1098 G1099 C1100 A1101 A1103 A1103 C1104 C1104 C1105 C1105	G1107 C1109 G11109 A1111 G1112 G1112
U1130 C1131 U1132 A1132 A1134 C1136 C1136 C1136 C1136 A1142 A1169	C1170 G1171 C1172 C1172 U1174 A1175 A1175 C1175 G1177 C1177 C1178 G1179 C1178 C1178	61206 61236 61236 61238 61238 61238 61241 01249 01249	A1253 41266 41266 41266 41272 41272 41286 A1286 A1286	61300 A1301 C1320 A1321	
U1329 C1345 U1352 A1359 A1365 G1365	61374 U1379 01380 61380 61386 A1383 A1392 01386 A1403 A1403	C:414 C:415 C:417 C:417 C:417 C:1418 A:1419 A:1419 C:1428 A:1434 A:1434 C:1437 C:1437	C1451 C1452 C1452 A1453 A1453 C1450 C1482 A1490 C1483 C1483	U1497 C1498 U1506 C1507	
A1508 A1509 G1514 G1529 G1529 G1529 G1531 A1532 C1533 C1533	A1535 C1536 C1536 C1536 C1538 C1539 C1541 A1544 A1566 A1566	A1569 A1583 A1584 C1585 C1585 C1585 C1585 A1602 A1608 A1608	A1618 A1634 01647 01649 01649 A1664 C1664 C1694	U1714 U1726 C1726 C1727 C1728 U1729 U1729	
C1730 G1731 G1731 C1738 U1758 U1758 C1764 A1773 A1773 G1776	U1782 U1782 A1784 A1786 A1786 A1786 A1791 C199 C199 C199 C1900 C1870 C1870 C1870 C1816 C1870 C1816	01817 01818 A1829 61835 A1847 A1871 A1871 A1800	A1901 C1902 C1902 C1907 C1907 C1907 C191915 A1927 A1928 C1929 C1929 C1929 C1929 C1929 C1922	A1956 A1958 U1938 C1941 C1941	
61954 11955 11960 61961 01963 01963 01963 01963 01963	11971 01972 01975 01975 01991 01991 01993 01993 01993 01993 01993 01993 01993 01993 01993	C2023 A2030 A2031 A2032 A2033 A2033 A2033 C2043 C2043 C2055 C2055	A2060 A2060 A2065 A2069 B2069 B2069 B2074 B2099 C2100 C2100	C2102 C2102 C2102 C2104 U2105 U2106	
C2107 A2108 U2109 C2110 C2111 C2112 C2112 C2112 A2114 A2114 C2115 C2115	C2116 A2117 U2118 A2119 C2120 C2121 C2122 C2122 C2122 C2125 C2125 C2125 C2125 C2125 C2127 C2127 C2127	G2128 C2129 U2130 U2131 U2133 A2134 A2134 A2135 G2135 G2135 C2135 C2135 C2135	C2145 C2141 C2141 A2142 C2143 C2144 C2145 C215 C215 C215 C215 C215 C215 C215 C21	C2150 U2151 C2152 C2153 A2154 U2155 C2155 C2155 C2157 A2158 C2159	C2160 C2161 G2162 A2163 C2164 C2165 U2166
U2167 (22168 A2169 A2170 A2171 U2172 A2173 C2174 C2175	A2176 C2177 C2178 C2179 U2180 U2181 U2181 A2183 A2185 A2185 C2185 C2185	U2188 U2189 G2190 A2191 A2198 A2198 U2203 C2204 A2211 A2211	A2225 (2238 (2239 (2239 (2239 (2251 A2268 (2251 (2279	C2283 A2287 A2288 C2305 C2305 C2305 A2308 A2308 A2308 A2308	
A2311 U2312 (22319 A2322 A2325 A2333 U2335 A2335	A2336 A2345 U2345 C2345 C2347 C2356 C2347 C2356 C2356 C2356 C2356 C2357 C2357	C2383 C2385 C2385 C2385 C2385 C2381 C2381 C2402 C2403 A2405 A2405 A2405	02410 U2423 02423 A2425 A2426 02429 A2433 A2433 A2435 A2435 A2435 A2435 A2435	02445 02446 02447 12448 12449	
U2457 G2464 A2468 A2468 U2473 C2475 C2475 A2475 A2475	62484 62485 62485 62485 62485 62485 62498 62498 62498 62503 72503 72503 02504 62503 02506	C2507 C2517 A2518 A2518 G2529 G2535 U2552 C2553	U2554 25667 22667 22673 U2580 02581 02582 02582 02582 02582 02582 02582	02603 102604 12605 12609	

WORLDWIDE PROTEIN DATA BANK

• Molecule 24: 55 rRNA

- Chain 5: 82% 18% • Molecule 25: 50S ribosomal protein L2 Chain LB: 98% • Molecule 26: 50S ribosomal protein L3 Chain LC: 99% • Molecule 27: 50S ribosomal protein L4 Chain LD: 100% E E • Molecule 28: 50S ribosomal protein L5 27% Chain LE: 96%
- Molecule 29: 50S ribosomal protein L6

• Molecule 35: 50S ribosomal protein L17

Chain LQ:	94%	• 6%
R1 R2 R19 R120 ALA ALA ALA ALA ALA ALA ALA CLU		
• Molecule 36: 50S ribosom	nal protein L18	
Chain LR:	99%	
MET D2 K3 K5 K56 A14 K55 K55 K53 K63 K63 K85 K85 K85 K85 K85 K85 K85 K85		
• Molecule 37: 50S ribosom	nal protein L19	
Chain LS:	99%	·
MET S2 N3 d1 d15 E34 E34 C35 S36 K37 K37 N115		
• Molecule 38: 50S ribosom	nal protein L20	
Chain LT:	97%	••
MBT A2 D9 1 A118		
• Molecule 39: 50S ribosom	nal protein L21	
Chain LU:	99%	
M1 V33 E37 E46 E46 E46 E46 E46 E46 A103		
• Molecule 40: 50S ribosom	nal protein L22	
Chain LV:	97%	·
M1 14 067 8108 81109 8110		

• Molecule 41: 50S ribosomal protein L23

Chain LW:	93%	7%
12 12 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14		
• Molecule 42: 50S ribosom	nal protein L24	
Chain LX:	97%	••
MET 42 734 748 748 748 753 851 954 955 955 955 955 955 955	TVS	
• Molecule 43: 50S ribosom	nal protein L25	
Chain LY:	96%	·
MI KIO KIO K34 A52 A52 K53 A54 A54 K53 A54 K53 K53 K53 K53 K53 K53 K53 K53 K54 K10	162 B66 A94 A94	
• Molecule 44: 50S ribosom	nal protein L27	
Chain La:	96%	••
MET A2 A5 A6 C7 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3		
• Molecule 45: 50S ribosom	nal protein L28	
Chain Lb:	96%	
MET 22 23 235 235 235 24 24 235 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25		
• Molecule 46: 50S ribosom	nal protein L29	
Chain Lc:	95%	
MET K2 A3 K4 E5 K9 K9 K9 K9 K9 K9 K9 K9 K9 K9 K9 K9 K9	ALA ALA	
• Molecule 47: 50S ribosom	nal protein L30	
Chain Ld:	98%	.
MET A2 K3 E37 B40 E58 E59		

• Molecule 48: 50S ribosc	mal protein L31		
Chain Le:	57% 89%	6% 6%	
MI K2 K3 D4 D4 K8 K8 K8 K8 K13 K13 K14 S17 S17 K13 K14 K13 K13 K13 K13 K13 K13 K13 K13 K13 K13	V21 M22 K23 124 127 H30 H30 H33 L34 H30 H33 L34 H30 H35 H34 H36 H36 H44	K47 (447 (448 (448 (153 (153 (155 (155 (155 (155 (155 (155	GLY SER LYS
• Molecule 49: 50S ribosc	mal protein L32		
Chain Lf:	96%	• •	
MET A2 R40 D46 A56 A56 K57			
• Molecule 50: 50S ribosc	mal protein L33		
Chain Lg:	95%	5%	
MET ALA LYS LYS G4 K27 R28 R28 R32 P31 P31 E32 E35 K33 K53	K55		
• Molecule 51: 50S ribosc	mal protein L34		
Chain Lh:	96%	•	
M1 14 K 46			
• Molecule 52: 50S ribosc	omal protein L35		
Chain Li:	94%	5% •	
MET 131 131 131 131 131 131 131 131 131 13			
• Molecule 53: 50S ribosc	omal protein L36		
Chain Lj:	97%	·	
M1 N12 D20 C C C C C C C C C C C C C C C C C C C			
• Molecule 54: Polypeptic	le		
Chain Pp:	67% 67%	33%	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	34170	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING ONLY	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	87	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.199	Depositor
Minimum map value	-0.103	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.003	Depositor
Recommended contour level	0.025	Depositor
Map size (Å)	610.55994, 610.55994, 610.55994	wwPDB
Map dimensions	576, 576, 576	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 1MG, U8U, OMU, MA6, 2MA, 3AU, 4D4, PSU, 6MZ, 4OC, 7MG, OMG, 5MU, ZN, H2U, T6A, D2T, 5MC, 3TD, UR3, 4SU, SPD, 2MG, PUT, MG, OMC, MIA, ATP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angle	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	16	0.39	0/36568	0.70	0/57042
2	SB	0.43	0/1817	0.62	0/2449
3	SC	0.43	0/1680	0.61	0/2263
4	SD	0.44	0/1665	0.64	0/2227
5	SE	0.45	0/1165	0.68	0/1568
6	SF	0.40	0/881	0.63	0/1189
7	SG	0.45	0/1230	0.67	0/1649
8	SH	0.45	0/989	0.64	0/1326
9	SI	0.49	0/1033	0.70	0/1375
10	SJ	0.50	0/813	0.73	0/1100
11	SK	0.47	0/893	0.68	0/1205
12	SL	0.46	0/960	0.70	0/1286
13	SM	0.47	0/900	0.73	0/1204
14	SN	0.42	0/816	0.61	0/1088
15	SO	0.40	0/721	0.60	0/964
16	SP	0.44	0/659	0.68	0/884
17	SQ	0.50	0/657	0.66	0/881
18	SR	0.45	0/564	0.66	0/756
19	SS	0.48	0/680	0.66	0/915
20	ST	0.46	0/675	0.63	0/895
21	SU	0.46	0/597	0.62	0/792
22	mR	0.29	0/280	0.58	0/433
23	23	0.46	2/69306~(0.0%)	0.71	4/108116~(0.0%)
24	5	0.47	1/2873~(0.0%)	0.72	0/4478
25	LB	0.51	0/2121	0.78	0/2852
26	LC	0.48	0/1586	0.77	1/2134~(0.0%)
27	LD	0.41	$0/1\overline{571}$	0.67	0/2113
28	LE	0.49	0/1434	0.67	0/1926
29	LF	0.35	0/1333	0.58	0/1805
30	LI	0.48	0/1122	0.67	0/1515
31	LM	0.47	0/1151	0.67	0/1551

Mal	Chain	Bond lengths Bond		ond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
32	LN	0.47	0/956	0.73	0/1279
33	LO	0.49	0/1062	0.76	0/1413
34	LP	0.48	0/1080	0.74	1/1443~(0.1%)
35	LQ	0.44	0/973	0.70	0/1301
36	LR	0.41	0/901	0.63	0/1209
37	LS	0.46	0/929	0.67	0/1242
38	LT	0.49	0/960	0.78	0/1278
39	LU	0.45	0/828	0.70	0/1107
40	LV	0.45	0/863	0.69	0/1156
41	LW	0.46	0/744	0.67	0/994
42	LX	0.47	0/787	0.73	0/1051
43	LY	0.38	0/766	0.59	0/1025
44	La	0.42	0/642	0.66	0/848
45	Lb	0.48	0/634	0.74	0/848
46	Lc	0.49	0/496	0.61	0/660
47	Ld	0.43	0/453	0.69	0/605
48	Le	0.56	0/531	0.69	0/709
49	Lf	0.51	0/450	0.72	0/599
50	Lg	0.38	0/434	0.61	0/576
51	Lh	0.45	0/380	0.79	0/498
52	Li	0.46	0/513	0.75	0/676
53	Lj	0.45	0/302	0.72	0/397
54	Pp	0.49	0/28	1.75	$1\overline{/34}\ (2.9\%)$
55	Pt	0.37	$1/\overline{1595}~(0.1\%)$	0.70	0/2479
56	Dt	0.33	0/1624	0.65	0/2527
All	All	0.44	4/157671~(0.0%)	0.70	$7/23593\overline{5}\ (0.0\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
33	LO	0	2
54	Рр	0	1
All	All	0	3

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
24	5	1	U	OP3-P	-10.62	1.48	1.61
23	23	1	G	OP3-P	-10.19	1.49	1.61

0 0	iraca ji cii	• p	as page.				
Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
23	23	2074	U	O3'-P	-5.08	1.55	1.61
55	Pt	20	U	C1'-N1	5.04	1.56	1.48

All (7) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
23	23	2820	A	C2'-C3'-O3'	6.69	124.41	113.70
23	23	1079	C	O4'-C1'-N1	-5.73	103.62	108.20
54	Pp	2	PHE	C-N-CA	-5.66	107.56	121.70
34	LP	18	ARG	CB-CA-C	5.63	121.66	110.40
23	23	2178	С	C2-N1-C1'	5.21	124.53	118.80
23	23	512	G	O4'-C1'-N9	5.20	112.36	108.20
26	LC	136	ASN	CB-CA-C	5.13	120.65	110.40

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
33	LO	77	ILE	Mainchain
33	LO	78	ARG	Mainchain
54	Рр	1	MET	Mainchain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
2	SB	227/241~(94%)	216 (95%)	10 (4%)	1 (0%)	34	60
3	SC	209/233~(90%)	204 (98%)	5 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	SD	203/206~(98%)	201 (99%)	2(1%)	0	100	100
5	SE	154/167~(92%)	148 (96%)	6 (4%)	0	100	100
6	\mathbf{SF}	104/135~(77%)	103 (99%)	1 (1%)	0	100	100
7	SG	152/179~(85%)	148 (97%)	4 (3%)	0	100	100
8	SH	127/130~(98%)	124 (98%)	3(2%)	0	100	100
9	SI	125/130~(96%)	118 (94%)	7 (6%)	0	100	100
10	SJ	98/103~(95%)	94 (96%)	3(3%)	1 (1%)	15	37
11	SK	115/129~(89%)	109 (95%)	6 (5%)	0	100	100
12	SL	120/124~(97%)	116 (97%)	4 (3%)	0	100	100
13	SM	113/118~(96%)	109 (96%)	4 (4%)	0	100	100
14	SN	98/101~(97%)	97~(99%)	1 (1%)	0	100	100
15	SO	86/89~(97%)	83 (96%)	3 (4%)	0	100	100
16	SP	80/82~(98%)	78~(98%)	2(2%)	0	100	100
17	SQ	78/84~(93%)	71 (91%)	7 (9%)	0	100	100
18	SR	65/75~(87%)	63~(97%)	2(3%)	0	100	100
19	SS	81/92~(88%)	78~(96%)	3~(4%)	0	100	100
20	ST	84/87~(97%)	84 (100%)	0	0	100	100
21	SU	68/71~(96%)	68 (100%)	0	0	100	100
25	LB	269/273~(98%)	258~(96%)	11 (4%)	0	100	100
26	LC	207/209~(99%)	200 (97%)	7 (3%)	0	100	100
27	LD	199/201~(99%)	195~(98%)	4 (2%)	0	100	100
28	LE	175/179~(98%)	169 (97%)	6 (3%)	0	100	100
29	LF	173/177~(98%)	166 (96%)	7~(4%)	0	100	100
30	LI	147/149~(99%)	140 (95%)	7~(5%)	0	100	100
31	LM	140/142~(99%)	139 (99%)	1 (1%)	0	100	100
32	LN	121/123~(98%)	119 (98%)	2(2%)	0	100	100
33	LO	142/144~(99%)	136 (96%)	6 (4%)	0	100	100
34	LP	$133/\overline{136}\ (98\%)$	130 (98%)	3(2%)	0	100	100
35	LQ	118/127~(93%)	116 (98%)	2(2%)	0	100	100
36	LR	$114/\overline{117}\ (97\%)$	112 (98%)	2(2%)	0	100	100
37	LS	112/115~(97%)	108 (96%)	4 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
38	LT	115/118~(98%)	115 (100%)	0	0	100	100
39	LU	101/103~(98%)	98 (97%)	3 (3%)	0	100	100
40	LV	108/110~(98%)	102 (94%)	6 (6%)	0	100	100
41	LW	91/100 (91%)	90 (99%)	1 (1%)	0	100	100
42	LX	100/104~(96%)	96 (96%)	4 (4%)	0	100	100
43	LY	92/94~(98%)	91 (99%)	1 (1%)	0	100	100
44	La	82/85~(96%)	78 (95%)	4 (5%)	0	100	100
45	Lb	75/78~(96%)	73 (97%)	2(3%)	0	100	100
46	Lc	59/63~(94%)	59 (100%)	0	0	100	100
47	Ld	56/59~(95%)	54 (96%)	2 (4%)	0	100	100
48	Le	64/70~(91%)	63 (98%)	1 (2%)	0	100	100
49	Lf	54/57~(95%)	53 (98%)	1 (2%)	0	100	100
50	Lg	50/55~(91%)	49 (98%)	1 (2%)	0	100	100
51	Lh	44/46~(96%)	44 (100%)	0	0	100	100
52	Li	62/65~(95%)	59 (95%)	3 (5%)	0	100	100
53	Lj	36/38~(95%)	35 (97%)	1 (3%)	0	100	100
54	Pp	1/3~(33%)	0	1 (100%)	0	100	100
All	All	5627/5916~(95%)	5459 (97%)	166 (3%)	2 (0%)	100	100

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
10	SJ	57	VAL
2	SB	95	ARG

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
2	SB	189/199~(95%)	187 (99%)	2(1%)	73 90

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
3	\mathbf{SC}	172/190~(90%)	172 (100%)	0	100	100
4	SD	172/173~(99%)	171~(99%)	1 (1%)	86	95
5	SE	119/126~(94%)	117~(98%)	2(2%)	60	84
6	\mathbf{SF}	92/116~(79%)	90~(98%)	2(2%)	52	79
7	SG	127/147~(86%)	123~(97%)	4 (3%)	40	69
8	SH	104/105~(99%)	103 (99%)	1 (1%)	76	91
9	SI	105/107~(98%)	101 (96%)	4 (4%)	33	62
10	SJ	88/90~(98%)	84 (96%)	4 (4%)	27	55
11	SK	90/99~(91%)	88 (98%)	2 (2%)	52	79
12	SL	102/103~(99%)	101 (99%)	1 (1%)	76	91
13	SM	93/96~(97%)	92 (99%)	1 (1%)	73	90
14	SN	83/84~(99%)	82 (99%)	1 (1%)	71	88
15	SO	76/77~(99%)	75~(99%)	1 (1%)	69	87
16	SP	65/65~(100%)	65 (100%)	0	100	100
17	SQ	74/78~(95%)	72 (97%)	2(3%)	44	74
18	SR	58/65~(89%)	56 (97%)	2(3%)	37	66
19	SS	72/79~(91%)	69~(96%)	3 (4%)	30	58
20	ST	65/66~(98%)	65 (100%)	0	100	100
21	SU	60/61~(98%)	60 (100%)	0	100	100
25	LB	216/218~(99%)	213 (99%)	3 (1%)	67	86
26	LC	164/164~(100%)	163 (99%)	1 (1%)	86	95
27	LD	165/165~(100%)	165 (100%)	0	100	100
28	LE	148/150~(99%)	142 (96%)	6 (4%)	30	59
29	LF	136/138~(99%)	134 (98%)	2 (2%)	65	86
30	LI	114/114 (100%)	108 (95%)	6 (5%)	22	48
31	LM	116/116 (100%)	115 (99%)	1 (1%)	78	92
32	LN	104/104~(100%)	102 (98%)	2 (2%)	57	82
33	LO	103/103~(100%)	101 (98%)	2(2%)	57	82
34	LP	108/108 (100%)	105 (97%)	3 (3%)	43	73
35	LQ	100/103~(97%)	99~(99%)	1 (1%)	76	91
36	LR	86/87~(99%)	86 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
37	LS	99/100~(99%)	99 (100%)	0	100	100
38	LT	89/90~(99%)	87~(98%)	2 (2%)	52	79
39	LU	84/84 (100%)	83~(99%)	1 (1%)	71	88
40	LV	93/93~(100%)	90~(97%)	3(3%)	39	68
41	LW	80/84~(95%)	80 (100%)	0	100	100
42	LX	83/85~(98%)	82~(99%)	1 (1%)	71	88
43	LY	78/78 (100%)	74 (95%)	4 (5%)	24	50
44	La	62/63~(98%)	60 (97%)	2 (3%)	39	68
45	Lb	67/68~(98%)	65~(97%)	2 (3%)	41	70
46	Lc	54/55~(98%)	53~(98%)	1 (2%)	57	82
47	Ld	48/49~(98%)	48 (100%)	0	100	100
48	Le	59/62~(95%)	55~(93%)	4 (7%)	16	36
49	Lf	47/48~(98%)	46 (98%)	1 (2%)	53	80
50	Lg	47/49~(96%)	47 (100%)	0	100	100
51	Lh	38/38~(100%)	36~(95%)	2(5%)	22	48
52	Li	51/52~(98%)	48 (94%)	3 (6%)	19	43
53	Lj	34/34~(100%)	33~(97%)	1 (3%)	42	71
54	Pp	3/3~(100%)	1 (33%)	2 (67%)	0	0
All	All	4682/4831 (97%)	4593 (98%)	89 (2%)	59	82

All (89) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	SB	23	TRP
2	SB	144	LEU
4	SD	62	ARG
5	SE	82	GLN
5	SE	164	ILE
6	SF	39	LEU
6	SF	68	GLN
7	SG	15	ASP
7	SG	30	LEU
7	SG	75	VAL
7	SG	119	ARG
8	SH	117	ARG
9	SI	12	ARG

Mol	Chain	Res	Type
9	SI	15	SER
9	SI	61	LEU
9	SI	123	ARG
10	SJ	5	ARG
10	SJ	36	VAL
10	SJ	44	THR
10	SJ	92	LEU
11	SK	16	VAL
11	SK	100	LEU
12	SL	21	VAL
13	SM	7	ILE
14	SN	10	GLU
15	SO	64	ARG
17	SQ	27	ARG
17	SQ	65	ARG
18	SR	14	THR
18	SR	71	THR
19	SS	2	PRO
19	SS	45	ILE
19	SS	81	ARG
25	LB	130	LEU
25	LB	162	VAL
25	LB	242	LYS
26	LC	186	LEU
28	LE	26	MET
28	LE	49	LEU
28	LE	87	CYS
28	LE	89	VAL
28	LE	109	PRO
28	LE	129	SER
29	LF	79	VAL
29	LF	152	ARG
30	LI	7	ASP
30	LI	15	LEU
30	LI	73	ASN
30	LI	112	LYS
30	LI	130	VAL
30	LI	146	VAL
31	LM	142	ILE
32	LN	5	GLN
32	LN	18	ARG
33	LO	5	THR

Mol	Chain	Res	Type
33	LO	85	VAL
34	LP	1	MET
34	LP	18	ARG
34	LP	108	VAL
35	LQ	2	ARG
38	LT	83	LEU
38	LT	91	ASP
39	LU	33	VAL
40	LV	4	ILE
40	LV	108	SER
40	LV	109	ASP
42	LX	34	VAL
43	LY	1	MET
43	LY	35	GLU
43	LY	62	THR
43	LY	92	VAL
44	La	9	SER
44	La	10	THR
45	Lb	25	THR
45	Lb	35	SER
46	Lc	58	ASN
48	Le	5	ILE
48	Le	24	ILE
48	Le	28	VAL
48	Le	32	LEU
49	Lf	40	ARG
51	Lh	4	THR
51	Lh	25	LYS
52	Li	31	HIS
52	Li	42	ARG
52	Li	54	ASP
53	Lj	36	ARG
54	Pp	1	MET
54	Pp	3	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (26) such sidechains are listed below:

Mol	Chain	Res	Type
2	SB	39	HIS
2	SB	42	ASN
4	SD	71	GLN
5	SE	43	ASN

Mol	Chain	Res	Type
5	SE	82	GLN
5	SE	148	ASN
7	SG	28	ASN
10	SJ	58	ASN
13	SM	105	ASN
15	SO	40	GLN
16	SP	29	ASN
16	SP	63	GLN
18	SR	74	HIS
20	ST	48	GLN
20	ST	52	ASN
20	ST	70	ASN
21	SU	9	ASN
25	LB	243	HIS
30	LI	43	ASN
30	LI	133	GLN
36	LR	104	GLN
36	LR	116	GLN
37	LS	7	GLN
39	LU	86	GLN
44	La	50	ASN
49	Lf	5	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	16	1529/1534~(99%)	284~(18%)	21 (1%)
22	mR	11/60~(18%)	2 (18%)	0
23	23	2899/2904~(99%)	508 (17%)	60~(2%)
24	5	119/120~(99%)	18 (15%)	2(1%)
55	Pt	73/76~(96%)	19 (26%)	0
56	Dt	73/76~(96%)	19~(26%)	0
All	All	4704/4770~(98%)	850 (18%)	83 (1%)

All (850) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	16	4	U
1	16	7	А
1	16	9	G
1	16	22	G

Mol	Chain	Res	Type
1	16	30	U
1	16	32	А
1	16	39	G
1	16	44	А
1	16	47	С
1	16	48	С
1	16	50	А
1	16	51	A
1	16	52	С
1	16	69	G
1	16	70	U
1	16	71	A
1	16	74	А
1	16	79	G
1	16	83	C
1	16	84	U
1	16	85	U
1	16	86	G
1	16	88	U
1	16	90	С
1	16	91	U
1	16	98	А
1	16	116	A
1	16	121	U
1	16	122	G
1	16	128	G
1	16	129	A
1	16	130	A
1	16	131	А
1	16	142	G
1	16	144	G
1	16	163	С
1	16	171	A
1	16	173	U
1	16	182	A
1	16	183	С
1	16	197	A
1	16	204	G
1	16	209	U
1	16	210	С
1	16	212	G
1	16	222	С

Mol	Chain	Res	Type
1	16	226	G
1	16	240	G
1	16	243	А
1	16	245	U
1	16	247	G
1	16	250	А
1	16	251	G
1	16	252	U
1	16	264	С
1	16	266	G
1	16	267	С
1	16	274	А
1	16	281	G
1	16	289	G
1	16	300	А
1	16	306	А
1	16	316	С
1	16	321	А
1	16	328	С
1	16	329	А
1	16	332	G
1	16	345	С
1	16	347	G
1	16	351	G
1	16	352	С
1	16	354	G
1	16	355	С
1	16	363	А
1	16	366	А
1	16	367	U
1	16	369	G
1	16	372	С
1	16	373	А
1	16	384	G
1	16	388	G
1	16	392	С
1	16	398	U
1	16	406	G
1	16	411	A
1	16	412	A
1	16	413	G
1	16	422	С

Mol	Chain	Res	Type
1	16	429	U
1	16	438	U
1	16	439	U
1	16	467	U
1	16	468	А
1	16	484	G
1	16	486	U
1	16	495	А
1	16	496	А
1	16	509	А
1	16	510	А
1	16	511	С
1	16	518	C
1	16	521	G
1	16	524	G
1	16	527	7MG
1	16	531	U
1	16	532	A
1	16	535	А
1	16	547	А
1	16	559	A
1	16	562	U
1	16	564	С
1	16	572	А
1	16	573	А
1	16	576	С
1	16	577	G
1	16	579	А
1	16	607	A
1	16	610	U
1	16	615	G
1	16	633	G
1	16	641	U
1	16	642	A
1	16	650	G
1	16	653	U
1	16	665	А
1	16	699	С
1	16	703	G
1	16	721	G
1	16	723	U
1	16	724	G

Mol	Chain	Res	Type
1	16	734	G
1	16	755	G
1	16	759	A
1	16	760	G
1	16	774	G
1	16	777	А
1	16	787	А
1	16	789	U
1	16	790	А
1	16	793	U
1	16	794	А
1	16	812	G
1	16	815	A
1	16	817	С
1	16	821	G
1	16	828	U
1	16	832	G
1	16	841	С
1	16	842	U
1	16	843	U
1	16	844	G
1	16	845	A
1	16	846	G
1	16	851	G
1	16	867	G
1	16	870	U
1	16	889	А
1	16	902	G
1	16	913	A
1	16	914	А
1	16	923	A
1	16	926	G
1	16	927	G
1	16	934	С
1	16	960	U
1	16	964	A
1	16	966	2MG
1	16	968	A
1	16	969	A
1	16	975	A
1	16	976	G
1	16	977	A

Mol	Chain	Res	Type
1	16	993	G
1	16	994	А
1	16	1002	G
1	16	1003	G
1	16	1004	А
1	16	1016	А
1	16	1019	А
1	16	1020	G
1	16	1021	А
1	16	1026	G
1	16	1029	U
1	16	1031	С
1	16	1033	G
1	16	1043	G
1	16	1045	С
1	16	1046	А
1	16	1053	G
1	16	1065	U
1	16	1067	А
1	16	1085	U
1	16	1086	U
1	16	1091	U
1	16	1094	G
1	16	1095	U
1	16	1101	А
1	16	1107	С
1	16	1118	U
1	16	1123	U
1	16	1124	G
1	16	1125	U
1	16	1126	U
1	16	1129	С
1	16	1132	С
1	16	1133	G
1	16	1134	G
1	16	1136	С
1	16	$1\overline{137}$	С
1	16	1138	G
1	16	1139	G
1	16	1145	A
1	16	1146	A
1	16	1151	А

Mol	Chain	Res	Type
1	16	1152	А
1	16	1154	G
1	16	1158	С
1	16	1160	G
1	16	1167	А
1	16	1168	U
1	16	1183	U
1	16	1184	G
1	16	1196	А
1	16	1197	А
1	16	1201	А
1	16	1206	G
1	16	1211	U
1	16	1212	U
1	16	1213	А
1	16	1224	U
1	16	1226	С
1	16	1227	А
1	16	1228	С
1	16	1236	А
1	16	1238	А
1	16	1239	А
1	16	1253	G
1	16	1256	А
1	16	1257	А
1	16	1260	G
1	16	1280	А
1	16	1286	U
1	16	1287	А
1	16	1299	A
1	16	1300	G
1	16	1302	С
1	16	1305	G
1	16	1306	А
1	16	1312	G
1	16	1317	С
1	16	1320	С
1	16	1331	G
1	16	1336	С
1	16	1338	G
1	16	1340	А
1	16	1346	А

Mol	Chain	Res	Type
1	16	1353	G
1	16	1357	А
1	16	1363	А
1	16	1368	А
1	16	1370	G
1	16	1379	G
1	16	1398	А
1	16	1400	С
1	16	1419	G
1	16	1432	G
1	16	1433	А
1	16	1434	А
1	16	1439	G
1	16	1440	U
1	16	1441	А
1	16	1446	А
1	16	1452	С
1	16	1475	G
1	16	1493	А
1	16	1494	G
1	16	1497	G
1	16	1503	А
1	16	1505	G
1	16	1506	U
1	16	1517	G
1	16	1529	G
1	16	1530	G
1	16	1533	С
22	mR	46	G
22	mR	50	U
23	23	10	А
23	23	34	U
23	23	39	G
23	23	45	G
23	23	46	G
23	23	51	G
23	23	55	G
23	23	61	С
23	23	71	А
23	23	74	А
23	23	75	G
23	23	96	С

Mol	Chain	Res	Type
23	23	101	А
23	23	102	U
23	23	103	А
23	23	110	G
23	23	118	А
23	23	119	А
23	23	120	U
23	23	125	А
23	23	137	U
23	23	139	U
23	23	140	С
23	23	141	G
23	23	142	А
23	23	160	A
23	23	162	U
23	23	163	С
23	23	165	А
23	23	178	G
23	23	181	А
23	23	196	А
23	23	199	А
23	23	215	G
23	23	216	А
23	23	221	А
23	23	222	А
23	23	224	U
23	23	226	А
23	23	227	А
23	23	233	А
23	23	248	G
23	23	252	G
23	23	265	А
23	23	266	G
23	23	271	G
23	23	272	А
23	23	276	U
23	23	300	А
23	23	311	A
23	23	312	G
23	23	330	A
23	23	331	С
23	23	334	С

Mol	Chain	Res	Type
23	23	345	А
23	23	361	G
23	23	362	А
23	23	371	А
23	23	372	G
23	23	383	С
23	23	386	G
23	23	388	G
23	23	396	G
23	23	401	А
23	23	404	А
23	23	405	U
23	23	411	G
23	23	412	A
23	23	434	U
23	23	436	С
23	23	448	U
23	23	451	U
23	23	456	С
23	23	457	А
23	23	470	А
23	23	473	G
23	23	475	С
23	23	481	G
23	23	489	G
23	23	491	G
23	23	504	А
23	23	505	А
23	23	506	G
23	23	509	C
23	23	527	С
23	23	529	A
23	23	530	G
23	23	532	A
23	23	538	A
23	23	546	U
23	23	547	A
23	23	549	G
23	23	555	G
23	23	556	A
23	23	563	А
23	23	573	U

Mol	Chain	Res	Type
23	23	575	А
23	23	588	U
23	23	603	А
23	23	613	А
23	23	614	А
23	23	615	U
23	23	637	А
23	23	645	С
23	23	647	G
23	23	654	A
23	23	655	А
23	23	670	А
23	23	677	А
23	23	685	A
23	23	686	U
23	23	704	G
23	23	706	А
23	23	717	С
23	23	722	А
23	23	726	G
23	23	729	G
23	23	730	А
23	23	736	С
23	23	746	PSU
23	23	747	5MU
23	23	764	А
23	23	765	С
23	23	769	U
23	23	775	G
23	23	776	G
$\overline{23}$	23	782	A
23	23	784	G
23	23	785	G
$\overline{23}$	23	789	A
23	23	792	А
23	23	805	G
23	23	812	С
23	23	819	A
23	23	827	U
23	23	828	U
$\overline{23}$	23	846	U
23	23	847	U

Mol	Chain	Res	Type
23	23	858	G
23	23	859	G
23	23	866	А
23	23	869	G
23	23	878	А
23	23	879	G
23	23	885	С
23	23	888	\mathbf{C}
23	23	891	G
23	23	895	U
23	23	897	С
23	23	910	А
23	23	915	С
23	23	917	А
23	23	919	U
23	23	931	U
23	23	932	U
23	23	934	U
23	23	941	А
23	23	946	С
23	23	961	С
23	23	962	G
23	23	974	G
23	23	983	А
23	23	984	А
23	23	985	С
23	23	989	G
23	23	996	А
23	23	999	U
23	23	1012	U
23	23	1013	С
23	23	1022	G
23	23	1026	G
23	23	1027	А
23	23	1033	U
23	23	1046	А
23	23	1047	G
23	23	1054	А
23	23	1059	G
23	23	1060	U
23	23	1061	U
23	23	1062	G

Mol	Chain	Res	Type
23	23	1065	U
23	23	1066	U
23	23	1069	А
23	23	1070	А
23	23	1071	G
23	23	1072	С
23	23	1073	А
23	23	1074	G
23	23	1075	С
23	23	1077	А
23	23	1079	С
23	23	1083	U
23	23	1084	А
23	23	1085	А
23	23	1086	А
23	23	1087	G
23	23	1088	А
23	23	1089	А
23	23	1090	А
23	23	1091	G
23	23	1101	U
23	23	1102	С
23	23	1105	U
23	23	1111	А
23	23	1112	G
23	23	1130	U
23	23	1132	U
23	23	1133	А
23	23	1134	А
23	23	1135	С
23	23	1136	G
23	23	1142	А
23	23	1169	А
23	23	1170	С
23	23	1173	U
23	23	1176	U
23	23	1178	С
23	23	1187	G
23	23	1206	G
23	23	1236	G
23	23	1238	G
23	23	1241	А

Mol	Chain	Res	Type
23	23	1247	А
23	23	1249	U
23	23	1253	А
23	23	1256	G
23	23	1262	А
23	23	1266	G
23	23	1271	G
23	23	1272	А
23	23	1273	U
23	23	1284	А
23	23	1300	G
23	23	1301	А
23	23	1320	С
23	23	1321	А
23	23	1329	U
23	23	1345	С
23	23	1352	U
23	23	1359	А
23	23	1365	А
23	23	1368	G
23	23	1374	G
23	23	1379	U
23	23	1380	G
23	23	1383	А
23	23	1386	С
23	23	1392	А
23	23	1396	U
23	23	1403	А
23	23	1416	G
23	23	1417	С
23	23	1419	А
23	23	1420	А
23	23	1428	С
$\overline{23}$	23	1434	A
23	23	1437	С
23	23	1451	С
23	23	1452	G
23	23	1453	A
23	23	1460	U
23	23	1475	G
23	23	1482	G
23	23	1490	A

Mol	Chain	Res	Type
23	23	1493	С
23	23	1497	U
23	23	1498	С
23	23	1506	U
23	23	1508	А
23	23	1509	А
23	23	1514	G
23	23	1529	G
23	23	1531	С
23	23	1536	С
23	23	1537	G
23	23	1544	А
23	23	1560	G
23	23	1566	А
23	23	1569	А
23	23	1583	А
23	23	1584	U
23	23	1585	С
23	23	1602	U
23	23	1608	А
23	23	1609	А
23	23	1610	А
23	23	1634	А
23	23	1647	U
23	23	1648	U
23	23	1649	G
23	23	1664	А
23	23	1674	G
23	23	1694	С
23	23	1703	G
23	23	1726	С
23	23	1730	С
23	23	1731	G
23	23	1738	G
23	23	1758	U
23	23	1764	С
23	23	1773	A
23	23	1776	G
23	23	1782	U
23	23	1784	A
23	23	1786	A
23	23	1791	A

Mol	Chain	Res	Type
23	23	1799	G
23	23	1800	С
23	23	1808	А
23	23	1816	С
23	23	1829	А
23	23	1847	А
23	23	1900	А
23	23	1902	С
23	23	1906	G
23	23	1907	G
23	23	1914	С
23	23	1927	А
23	23	1929	G
23	23	1930	G
23	23	1937	А
23	23	1938	А
23	23	1939	5MU
23	23	1940	U
23	23	1941	С
23	23	1954	G
23	23	1955	U
23	23	1960	А
23	23	1963	U
23	23	1964	G
23	23	1967	С
23	23	1970	А
23	23	1971	U
23	23	1972	G
23	23	1975	G
23	23	1980	G
23	23	1991	U
23	23	1992	G
23	23	1993	U
23	23	1997	С
23	23	2020	A
23	23	2022	U
23	23	2023	С
23	23	2031	A
23	23	2032	G
23	23	2033	A
23	23	2043	С
23	23	2050	С

Mol	Chain	Res	Type
23	23	2055	С
23	23	2056	G
23	23	2060	А
23	23	2061	G
23	23	2062	А
23	23	2069	7MG
23	23	2080	А
23	23	2107	G
23	23	2110	G
23	23	2111	U
23	23	2112	G
23	23	2114	А
23	23	2116	G
23	23	2118	U
23	23	2120	G
23	23	2130	U
23	23	2131	U
23	23	2132	U
23	23	2133	G
23	23	2141	G
23	23	2146	С
23	23	2154	А
23	23	2158	А
23	23	2159	G
23	23	2161	С
23	23	2162	G
23	23	2163	А
23	23	2164	С
23	23	2165	С
23	23	2170	А
23	23	2171	А
23	23	2173	A
23	23	2176	A
23	23	2188	U
23	23	2191	А
23	23	2198	A
23	23	2203	U
23	23	2204	G
23	23	2211	A
23	23	2212	А
23	23	2225	A
23	23	2238	G

Mol	Chain	Res	Type
23	23	2239	G
23	23	2243	U
23	23	2268	А
23	23	2279	G
23	23	2283	С
23	23	2287	А
23	23	2288	А
23	23	2305	U
23	23	2308	G
23	23	2309	А
23	23	2311	А
23	23	2312	U
23	23	2319	G
23	23	2322	А
23	23	2325	G
23	23	2333	А
23	23	2335	А
23	23	2336	А
23	23	2343	U
23	23	2344	U
23	23	2345	G
23	23	2347	С
23	23	2350	С
23	23	2354	С
23	23	2361	G
23	23	2379	G
23	23	2383	G
23	23	2385	С
23	23	2391	G
23	23	2402	U
23	23	2403	С
23	23	2406	А
23	23	2407	А
23	23	2410	G
23	23	2423	U
23	23	2425	А
23	23	2429	G
23	23	2430	А
23	23	2431	U
23	23	2434	А
23	23	2435	А
23	23	2441	U

Mol	Chain	Res	Type
23	23	2447	G
23	23	2448	А
23	23	2449	H2U
23	23	2464	G
23	23	2468	А
23	23	2469	А
23	23	2473	U
23	23	2475	С
23	23	2476	А
23	23	2484	G
23	23	2486	С
23	23	2487	G
23	23	2494	G
23	23	2502	G
23	23	2504	PSU
23	23	2505	G
23	23	2507	С
23	23	2517	С
23	23	2518	A
23	23	2529	G
23	23	2535	G
23	23	2547	А
23	23	2554	U
23	23	2566	А
23	23	2567	G
23	23	2573	С
23	23	2579	С
23	23	2582	G
23	23	2586	U
23	23	2602	A
23	23	2609	U
23	23	2613	U
23	23	2614	A
23	23	2615	U
23	23	2629	U
23	23	2630	G
23	23	2638	G
23	23	2656	U
23	23	2661	G
23	23	2663	G
23	23	2682	А
23	23	2688	G

Mol	Chain	Res	Type
23	23	2689	U
23	23	2690	U
23	23	2693	G
23	23	2714	G
23	23	2717	С
23	23	2726	А
23	23	2732	G
23	23	2733	А
23	23	2744	G
23	23	2748	А
23	23	2751	G
23	23	2757	А
23	23	2765	А
23	23	2777	G
23	23	2778	А
23	23	2779	U
23	23	2791	G
23	23	2798	U
23	23	2799	А
23	23	2800	А
23	23	2818	U
23	23	2820	А
23	23	2821	А
23	23	2825	G
23	23	2832	U
23	23	2835	А
23	23	2836	U
23	23	2861	U
23	23	2872	А
23	23	2873	А
23	23	2880	С
23	23	2883	А
23	23	2884	U
23	23	2886	А
24	5	2	G
24	5	13	G
24	5	16	G
24	5	35	С
24	5	40	U
24	5	42	С
24	5	45	А
24	5	51	G

Mol	Chain	Res	Type
24	5	56	G
24	5	57	А
24	5	67	G
24	5	77	U
24	5	80	U
24	5	87	U
24	5	89	U
24	5	90	С
24	5	99	А
24	5	109	А
55	Pt	9	А
55	Pt	10	G
55	Pt	13	С
55	Pt	15	G
55	Pt	16	H2U
55	Pt	17	H2U
55	Pt	18	G
55	Pt	19	G
55	Pt	20	U
55	Pt	21	А
55	Pt	22	G
55	Pt	31	А
55	Pt	45	G
55	Pt	48	С
55	Pt	49	G
55	Pt	58	А
55	Pt	60	U
55	Pt	62	С
55	Pt	74	С
56	Dt	7	А
56	Dt	8	4SU
56	Dt	10	G
56	Dt	13	С
56	Dt	16	H2U
56	Dt	17	С
56	Dt	18	G
$\overline{56}$	Dt	19	G
56	Dt	20	U
$\overline{56}$	Dt	21	A
56	Dt	30	G
$\overline{56}$	Dt	45	U
56	Dt	46	7MG

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
56	Dt	48	С
56	Dt	58	А
56	Dt	60	U
56	Dt	61	С
56	Dt	75	С
56	Dt	76	А

All (83) RNA pucker outliers are listed below:

Mol	Chain	Res	Type	
1	16	30	U	
1	16	70	U	
1	16	85	U	
1	16	173	U	
1	16	251	G	
1	16	428	G	
1	16	438	U	
1	16	595	А	
1	16	641	U	
1	16	653	U	
1	16	993	G	
1	16	1124	G	
1	16	1129	С	
1	16	1137	С	
1	16	1211	U	
1	16	1225	А	
1	16	1239	А	
1	16	1337	G	
1	16	1447	А	
1	16	1493	А	
1	16	1505	G	
23	23	45	G	
23	23	196	А	
23	23	199	А	
23	23	221	А	
23	23	249	С	
23	23	310	А	
23	23	387	U	
23	23	404	A	
23	23	411	G	
23	23	446	G	
23	23	455	С	

Mol	Chain	Res	Type
23	23	503	А
23	23	555	G
23	23	613	А
23	23	620	G
23	23	764	А
23	23	776	G
23	23	784	G
23	23	827	U
23	23	858	G
23	23	865	С
23	23	973	А
23	23	984	А
23	23	1060	U
23	23	1068	G
23	23	1069	А
23	23	1072	С
23	23	1084	А
23	23	1085	А
23	23	1086	А
23	23	1089	А
23	23	1101	U
23	23	1141	U
23	23	1142	А
23	23	1176	U
23	23	1266	G
23	23	1286	А
23	23	1396	U
23	23	1451	С
23	23	1490	А
23	23	1608	А
23	23	1647	U
23	23	1738	G
23	23	1808	А
23	23	1818	U
23	23	1847	A
23	23	1900	A
23	23	2157	G
23	23	2164	С
23	23	2275	С
23	23	2307	G
23	23	2430	А
23	23	2468	A

001111	contentaca jione pretto ao page										
Mol	Chain	\mathbf{Res}	Type								
23	23	2517	С								
23	23	2681	С								
23	23	2756	U								
23	23	2798	U								
23	23	2799	А								
23	23	2820	А								
23	23	2873	А								
24	5	34	А								
24	5	41	G								

5.4 Non-standard residues in protein, DNA, RNA chains (i)

52 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bog	Link	Bo	ond leng	ths	B	ond ang	gles
WIOI	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
1	5MC	16	967	1	18,22,23	1.03	2 (11%)	26,32,35	1.26	3 (11%)
23	6MZ	23	1618	23	18,25,26	0.85	1 (5%)	16,36,39	2.12	4 (25%)
1	UR3	16	1498	1	19,22,23	0.97	1 (5%)	26,32,35	1.72	3 (11%)
23	5MU	23	1939	23	19,22,23	1.56	4 (21%)	28,32,35	2.27	6 (21%)
23	PSU	23	2504	23	18,21,22	1.41	3 (16%)	22,30,33	1.90	3 (13%)
1	MA6	16	1518	1	19,26,27	1.14	2 (10%)	18,38,41	1.93	5 (27%)
56	PSU	Dt	39	56	18,21,22	1.49	5 (27%)	22,30,33	1.95	4 (18%)
23	OMG	23	2251	55,23	18,26,27	1.05	1 (5%)	19,38,41	1.16	2 (10%)
55	PSU	Pt	39	55	18,21,22	1.56	5 (27%)	22,30,33	1.96	3 (13%)
23	H2U	23	2449	23	18,21,22	1.25	2 (11%)	21,30,33	1.44	1 (4%)
23	PSU	23	955	23	18,21,22	1.59	6 (33%)	22,30,33	2.15	5 (22%)
1	2MG	16	1516	1	18,26,27	1.11	1 (5%)	16,38,41	1.25	3 (18%)
34	4D4	LP	81	34	9,11,12	2.06	2 (22%)	8,13,15	2.14	4 (50%)
1	2MG	16	966	1	18,26,27	1.15	2 (11%)	16,38,41	1.45	4 (25%)
23	OMU	23	2552	23	19,22,23	1.37	3 (15%)	26,31,34	2.04	6 (23%)

Mol	Type	Chain	Dog	Link	Bo	Bond lengths			Bond angles		
	Type	Chan	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
23	PSU	23	2605	23	18,21,22	1.65	4 (22%)	22,30,33	1.91	4 (18%)	
55	5MU	Pt	54	55	19,22,23	1.46	5 (26%)	28,32,35	2.09	8 (28%)	
23	PSU	23	2580	23	18,21,22	1.49	4 (22%)	22,30,33	2.00	4 (18%)	
23	3TD	23	1915	23	18,22,23	1.22	2 (11%)	22,32,35	1.87	2 (9%)	
23	5MU	23	747	23	19,22,23	1.45	6 (31%)	28,32,35	2.19	6 (21%)	
56	3AU	Dt	47	56	24,28,29	1.09	1 (4%)	33,40,43	1.43	4 (12%)	
12	D2T	SL	89	12	7,9,10	1.34	1 (14%)	6,11,13	1.48	2 (33%)	
55	T6A	Pt	37	55	27,34,35	1.10	1 (3%)	29,49,52	2.00	<mark>6 (20%)</mark>	
23	2MA	23	2503	57,23	17,25,26	1.01	2 (11%)	17,37,40	1.13	2 (11%)	
55	PSU	Pt	55	55	18,21,22	1.41	3 (16%)	22,30,33	1.98	4 (18%)	
23	PSU	23	746	57,23	18,21,22	1.50	5 (27%)	22,30,33	1.93	4 (18%)	
1	PSU	16	516	1	18,21,22	1.60	4 (22%)	22,30,33	2.11	4 (18%)	
23	6MZ	23	2030	23	18,25,26	0.83	1 (5%)	16,36,39	2.43	4 (25%)	
23	OMC	23	2498	57,23	19,22,23	0.90	0	26,31,34	1.11	1 (3%)	
1	4OC	16	1402	1	20,23,24	0.84	0	26,32,35	1.10	2 (7%)	
23	PSU	23	2604	23	18,21,22	1.56	4 (22%)	22,30,33	2.17	5 (22%)	
56	7MG	Dt	46	56	22,26,27	1.43	3 (13%)	29,39,42	2.49	8 (27%)	
23	2MG	23	2445	23	18,26,27	1.09	1 (5%)	16,38,41	1.39	3 (18%)	
56	PSU	Dt	32	56	18,21,22	1.45	4 (22%)	22,30,33	1.92	3 (13%)	
56	PSU	Dt	55	56	18,21,22	1.34	2 (11%)	22,30,33	1.94	4 (18%)	
56	H2U	Dt	16	56	18,21,22	1.17	3 (16%)	21,30,33	2.80	3 (14%)	
56	4SU	Dt	8	56	18,21,22	1.84	4 (22%)	26,30,33	2.44	5 (19%)	
1	7MG	16	527	1	22,26,27	1.50	3 (13%)	29,39,42	2.66	10 (34%)	
23	2MG	23	1835	23	18,26,27	0.90	1 (5%)	16,38,41	1.15	3 (18%)	
23	7MG	23	2069	23	22,26,27	1.60	4 (18%)	29,39,42	2.48	9 (31%)	
55	U8U	Pt	34	55,22	19,24,25	1.96	4 (21%)	23,34,37	1.40	5 (21%)	
1	2MG	16	1207	1	18,26,27	1.15	2 (11%)	16,38,41	1.22	3 (18%)	
1	5MC	16	1407	1	18,22,23	1.01	2 (11%)	26,32,35	1.35	3 (11%)	
55	3AU	Pt	47	55	24,28,29	1.03	1 (4%)	33,40,43	1.37	4 (12%)	
55	H2U	Pt	17	55	18,21,22	1.09	2 (11%)	21,30,33	1.88	2 (9%)	
55	7MG	Pt	46	55	22,26,27	1.37	3 (13%)	29,39,42	2.48	9 (31%)	
1	MA6	16	1519	1	19,26,27	0.96	0	18,38,41	1.96	7 (38%)	
23	PSU	23	2457	23	18,21,22	1.70	3 (16%)	22,30,33	2.15	6 (27%)	
55	H2U	Pt	16	55	18,21,22	0.99	2 (11%)	21,30,33	2.49	5 (23%)	
56	MIA	Dt	37	56	24,31,32	2.28	3 (12%)	26,44,47	2.78	9 (34%)	

Mol Typ	Turne	Chain	Dec	Tinle	Bo	Bond lengths			Bond angles		
IVIOI	vioi Type Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2		
23	1MG	23	745	23	18,26,27	0.79	0	19,39,42	1.20	3 (15%)	
23	5MC	23	1962	23	18,22,23	0.91	2 (11%)	26,32,35	1.10	2 (7%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	5MC	16	967	1	-	0/7/25/26	0/2/2/2
23	6MZ	23	1618	23	-	2/5/27/28	0/3/3/3
1	UR3	16	1498	1	-	0/7/25/26	0/2/2/2
23	5MU	23	1939	23	-	0/7/25/26	0/2/2/2
23	PSU	23	2504	23	-	2/7/25/26	0/2/2/2
1	MA6	16	1518	1	-	1/7/29/30	0/3/3/3
56	PSU	Dt	39	56	-	0/7/25/26	0/2/2/2
23	OMG	23	2251	55,23	-	1/5/27/28	0/3/3/3
55	PSU	Pt	39	55	-	0/7/25/26	0/2/2/2
23	H2U	23	2449	23	-	1/7/38/39	0/2/2/2
23	PSU	23	955	23	-	0/7/25/26	0/2/2/2
1	2MG	16	1516	1	-	0/5/27/28	0/3/3/3
34	4D4	LP	81	34	-	3/11/12/14	-
1	2MG	16	966	1	-	2/5/27/28	0/3/3/3
23	OMU	23	2552	23	-	0/9/27/28	0/2/2/2
23	PSU	23	2605	23	-	0/7/25/26	0/2/2/2
55	5MU	Pt	54	55	-	0/7/25/26	0/2/2/2
23	PSU	23	2580	23	-	0/7/25/26	0/2/2/2
23	3TD	23	1915	23	-	2/7/25/26	0/2/2/2
23	5MU	23	747	23	-	0/7/25/26	0/2/2/2
56	3AU	Dt	47	56	-	8/16/34/35	0/2/2/2
12	D2T	SL	89	12	-	3/7/12/14	-
55	T6A	Pt	37	55	-	6/19/41/42	0/3/3/3
23	2MA	23	2503	57,23	-	2/3/25/26	0/3/3/3
55	PSU	Pt	55	55	_	0/7/25/26	0/2/2/2
23	PSU	23	746	57,23	-	2/7/25/26	0/2/2/2
1	PSU	16	516	1	-	0/7/25/26	0/2/2/2
23	6MZ	23	2030	23	-	2/5/27/28	0/3/3/3
23	OMC	23	2498	57,23	-	0/9/27/28	0/2/2/2
1	4OC	16	1402	1	-	1/9/29/30	0/2/2/2
23	PSU	23	2604	23	-	0/7/25/26	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
56	7MG	Dt	46	56	-	1/7/37/38	0/3/3/3
23	2MG	23	2445	23	-	0/5/27/28	0/3/3/3
56	PSU	Dt	32	56	-	0/7/25/26	0/2/2/2
56	PSU	Dt	55	56	-	0/7/25/26	0/2/2/2
56	H2U	Dt	16	56	-	4/7/38/39	0/2/2/2
56	4SU	Dt	8	56	-	2/7/25/26	0/2/2/2
1	7MG	16	527	1	-	2/7/37/38	0/3/3/3
23	2MG	23	1835	23	-	0/5/27/28	0/3/3/3
23	7MG	23	2069	23	-	2/7/37/38	0/3/3/3
55	U8U	Pt	34	55,22	-	0/9/28/29	0/2/2/2
1	2MG	16	1207	1	-	0/5/27/28	0/3/3/3
1	5MC	16	1407	1	-	0/7/25/26	0/2/2/2
55	3AU	Pt	47	55	-	6/16/34/35	0/2/2/2
55	H2U	Pt	17	55	-	4/7/38/39	0/2/2/2
55	7MG	Pt	46	55	-	0/7/37/38	0/3/3/3
1	MA6	16	1519	1	-	3/7/29/30	0/3/3/3
23	PSU	23	2457	23	-	0/7/25/26	0/2/2/2
55	H2U	Pt	16	55	-	6/7/38/39	0/2/2/2
56	MIA	Dt	37	56	-	5/11/33/34	0/3/3/3
23	1MG	23	745	23	-	0/3/25/26	0/3/3/3
23	5MC	23	1962	23	-	2/7/25/26	0/2/2/2

All (132) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
56	Dt	37	MIA	C2-S10	-7.13	1.69	1.75
56	Dt	37	MIA	C13-C14	7.06	1.52	1.32
55	Pt	34	U8U	C2-S2	-5.96	1.58	1.67
23	23	2069	7MG	C4-N9	-5.11	1.31	1.37
34	LP	81	4D4	CZ-NE	4.91	1.43	1.33
56	Dt	8	4SU	C4-S4	-4.68	1.59	1.68
56	Dt	46	7MG	C4-N9	-4.47	1.32	1.37
1	16	527	7MG	C4-N9	-4.28	1.32	1.37
23	23	2457	PSU	C4-N3	-3.82	1.31	1.38
55	Pt	46	7MG	C4-N9	-3.78	1.33	1.37
23	23	2605	PSU	C4-N3	-3.66	1.32	1.38
23	23	955	PSU	C4-N3	-3.60	1.32	1.38
1	16	516	PSU	C4-N3	-3.54	1.32	1.38
56	Dt	8	4SU	C4-N3	-3.49	1.33	1.37
55	Pt	34	U8U	C6-N1	-3.43	1.32	1.38

Conti	naca jion	i previe	rus puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
23	23	2457	PSU	C6-C5	3.42	1.39	1.35
23	23	1939	5MU	C4-N3	-3.40	1.32	1.38
23	23	1915	3TD	C6-C5	3.38	1.39	1.35
23	23	2580	PSU	C6-C5	3.30	1.39	1.35
23	23	746	PSU	C4-N3	-3.30	1.32	1.38
55	Pt	34	U8U	C4-N3	-3.30	1.32	1.38
23	23	2604	PSU	C4-N3	-3.27	1.32	1.38
23	23	2552	OMU	C4-N3	-3.21	1.32	1.38
23	23	1939	5MU	C2-N3	-3.19	1.32	1.38
23	23	2552	OMU	C2-N3	-3.19	1.32	1.38
56	Dt	55	PSU	C6-C5	3.18	1.39	1.35
55	Pt	39	PSU	C4-N3	-3.18	1.32	1.38
56	Dt	16	H2U	C2-N3	-3.15	1.32	1.38
1	16	516	PSU	C6-C5	3.15	1.39	1.35
23	23	747	5MU	C4-N3	-3.09	1.33	1.38
55	Pt	55	PSU	C4-N3	-3.07	1.33	1.38
1	16	1516	2MG	C6-N1	-3.07	1.33	1.37
23	23	2504	PSU	C4-N3	-3.05	1.33	1.38
34	LP	81	4D4	CZ-NH2	3.05	1.44	1.32
23	23	2605	PSU	C2-N3	-3.05	1.32	1.37
23	23	1939	5MU	C6-N1	-3.04	1.32	1.38
56	Dt	32	PSU	C4-N3	-3.03	1.33	1.38
56	Dt	39	PSU	C6-C5	3.02	1.38	1.35
55	Pt	54	5MU	C4-N3	-2.97	1.33	1.38
56	Dt	39	PSU	C4-N3	-2.95	1.33	1.38
23	23	2251	OMG	C6-N1	-2.94	1.33	1.37
23	23	2457	PSU	C2-N3	-2.93	1.32	1.37
23	23	2580	PSU	C4-N3	-2.91	1.33	1.38
55	Pt	46	7MG	C5-C4	2.91	1.47	1.38
1	16	1207	2MG	C6-N1	-2.89	1.33	1.37
56	Dt	8	4SU	C5-C4	-2.87	1.38	1.42
55	Pt	55	PSU	C6-C5	2.87	1.38	1.35
23	23	2449	H2U	C2-N3	-2.87	1.32	1.38
55	Pt	17	H2U	C2-N3	-2.86	1.32	1.38
23	23	2449	H2U	C4-N3	-2.86	1.32	1.37
23	23	955	PSU	C2-N3	-2.85	1.32	1.37
1	16	527	7MG	C6-N1	-2.83	1.33	1.38
23	23	2069	7MG	C6-N1	-2.82	1.33	1.38
23	23	$2\overline{605}$	PSU	C2-N1	-2.82	1.32	1.36
1	16	966	$2M\overline{G}$	C6-N1	-2.80	1.33	1.37
56	Dt	55	PSU	C4-N3	-2.78	1.33	1.38
1	16	967	5MC	C6-N1	-2.78	1.33	1.38

001111	nucu jion	i prevu	ius puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
56	Dt	46	7MG	C5-C4	2.74	1.47	1.38
1	16	1518	MA6	C2'-C1'	-2.73	1.49	1.53
23	23	2445	2MG	C6-N1	-2.70	1.33	1.37
56	Dt	32	PSU	C6-C5	2.69	1.38	1.35
23	23	1835	2MG	C6-N1	-2.66	1.33	1.37
55	Pt	39	PSU	C6-C5	2.66	1.38	1.35
1	16	527	7MG	C5-C4	2.66	1.46	1.38
23	23	2604	PSU	C6-C5	2.64	1.38	1.35
1	16	1407	5MC	C6-N1	-2.61	1.33	1.38
56	Dt	16	H2U	C4-N3	-2.60	1.33	1.37
1	16	516	PSU	C2-N3	-2.58	1.33	1.37
23	23	746	PSU	C2-N3	-2.58	1.33	1.37
55	Pt	16	H2U	C4-N3	-2.58	1.33	1.37
55	Pt	16	H2U	C2-N3	-2.57	1.33	1.38
23	23	2504	PSU	C6-C5	2.54	1.38	1.35
55	Pt	54	5MU	C6-N1	-2.52	1.33	1.38
23	23	747	5MU	C6-C5	2.49	1.38	1.34
23	23	1962	5MC	C6-N1	-2.49	1.33	1.38
23	23	747	5MU	C2-N3	-2.48	1.33	1.38
55	Pt	37	T6A	C10-N6	-2.48	1.32	1.37
55	Pt	39	PSU	C2-N3	-2.48	1.33	1.37
55	Pt	54	5MU	C2-N3	-2.43	1.33	1.38
23	23	955	PSU	C6-C5	2.41	1.38	1.35
23	23	2604	PSU	C2-N3	-2.41	1.33	1.37
55	Pt	17	H2U	C4-N3	-2.41	1.33	1.37
23	23	1962	5MC	C6-C5	2.40	1.38	1.34
1	16	516	PSU	C2-N1	-2.38	1.33	1.36
23	23	747	5MU	C6-N1	-2.38	1.34	1.38
55	Pt	39	PSU	C2'-C1'	-2.38	1.50	1.53
23	23	746	PSU	C6-C5	2.35	1.38	1.35
23	23	2604	PSU	C2'-C1'	-2.34	1.50	1.53
23	23	1915	3TD	C2-N1	-2.34	1.34	1.37
23	23	2580	PSU	O4'-C1'	-2.32	1.40	1.43
23	23	2605	PSU	C6-C5	2.32	1.38	1.35
1	16	1407	5MC	C6-C5	2.31	1.38	1.34
56	Dt	46	7MG	C6-N1	-2.31	1.34	1.38
1	16	967	5MC	C6-C5	2.29	1.38	1.34
1	16	966	2MG	C2'-C1'	-2.29	1.50	1.53
23	23	1939	5MU	C6-C5	2.28	1.38	1.34
55	Pt	54	5MU	C4-C5	2.27	1.48	1.44
23	23	2069	7MG	C5-C4	2.26	1.45	1.38
55	Pt	55	PSU	C2-N3	-2.26	1.33	1.37

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
23	23	2552	OMU	C5-C4	-2.25	1.38	1.43
23	23	2069	7MG	C5-N7	-2.25	1.33	1.35
56	Dt	47	3AU	C2-N1	2.23	1.41	1.38
55	Pt	54	5MU	C6-C5	2.22	1.38	1.34
55	Pt	39	PSU	C2-N1	-2.20	1.33	1.36
56	Dt	8	4SU	C2-N3	-2.20	1.34	1.38
23	23	1618	6MZ	C5-C4	2.19	1.46	1.40
55	Pt	34	U8U	C-N	-2.19	1.43	1.46
23	23	2504	PSU	C2-N3	-2.16	1.33	1.37
55	Pt	46	7MG	C6-N1	-2.16	1.34	1.38
23	23	747	5MU	C2-N1	2.16	1.41	1.38
56	Dt	32	PSU	C2-N1	-2.16	1.33	1.36
56	Dt	39	PSU	C2-N1	-2.16	1.33	1.36
56	Dt	32	PSU	C2-N3	-2.15	1.33	1.37
23	23	2580	PSU	C2-N3	-2.15	1.33	1.37
56	Dt	37	MIA	C5-C4	2.15	1.46	1.40
23	23	955	PSU	C2-N1	-2.14	1.33	1.36
23	23	2503	2MA	C2-N3	2.13	1.35	1.31
23	23	955	PSU	C6-N1	-2.13	1.32	1.36
23	23	2030	6MZ	C5-C4	2.12	1.46	1.40
23	23	2503	2MA	C6-N1	-2.11	1.33	1.38
1	16	1207	2MG	C2'-C1'	-2.09	1.50	1.53
23	23	747	5MU	C4-C5	2.08	1.48	1.44
55	Pt	47	3AU	C2-N1	2.07	1.41	1.38
1	16	1498	UR3	C5-C4	-2.06	1.38	1.43
23	23	746	PSU	C2-N1	-2.06	1.33	1.36
12	SL	89	D2T	CB1-SB	-2.05	1.75	1.79
1	16	1518	MA6	C5-C4	2.04	1.46	1.40
56	Dt	16	H2U	C2-N1	-2.03	1.32	1.35
56	Dt	39	PSU	C2'-C1'	-2.02	1.51	1.53
56	Dt	39	PSU	C2-N3	-2.02	1.34	1.37
23	23	955	PSU	C2'-C1'	-2.00	1.51	1.53
23	23	746	PSU	C6-N1	-2.00	1.32	1.36

All (224) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
56	Dt	16	H2U	C4-N3-C2	-11.88	115.93	125.79
56	Dt	37	MIA	C12-C13-C14	-9.76	108.14	127.14
55	Pt	16	H2U	C4-N3-C2	-9.48	117.92	125.79
55	Pt	46	7MG	N9-C4-N3	8.06	137.53	125.47
1	16	527	7MG	N9-C4-N3	7.93	137.33	125.47

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
56	Dt	46	7MG	N9-C4-N3	7.74	137.04	125.47
23	23	2069	7MG	N9-C4-N3	7.65	136.91	125.47
56	Dt	8	4SU	C4-N3-C2	-7.18	120.36	127.34
55	Pt	17	H2U	C4-N3-C2	-7.18	119.84	125.79
23	23	955	PSU	N1-C2-N3	6.89	122.94	115.13
1	16	1498	UR3	C4-N3-C2	-6.78	118.18	124.56
23	23	2457	PSU	N1-C2-N3	6.75	122.78	115.13
1	16	516	PSU	N1-C2-N3	6.57	122.58	115.13
55	Pt	39	PSU	N1-C2-N3	6.37	122.34	115.13
23	23	1915	3TD	N1-C2-N3	6.33	121.13	116.14
23	23	2605	PSU	N1-C2-N3	6.25	122.21	115.13
23	23	2604	PSU	N1-C2-N3	6.24	122.20	115.13
56	Dt	8	4SU	C5-C4-N3	6.23	120.47	114.69
56	Dt	39	PSU	N1-C2-N3	6.15	122.09	115.13
23	23	746	PSU	N1-C2-N3	6.07	122.01	115.13
23	23	2504	PSU	N1-C2-N3	6.06	121.99	115.13
56	Dt	32	PSU	N1-C2-N3	6.05	121.98	115.13
23	23	2580	PSU	N1-C2-N3	6.02	121.95	115.13
23	23	1618	6MZ	C2-N1-C6	6.00	121.74	116.59
55	Pt	55	PSU	N1-C2-N3	5.98	121.91	115.13
56	Dt	55	PSU	N1-C2-N3	5.92	121.84	115.13
23	23	2030	6MZ	C2-N1-C6	5.92	121.66	116.59
23	23	1939	5MU	C4-N3-C2	-5.67	120.01	127.35
55	Pt	37	T6A	C2-N1-C6	5.65	121.44	116.59
23	23	2030	6MZ	C9-N6-C6	-5.65	118.00	122.87
23	23	747	5MU	C4-N3-C2	-5.51	120.22	127.35
55	Pt	46	7MG	N9-C8-N7	-5.50	95.51	103.38
56	Dt	46	7MG	N9-C8-N7	-5.47	95.56	103.38
1	16	527	7MG	N9-C8-N7	-5.37	95.70	103.38
55	Pt	37	T6A	N6-C10-N11	5.33	121.20	113.76
23	23	2069	7MG	N9-C8-N7	-5.32	95.77	103.38
23	23	1939	5MU	C5-C4-N3	5.21	119.75	115.31
23	23	1939	5MU	N3-C2-N1	5.20	121.80	114.89
23	23	2552	OMU	N3-C2-N1	5.10	121.66	114.89
1	16	527	7MG	C5-C4-N3	-5.08	118.45	128.13
23	23	747	5MU	N3-C2-N1	4.99	121.51	114.89
23	23	747	5MU	C5-C4-N3	4.98	119.56	115.31
23	23	955	PSU	C4-N3-C2	-4.91	119.27	126.34
55	Pt	46	7MG	C5-C4-N3	-4.87	118.86	128.13
23	23	1915	3TD	C4-N3-C2	-4.85	119.34	124.61
23	23	2069	7MG	C5-C4-N3	-4.84	118.91	128.13
55	Pt	54	5 M U	C4-N3-C2	-4.83	121.09	127.35

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
56	Dt	46	7MG	C5-C4-N3	-4.81	118.96	128.13
23	23	2552	OMU	C4-N3-C2	-4.75	120.31	126.58
23	23	747	5MU	C5-C6-N1	-4.64	118.57	123.34
23	23	2069	7MG	C2-N3-C4	4.61	120.52	112.30
23	23	1939	5MU	C5-C6-N1	-4.60	118.60	123.34
55	Pt	54	5MU	C5-C4-N3	4.48	119.14	115.31
55	Pt	54	5MU	N3-C2-N1	4.47	120.82	114.89
23	23	2449	H2U	C4-N3-C2	-4.46	122.09	125.79
56	Dt	47	3AU	C4-N3-C2	-4.45	119.05	124.63
55	Pt	47	3AU	C4-N3-C2	-4.41	119.10	124.63
1	16	527	7MG	C2-N3-C4	4.37	120.08	112.30
23	23	746	PSU	C4-N3-C2	-4.31	120.12	126.34
55	Pt	55	PSU	C4-N3-C2	-4.27	120.19	126.34
56	Dt	8	4SU	N3-C2-N1	4.25	120.53	114.89
56	Dt	37	MIA	C5-C6-N1	-4.21	117.31	120.81
1	16	516	PSU	C4-N3-C2	-4.19	120.30	126.34
56	Dt	37	MIA	C2-N3-C4	4.18	121.08	115.32
56	Dt	8	4SU	C5-C4-S4	-4.15	119.12	124.47
55	Pt	46	7MG	C2-N3-C4	4.13	119.65	112.30
23	23	2604	PSU	C4-N3-C2	-4.11	120.42	126.34
1	16	1519	MA6	C10-N6-C6	-4.11	107.08	119.51
56	Dt	37	MIA	C15-C14-C13	-4.07	110.90	122.65
56	Dt	32	PSU	C4-N3-C2	-4.06	120.49	126.34
23	23	2504	PSU	C4-N3-C2	-4.01	120.56	126.34
56	Dt	46	7MG	C2-N3-C4	4.00	119.43	112.30
1	16	1518	MA6	N1-C6-N6	4.00	121.27	117.06
1	16	516	PSU	O2-C2-N1	-3.97	118.42	122.79
23	23	747	5MU	O4-C4-C5	-3.97	120.30	124.90
23	23	2457	PSU	C4-N3-C2	-3.93	120.67	126.34
23	23	2580	PSU	C4-N3-C2	-3.88	120.75	126.34
56	Dt	37	MIA	C16-C14-C13	-3.85	111.51	122.65
55	Pt	37	T6A	N6-C6-N1	3.83	123.86	118.72
23	23	1618	6MZ	C9-N6-C6	-3.81	119.59	122.87
1	16	1519	MA6	C4-C5-N7	-3.78	105.46	109.40
55	Pt	39	PSU	C4-N3-C2	-3.78	120.89	126.34
55	Pt	16	H2U	O4'-C1'-N1	3.76	114.42	109.30
23	23	2552	OMU	C2'-C1'-N1	-3.75	106.93	114.22
23	23	2605	PSU	C4-N3-C2	-3.74	120.95	126.34
23	23	1939	5MU	O4-C4-C5	-3.69	120.62	124.90
56	Dt	55	PSU	C4-N3-C2	-3.68	121.03	126.34
23	23	2552	OMU	C5-C4-N3	3.67	120.34	114.84
1	16	1519	MA6	N3-C2-N1	-3.66	122.95	128.68

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
56	Dt	39	PSU	C4-N3-C2	-3.63	121.11	126.34
55	Pt	54	5MU	C5-C6-N1	-3.62	119.61	123.34
23	23	2604	PSU	C3'-C2'-C1'	3.62	105.86	101.64
56	Dt	39	PSU	O2-C2-N1	-3.61	118.82	122.79
55	Pt	34	U8U	C1'-N1-C6	-3.60	115.14	121.12
23	23	2457	PSU	C3'-C2'-C1'	3.58	105.80	101.64
34	LP	81	4D4	NE-CZ-NH2	-3.50	114.54	120.70
55	Pt	39	PSU	O2-C2-N1	-3.48	118.96	122.79
56	Dt	32	PSU	O2-C2-N1	-3.44	119.00	122.79
55	Pt	37	T6A	O10-C10-N6	-3.43	117.83	123.62
1	16	1518	MA6	N3-C2-N1	-3.40	123.36	128.68
23	23	1962	5MC	C5-C6-N1	-3.38	119.86	123.34
23	23	2580	PSU	O2-C2-N1	-3.37	119.08	122.79
55	Pt	37	T6A	N3-C2-N1	-3.35	123.44	128.68
1	16	967	5MC	C5-C6-N1	-3.32	119.92	123.34
23	23	1618	6MZ	N3-C2-N1	-3.30	123.52	128.68
23	23	2030	6MZ	N3-C2-N1	-3.30	123.52	128.68
55	Pt	54	5MU	O4-C4-C5	-3.25	121.13	124.90
34	LP	81	4D4	NH1-CZ-NE	3.25	126.70	119.19
56	Dt	55	PSU	O2-C2-N1	-3.25	119.21	122.79
1	16	527	7MG	O4'-C1'-N9	3.24	113.72	109.30
56	Dt	47	3AU	C5-C4-N3	3.22	119.75	115.50
23	23	2498	OMC	O2-C2-N3	-3.14	117.22	122.33
1	16	1518	MA6	C10-N6-C6	-3.14	110.00	119.51
23	23	2504	PSU	O2-C2-N1	-3.10	119.37	122.79
55	Pt	47	3AU	C5-C4-N3	3.06	119.54	115.50
23	23	2030	6MZ	C4-C5-N7	-3.06	106.21	109.40
1	16	966	2MG	C3'-C2'-C1'	3.03	105.53	100.98
1	16	1518	MA6	C4-C5-N7	-3.02	106.25	109.40
1	16	1407	5MC	C5-C6-N1	-3.00	120.25	123.34
55	Pt	54	5MU	C5M-C5-C4	2.96	122.03	118.77
56	Dt	55	PSU	C3'-C2'-C1'	2.90	105.01	101.64
55	Pt	55	PSU	O2-C2-N1	-2.86	119.64	122.79
23	23	955	PSU	O2-C2-N1	-2.85	119.65	122.79
34	LP	81	4D4	CB-CA-C	-2.82	107.28	111.77
1	16	1407	5MC	C5-C4-N3	-2.81	118.64	121.67
23	23	2604	PSU	O2-C2-N1	-2.79	119.71	122.79
23	23	2069	7MG	C5-C6-N1	2.78	115.89	110.99
56	Dt	37	MIA	C2-N1-C6	2.77	122.15	117.19
56	Dt	8	4SU	C3'-C2'-C1'	2.76	106.67	101.43
1	16	516	PSU	C3'-C2'-C1'	2.72	104.81	101.64
1	16	1402	4OC	O2-C2-N3	-2.70	117.93	122.33

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	16	527	7MG	C5-C6-N1	2.69	115.72	110.99
1	16	1516	2MG	C5-C6-N1	2.67	118.67	113.95
23	23	2445	2MG	C8-N7-C5	2.66	108.05	102.99
55	Pt	34	U8U	O4-C4-C5	-2.65	121.01	124.96
56	Dt	46	7MG	C5-C6-N1	2.63	115.63	110.99
23	23	746	PSU	O2-C2-N1	-2.63	119.90	122.79
23	23	745	1MG	C5-C6-N1	2.62	117.84	113.90
23	23	1962	5MC	C5-C4-N3	-2.61	118.85	121.67
56	Dt	39	PSU	C3'-C2'-C1'	2.61	104.68	101.64
55	Pt	17	H2U	C3'-C2'-C1'	2.61	106.39	101.43
23	23	745	1MG	C3'-C2'-C1'	2.60	104.89	100.98
23	23	2251	OMG	C5-C6-N1	2.60	118.54	113.95
55	Pt	46	7MG	C5-C6-N1	2.59	115.56	110.99
1	16	1518	MA6	C3'-C2'-C1'	2.56	104.83	100.98
23	23	746	PSU	C5-C6-N1	-2.55	118.28	122.11
1	16	966	2MG	C8-N7-C5	2.55	107.84	102.99
23	23	1835	2MG	C5-C6-N1	2.53	118.42	113.95
23	23	2503	2MA	C8-N7-C5	2.53	107.81	102.99
23	23	2457	PSU	O2-C2-N3	-2.52	117.07	121.82
23	23	1618	6MZ	C4-C5-N7	-2.51	106.78	109.40
23	23	2604	PSU	O2'-C2'-C3'	-2.50	103.75	111.82
23	23	2503	2MA	C5-C6-N1	2.49	118.31	114.02
56	Dt	47	3AU	C10-N3-C2	2.48	121.38	117.67
56	Dt	16	H2U	C5-C6-N1	-2.48	103.45	111.61
1	16	1519	MA6	C9-N6-C6	-2.47	112.02	119.51
23	23	2552	OMU	O4-C4-C5	-2.46	120.83	125.16
1	16	1498	UR3	C3U-N3-C4	2.46	121.41	117.89
1	16	1519	MA6	C3'-C2'-C1'	2.46	104.68	100.98
56	Dt	47	3AU	C1'-N1-C2	2.46	121.14	116.99
56	Dt	37	MIA	C4-C5-N7	-2.46	106.84	109.40
23	23	2552	OMU	O2-C2-N1	-2.46	119.52	122.79
23	23	2445	2MG	C5-C6-N1	2.43	118.25	113.95
55	Pt	47	3AU	C10-N3-C2	2.42	121.29	117.67
1	16	1519	MA6	C10-N6-C9	-2.40	108.38	116.12
23	23	1939	5MU	O2-C2-N1	-2.40	119.60	122.79
23	23	2457	PSU	O2-C2-N1	-2.39	120.16	122.79
1	16	966	2MG	C5-C6-N1	2.39	118.17	113.95
55	Pt	54	5MU	C5M-C5-C6	-2.37	119.68	122.85
23	23	745	1MG	C8-N7-C5	2.37	107.50	102.99
55	Pt	47	3AU	C3'-C2'-C1'	2.37	105.92	101.43
56	Dt	37	MIA	N3-C2-N1	-2.35	122.65	126.98
23	23	955	PSU	O2-C2-N3	-2.34	117.40	121.82

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	<i>paae</i>
001111111000	J. 00	proceed as	<i>p</i> @ <i>g</i> o

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	16	527	7MG	C2'-C3'-C4'	-2.34	98.10	102.64
1	16	966	2MG	CM2-N2-C2	-2.33	118.70	123.86
55	Pt	37	T6A	C4-C5-N7	-2.33	106.97	109.40
1	16	1407	5MC	O2-C2-N3	-2.32	118.56	122.33
23	23	2580	PSU	O4'-C1'-C2'	2.32	108.42	105.14
55	Pt	16	H2U	C3'-C2'-C1'	2.32	105.83	101.43
1	16	1402	4OC	CM4-N4-C4	-2.32	117.93	122.45
1	16	1207	2MG	C5-C6-N1	2.31	118.03	113.95
23	23	2605	PSU	O2-C2-N3	-2.29	117.51	121.82
23	23	955	PSU	C5-C6-N1	-2.28	118.69	122.11
23	23	2605	PSU	O2-C2-N1	-2.28	120.28	122.79
56	Dt	46	7MG	N2-C2-N3	-2.27	115.31	119.73
55	Pt	16	H2U	O4-C4-N3	2.27	123.87	120.28
55	Pt	55	PSU	C5-C6-N1	-2.25	118.74	122.11
1	16	1207	2MG	CM2-N2-C2	-2.24	118.91	123.86
23	23	2251	OMG	C8-N7-C5	2.24	107.26	102.99
1	16	1498	UR3	O3'-C3'-C2'	-2.23	104.60	111.82
23	23	1835	2MG	C8-N7-C5	2.23	107.23	102.99
1	16	1207	2MG	C8-N7-C5	2.21	107.20	102.99
1	16	967	5MC	C5-C4-N3	-2.20	119.30	121.67
1	16	527	7MG	O5'-C5'-C4'	-2.20	101.51	108.99
1	16	527	7MG	CM7-N7-C5	2.20	132.06	126.40
56	Dt	46	7MG	CM7-N7-C5	2.19	132.05	126.40
23	23	2445	2MG	O6-C6-C5	-2.17	120.12	124.37
23	23	2069	7MG	O6-C6-C5	-2.17	122.21	127.54
56	Dt	37	MIA	C12-N6-C6	2.16	125.75	122.55
55	Pt	54	5MU	C2'-C1'-N1	-2.15	107.11	113.22
55	Pt	34	U8U	C-C5-C6	-2.14	117.99	121.21
56	Dt	46	7MG	O6-C6-C5	-2.14	122.29	127.54
55	Pt	34	U8U	C5-C4-N3	2.12	117.95	114.97
55	Pt	46	7MG	CM7-N7-C5	2.10	131.83	126.40
55	Pt	46	7MG	C5-C4-N9	-2.10	103.62	106.35
23	23	747	5MU	O2-C2-N1	-2.09	120.01	122.79
23	23	2069	7MG	C6-C5-C4	-2.09	118.32	122.62
23	23	1835	2MG	O6-C6-C5	-2.08	120.30	124.37
34	LP	81	4D4	O-C-CA	-2.08	119.32	124.78
1	16	967	5MC	C3'-C2'-C1'	2.07	105.36	101.43
56	Dt	16	H2U	O4-C4-N3	2.06	123.55	120.28
1	16	1516	2MG	O6-C6-C5	-2.06	120.35	124.37
23	23	2457	PSU	C5-C6-N1	-2.06	119.02	122.11
1	16	1516	$2M\overline{G}$	C8-N7-C5	$2.0\overline{6}$	106.91	102.99
55	Pt	34	U8U	S2-C2-N3	-2.05	116.01	119.96

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
23	23	2069	7MG	O4'-C1'-N9	2.05	112.09	109.30
55	Pt	46	7MG	O6-C6-C5	-2.04	122.53	127.54
55	Pt	46	7MG	O4'-C1'-N9	2.03	112.06	109.30
55	Pt	16	H2U	C5-C6-N1	-2.02	104.95	111.61
1	16	527	7MG	O3'-C3'-C4'	2.02	116.88	111.05
23	23	2069	7MG	CM7-N7-C5	2.01	131.59	126.40
12	SL	89	D2T	CB-CA-N	2.01	113.38	109.10
1	16	1519	MA6	C1'-N9-C4	-2.01	123.11	126.64
12	SL	89	D2T	O-C-CA	-2.00	119.53	124.78

Continued from previous page...

There are no chirality outliers.

All (75) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	16	527	7MG	O4'-C4'-C5'-O5'
1	16	527	7MG	C3'-C4'-C5'-O5'
1	16	1519	MA6	C5-C6-N6-C9
12	SL	89	D2T	SB-CB-CG-OD2
23	23	746	PSU	C2'-C1'-C5-C6
23	23	1618	6MZ	O4'-C4'-C5'-O5'
55	Pt	16	H2U	O4'-C1'-N1-C2
55	Pt	16	H2U	O4'-C1'-N1-C6
55	Pt	17	H2U	O4'-C1'-N1-C2
55	Pt	17	H2U	O4'-C1'-N1-C6
55	Pt	37	T6A	O10-C10-N6-C6
55	Pt	37	T6A	N11-C10-N6-C6
55	Pt	47	3AU	C2'-C1'-N1-C2
55	Pt	47	3AU	C2'-C1'-N1-C6
56	Dt	16	H2U	O4'-C4'-C5'-O5'
56	Dt	37	MIA	C5-C6-N6-C12
56	Dt	37	MIA	C12-C13-C14-C15
56	Dt	47	3AU	C2'-C1'-N1-C2
56	Dt	47	3AU	C2'-C1'-N1-C6
1	16	966	2MG	O4'-C4'-C5'-O5'
23	23	1618	6MZ	C3'-C4'-C5'-O5'
23	23	2030	6MZ	O4'-C4'-C5'-O5'
23	23	2030	6MZ	C3'-C4'-C5'-O5'
56	Dt	16	H2U	C3'-C4'-C5'-O5'
23	23	2504	PSU	O4'-C4'-C5'-O5'
55	Pt	16	H2U	O4'-C4'-C5'-O5'
55	Pt	16	H2U	C3'-C4'-C5'-O5'
56	Dt	47	3AU	C3'-C4'-C5'-O5'

00000	naca jion	<i>i</i> precie	as page.	
Mol	Chain	Res	Type	Atoms
55	Pt	17	H2U	C2'-C1'-N1-C6
56	Dt	37	MIA	O4'-C4'-C5'-O5'
55	Pt	16	H2U	C2'-C1'-N1-C6
55	Pt	17	H2U	C2'-C1'-N1-C2
56	Dt	37	MIA	N1-C6-N6-C12
55	Pt	37	T6A	C14-C12-C13-ODA
55	Pt	37	T6A	N11-C12-C13-ODA
1	16	966	2MG	C3'-C4'-C5'-O5'
23	23	2503	2MA	O4'-C4'-C5'-O5'
56	Dt	8	4SU	O4'-C4'-C5'-O5'
1	16	1519	MA6	C5-C6-N6-C10
55	Pt	16	H2U	C2'-C1'-N1-C2
34	LP	81	4D4	OB-CB-CG-CD
55	Pt	37	T6A	C14-C12-C13-ODB
23	23	2503	2MA	C3'-C4'-C5'-O5'
56	Dt	47	3AU	O4'-C1'-N1-C6
55	Pt	37	T6A	N11-C12-C13-ODB
1	16	1402	4OC	O4'-C4'-C5'-O5'
55	Pt	47	3AU	C10-C11-C12-C13
23	23	1915	3TD	C3'-C4'-C5'-O5'
56	Dt	47	3AU	N3-C10-C11-C12
1	16	1518	MA6	C5-C6-N6-C9
23	23	2069	7MG	C4'-C5'-O5'-P
56	Dt	47	3AU	O4'-C1'-N1-C2
56	Dt	47	3AU	O4'-C4'-C5'-O5'
55	Pt	47	3AU	O4'-C1'-N1-C6
23	23	2449	H2U	C4'-C5'-O5'-P
23	23	1962	5MC	C2'-C1'-N1-C6
34	LP	81	4D4	CA-CB-CG-CD
55	Pt	47	3AU	N40-C12-C13-O30
56	Dt	47	3AU	N40-C12-C13-O30
23	23	1962	5MC	O4'-C1'-N1-C6
12	SL	89	D2T	CA-CB-SB-CB1
1	16	1519	MA6	O4'-C4'-C5'-O5'
23	23	1915	3TD	O4'-C4'-C5'-O5'
23	23	2504	PSU	C3'-C4'-C5'-O5'
56	Dt	8	4SU	C3'-C4'-C5'-O5'
56	Dt	37	MIA	C3'-C4'-C5'-O5'
23	23	2251	OMG	C1'-C2'-O2'-CM2
55	Pt	47	3AU	O4'-C1'-N1-C2
12	SL	89	D2T	CG-CB-SB-CB1
23	23	746	PSU	O4'-C1'-C5-C6

Continued from previous page...

<i>y</i> <u>1</u> <u>1</u> <u>7</u> <u>7</u>									
Mol	Chain	\mathbf{Res}	Type	Atoms					
56	Dt	16	H2U	C4'-C5'-O5'-P					
56	Dt	46	7MG	C4'-C5'-O5'-P					
23	23	2069	7MG	O4'-C4'-C5'-O5'					
56	Dt	16	H2U	C2'-C1'-N1-C2					
34	LP	81	4D4	CG-CD-NE-CZ					

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 226 ligands modelled in this entry, 211 are monoatomic - leaving 15 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	T inl.	Bo	ond leng	ths	В	ond ang	gles
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
59	PUT	23	3006	-	$5,\!5,\!5$	0.14	0	4,4,4	0.22	0
59	PUT	23	3005	-	$5,\!5,\!5$	0.14	0	4,4,4	0.22	0
60	SPD	23	3013	-	9,9,9	0.16	0	8,8,8	0.28	0
60	SPD	23	3012	-	9,9,9	0.17	0	8,8,8	0.19	0
58	ATP	23	3002	-	26,33,33	0.60	0	$31,\!52,\!52$	0.74	2 (6%)
59	PUT	23	3003	-	$5,\!5,\!5$	0.16	0	4,4,4	0.25	0
59	PUT	23	3007	-	$5,\!5,\!5$	0.13	0	4,4,4	0.24	0
60	SPD	23	3014	-	9,9,9	0.16	0	8,8,8	0.31	0
59	PUT	23	3011	-	$5,\!5,\!5$	0.11	0	4,4,4	0.16	0
59	PUT	23	3009	-	$5,\!5,\!5$	0.11	0	4,4,4	0.16	0
59	PUT	23	3008	-	$5,\!5,\!5$	0.15	0	4,4,4	0.27	0
58	ATP	23	3001	-	26,33,33	0.67	0	31,52,52	0.74	1 (3%)
60	SPD	23	3015	-	9,9,9	0.16	0	8,8,8	0.27	0
59	PUT	23	3010	-	5,5,5	0.15	0	4,4,4	0.17	0

Mal	Type	Chain	Dog	Link	Bo	ond leng	\mathbf{ths}	В	ond ang	les
	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
59	PUT	23	3004	-	$5,\!5,\!5$	0.13	0	$4,\!4,\!4$	0.13	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
59	PUT	23	3006	-	-	0/3/3/3	-
59	PUT	23	3005	-	-	0/3/3/3	-
60	SPD	23	3013	-	-	3/7/7/7	-
60	SPD	23	3012	-	-	3/7/7/7	-
58	ATP	23	3002	-	-	9/18/38/38	0/3/3/3
59	PUT	23	3003	-	-	1/3/3/3	-
59	PUT	23	3007	-	-	1/3/3/3	-
60	SPD	23	3014	-	-	2/7/7/7	-
59	PUT	23	3011	-	-	0/3/3/3	-
59	PUT	23	3009	-	-	0/3/3/3	-
59	PUT	23	3008	-	-	0/3/3/3	-
58	ATP	23	3001	-	-	0/18/38/38	0/3/3/3
60	SPD	23	3015	-	-	0/7/7/7	-
59	PUT	23	3010	-	-	1/3/3/3	-
59	PUT	23	3004	-	-	0/3/3/3	-

There are no bond length outliers.

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	23	3002	ATP	C5-C6-N6	2.34	123.90	120.35
58	23	3001	ATP	C5-C6-N6	2.24	123.76	120.35
58	23	3002	ATP	PB-O3B-PG	2.06	139.91	132.83

There are no chirality outliers.

All (20) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
58	23	3002	ATP	PB-O3B-PG-O2G
58	23	3002	ATP	C5'-O5'-PA-O2A
58	23	3002	ATP	O4'-C4'-C5'-O5'
58	23	3002	ATP	C3'-C4'-C5'-O5'

Mol	Chain	Res	Type	Atoms
60	23	3013	SPD	N6-C7-C8-C9
60	23	3012	SPD	C8-C7-N6-C5
60	23	3014	SPD	C8-C7-N6-C5
59	23	3010	PUT	C1-C2-C3-C4
60	23	3012	SPD	C2-C3-C4-C5
60	23	3013	SPD	C3-C4-C5-N6
59	23	3007	PUT	C2-C3-C4-N2
58	23	3002	ATP	PB-O3A-PA-O5'
60	23	3012	SPD	N1-C2-C3-C4
58	23	3002	ATP	C5'-O5'-PA-O3A
58	23	3002	ATP	C5'-O5'-PA-O1A
60	23	3013	SPD	N1-C2-C3-C4
59	23	3003	PUT	C1-C2-C3-C4
60	23	3014	SPD	C4-C5-N6-C7
58	23	3002	ATP	PG-O3B-PB-O1B
58	23	3002	ATP	PB-O3B-PG-O1G

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-24136. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 288

Z Index: 288

6.2.2 Raw map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

Primary map 6.3.1

X Index: 316

Y Index: 315

Z Index: 304

6.3.2Raw map

X Index: 228

Y Index: 234

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.025. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 613 $\rm nm^3;$ this corresponds to an approximate mass of 553 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.372 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.372 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)				
resolution estimate (A)	0.143	0.5	Half-bit			
Reported by author	2.69	-	-			
Author-provided FSC curve	2.68	3.07	2.74			
Unmasked-calculated*	3.12	4.52	3.21			

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.12 differs from the reported value 2.69 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-24136 and PDB model 7N31. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.025 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.025).

9.4 Atom inclusion (i)

At the recommended contour level, 83% of all backbone atoms, 79% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.025) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.7943	0.5990
16	0.8443	0.6050
23	0.8587	0.6130
5	0.8457	0.6090
Dt	0.2987	0.3540
LB	0.8581	0.6630
LC	0.8486	0.6590
LD	0.7548	0.6130
LE	0.5615	0.5320
LF	0.5190	0.5070
LI	0.2181	0.3510
LM	0.8380	0.6520
LN	0.7950	0.6440
LO	0.8018	0.6340
LP	0.8157	0.6380
LQ	0.8894	0.6690
LR	0.7088	0.5970
LS	0.7917	0.6270
LT	0.8943	0.6750
LU	0.7739	0.6240
LV	0.8156	0.6480
LW	0.7438	0.6180
LX	0.6923	0.5740
LY	0.6856	0.5690
La	0.7670	0.6280
Lb	0.8233	0.6490
Lc	0.6190	0.5630
Ld	0.7872	0.6240
Le	0.3906	0.4480
Lf	0.8159	0.6480
Lg	0.6539	0.5920
Lh	0.9099	0.6840
Li	0.8859	0.6780
Lj	0.8048	0.6350
Pp	0.2857	0.5340

Continued from previous page...

Chain	Atom inclusion	Q-score
Pt	0.5764	0.5120
SB	0.5094	0.5030
SC	0.6385	0.5620
SD	0.6220	0.5650
SE	0.7566	0.6120
SF	0.5672	0.5280
SG	0.5537	0.5280
SH	0.7427	0.6060
SI	0.6176	0.5450
SJ	0.4884	0.4920
SK	0.6788	0.5870
SL	0.7118	0.6020
SM	0.6077	0.5510
SN	0.6533	0.5790
SO	0.6909	0.5890
SP	0.7081	0.5920
SQ	0.5981	0.5560
SR	0.6729	0.5720
SS	0.5842	0.5400
ST	0.6804	0.5940
SU	0.4651	0.4850
mR	0.5238	0.4920

