

wwPDB NMR Structure Validation Summary Report (i)

Jun 4, 2023 – 10:18 AM EDT

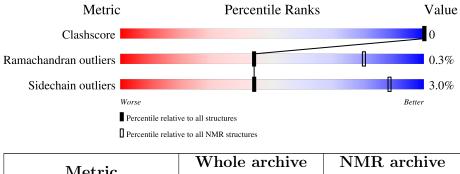
PDB ID	:	2NAX
BMRB ID	:	25953
Title	:	Structure of CCHC zinc finger domain of Pcf11
Authors	:	Yang, F.; Varani, G.
Deposited on	:	2016-01-12

This is a wwPDB NMR Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
wwPDB-RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
wwPDB-ShiftChecker	:	v1.2
BMRB Restraints Analysis	:	v1.2
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.33

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment is 89%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	(# Entries)	(# Entries)	
Clashscore	158937	12864	
Ramachandran outliers	154571	11451	
Sidechain outliers	154315	11428	

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	76	76%	24%

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 20 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: *lowest energy*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues				
Well-defined core Residue range (total) Backbone RMSD (Å) Medoid model				
1	A:546-A:603 (58)	0.77	20	

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 4 clusters and 8 single-model clusters were found.

Cluster number	Models
1	5, 11, 15, 16, 20
2	6, 17, 19
3	13, 18
4	10, 12
Single-model clusters	1; 2; 3; 4; 7; 8; 9; 14

3 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 1162 atoms, of which 554 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called Protein PCF11.

Mol	Chain	Residues	Atoms				Trace		
1	٨	76	Total	С	Η	Ν	0	S	0
	А	70	1161	376	554	99	128	4	0

There are 5 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	533	GLY	-	expression tag	UNP P39081
A	534	GLY	-	expression tag	UNP P39081
А	535	SER	-	expression tag	UNP P39081
А	536	GLU	-	expression tag	UNP P39081
А	537	PHE	-	expression tag	UNP P39081

• Molecule 2 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	
2	А	1	Total Zn 1 1	

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: Protein PCF11

Chain A:	76%	24%
G533 G534 G534 S535 E533 F553 S538 S538 S541 N540 S541 N542 E543 E543 E545 E545	8604 1605 8607 8608 8608	

4.2 Residue scores for the representative (medoid) model from the NMR ensemble

The representative model is number 20. Colouring as in section 4.1 above.

• Molecule 1: Protein PCF11

Chain A:	74%	•	24%
C 533 C 534 C 534 C 534 C 535 C 535 C 535 C 537 C 537 C 537 C 537 C 537 C 537 C 537 C 545 C 55 C 5			

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: *simulated annealing*.

Of the 100 calculated structures, 20 were deposited, based on the following criterion: *structures with the lowest energy*.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
Amber	refinement	
CYANA	structure solution	

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report.

Chemical shift file(s)	working_cs.cif
Number of chemical shift lists	1
Total number of shifts	825
Number of shifts mapped to atoms	825
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Assignment completeness (well-defined parts)	89%

6 Model quality (i)

6.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the (average) root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		E	Sond lengths	Bond angles		
	Chain	RMSZ	MSZ $\#Z>5$		#Z > 5	
1	А	$0.78 {\pm} 0.01$	$0{\pm}0/486~(~0.0{\pm}~0.0\%)$	1.01 ± 0.03	$0{\pm}0/661~(~0.0{\pm}~0.1\%)$	
All	All	0.78	0/9720~(~0.0%)	1.01	6/13220 ($0.0%$)	

There are no bond-length outliers.

All unique angle outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble.

Mol	Chain	Dec	Turne	Atoma	\mathbf{X} toms \mathbf{Z} $\mathbf{Observed}(^{o})$		$Ideal(^{o})$	Models	
10101	Unam	nes	туре	Atoms		Observed()	Ideal()	Worst	Total
1	А	547	ARG	NE-CZ-NH1	6.17	123.39	120.30	6	5
1	А	600	TYR	CB-CG-CD1	-5.80	117.52	121.00	14	1

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
All	All	9460	8820	8820	-

The all-atom clash score is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clash score for this structure is -.

There are no clashes.

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	58/76~(76%)	$57 \pm 1 (99 \pm 1\%)$	$1\pm1 (1\pm1\%)$	0±0 (0±1%)	44 80
All	All	1160/1520~(76%)	1143 (99%)	13 (1%)	4(0%)	44 80

All 2 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	558	GLN	3
1	А	559	ASP	1

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the side chain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	53/69~(77%)	51 ± 1 (97 $\pm2\%$)	$2\pm1 (3\pm2\%)$	44 89
All	All	1060/1380~(77%)	1028 (97%)	32 (3%)	44 89

5 of 10 unique residues with a non-rotameric side chain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	551	VAL	8
1	А	586	ASN	6
1	А	571	VAL	5
1	А	584	TRP	3
1	А	563	LYS	2

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

The completeness of assignment taking into account all chemical shift lists is 89% for the well-defined parts and 85% for the entire structure.

7.1 Chemical shift list 1

File name: working_cs.cif

Chemical shift list name: assigned_chem_shift_list_1

7.1.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	825
Number of shifts mapped to atoms	825
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	3

7.1.2 Chemical shift referencing (i)

The following table shows the suggested chemical shift referencing corrections.

Nucleus	# values	${\rm Correction}\pm{\rm precision},ppm$	Suggested action
$^{13}C_{\alpha}$	72	-0.30 ± 0.15	None needed (< 0.5 ppm)
$^{13}C_{\beta}$	68	0.22 ± 0.24	None needed (< 0.5 ppm)
$^{13}C'$	68	-0.27 ± 0.13	None needed (< 0.5 ppm)
¹⁵ N	69	0.23 ± 0.45	None needed (< 0.5 ppm)

7.1.3 Completeness of resonance assignments (i)

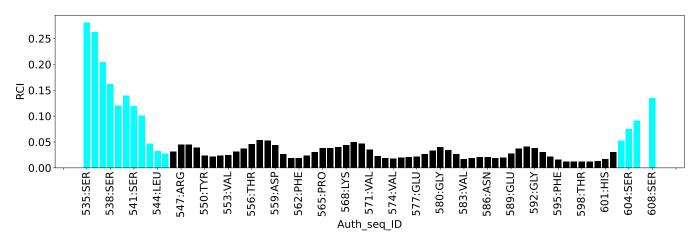
The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 89%, i.e. 687 atoms were assigned a chemical shift out of a possible 773. 0 out of 7 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Backbone	287/290~(99%)	118/118 (100%)	113/116~(97%)	56/56~(100%)
Sidechain	356/389~(92%)	240/251~(96%)	113/127~(89%)	3/11~(27%)

α \cdot \cdot \cdot	C		
Continued	from	previous	page
	5	1	1 5

	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Aromatic	44/94~(47%)	27/46~(59%)	15/44~(34%)	2/4~(50%)
Overall	687/773~(89%)	385/415~(93%)	241/287~(84%)	61/71~(86%)

7.1.4 Statistically unusual chemical shifts (i)


The following table lists the statistically unusual chemical shifts. These are statistical measures, and large deviations from the mean do not necessarily imply incorrect assignments. Molecules containing paramagnetic centres or hemes are expected to give rise to anomalous chemical shifts.

List Id	Chain	Res	Type	Atom	Shift, ppm	Expected range, ppm	Z-score
1	А	571	VAL	HB	0.10	0.43 - 3.54	-6.1
1	А	575	TYR	HB2	0.78	1.09 - 4.72	-5.9
1	А	594	TYR	HB2	0.98	1.09 - 4.72	-5.3

7.1.5 Random Coil Index (RCI) plots (i)

The image below reports *random coil index* values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition. If well-defined core and ill-defined regions are not identified then it is shown as gray bars.

Random coil index (RCI) for chain A:

8 NMR restraints analysis (i)

8.1 Conformationally restricting restraints (i)

The following table provides the summary of experimentally observed NMR restraints in different categories. Restraints are classified into different categories based on the sequence separation of the atoms involved.

Description	Value
Total distance restraints	813
Intra-residue $(i-j =0)$	183
Sequential (i-j =1)	227
Medium range ($ i-j >1$ and $ i-j <5$)	101
Long range $(i-j \ge 5)$	302
Inter-chain	0
Hydrogen bond restraints	0
Disulfide bond restraints	0
Total dihedral-angle restraints	0
Number of unmapped restraints	0
Number of restraints per residue	10.7
Number of long range restraints per residue ¹	4.0

¹Long range hydrogen bonds and disulfide bonds are counted as long range restraints while calculating the number of long range restraints per residue

8.2 Residual restraint violations (i)

This section provides the overview of the restraint violations analysis. The violations are binned as small, medium and large violations based on its absolute value. Average number of violations per model is calculated by dividing the total number of violations in each bin by the size of the ensemble.

8.2.1 Average number of distance violations per model (i)

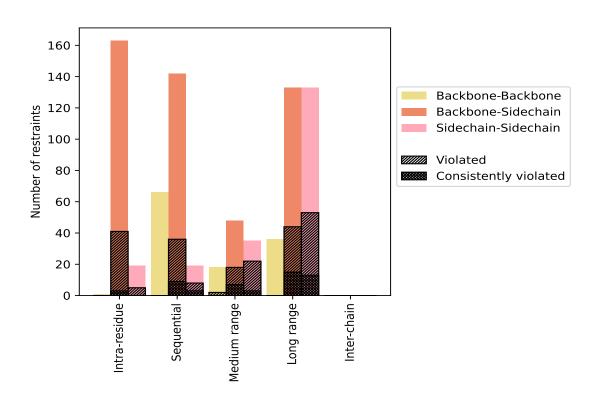
Distance violations less than 0.1 Å are not included in the calculation.

Bins (Å)	Average number of violations per model	Max (Å)
0.1-0.2 (Small)	15.3	0.2
0.2-0.5 (Medium)	36.1	0.5
>0.5 (Large)	83.6	4.59

8.2.2 Average number of dihedral-angle violations per model (i)

Dihedral-angle violations less than 1° are not included in the calculation. There are no dihedral-angle violations

9 Distance violation analysis (i)


9.1 Summary of distance violations (i)

The following table shows the summary of distance violations in different restraint categories based on the sequence separation of the atoms involved. Each category is further sub-divided into three sub-categories based on the atoms involved. Violations less than 0.1 Å are not included in the statistics.

Destroints type	Count	$\%^1$	$Violated^3$			Consistently		$Violated^4$
Restraints type	Count	70-	Count	$\%^2$	$\%^{1}$	Count	$\%^2$	$\%^1$
Intra-residue (i-j =0)	183	22.5	46	25.1	5.7	3	1.6	0.4
Backbone-Backbone	1	0.1	0	0.0	0.0	0	0.0	0.0
Backbone-Sidechain	163	20.0	41	25.2	5.0	3	1.8	0.4
Sidechain-Sidechain	19	2.3	5	26.3	0.6	0	0.0	0.0
Sequential (i-j =1)	227	27.9	44	19.4	5.4	12	5.3	1.5
Backbone-Backbone	66	8.1	0	0.0	0.0	0	0.0	0.0
Backbone-Sidechain	142	17.5	36	25.4	4.4	9	6.3	1.1
Sidechain-Sidechain	19	2.3	8	42.1	1.0	3	15.8	0.4
Medium range ($ i-j > 1 \& i-j < 5$)	101	12.4	42	41.6	5.2	10	9.9	1.2
Backbone-Backbone	18	2.2	2	11.1	0.2	0	0.0	0.0
Backbone-Sidechain	48	5.9	18	37.5	2.2	7	14.6	0.9
Sidechain-Sidechain	35	4.3	22	62.9	2.7	3	8.6	0.4
Long range $(i-j \ge 5)$	302	37.1	97	32.1	11.9	28	9.3	3.4
Backbone-Backbone	36	4.4	0	0.0	0.0	0	0.0	0.0
Backbone-Sidechain	133	16.4	44	33.1	5.4	15	11.3	1.8
Sidechain-Sidechain	133	16.4	53	39.8	6.5	13	9.8	1.6
Inter-chain	0	0.0	0	0.0	0.0	0	0.0	0.0
Backbone-Backbone	0	0.0	0	0.0	0.0	0	0.0	0.0
Backbone-Sidechain	0	0.0	0	0.0	0.0	0	0.0	0.0
Sidechain-Sidechain	0	0.0	0	0.0	0.0	0	0.0	0.0
Hydrogen bond	0	0.0	0	0.0	0.0	0	0.0	0.0
Disulfide bond	0	0.0	0	0.0	0.0	0	0.0	0.0
Total	813	100.0	229	28.2	28.2	53	6.5	6.5
Backbone-Backbone	121	14.9	2	1.7	0.2	0	0.0	0.0
Backbone-Sidechain	486	59.8	139	28.6	17.1	34	7.0	4.2
Sidechain-Sidechain	206	25.3	88	42.7	10.8	19	9.2	2.3

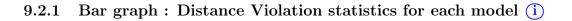
 1 percentage calculated with respect to the total number of distance restraints, 2 percentage calculated with respect to the number of restraints in a particular restraint category, 3 violated in at least one model, 4 violated in all the models

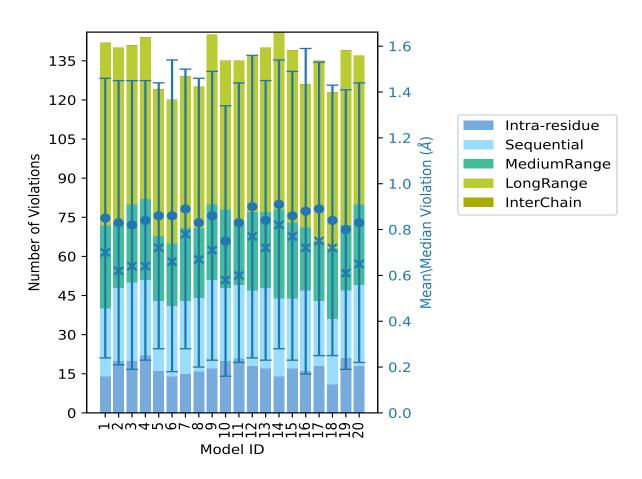
9.1.1 Bar chart : Distribution of distance restraints and violations (i)

Violated and consistently violated restraints are shown using different hatch patterns in their respective categories. The hydrogen bonds and disulfied bonds are counted in their appropriate category on the x-axis

9.2 Distance violation statistics for each model (i)

The following table provides the distance violation statistics for each model in the ensemble. Violations less than 0.1 Å are not included in the statistics.


Model ID		Nur	nber o	f viola	ations	5	Mean (Å)	Mor (Å)	SD^6 (Å)	Median (Å)
Model ID	IR^{1}	SQ^2	MR^3	LR^4	IC^5	Total	Mean (A)	Max (Å)	$SD^*(A)$	Median (A)
1	14	26	32	70	0	142	0.85	2.88	0.61	0.7
2	20	28	25	67	0	140	0.83	2.98	0.62	0.62
3	20	30	30	61	0	141	0.82	2.95	0.63	0.64
4	22	29	31	62	0	144	0.84	3.06	0.61	0.64
5	16	27	25	56	0	124	0.86	2.55	0.58	0.72
6	14	27	24	55	0	120	0.86	3.05	0.68	0.66
7	15	28	28	58	0	129	0.89	2.99	0.61	0.78
8	16	28	27	54	0	125	0.83	3.05	0.63	0.67
9	17	34	29	65	0	145	0.86	3.15	0.63	0.71
10	20	28	30	57	0	135	0.75	2.8	0.59	0.58
11	21	28	23	63	0	135	0.83	3.0	0.61	0.6

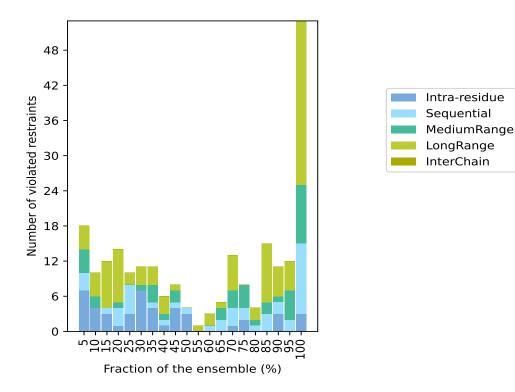


Madal ID	Number of violations						Mean (Å)	Mor (Å)	SD^6 (Å)	Median (Å)
Model ID	IR^{1}	SQ^2	MR^3	LR^4	IC^5	Total	Mean (A)	Max (Å)	$SD^{*}(A)$	Median (A)
12	18	29	30	60	0	137	0.9	3.6	0.66	0.77
13	17	31	29	63	0	140	0.84	3.01	0.61	0.72
14	14	30	34	68	0	146	0.91	3.04	0.63	0.82
15	17	27	29	66	0	139	0.86	3.03	0.63	0.77
16	16	31	24	55	0	126	0.88	4.59	0.71	0.72
17	18	25	23	69	0	135	0.89	2.92	0.64	0.75
18	11	25	27	60	0	123	0.84	3.04	0.59	0.72
19	21	26	25	67	0	139	0.8	2.87	0.61	0.61
20	18	31	31	57	0	137	0.83	3.07	0.61	0.65

Continued from previous page...

 1 Intra-residue restraints, 2 Sequential restraints, 3 Medium range restraints, 4 Long range restraints, 5 Inter-chain restraints, 6 Standard deviation

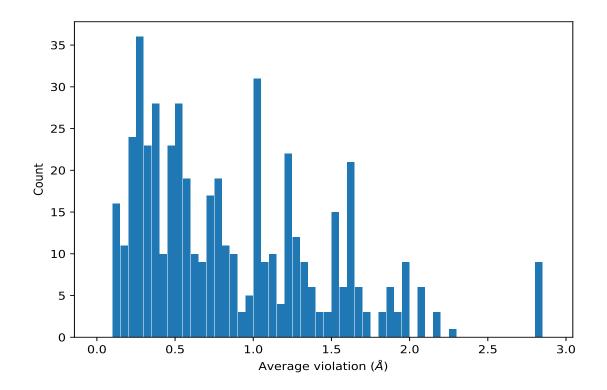
The mean(dot), median(x) and the standard deviation are shown in blue with respect to the y axis on the right


9.3 Distance violation statistics for the ensemble (i)

Violation analysis may find that some restraints are violated in few models and some are violated in most of models. The following table provides this information as number of violated restraints for a given fraction of the ensemble. In total, 584(IR:137, SQ:183, MR:59, LR:205, IC:0) restraints are not violated in the ensemble.

Nu	mber	of vio	lated	restra	aints	Fractio	n of the ensemble
IR^1	SQ^2	MR^3	LR ⁴	IC ⁵	Total	Count^6	%
7	3	4	4	0	18	1	5.0
4	0	2	4	0	10	2	10.0
3	1	0	8	0	12	3	15.0
1	3	1	9	0	14	4	20.0
3	5	0	2	0	10	5	25.0
7	0	1	3	0	11	6	30.0
4	1	3	3	0	11	7	35.0
1	1	1	3	0	6	8	40.0
4	1	2	1	0	8	9	45.0
3	1	0	0	0	4	10	50.0
0	0	0	1	0	1	11	55.0
0	1	0	2	0	3	12	60.0
0	2	2	1	0	5	13	65.0
1	3	3	6	0	13	14	70.0
2	2	4	0	0	8	15	75.0
0	1	1	2	0	4	16	80.0
0	3	2	10	0	15	17	85.0
3	2	1	5	0	11	18	90.0
0	2	5	5	0	12	19	95.0
3	12	10	28	0	53	20	100.0

 1 Intra-residue restraints, 2 Sequential restraints, 3 Medium range restraints, 4 Long range restraints, 5 Inter-chain restraints, 6 Number of models with violations


9.3.1 Bar graph : Distance violation statistics for the ensemble (i)

9.4 Most violated distance restraints in the ensemble (i)

9.4.1 Histogram : Distribution of mean distance violations (i)

The following histogram shows the distribution of the average value of the violation. The average is calculated for each restraint that is violated in more than one model over all the violated models in the ensemble

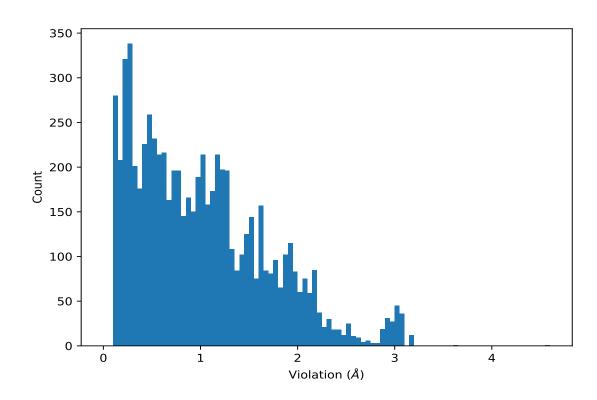
9.4.2 Table: Most violated distance restraints (i)

The following table provides the mean and the standard deviation of the violations for the 10 worst performing restraints, sorted by number of violated models and the mean violation value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. Rows with same key represent combinatorial or ambiguous restraints and are counted as a single restraint.

Key	Atom-1	Atom-2	$Models^1$	Mean (Å)	SD^1 (Å)	Median (Å)
(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG11	20	2.82	0.53	3.0
(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG12	20	2.82	0.53	3.0
(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG13	20	2.82	0.53	3.0
(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG11	20	2.82	0.53	3.0
(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG12	20	2.82	0.53	3.0
(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG13	20	2.82	0.53	3.0
(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG11	20	2.82	0.53	3.0
(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG12	20	2.82	0.53	3.0
(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG13	20	2.82	0.53	3.0
(1,299)	1:A:600:TYR:HB3	1:A:604:SER:HA	20	2.28	0.84	2.26
(1,493)	1:A:571:VAL:HG21	1:A:585:LYS:HA	20	2.09	0.74	2.38
(1,493)	1:A:571:VAL:HG22	1:A:585:LYS:HA	20	2.09	0.74	2.38
(1,493)	1:A:571:VAL:HG23	1:A:585:LYS:HA	20	2.09	0.74	2.38
(1,306)	1:A:553:VAL:HG21	1:A:555:GLU:HA	20	2.08	0.32	2.18
(1,306)	1:A:553:VAL:HG22	1:A:555:GLU:HA	20	2.08	0.32	2.18
(1,306)	1:A:553:VAL:HG23	1:A:555:GLU:HA	20	2.08	0.32	2.18

Key	Atom-1	Atom-2	\mathbf{Models}^1	Mean (Å)	SD^1 (Å)	Median (Å)
(1,422)	1:A:553:VAL:HG11	1:A:583:VAL:HG21	20	1.95	0.1	1.96
(1,422)	1:A:553:VAL:HG11	1:A:583:VAL:HG22	20	1.95	0.1	1.96
(1,422)	1:A:553:VAL:HG11	1:A:583:VAL:HG23	20	1.95	0.1	1.96
(1,422)	1:A:553:VAL:HG12	1:A:583:VAL:HG21	20	1.95	0.1	1.96
(1,422)	1:A:553:VAL:HG12	1:A:583:VAL:HG22	20	1.95	0.1	1.96
(1,422)	1:A:553:VAL:HG12	1:A:583:VAL:HG23	20	1.95	0.1	1.96
(1,422)	1:A:553:VAL:HG13	1:A:583:VAL:HG21	20	1.95	0.1	1.96
(1,422)	1:A:553:VAL:HG13	1:A:583:VAL:HG22	20	1.95	0.1	1.96
(1,422)	1:A:553:VAL:HG13	1:A:583:VAL:HG23	20	1.95	0.1	1.96
(1,417)	1:A:552:VAL:H	1:A:583:VAL:HG21	20	1.89	0.09	1.88
(1,417)	1:A:552:VAL:H	1:A:583:VAL:HG22	20	1.89	0.09	1.88
(1,417)	1:A:552:VAL:H	1:A:583:VAL:HG23	20	1.89	0.09	1.88
(1,560)	1:A:553:VAL:HG21	1:A:557:SER:H	20	1.86	0.09	1.85
(1,560)	1:A:553:VAL:HG22	1:A:557:SER:H	20	1.86	0.09	1.85
(1,560)	1:A:553:VAL:HG23	1:A:557:SER:H	20	1.86	0.09	1.85
(1,441)	1:A:553:VAL:HG11	1:A:583:VAL:HA	20	1.82	0.1	1.83
(1,441)	1:A:553:VAL:HG12	1:A:583:VAL:HA	20	1.82	0.1	1.83
(1,441)	1:A:553:VAL:HG13	1:A:583:VAL:HA	20	1.82	0.1	1.83
(1,132)	1:A:552:VAL:HG21	1:A:554:PRO:HD2	20	1.69	0.88	2.25
(1,132)	1:A:552:VAL:HG22	1:A:554:PRO:HD2	20	1.69	0.88	2.25
(1,132)	1:A:552:VAL:HG23	1:A:554:PRO:HD2	20	1.69	0.88	2.25
(1,415)	1:A:553:VAL:HG11	1:A:583:VAL:HB	20	1.66	0.11	1.65

Continued from previous page...


 $^1\mathrm{Number}$ of violated models, $^2\mathrm{Standard}$ deviation

9.5 All violated distance restraints (i)

9.5.1 Histogram : Distribution of distance violations (i)

The following histogram shows the distribution of the absolute value of the violation for all violated restraints in the ensemble.

9.5.2 Table : All distance violations (i)

The following table provides the 10 worst performing restraints, sorted by the violation value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. Rows with same key represent combinatorial or ambiguous restraints and are counted as a single restraint.

Key	Atom-1	Atom-2	Model ID	Violation (Å)
(1,299)	1:A:600:TYR:HB3	1:A:604:SER:HA	16	4.59
(1,299)	1:A:600:TYR:HB3	1:A:604:SER:HA	12	3.6
(1,8)	1:A:543:GLU:HG3	1:A:544:LEU:HD21	9	3.15
(1,8)	1:A:543:GLU:HG3	1:A:544:LEU:HD22	9	3.15
(1,8)	1:A:543:GLU:HG3	1:A:544:LEU:HD23	9	3.15
(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG11	16	3.15
(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG12	16	3.15
(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG13	16	3.15
(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG11	16	3.15
(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG12	16	3.15
(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG13	16	3.15
(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG11	16	3.15
(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG12	16	3.15
(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG13	16	3.15
(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG11	20	3.07
(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG12	20	3.07
(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG13	20 	3.07

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ed from previous page			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Key	Atom-1	Atom-2	Model ID	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(1,423)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG13		3.07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG11		3.07
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG12	20	3.07
$ \begin{array}{c} (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG12 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & $	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG13	20	3.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG11	4	3.06
	(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG12	4	3.06
$ \begin{array}{c} (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG14 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG14 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG14 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 $	(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG13	4	3.06
	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG11	4	3.06
$ \begin{array}{c} (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 4 & 3.04 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 4 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 4 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23$	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG12	4	3.06
$ \begin{array}{c} (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 4 & 3.04 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG$	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG13	4	3.06
$ \begin{array}{c} (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 4 & 3.06 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG12 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 4 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG$	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG11	4	3.06
$ \begin{array}{c} (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG12 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 4 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:H$	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG12	4	3.06
$ \begin{array}{c} (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG24 & 1:A:583:VAL:HG14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG14 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG2$	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG13	4	3.06
$ \begin{array}{c} (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 6 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG21 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG11 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG24 & 1:A:583:VAL:HG13 & 8 & 3.05 \\ (1,423) & 1:A:574:VAL:HG24 & 1:A:583:VAL:HG14 & 4 & 3.04 \\ (1,423) & 1:A:574:VAL:HG24 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG22 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG13 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 14 & 3.04 \\ (1,423) & 1:A:574:VAL:HG23 & 1:A:583:VAL:HG12 & 14 & 3.04 \\ (1,423) & 1:A:574:VA$	(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG11	6	3.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG12	6	3.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG13	6	3.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG11	6	3.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG12	6	3.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG13	6	3.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG11	6	3.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG12	6	3.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG13	6	3.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG11	8	3.05
(1,423)1:A:574:VAL:HG221:A:583:VAL:HG1183.05(1,423)1:A:574:VAL:HG221:A:583:VAL:HG1283.05(1,423)1:A:574:VAL:HG221:A:583:VAL:HG1383.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1183.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1283.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1283.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1383.05(1,423)1:A:574:VAL:HG211:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG12143.04	(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG12	8	3.05
(1,423)1:A:574:VAL:HG221:A:583:VAL:HG1283.05(1,423)1:A:574:VAL:HG221:A:583:VAL:HG1383.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1183.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1283.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1383.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1383.05(1,423)1:A:574:VAL:HG211:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG12143.04	(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG13	8	3.05
(1,423)1:A:574:VAL:HG221:A:583:VAL:HG1383.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1183.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1283.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1383.05(1,423)1:A:574:VAL:HG211:A:583:VAL:HG1383.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG12143.04	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG11	8	3.05
(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1183.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1283.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1383.05(1,423)1:A:574:VAL:HG211:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG12	8	3.05
(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1283.05(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1383.05(1,423)1:A:574:VAL:HG211:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG13	8	3.05
(1,423)1:A:574:VAL:HG231:A:583:VAL:HG1383.05(1,423)1:A:574:VAL:HG211:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG11	8	3.05
(1,423)1:A:574:VAL:HG211:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG12	8	3.05
(1,423)1:A:574:VAL:HG211:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG211:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG12143.04	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG13	8	3.05
(1,423)1:A:574:VAL:HG211:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04	(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG11	14	3.04
(1,423)1:A:574:VAL:HG211:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04		1:A:574:VAL:HG21	1:A:583:VAL:HG12	14	3.04
(1,423)1:A:574:VAL:HG221:A:583:VAL:HG12143.04(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG12143.04	(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG13	14	3.04
(1,423)1:A:574:VAL:HG221:A:583:VAL:HG13143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG12143.04	,	1:A:574:VAL:HG22	1:A:583:VAL:HG11	14	3.04
(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG12143.04	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG12	14	3.04
(1,423)1:A:574:VAL:HG231:A:583:VAL:HG11143.04(1,423)1:A:574:VAL:HG231:A:583:VAL:HG12143.04	(1,423)	1:A:574:VAL:HG22	1:A:583:VAL:HG13	14	3.04
	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG11	14	3.04
(1,423) 1:A:574:VAL:HG23 1:A:583:VAL:HG13 14 3.04		1:A:574:VAL:HG23	1:A:583:VAL:HG12	14	3.04
	(1,423)	1:A:574:VAL:HG23	1:A:583:VAL:HG13	14	3.04

Continued from previous page...

Continued from previous page...

Key	Atom-1	Atom-2	Model ID	Violation (Å)
(1,423)	1:A:574:VAL:HG21	1:A:583:VAL:HG11	18	3.04

10 Dihedral-angle violation analysis (i)

No dihedral-angle restraints found

