

wwPDB EM Validation Summary Report (i)

Nov 7, 2022 – 05:16 AM EST

PDB ID	:	6NCL
EMDB ID	:	EMD-0436
Title	:	Near-atomic structure of icosahedrally averaged PBCV-1 capsid
Authors	:	Fang, Q.; Rossmann, M.G.
Deposited on	:	2018-12-11
Resolution	:	3.50 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures		
	(#Entries)	(#Entries)		
Clashscore	158937	4297		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain						
1	a0	352	28%	72%					
2	a1	210	47%		49%				
3	a2	289	31% •	67%					
3	a3	289	26%	74%					
4	a4	256	56%	·	40%				
5	a5	216	8	6%	• 12%				
6	a6	170		98%	••				
7	a7	151	47%	•••	48%				
8	a8	146		95%	•••				

Chain Length Quality of chain Mol 9 a920723% 77% 9 b0 20726% 71% • 9 b120724% 74% • b29 20725% 75% 9 b320724% 75% • 9 b420775% 23% • 9 b520725% 72% • 9 b7207. 24% 75% b8207 9 72% 27% 9 c020724% • 75% 9 c120723% 75% • l52079 27% 72% • 10 b657680% 18% 11 c218156% 43% . 11 c3181 33% 67% 11 c418130% 68% . 11 c518131% 68% • 12c617181% 18% • 12c717178% 8% 14% 12c817168% 32% 13c917395% . . d01443799% 43714d199% d214437100% 14d343799%

Conti	nued from	n previous	page
Mol	Chain	Length	Quality of chain
14	d4	437	99% •
14	d5	437	100%
14	d6	437	100%
14	d7	437	100%
14	d8	437	100%
14	d9	437	100%
14	e0	437	99%
14	e1	437	99% •
14	e2	437	99% •
14	e3	437	99%
14	e4	437	99% •
14	e5	437	100%
14	e6	437	100%
14	e7	437	99%
14	e8	437	100%
14	e9	437	99%
14	fO	437	99% •
14	f1	437	100%
14	f2	437	99%
14	f3	437	100%
14	f4	437	99% •
14	f5	437	99% •
14	f6	437	100%
14	f7	437	99%
14	f8	437	99%

Mol	Chain	Length	Quality of chain
14	f9	437	99% •
14	g0	437	99%
14	g1	437	100%
14	g2	437	99%
14	g3	437	99%
14	g4	437	99%
14	g5	437	99%
14	g6	437	100%
14	m g7	437	99%
14	g8	437	100%
14	g9	437	100%
14	h0	437	100%
14	h1	437	100%
14	h2	437	99%
14	h3	437	99%
14	h4	437	99%
14	h5	437	99%
14	h6	437	99% •
14	h7	437	100%
14	h8	437	100%
14	h9	437	100%
14	i0	437	100%
14	i1	437	99%
14	i2	437	99%
14	i3	437	99%

Mol	Chain	Length	Quality of chain
14	i4	437	100%
14	i5	437	100%
14	i6	437	99%
14	i7	437	99%
14	i8	437	99%
14	i9	437	100%
14	j0	437	99%
14	j1	437	100%
14	j2	437	99%
14	j3	437	99%
14	j4	437	99%
14	j5	437	99%
14	j6	437	99%
14	j7	437	100%
14	j8	437	99%
14	j9	437	100%
14	k0	437	99%
14	k1	437	100%
14	k2	437	99%
14	k3	437	99%
14	k4	437	100%
14	k5	437	100%
14	k6	437	99%
14	k7	437	99%
14	k8	437	99%

15

l4

98

33%

Conti	Continued from previous page							
Mol	Chain	Length	Quality of chain					
14	k9	437	100%					
14	10	437	100%					
14	11	437	99%					
14	12	437	99% •					
14	13	437	100%					

67%

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 305842 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called P14.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	a0	97	Total 733	C 463	N 122	0 145	${ m S} { m 3}$	0	0

• Molecule 2 is a protein called P9.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	a1	107	Total 718	$\begin{array}{c} \mathrm{C} \\ 445 \end{array}$	N 122	0 146	${ m S}{ m 5}$	0	0

• Molecule 3 is a protein called P10.

Mol	Chain	Residues	Atoms	AltConf Trace
3	3 50	94	Total C N O S	0 0
J a2	aΔ	94	650 411 110 125 4	
3	3 a3	74	Total C N O S	0 0
5		14	485 308 86 88 3	

• Molecule 4 is a protein called P7.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
4	a4	153	Total 1088	C 689	N 192	0 197	S 10	0	0

• Molecule 5 is a protein called P6.

Mol	Chain	Residues		At	AltConf	Trace			
5	a5	189	Total 1326	C 878	N 210	O 236	${ m S} { m 2}$	0	0

• Molecule 6 is a protein called P1.

Mol	Chain	Residues		At	AltConf	Trace			
6	a6	167	Total 1192	C 756	N 203	O 229	$\frac{S}{4}$	0	0

• Molecule 7 is a protein called P12.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
7	a7	78	Total 543	C 357	N 88	0 95	${ m S}{ m 3}$	0	0

• Molecule 8 is a protein called P5.

Mol	Chain	Residues		At	AltConf	Trace			
8	a8	142	Total 988	C 638	N 168	0 180	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 9 is a protein called P11.

Mol	Chain	Residues	Atoms	AltConf	Trace
9	a9	47	Total C N O S 311 200 53 57 1	0	0
9	b0	59	Total C N O S 398 248 70 79 1	0	0
9	b1	54	Total C N O 368 238 64 66	0	0
9	b2	51	Total C N O S 350 227 59 63 1	0	0
9	b3	51	Total C N O S 335 216 56 62 1	0	0
9	b4	52	Total C N O S 350 228 61 60 1	0	0
9	b5	57	Total C N O S 367 237 64 64 2	0	0
9	b7	52	Total C N O S 375 244 63 67 1	0	0
9	b8	57	Total C N O 379 244 66 69	0	0
9	c0	51	Total C N O S 338 214 59 64 1	0	0
9	c1	51	Total C N O S 335 213 59 61 2	0	0
9	15	58	Total C N O 392 253 67 72	0	0

• Molecule 10 is a protein called P2.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	b6	475	Total 3210	C 2016	N 587	O 603	${S \atop 4}$	0	0

• Molecule 11 is a protein called P4.

Mol	Chain	Residues	Atoms	AltConf	Trace
11	c2	103	Total C N O S 603 369 110 123 1	0	0
11	c3	60	Total C N O 389 242 69 78	0	0
11	c4	58	Total C N O 369 230 65 74	0	0
11	c5	58	$\begin{array}{ccccc} {\rm Total} & {\rm C} & {\rm N} & {\rm O} \\ {\rm 396} & {\rm 252} & {\rm 72} & {\rm 72} \end{array}$	0	0

• Molecule 12 is a protein called P3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	12 c6	141	Total	С	Ν	0	S	0	0
12			951	602	170	177	2	0	
19		1.47	Total	С	Ν	0	S	0	0
	01	147	1004	648	172	180	4	0	0
19	68	116	Total	С	Ν	0	S	0	0
12	68	co 110	813	519	141	149	4	0	0

• Molecule 13 is a protein called P8.

Mol	Chain	Residues		At	AltConf	Trace			
13	c9	166	Total 1191	C 776	N 198	0 214	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called Major capsid protein.

Mol	Chain	Residues		At	AltConf	Trace				
14 d0	40	432	Total	С	Ν	0	\mathbf{S}	0	0	
14	uu		3369	2142	570	649	8	0	0	
14	d1	424	Total	С	Ν	0	\mathbf{S}	0	0	
14	uı	434	3382	2149	573	652	8	0	0	
14	40	425	Total	С	Ν	0	S	0	0	
14	u2	uz 450	400	3387	2152	574	653	8	0	0

Continued from previous page...

Mol	Chain	Residues		At		AltConf	Trace		
14	40	494	Total	С	Ν	0	S	0	0
14	03	434	3382	2149	573	652	8	0	0
14	-14	494	Total	С	Ν	0	S	0	0
14	04	434	3382	2149	573	652	8	0	0
14	-15	495	Total	С	Ν	0	S	0	0
14	GD	433	3383	2150	574	651	8	0	0
14	16	495	Total	С	Ν	0	S	0	0
14	do	433	3387	2152	574	653	8	0	0
14	17	495	Total	С	Ν	0	S	0	0
14	<i>ai</i>	433	3381	2149	571	653	8	0	0
14	40	425	Total	С	Ν	0	S	0	0
14	uð	450	3390	2153	575	654	8	0	0
14	-10	426	Total	С	Ν	0	S	0	0
14	<u>49</u>	430	3395	2156	576	655	8	0	0
14	-0	425	Total	С	Ν	0	S	0	0
14	eu	450	3390	2153	575	654	8	0	0
14	1	424	Total	С	Ν	0	S	0	0
14	er	434	3382	2149	573	652	8	0	0
14		494	Total	С	Ν	0	S	0	0
14	ez	434	3382	2149	573	652	8	0	0
14	22	425	Total	С	Ν	0	S	0	0
14	eə	450	3387	2152	574	653	8	0	0
14	4	424	Total	С	Ν	0	S	0	0
14	e4	404	3382	2149	573	652	8	0	0
14	05	425	Total	С	Ν	0	S	0	0
14	60	400	3390	2153	575	654	8	0	0
14	6	436	Total	С	Ν	0	\mathbf{S}	0	0
14	eo	430	3395	2156	576	655	8	0	0
14	07	435	Total	С	Ν	Ο	\mathbf{S}	0	0
14	er	400	3390	2153	575	654	8	0	0
14		/35	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	Ο
14	0	400	3390	2153	575	654	8	0	0
14	0م	/35	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	Ο
14	0.5	400	3387	2152	574	653	8	0	0
14	fO	134	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	Ο
14	10	404	3375	2143	573	651	8	0	0
14	f1	435	Total	C	Ν	0	S	0	0
	11	00	3387	2152	574	653	8		0
14	f9	436	Total	С	Ν	Ο	\mathbf{S}	0	Ο
14	12	UGF	3395	2156	576	655	8		0
14	f3	435	Total	C	Ν	0	S	0	0
1.7	10	UGE	3383	2147	575	653	8		0

Continued from previous page...

Mol	Chain	Residues		Ate		AltConf	Trace		
14	£4	494	Total	С	Ν	0	S	0	0
14	I4	434	3382	2149	573	652	8	0	0
14	(F	49.4	Total	С	Ν	0	S	0	0
14	GI	434	3376	2146	570	652	8	0	0
14	fc	495	Total	С	Ν	0	S	0	0
14	10	430	3387	2152	574	653	8	0	0
14	£7	494	Total	С	Ν	0	S	0	0
14	17	404	3372	2142	572	650	8	0	0
14	fo	499	Total	С	Ν	0	S	0	0
14	10	400	3378	2147	572	651	8	0	0
14	fO	424	Total	С	Ν	0	S	0	0
14	19	404	3379	2145	574	652	8	0	0
14	നി	435	Total	С	Ν	0	S	0	0
14	gu	400	3387	2152	574	653	8	0	0
14	or1	/35	Total	С	Ν	Ο	\mathbf{S}	0	0
14	gı	400	3387	2152	574	653	8	0	0
14	r 2	134	Total	С	Ν	Ο	\mathbf{S}	0	0
14	g2	404	3382	2149	573	652	8	0	0
14	a3	434	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
14	go	404	3382	2149	573	652	8	0	0
14	σA	435	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
14	84	400	3390	2153	575	654	8	0	0
14	or 5	/35	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
14	80	400	3387	2152	574	653	8	0	0
14	σĥ	/35	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
14	gu	400	3387	2152	574	653	8	0	0
14	σ7	434	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	5'	101	3376	2146	570	652	8	0	0
14	σ8	436	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	50	100	3395	2156	576	655	8	0	0
14	σθ	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	5°	100	3390	2153	575	654	8	Ŭ	0
14	hO	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		100	3387	2152	574	653	8	Ŭ	Ŭ
14	h1	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		100	3387	2152	574	653	8	Ŭ	Ŭ
14	h2	434	Total	С	Ν	0	S	0	0
			3382	2149	573	652	8		
14	h3	435	Total	С	Ν	0	S	0	0
		100	3390	2153	575	654	8		
14	h4	434	Total	С	Ν	Ο	\mathbf{S}	0	0
		101	3382	2149	573	652	8		

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf	Trace	
14	۱F	49.4	Total	С	Ν	0	S	0	0	
14	GU	434	3382	2149	573	652	8	0	0	
14	L.C.	49.4	Total	С	Ν	0	S	0	0	
14	no	434	3382	2149	573	652	8	0	0	
14	17	490	Total	С	Ν	0	S	0	0	
14	n7	430	3395	2156	576	655	8	0	0	
14	LO	495	Total	С	Ν	0	S	0	0	
14	118	450	3387	2152	574	653	8	0	0	
14	hO	425	Total	С	Ν	0	S	0	0	
14	119	400	3381	2149	571	653	8	0	0	
14	;0	425	Total	С	Ν	0	S	0	0	
14	10	400	3390	2153	575	654	8	0	0	
14	;1	424	Total	С	Ν	0	S	0	0	
14	11	404	3382	2149	573	652	8	0	0	
14	;0	424	Total	С	Ν	0	S	0	0	
14	12	404	3382	2149	573	652	8	0	0	
14	;2	434	Total	С	Ν	0	S	0	0	
14	10	404	3382	2149	573	652	8	0	0	
14	;4	425	Total	С	Ν	0	S	0	0	
14	14	400	3384	2150	572	654	8	0	0	
14	;5	426	Total	С	Ν	0	S	0	0	
14	10	430	3395	2156	576	655	8	0	0	
14	iß	434	Total	С	Ν	0	S	0	0	
14	10	404	3382	2149	573	652	8	0	0	
14	;7	434	Total	С	Ν	0	\mathbf{S}	0	0	
14	17	404	3382	2149	573	652	8	0	0	
14	i8	436	Total	С	Ν	0	\mathbf{S}	0	0	
14	10	400	3388	2150	576	654	8	0	0	
14	iQ	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
14	15	400	3387	2152	574	653	8	0	0	
14	iO	436	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
17	JU	400	3392	2155	576	653	8	0	0	
14	i1	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
	JI	100	3387	2152	574	653	8	0	0	
14	i2	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
	J2	100	3387	2152	574	653	8	0	0	
14	i3	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
	<u>j</u> 0	100	3387	2152	575	652	8	0	0	
14	i4	434	Total	С	Ν	Ο	\mathbf{S}	0	0	
	JI	191	3382	2149	573	652	8		0	
14	i5	434	Total	С	Ν	Ο	\mathbf{S}	0	0	
14 JO		+0+	3382	2149	573	652	8		U	

Mol	Chain	Residues	5	Ate	oms			AltConf	Trace	
14	.0	49.4	Total	С	Ν	0	S	0	0	
14	JЮ	434	3382	2149	573	652	8	0	0	
14	:7	426	Total	С	Ν	0	S	0	0	
14	Jí	430	3395	2156	576	655	8	0	0	
14	;0	425	Total	С	Ν	0	S	0	0	
14	Jo	455	3390	2153	575	654	8	0	0	
14	iQ	/35	Total	С	Ν	0	\mathbf{S}	0	0	
14	JJ	400	3387	2152	574	653	8	0	0	
14	k0	434	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
14	KÜ	404	3382	2149	573	652	8	0	0	
14	k1	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
17	N1	100	3387	2152	574	653	8	0		
14	k2	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
11	112	100	3387	2152	574	653	8	0	0	
14	k3	434	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
11	10	101	3382	2149	573	652	8	Ŭ		
14	k4	436	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
**		100	3395	2156	576	655	8			
14	k5	436	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
11	no	100	3395	2156	576	655	8	Ŭ	0	
14	k6	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
**		100	3391	2153	575	655	8	Ŭ		
14	k7	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
		100	3387	2151	574	654	8	Ŭ	Ŭ	
14	k8	435	Total	С	Ν	0	S	0	0	
			3391	2153	575	655	8			
14	k9	435	Total	С	Ν	0	S	0	0	
		100	3381	2149	571	653	8		Ŭ	
14	10	435	Total	С	Ν	0	S	0	0	
			3391	2153	575	655	8	-		
14	11	435	Total	С	Ν	0	S	0	0	
			3391	2153	575	655	8	-		
14	12	434	Total	С	N	0	S	0	0	
			3382	2149	573	652	8			
14	13	436	Total	С	N	0	S	0	0	
TT 10	001	3396	2156	576	656	8		, in the second se		

Continued from previous page...

• Molecule 15 is a protein called P13.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
15	14	66	Total 487	C 313	N 82	O 90	S 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule	3: P10						
Chain a3:	26%			74%			-
MET MET ASN PHE ILEU VAL LEU	LEU TLE VAL ALA MET TLE GLY THR TLEU LEU	VAL SER GLU SER LYS LYS LYR LEU PHE	LYS PRO VAL CYS LYS ASN CYS	GLY VAL LYS ALA VAL THR	PRO VAL ASP ILE SER ALA	GLY LYS LEU ALA LYS VAL ALA	GLU ALA VAL LYS LYS GLN
THR GLU GLU GLU LYS LYS LEU LEU	LYS GLN GLN GLN SER ALA PRO LYS ALA PRO	GLU LEU THR ASN PRO FRO GLU HIS	LYS ALA SER THR VAL VAL	SER GLY ALA ASN GLY LEU	GLU ASN VAL ILE ASP GLU ASP	PRO PHE SER ASP PHE PHE LYS	GLY VAL PRO VAL ALA GLU GLU
THR THR VAL GLU GLV MET ILE LYS	GLY TLE ARG PRO PRO THR TYR ALA ASP PRO	ARG VAL MET ASN PRO ALA ALA ALA	ALA PRO VAL GLN PHE SER	PRO THR GLN GLN GLY THR	PHE GLY VAL THR ASP VAL VAL	SEK PRO ALA PHE SER SER THR GLU	ASP LYS TLE PRO LYS THR
ASN ALA LYS LYS ILE SER SER ASP ILE	VAL VAL GLU GLV TYR GLU GLU ASN SER TYR SER ASP	ALA ASN GLY ALA ARG LEU LEU VAL MET ASP	GLY LYS VAL VAL LYS SER SER	C215 C215 N288 ASN			
• Molecule	4: P7						
Chain a4:		56%		•	40%		_
MET GLN TTR TTR SER GLU TTR	GLU LYS TLE GLY ARG LYS LYS LEU LEU	LEU VAL LYS ARG ARG LEU LEU ALA	SER THR LEU TYR ILE	ASN TYR ILE LEU SER	LLE LYS LYS CLU GLU	LTS HIS MET ILEU LEU LEU CLY	PHE VAL ALA VAL VAL VAL
VAL PHE ILE ILE PHE MET LEU THR	ARG LYS LYS LYS CLY GLU GLY PHE SER SER SLY GLY	ASN TLE PHE GLY GLY VAL LYS GLY AI.A	VAL THR GLY THR VAL GLY GLY	VAL VAL ASN V98 V109	C120 E130 C134	M142 K147 GLY GLY ASN GLU	W152 W168 W199
T241 W242 Q251 Y254 TYR PR0							
• Molecule	5: P6						
Chain a5:			86%			• 12%	-
MET ILE LEU VAL GLY ILE ALA VAL	LEU ILEU LEU ALA ALA PHE ALA ALA ILEU LEU	TYR TYR LYS GLN LYS GLU F26 F26	T52 Y53 T54 F203	ASN VAL			
• Molecule	6: P1						
Chain a6:			98%				•••
MET V2 1133 G168 ARG							
• Molecule	7: P12						
Chain a7:		47%	••		48%		_
MET GLY ASN CLY PRO PRO PRO CLU	AKG ALA VAL SER SER ASP ASP ASP ILEU LEU THR	TYR TYR ASN PHE PHE PHE PHE	TYR PHE ASN PHE THR ASN ASN	ASN TYR TLE TLE TYR	IHR TYR MET LYS VAL GLN	THR THR ILE VAL TYR ILE VAL	LEU LEU LEU VAL VAL
VAL ILE ILE ILE TRP ASN PHE ARG	CLUS CLUS CLU CLU CLU CLU CLU STRP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	N116 C120 N121 V125 V125 K150	THR				

WORLDWIDE PROTEIN DATA BANK

• Molecule 8: P5
Chain a8: 95% · ·
MET SER P36 P36 AT ARG ARG
• Molecule 9: P11
Chain a9: 23% 77%
MET MET MET MET MET MET MET MET VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL
TTR TTR TTR ASP ALLA ASP ALLA ASP ALLA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS
MET MET LLEU LLEU PRAO FRAO SER PRAO SER PRAO ELU LLEU PRAO ALA ALA ALA ALA ALA ALA ALA ALA ALA A
• Molecule 9: P11
Chain b0: 26% · 71%
MET MET MET MET MET MET MET MET VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL
TTR TTR TTR ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
MET LIEU TIAR PRO SER SER SER CLU LIEU PRO PRO CLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A
• Molecule 9: P11
Chain b1: 24% · 74%
MET MET MET MET MET MET MET MET MET VAL VAL VAL LEU VAL ALA ALA ALA ALA ALA VAL VAL
TTR TTR ASP ALLA ALLA ALLA ALLA ALLA ALLA ALLA
MET NEU LEU LEU PRO PRO SER PRO SER PRO ELU PRO PRO ELU ALA ALA ALA ALA ALA ALA ALA ALA ALA A
• Molecule 9: P11
Chain b2: 25% 75%
MET MET MET MET MET MET MET MET MET VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL
TTR TTR TTR TTR TTR TTR TTR TTR TTR TTR

MET PRO LEU LEU PRO PRO SER PRO CLU PRO PRO ALA ALA ALA ALA	CLA CLA PRL O PRL O PRL O PRL O PRL O CLV O CLN
• Molecule 9: P11	
Chain b3: 24% •	75%
MET MET MET MET MET MET MET VAL VAL VAL VAL LEU VAL LEU VAL LEU VAL LEU VAL LEU VAL CEU VAL	TRE REA MET ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
TYR THR GLU GLU GLU ASP ASP ASP CLU ASP GLU GLU THR ASP ASP MET TYR ASP	GLU GLU ASP ASP ASP TTR ASP CLU GLU GLU GLU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
MET PRO LEU LEU THR PRO SER CLU FRO PRO CLU ALA ALA ALA ASP ASP	GLN PHE PRO LYS PRO LYS ASN CIN GLN GLN GLN GLN GLY GLY GLY
• Molecule 9: P11	
Chain b4: 23% •	75%
ASP MET MET MET MET MET MET MET VAL LLV VAL LLV ALA ALA ALA VAL LEU VAL LEU VAL LEU VAL LEU VAL LEU VAL	TRE TRE SER MET ASN FLAS ASN FLAS ASN FLA ASN PRO LLV ASN FLA ASN FLA ASN CLN ASN FLA ASN CLN ASN ASN ASN ASP ASN ASP ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
TYR TYR GLU GLU GLU GLU ASP GLU GLV GLV GLV TYR ASP GLU GLV TYR ASP ASP CUV GLV	GLV ASP ASP ASP TYR TYR GLV GLV GLV GLV ASP GLU ASP ASP ASP ASP ASP ASP ASP ASP ASP CLU CVAL ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
MET PRO LEU LEU THR PRO SER SER GLN LEU PRO PRO SER ALA ALA ALA ALA	ALA ALA ALA ALA ALA ASN LYS ASN ASN ASN ASN ASN ASN ASN ASN ASN AS
• Molecule 9: P11	
Chain b5: 25% •	72%
MET MET MET MET MET MET MET VAL VAL ALA VAL CLU VAL CLU VAL CLU VAL CLU VAL CLU VAL CLU VAL CLU VAL	TRE REC MET ASN ASN ASN ASN ASN ASN ASN ASN TTRE ASN TTRE ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
TYR THR GLU GLU GLU ASP ASP ASP ASP CLY THR ASP CLY ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	GLU GLU ASP ASP ASP TYR TYR GLU GLU GLU GLU ASP GLU CLYS CLYS GLU CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS
220 250 250 251 251 250 251 250 251 250 251 251 251 251 251 251 251 251 251 251	LLA HEIN LLA ILA ILA ILA ILA ILA ILA ILA ILA ILA
• Molecule 9: P11	
Chain b7:	75%
MART ASP MART MART MART MART MART MART MART MART	LLEO ASIN SER ASIN ASIN ASIN ASIN ASIN ASIN ASIN ASIN
低的功能够减功能够够完成我才可能要要打成要。	***************************************
U P P E E E E E E E E E E E E E E E E E	9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MET LEU LEU LEU THR PRO SER SER CLU LIY SER PRO SER ALA ALA ALA ALA	C C C C C C C C C C C C C C C C C C C

• Molecule 9	: P11																
Chain b8:	27%						72%	6						-	I		
MET ASP MET HIS NET ILE VAL LYS VAL	VAL ALA ILE LEU ALA VAL LEU	PHE LEU VAL TYR LYS	LEU TRP GLU SER MET	ASN LYS PRO ASN	ALA SER PRO	LEU LYS ILE	GLN ASN PRO	TYR GLU	LYS TYR MFT	ASN SER	GLU	GLU GLY	TYR ASP	ALA GLU	ASP ASP	ASP	TYR
TYR PRO GLU ASP ALA ALA ASP ASP	ASP TLE TYR THR GLY GLU THR	ASP ASP MET TYR ASP	GLY GLU ASP ASP	ILE TYR VAL GLN	GLU GLY ASP	ASP ILE GLU	ASP ALA GLU	ASP GLU	PRO TYR ASP	ASP SER	ALA ASP	GLU GLU	ASP VAL	PR0 LYS	GLN	GLN	MET
MET PRO LEU LEU THR PRO SER SER GLN	LEU LEU LYS PRO SER PRO	GLU ALA ALA ASP PHE	ALA GLN ALA PRO	LYS ASN LEU D150	P190	F206 GLY											
• Molecule 9	: P11																
Chain c0:	24%	·					75%			-	-	-		-			
MET ASP MET HIS MET ILE VAL VAL	VAL ALA ILEU LEU ALA VAL LEU	PHE LEU VAL LYS	LEU GLU SER MET	ASN LYS PRO ASN	ALA SER PRO	LEU LYS ILE	GLN ASN PRO	TYR GLU	LYS TYR MFT	ASN SER	ALA GLU	GLU GLU	TYR ASP	ALA GLU	ASP ASP	ASP	TYR
TYR PRO GLU GLU ASP ALA GLU ASP ASP	ASP ILE TYR THR GLV GLU THR	ASP ASP MET TYR ASP	GLV GLU ASP ASP	ILE TYR VAL GLN	GLU GLY ASP	ASP ILE GLU	ASP ALA GLU	ASP GLU	PRO TYR ASP	ASP SER	ALA ASP	GLU GLN	ASP VAL	PRO LYS	VAL GLN	GLN	MET
MET PRO LEU LEU THR PRO SER SER SER SER	LEU LEU LYS PRO SER PRO	GLU ALA ALA ASP PHE	ALA GLN PHE ALA PRO	LYS ASN LEU GLN	ALA GLN ASN	PHE L155	D197 P198	L2 <mark>05</mark> PHE	GLY								
• Molecule 9	: P11																
Chain c1:	23%	•					75%		-	-	-	-	-	-			
MET ASP MET HIS MET ILE VAL LYS VAL	VAL ALA ILE LEU ALA VAL LEU	PHE LEU VAL TYR LYS	LLEU GLU SER MET	ASN LYS PRO ASN	ALA SER PRO	LEU LYS ILE	GLN ASN PRO	TYR GLU	LYS TYR MET	ASN SER	ALA GLU	GLU GLY	TYR ASP	ALA GLU	ASP ASP	ASP	TYR
TYR PRO GLU GLU ASP ALA ASP ASP ASP	ASP ILE TYR THR GLY GLU THR	ASP ASP MET TYR ASP	GLY GLU ASP ASP	ILE TYR VAL GLN	GLU GLY ASP	ASP ILE GLU	ASP ALA GLU	ASP GLU	PRO TYR ASP	ASP SER	ALA ASP	GLU GLN	ASP VAL	PR0 LYS	VAL GLN	GLN	MET
MET PRO LEU LEU THR PRO SER SER CLN	LEU LEU PRO PRO SER PRO	GLU ALA ALA ASP PHE	ALA GLN PHE ALA PRO	LYS ASN LEU GLN	ALA GLN ASN	PHE L155	M192 M193	D1 <mark>97</mark> P198	L 205 РНF	GLY							
• Molecule 9	: P11																
Chain 15:	27%	·					72%	6							I		
MET ASP MET HIS MET ILE VAL VAL	VAL ALA ILE LEU ALA VAL VAL LEU	PHE LEU VAL TYR LYS	LEU GLU SER MET	ASN LYS PRO ASN	ALA SER PRO	LEU LYS ILE	GLN ASN PRO	TYR GLU	LYS TYR MET	ASN SER	ALA GLU	GLU GLU	TYR ASP	ALA GLU	ASP ASP	ASP	TYR
TYR PRO GLU ASP ALA ASP ASP	ASP TLE TYR THR GLY GLU THR	ASP ASP MET ASP ASP	GLY GLU ASP ASP	ILE TYR VAL GLN	GLU GLY ASP	ASP ILE GLU	ASP ALA GLU	ASP GLU	PRO TYR ASP	ASP SER	ALA ASP	GLU GLU	ASP VAL	PRO LYS	GLN	GLN	MET
MET PRO LEU LEU LEU PRO SER SER SER	LEU LEU PRO LYS PRO SER P136	D140 F141 M193	SER SER ASP PRO	ASN ILE TYR GLN	LYS PRO LEU	PHE GLY											
• Molecule 1	0: P2																
Chain b6:				80%							•]	.8%				
					PRO												

MET CYS CYS CYS TARN TYR TYR LYS CYS CYS PHE CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	F NL LEU TYR ASN ASN SER ILE GLU GLU GLU	LEU LEU VAL VAL ALA SER TLE TLE TLE TLE TLE TLE	GLY LEU PHE SER SER GLN GLN GLN GLN GLU	THR ARG PRO ASP ASP ASV ASV ATA ALA ALA GLU	ALA LEU GLY GLY GLN GLN
LEU ASP GLU GLU ASP ASP VAL LYS PRO THR ASP ASP ASP	ANG LYS TYR ARG LYS ALA GLU LYS ALA ALA ALA ARG	TRP LYS LYS LYS ALA GLN VAL PRO LYS GLU SER	694 6112 6112 6171 6172 0173 V182 N183	T244 L281 P298 E300 T358	T411 A568 GLN LYS ASN
LYS GLN GLN ARG LYS					
• Molecule 11: P4					
Chain c2:	56%		·	43%	_
MET PHE SER SER FE FE FE FE FE FE FE FE FE FE FE MET FE MET	ARG VAL LYS LYS PYR GLY GLY SER SER	HIS SER ASP GLU TRP LYS ASP ALA ALA LYS LYS	THR PHE LEU LYS LYS LYS ALA ALA ASP GLU LEU	GLY TRP LYS LYS CLU VAL PRO CYS SER SER	VAL SER PHE TYR GLY LEU THR
LYS ASP ASP ASP CYS CYS CYS CYS VAL TRP ASP ASP ASP	THR CYS CYS PRO LYS ALA LYS LYS LALA				
• Molecule 11: P4					
Chain c3:	33%	•	67%		
MET PHE SER SER ALA PHE R6 66 66 66 66 66 66 61 11R LTS	AAF THR TYR TYR SER SER CLY DHE ASP HIE	THR THR GLY GLY ILE LYS LYS TLE ALA ARG	ASP GLY LEU CEU ASN VAL ASP GLU GLU	SER LEU LEU LYS LYS SER TILE CYS CYS CLU CLU	ALA HIS GLY THR ARG VAL LYS
TYR PRO GLY GLY GLY SER HIS SER ASP GLU TRP LYS ASP	ALA TRP LYS LYS PHE LEU LYS ALA ALA	ASP GLU CLU CLU CLU CLU CLU VAL PRO	CYS SER VAL SER PHE TYR GLY THR THR	LYS ASP ASP CYS CYS CYS CYS CYS VAL TRP ASP	ASP PRO GLU THR CYS PRO
LYS THR ALA LYS LEU ALA					
• Molecule 11: P4					
Chain c4:	30% •		68%		_
MET PHE SER SER ALA ALA ALA BIS DIS T16 T16 T17 H17 T22	Y62 THR LYS GLY GLY ALA THR LYS ASP THR	TYR THR SER GLY CLEU PHE ASP HIS THR THR	GLY VAL ILE LYS LYS ILE ALA ARG ASP ASP GLY	LEU GLY ASN VAL ASP GLU GLN SER LEU	LASN LYS SER ILE CYS HIS GLU
LEU ALA ALA HIS GLY THR ARG VAL LYS FRO GLY SER	ALLA SER ASP ASP GLU TRP ALA ALA ALA TRP	LYS THR PHE LEU LYS LYS ILE ALA ALA ALA ALA ALA CLU	LEU GLY TRP TRP ILYS TLE GLU VAL PRO CYS SER	SER VAL SER PHE TYR GLY LYS LYS ASP	CYS CYS GLU ASN CYS VAL TRP
ASP GLN ASP PRO GLU CVS CVS PRO GLU CVS PRO LVS THR ALA LVS LVS THR	ИГИ				
• Molecule 11: P4					
Chain c5:	31%	•	68%		
MET PHE SER SER FE F5 134 134 134 134 134 134 134 134 134 134	LTAN LYS ASP THR TYR THR SER GLY LEU	ASP HIS THR THR GLY VAL LYS ILE ALA	PRO ARG GLY LLEU GLY CLEU ARQ ARQ ASP	GLU GLN SER LEU LEU LYS SER TLE CYS HIS	LEU LEU ALA HIS GLY THR ARG
VAL LYS TYR PRO GLY GLU SER HIS SER ASP GLU TRP	LIS ASP ALA TRP LYS THR PHE LEU LEU LEU	ALA ALA ASP ASP GLU CLU CLU CLV GLU GLU	VAL PRO CYS SER SER VAL VAL PHE TYR GLY	LEU THR LYS ASP ASP ASP CYS GLU ASN CYS VAL	ASP ASP GLN ASP PRO GLU THR

CYS PRO LYS LYS ALA LYS LYS LEU ALA

• Molecule 12: P3

Chain c6:	81%	·	18%
MET MET MET MET MET LYS THR CLN ASN ASN VAL CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	ARG GLU TLE PRO LEEU VAL ASP ASP ASP ASP ASN ASA ASA ASN ASN ASN ASN ASN ASN		
• Molecule 12: P3			
Chain c7:	78%	8% •	14%
MET MET ALA MET LYS THR CLYS GLN ARG GLN ARG CLU ASN PHE GLU CLU CLU CLU CLU CLU CLU	ARG GLU TILE P27 P27 P27 P27 P27 F53 L53 M56 M56 V70 V71 V71 E82	R101 A150 2155 2155 2155 2155 1162 L166 A167	Y168 GLY ASN PRO
• Molecule 12: P3			
Chain c8:	68%	32%	
MET MAT MAT MET MAT MAC ARG ARG ARG ARU ARU ARU ARU ARU ARU ARU ARU ARU ARU	ARG TLE PRO PRO PRO PRO ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	THR GLN GLN GLN GLN GLN CLN GLN GLN	Q164 GLN LEU ALA TYR GLY ASN PRO
• Molecule 13: P8			
Chain c9:	95%		
MET CLU CLU CLU E146 B141 ASN ALA SER SER			
• Molecule 14: Major ca	psid protein		
Chain d0:	99%		
MET ALA GLY GLY M156 OLM CLM A36 A36 A36 A38			
• Molecule 14: Major ca	psid protein		
Chain d1:	99%		
MET ALA G3 A36 ASN			
• Molecule 14: Major ca	psid protein		
Chain d2:	100%		
MET A2 A2 A36 ASN			

• Molecule 14: Major capsid protein	
Chain d3:	99% .
MET GI GI ASN ASN ASN	
• Molecule 14: Major capsid protein	
Chain d4:	99%
MET GI A436 ASN	
• Molecule 14: Major capsid protein	
Chain d5:	100%
MET A236 ASN	
• Molecule 14: Major capsid protein	
Chain d6:	100%
MET A2 A436 ASN	
• Molecule 14: Major capsid protein	
Chain d7:	100%
MET A 436 ASN	
• Molecule 14: Major capsid protein	
Chain d8:	100%
MET GIA M437	
• Molecule 14: Major capsid protein	
Chain d9:	100%
MET A2 N437	
• Molecule 14: Major capsid protein	

WORLDWIDE PROTEIN DATA BANK

Chain e0:	99%
MET ALA G3 G3 G3 G3 H430 M430 M437	
• Molecule 14: Major capsid protein	
Chain e1:	99% .
MET ALA G3 A436 ASN	
• Molecule 14: Major capsid protein	
Chain e2:	99% .
MET ALA G3 A8N A8N	
• Molecule 14: Major capsid protein	
Chain e3:	99%
MET A 2 H257 A 436 A 5N	
• Molecule 14: Major capsid protein	
Chain e4:	99% •
MET ALA G3 AA36 ASN	
• Molecule 14: Major capsid protein	
Chain e5:	100%
MET ALA G3 N437	
• Molecule 14: Major capsid protein	
Chain e6:	100%
MET A.2 B. N63 N437 N437	

Chain e7:	99%
MET G3 N399 M430 M437	
• Molecule 14: Major capsid protein	
Chain e8:	100%
MET ALA G3 M437	
• Molecule 14: Major capsid protein	
Chain e9:	99%
MET A2 H267 A436 ASN ASN	
• Molecule 14: Major capsid protein	
Chain f0:	99%
MET G3 G3 M399 ASN ASN	
• Molecule 14: Major capsid protein	
Chain f1:	100%
MET Gala Ma37	
• Molecule 14: Major capsid protein	
Chain f2:	99%
MET A2 40 1240 1399 14437 14437	
• Molecule 14: Major capsid protein	
Chain f3:	100%
MET GALA M437	

Chain f4:	99%
MET ALA G3 ASN ASN	
• Molecule 14: Major capsid protein	
Chain f5:	99%
ALA G3 A83 A836 A830	
• Molecule 14: Major capsid protein	
Chain f6:	100%
MET A436 ASN	
• Molecule 14: Major capsid protein	
Chain f7:	99% •
MET Gala Asin Asin	
• Molecule 14: Major capsid protein	
Chain f8:	99% .
MET ALA GLY M389 ASN ASN	
• Molecule 14: Major capsid protein	
Chain f9:	99%
MET ALA GLY M37 M37	
• Molecule 14: Major capsid protein	
Chain g0:	99%
MET ALA R252 N437	

Chain g1:	100%
ASN ASS	
• Molecule 14: Major capsid protein	
Chain g2:	99% •
MET ALA G3 H257 A36 A38	
• Molecule 14: Major capsid protein	
Chain g3:	99% •
ALA G3 N309 A436 ASN	
• Molecule 14: Major capsid protein	
Chain g4:	99%
MET ALA G3 L1433 M37	
• Molecule 14: Major capsid protein	
Chain g5:	99%
MET A2 A364 A306 A306 ASN	
• Molecule 14: Major capsid protein	
Chain g6:	100%
MET A2 A436 ASN	
• Molecule 14: Major capsid protein	
Chain g7:	99%
MET ALA G3 ASN ASN	

Chain g8:	100%
MET A2 N399 N437	
\bullet Molecule 14: Major capsid protein	
Chain g9:	100%
MET ALA 1437	
• Molecule 14: Major capsid protein	
Chain h0:	100%
MET A2 A34 AS N	
• Molecule 14: Major capsid protein	
Chain h1:	100%
MET A2 A34 ASN	
• Molecule 14: Major capsid protein	
Chain h2:	99% .
MET ALA 63 A436 ASN	
• Molecule 14: Major capsid protein	
Chain h3:	99%
MET ALA R262 N437	
• Molecule 14: Major capsid protein	
Chain h4:	99% .
MET ALA 399 A436 ASN	

Chain h5:	99% •
MET ALA ALA A36 A38 ASN	
• Molecule 14: Major capsid protein	
Chain h6:	99% .
MET ALA G3 A36 ASN	
• Molecule 14: Major capsid protein	
Chain h7:	100%
MET A2 M437	
• Molecule 14: Major capsid protein	
Chain h8:	100%
MET A 2 A 33 A 5N	
• Molecule 14: Major capsid protein	
Chain h9:	100%
MET A2 A5N ASN	
• Molecule 14: Major capsid protein	
Chain i0:	100%
MET ALA M37	
• Molecule 14: Major capsid protein	
Chain i1:	99% .
MET ALA 63 M430 ASN ASN	

Chain i2:	99% •
MET GG A436 A306 ASN	
• Molecule 14: Major capsid protein	
Chain i3:	99% .
MET ALA A436 ASN	
• Molecule 14: Major capsid protein	
Chain i4:	100%
MET G1 M437	
• Molecule 14: Major capsid protein	
Chain i5:	100%
MET A 2 N437	
• Molecule 14: Major capsid protein	
Chain i6:	99% .
MET ALA 03 83 85 ASN ASN	
• Molecule 14: Major capsid protein	
Chain i7:	99% .
MET A2 N399 A55 A1A ASN	
• Molecule 14: Major capsid protein	
Chain i8:	99%
MET A2 923 023 N437	

Chain i9:	100%	
AET A36 ASN		
• Molecule 14: Major capsid p	protein	
Chain j0:	99%	
MET A2 A2 A171 1433 N437 N437		
• Molecule 14: Major capsid p	protein	
Chain j1:	100%	
MET A2 A436 ASN		
• Molecule 14: Major capsid p	protein	
Chain j2:	99%	
MET A2 N339 A136 ASN		
• Molecule 14: Major capsid p	protein	
Chain j3:	99%	
MET ALA 711 N437 N437		
• Molecule 14: Major capsid p	protein	
Chain j4:	99%	
MET ALA G3 R252 ASN ASN		
• Molecule 14: Major capsid p	protein	
Chain j5:	99%	
MET GALA A1A A36 ASN		

Chain j6:	99%
ALA GG A136 ASN ASN	
• Molecule 14: Major capsid protein	
Chain j7:	100%
A2 A2 A2 A2 A37 N437	
• Molecule 14: Major capsid protein	
Chain j8:	99% •
MET ALA G3 N399 N427 N427 N430 N437	
• Molecule 14: Major capsid protein	
Chain j9:	100%
MET A2 A436 ASN	
• Molecule 14: Major capsid protein	
Chain k0:	99% .
ALA ALA CS A257 A36 ASN	
• Molecule 14: Major capsid protein	
Chain k1:	100%
MET A 2 A 436 ASN	
• Molecule 14: Major capsid protein	
Chain k2:	99%
MET A2 H257 A36 A36 A36 A31	

Chain k3:	99% •
MET G3 A406 A5N	
• Molecule 14: Major capsid protein	
Chain k4:	100%
MET A2 43 44 37	
• Molecule 14: Major capsid protein	
Chain k5:	100%
MET A2 M427 M437	
• Molecule 14: Major capsid protein	
Chain k6:	99%
MET G3 G3 N399 N437	
• Molecule 14: Major capsid protein	
Chain k7:	99%
MET ALA M399 N437	
• Molecule 14: Major capsid protein	
Chain k8:	99%
MET ALA M437	
• Molecule 14: Major capsid protein	
Chain k9:	100%
MET A2 A2 A2 A3 A3 A3 A3 A3 A3 A5	

Chain 10:	100%
MET Gala N437	
• Molecule 14: Major capsid protein	
Chain 11:	99%
MET Ga N3.99 M4.37	
• Molecule 14: Major capsid protein	
Chain 12:	99% •
MET G3 N399 ASN ASN	
• Molecule 14: Major capsid protein	
Chain 13:	100%
MET A2 N437	
• Molecule 15: P13	
Chain l4: 67%	33%
MET HIS THE THE THE THE HE HE LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	M32 M32 ARG

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, I	Depositor
Number of particles used	13000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	24.4	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	a0	0.82	0/741	0.75	0/1006
2	a1	0.60	2/734~(0.3%)	0.80	0/1011
3	a2	0.48	0/667	0.79	0/920
3	a3	0.30	0/497	0.58	0/688
4	a4	0.90	2/1124~(0.2%)	0.92	0/1543
5	a5	0.38	0/1365	0.65	0/1883
6	a6	0.80	0/1220	0.88	0/1677
7	a7	0.89	1/559~(0.2%)	1.03	0/771
8	a8	0.83	0/1014	1.00	0/1402
9	a9	0.48	0/320	0.74	0/446
9	b0	0.39	0/408	0.71	0/567
9	b1	0.46	0/379	0.70	0/526
9	b2	0.46	0/360	0.68	0/500
9	b3	0.39	0/345	0.73	0/481
9	b4	0.41	0/360	0.68	0/500
9	b5	0.52	0/377	0.76	0/523
9	b7	0.42	0/386	0.66	0/533
9	b8	0.41	0/391	0.66	0/543
9	c0	0.49	0/346	0.65	0/480
9	c1	0.41	0/344	0.74	0/476
9	15	0.42	0/404	0.69	0/559
10	b6	0.37	0/3289	0.65	0/4533
11	c2	0.44	0/608	0.74	0/838
11	c3	0.37	0/393	0.78	0/538
11	c4	0.45	0/374	0.74	0/515
11	c5	0.45	0/403	0.80	0/550
12	c6	0.41	0/972	0.66	0/1332
12	c7	0.50	0/1030	0.84	0/1417
12	c8	0.33	0/830	0.60	$0/1\overline{133}$
13	c9	0.89	$0/1\overline{218}$	0.90	$0/1\overline{663}$
14	d0	0.96	0/3446	0.88	$0/4\overline{697}$
14	d1	0.94	$0/3\overline{460}$	0.87	$0/4\overline{717}$
14	d2	0.97	0/3465	0.87	0/4724
14	d3	0.98	0/3460	0.89	0/4717

Mal	Image: Chain Bond lengths		Bond angles		
	RMSZ	# Z > 5	RMSZ	# Z > 5	
14	d4	1.00	0/3460	0.89	0/4717
14	d5	1.02	0/3461	0.90	0/4719
14	d6	0.98	0/3465	0.89	0/4724
14	d7	0.92	0/3459	0.89	0/4717
14	d8	1.01	0/3468	0.88	0/4728
14	d9	0.99	0/3473	0.90	0/4735
14	e0	0.98	0/3468	0.89	0/4728
14	e1	0.96	0/3460	0.88	0/4717
14	e2	1.00	0/3460	0.90	0/4717
14	e3	0.95	0/3465	0.89	0/4724
14	e4	0.96	0/3460	0.88	0/4717
14	e5	0.99	0/3468	0.89	0/4728
14	e6	0.97	0/3473	0.89	0/4735
14	e7	0.98	0/3468	0.90	0/4728
14	e8	0.99	0/3468	0.90	0/4728
14	e9	1.01	0/3465	0.89	0/4724
14	fO	0.95	0/3452	0.90	0/4706
14	f1	0.99	0/3465	0.88	0/4724
14	f2	0.97	0/3473	0.88	0/4735
14	f3	1.00	0/3460	0.89	0/4717
14	f4	0.97	0/3460	0.87	0/4717
14	f5	0.98	0/3454	0.88	0/4710
14	f6	0.97	0/3465	0.90	0/4724
14	f7	0.99	0/3449	0.89	0/4702
14	f8	0.97	0/3456	0.89	0/4712
14	f9	0.99	0/3456	0.90	0/4712
14	g0	1.00	0/3465	0.91	0/4724
14	g1	0.96	0/3465	0.88	0/4724
14	g2	1.00	0/3460	0.91	0/4717
14	g3	1.00	0/3460	0.89	0/4717
14	g4	0.96	0/3468	0.87	0/4728
14	g5	0.95	0/3465	0.88	0/4724
14	g6	0.94	0/3465	0.88	0/4724
14	g7	0.98	0/3454	0.90	0/4710
14	g8	0.94	0/3473	0.87	0/4735
14	g9	1.00	0/3468	0.90	0/4728
14	h0	0.95	0/3465	0.89	0/4724
14	h1	0.94	0/3465	0.87	0/4724
14	h2	0.97	0/3460	0.88	0/4717
14	h3	0.98	0/3468	0.89	0/4728
14	h4	0.98	0/3460	0.90	0/4717
14	h5	0.94	0/3460	0.88	0/4717
14	h6	1.00	0/3460	0.89	0/4717

Mal	Chain	Bo	ond lengths	Bond angles		
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
14	h7	0.96	0/3473	0.89	0/4735	
14	h8	0.96	0/3465	0.88	0/4724	
14	h9	0.96	0/3459	0.88	0/4717	
14	iO	1.00	0/3468	0.89	0/4728	
14	i1	0.98	0/3460	0.88	0/4717	
14	i2	1.01	0/3460	0.89	0/4717	
14	i3	0.99	0/3460	0.91	0/4717	
14	i4	0.98	0/3462	0.89	0/4721	
14	i5	0.98	0/3473	0.88	0/4735	
14	i6	0.94	0/3460	0.89	0/4717	
14	i7	0.95	0/3460	0.87	0/4717	
14	i8	0.96	0/3465	0.87	0/4724	
14	i9	0.97	0/3465	0.88	0/4724	
14	j0	0.98	0/3470	0.89	0/4731	
14	j1	0.95	0/3465	0.87	0/4724	
14	j2	1.02	0/3465	0.89	0/4724	
14	j3	0.98	0/3465	0.89	0/4724	
14	j4	0.99	0/3460	0.89	0/4717	
14	j5	1.00	0/3460	0.88	0/4717	
14	j6	1.03	0/3460	0.89	0/4717	
14	j7	1.00	0/3473	0.89	0/4735	
14	j8	0.95	0/3468	0.88	0/4728	
14	j9	0.98	0/3465	0.90	0/4724	
14	k0	0.97	0/3460	0.89	0/4717	
14	k1	0.97	0/3465	0.88	0/4724	
14	k2	0.96	0/3465	0.90	0/4724	
14	k3	1.01	0/3460	0.90	0/4717	
14	k4	1.00	0/3473	0.89	0/4735	
14	k5	0.97	0/3473	0.88	0/4735	
14	k6	0.97	0/3469	0.89	0/4728	
14	k7	0.97	0/3465	0.88	0/4723	
14	k8	0.97	0/3469	0.89	0/4728	
14	k9	0.99	$0/3\overline{459}$	0.88	0/4717	
14	10	0.98	$0/3\overline{469}$	0.88	$0/4\overline{728}$	
14	l1	1.01	0/3469	0.90	0/4728	
14	12	0.97	0/3460	0.88	0/4717	
14	13	0.99	$0/3\overline{474}$	0.89	0/4735	
15	l4	0.84	0/501	0.82	0/684	
All	All	0.96	$5/31291\overline{3}~(0.0\%)$	0.88	$0/42\overline{6903}$	

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	a1	197	ASP	C-N	8.48	1.50	1.34
7	a7	120	CYS	CB-SG	7.78	1.95	1.82
2	a1	202	THR	C-N	7.76	1.49	1.34
4	a4	134	CYS	CB-SG	-6.38	1.71	1.82
4	a4	120	CYS	CB-SG	-5.84	1.72	1.81

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	a0	733	0	706	0	0
2	a1	718	0	588	0	0
3	a2	650	0	564	0	0
3	a3	485	0	425	0	0
4	a4	1088	0	874	0	0
5	a5	1326	0	1193	0	0
6	a6	1192	0	1133	0	0
7	a7	543	0	455	0	0
8	a8	988	0	900	0	0
9	a9	311	0	257	0	0
9	b0	398	0	325	0	0
9	b1	368	0	314	0	0
9	b2	350	0	314	0	0
9	b3	335	0	275	0	0
9	b4	350	0	299	0	0
9	b5	367	0	296	0	0
9	b7	375	0	345	0	0
9	b8	379	0	301	0	0
9	c0	338	0	292	0	0
9	c1	335	0	285	0	0
9	15	392	0	325	0	0
10	b6	3210	0	2777	0	0
11	c2	603	0	404	0	0
11	c3	389	0	308	0	0

Continuea from previous page							
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes	
11	c4	369	0	262	0	0	
11	c5	396	0	327	0	0	
12	c6	951	0	834	0	0	
12	c7	1004	0	875	0	0	
12	c8	813	0	754	0	0	
13	c9	1191	0	1134	0	0	
14	d0	3369	0	3266	0	0	
14	d1	3382	0	3278	0	0	
14	d2	3387	0	3283	0	0	
14	d3	3382	0	3278	0	0	
14	d4	3382	0	3278	0	0	
14	d5	3383	0	3279	0	0	
14	d6	3387	0	3283	0	0	
14	d7	3381	0	3272	0	0	
14	d8	3390	0	3284	0	0	
14	d9	3395	0	3289	0	0	
14	e0	3390	0	3284	0	0	
14	e1	3382	0	3278	0	0	
14	e2	3382	0	3278	0	0	
14	e3	3387	0	3283	0	0	
14	e4	3382	0	3278	0	0	
14	e5	3390	0	3284	0	0	
14	e6	3395	0	3289	0	0	
14	e7	3390	0	3284	0	0	
14	e8	3390	0	3284	0	0	
14	e9	3387	0	3283	0	0	
14	fO	3375	0	3271	0	0	
14	f1	3387	0	3280	0	0	
14	f2	3395	0	3289	0	0	
14	f3	3383	0	3277	0	0	
14	f4	3382	0	3278	0	0	
14	f5	3376	0	3267	0	0	
14	f6	3387	0	3283	0	0	
14	f7	3372	0	3267	0	0	
14	f8	3378	0	3275	0	0	
14	f9	3379	0	3274	0	0	
14	g0	3387	0	3280	0	0	
14	g1	3387	0	3283	0	0	
14	g2	3382	0	3278	0	0	
14	g3	3382	0	3278	0	0	
14	g4	3390	0	3284	0	0	
14	g5	3387	0	3283	0	0	

		i previous	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
14	g6	3387	0	3283	0	0
14	g7	3376	0	3267	0	0
14	g8	3395	0	3289	0	0
14	g9	3390	0	3284	0	0
14	h0	3387	0	3283	0	0
14	h1	3387	0	3283	0	0
14	h2	3382	0	3278	0	0
14	h3	3390	0	3284	0	0
14	h4	3382	0	3278	0	0
14	h5	3382	0	3278	0	0
14	h6	3382	0	3278	0	0
14	h7	3395	0	3289	0	0
14	h8	3387	0	3283	0	0
14	h9	3381	0	3272	0	0
14	iO	3390	0	3284	0	0
14	i1	3382	0	3278	0	0
14	i2	3382	0	3278	0	0
14	i3	3382	0	3278	0	0
14	i4	3384	0	3273	0	0
14	i5	3395	0	3289	0	0
14	i6	3382	0	3278	0	0
14	i7	3382	0	3278	0	0
14	i8	3388	0	3282	0	0
14	i9	3387	0	3283	0	0
14	jO	3392	0	3287	0	0
14	j1	3387	0	3283	0	0
14	j2	3387	0	3283	0	0
14	j3	3387	0	3282	0	0
14	j4	3382	0	3278	0	0
14	i5	3382	0	3278	0	0
14	i6	3382	0	3278	0	0
14	i7	3395	0	3289	0	0
14	i8	3390	0	3284	0	0
14	i9	3387	0	3283	0	0
14	k0	3382	0	3278	0	0
14	k1	3387	0	3283	0	0
14	k2	3387	0	3283	0	0
14	k3	3382	0	3278	0	0
14	k4	3395	0	3289	0	0
14	k5	3395	0	3289	0	0
14	k6	3391	0	3284	0	0
14	k7	3387	0	3278	0	0
1 17	111	0001	U	0210		U U

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
14	k8	3391	0	3284	0	0
14	k9	3381	0	3272	0	0
14	10	3391	0	3284	0	0
14	l1	3391	0	3284	0	0
14	12	3382	0	3278	0	0
14	13	3396	0	3289	0	0
15	14	487	0	428	0	0
All	All	305842	0	294139	0	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

There are no clashes within the asymmetric unit.

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	a0	95/352~(27%)	93~(98%)	2(2%)	0	100	100
2	al	105/210~(50%)	85 (81%)	17 (16%)	3~(3%)	4	31
3	a2	92/289~(32%)	76 (83%)	14 (15%)	2 (2%)	6	37
3	a3	72/289~(25%)	60 (83%)	12 (17%)	0	100	100
4	a4	149/256~(58%)	130 (87%)	14 (9%)	5(3%)	3	28
5	a5	187/216~(87%)	162 (87%)	24 (13%)	1 (0%)	29	68
6	a6	165/170~(97%)	155~(94%)	9 (6%)	1 (1%)	25	64
7	a7	76/151~(50%)	65 (86%)	7 (9%)	4 (5%)	2	17
8	a8	140/146~(96%)	126 (90%)	12 (9%)	2(1%)	11	46
9	a9	45/207~(22%)	34(76%)	11 (24%)	0	100	100
9	b0	57/207~(28%)	45 (79%)	10 (18%)	2(4%)	3	27

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
9	b1	52/207~(25%)	43 (83%)	8 (15%)	1 (2%)	8	40
9	b2	49/207~(24%)	39 (80%)	10 (20%)	0	100	100
9	b3	49/207~(24%)	38 (78%)	9 (18%)	2 (4%)	3	23
9	b4	50/207~(24%)	40 (80%)	9 (18%)	1 (2%)	7	39
9	b5	55/207~(27%)	36 (66%)	16 (29%)	3~(6%)	2	17
9	b7	50/207~(24%)	45 (90%)	5 (10%)	0	100	100
9	b8	55/207~(27%)	47 (86%)	8 (14%)	0	100	100
9	c0	49/207~(24%)	41 (84%)	6 (12%)	2 (4%)	3	23
9	c1	49/207~(24%)	38 (78%)	7 (14%)	4 (8%)	1	9
9	15	56/207~(27%)	42 (75%)	13 (23%)	1 (2%)	8	41
10	b6	473/576~(82%)	392 (83%)	77 (16%)	4 (1%)	19	58
11	c2	101/181~(56%)	76 (75%)	25 (25%)	0	100	100
11	c3	58/181~(32%)	40 (69%)	17 (29%)	1 (2%)	9	42
11	c4	56/181~(31%)	46 (82%)	8 (14%)	2 (4%)	3	26
11	c5	56/181~(31%)	42 (75%)	13 (23%)	1 (2%)	8	41
12	c6	139/171~(81%)	114 (82%)	24 (17%)	1 (1%)	22	61
12	c7	145/171~(85%)	111 (77%)	27 (19%)	7 (5%)	2	20
12	c8	114/171~(67%)	100 (88%)	14 (12%)	0	100	100
13	c9	164/173~(95%)	160 (98%)	2 (1%)	2 (1%)	13	50
14	d0	428/437~(98%)	419 (98%)	9 (2%)	0	100	100
14	d1	432/437~(99%)	422 (98%)	10 (2%)	0	100	100
14	d2	433/437~(99%)	425 (98%)	8 (2%)	0	100	100
14	d3	432/437~(99%)	424 (98%)	7 (2%)	1 (0%)	47	81
14	d4	432/437~(99%)	422 (98%)	10 (2%)	0	100	100
14	d5	433/437~(99%)	425~(98%)	8 (2%)	0	100	100
14	d6	433/437~(99%)	427 (99%)	6 (1%)	0	100	100
14	d7	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	d8	$433/43\overline{7~(99\%)}$	424 (98%)	9 (2%)	0	100	100
14	d9	434/437~(99%)	422 (97%)	12 (3%)	0	100	100
14	e0	433/437~(99%)	424 (98%)	8 (2%)	1 (0%)	47	81
14	e1	432/437~(99%)	424 (98%)	8 (2%)	0	100	100

-			
Continued	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
14	e2	432/437~(99%)	419 (97%)	13 (3%)	0	100	100
14	e3	433/437~(99%)	426 (98%)	6 (1%)	1 (0%)	47	81
14	e4	432/437~(99%)	425~(98%)	7(2%)	0	100	100
14	e5	433/437~(99%)	428 (99%)	5 (1%)	0	100	100
14	e6	434/437~(99%)	424 (98%)	10 (2%)	0	100	100
14	e7	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	e8	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	e9	433/437~(99%)	423 (98%)	9 (2%)	1 (0%)	47	81
14	fO	432/437~(99%)	424 (98%)	8 (2%)	0	100	100
14	f1	433/437~(99%)	426 (98%)	7 (2%)	0	100	100
14	f2	434/437~(99%)	426 (98%)	7 (2%)	1 (0%)	47	81
14	f3	433/437~(99%)	426 (98%)	7 (2%)	0	100	100
14	f4	432/437~(99%)	425 (98%)	7 (2%)	0	100	100
14	f5	432/437~(99%)	423 (98%)	9 (2%)	0	100	100
14	f6	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	f7	432/437~(99%)	420 (97%)	12 (3%)	0	100	100
14	f8	431/437~(99%)	421 (98%)	10 (2%)	0	100	100
14	f9	432/437~(99%)	419 (97%)	13 (3%)	0	100	100
14	g0	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	g1	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	g2	432/437~(99%)	423 (98%)	8 (2%)	1 (0%)	47	81
14	g3	432/437~(99%)	421 (98%)	11 (2%)	0	100	100
14	g4	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	g5	433/437~(99%)	426 (98%)	6 (1%)	1 (0%)	47	81
14	g6	433/437~(99%)	426 (98%)	7 (2%)	0	100	100
14	g7	432/437~(99%)	422 (98%)	10 (2%)	0	100	100
14	g8	$\overline{434/437}~(99\%)$	427 (98%)	7 (2%)	0	100	100
14	g9	$\overline{433/437}\ (99\%)$	427 (99%)	6 (1%)	0	100	100
14	h0	$\overline{433/437}~(99\%)$	429 (99%)	4 (1%)	0	100	100
14	h1	$\overline{433/437}\ (99\%)$	426 (98%)	7(2%)	0	100	100
14	h2	$432/\overline{437~(99\%)}$	425 (98%)	7(2%)	0	100	100

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
14	h3	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	h4	432/437~(99%)	424 (98%)	8 (2%)	0	100	100
14	h5	432/437~(99%)	425~(98%)	7 (2%)	0	100	100
14	h6	432/437~(99%)	424 (98%)	8 (2%)	0	100	100
14	h7	434/437~(99%)	427 (98%)	7 (2%)	0	100	100
14	h8	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	h9	433/437~(99%)	426 (98%)	7 (2%)	0	100	100
14	iO	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	i1	432/437~(99%)	425 (98%)	7 (2%)	0	100	100
14	i2	432/437~(99%)	424 (98%)	8 (2%)	0	100	100
14	i3	432/437~(99%)	425 (98%)	7 (2%)	0	100	100
14	i4	433/437~(99%)	427 (99%)	6 (1%)	0	100	100
14	i5	434/437~(99%)	428 (99%)	6 (1%)	0	100	100
14	i6	432/437~(99%)	423 (98%)	9 (2%)	0	100	100
14	i7	432/437~(99%)	425 (98%)	7 (2%)	0	100	100
14	i8	434/437~(99%)	421 (97%)	11 (2%)	2 (0%)	29	68
14	i9	433/437~(99%)	425~(98%)	8 (2%)	0	100	100
14	j0	434/437~(99%)	426 (98%)	7 (2%)	1 (0%)	47	81
14	j1	433/437~(99%)	425~(98%)	8 (2%)	0	100	100
14	j2	433/437~(99%)	425~(98%)	8 (2%)	0	100	100
14	j3	433/437~(99%)	421 (97%)	12 (3%)	0	100	100
14	j4	432/437~(99%)	422 (98%)	10 (2%)	0	100	100
14	j5	432/437~(99%)	423 (98%)	9 (2%)	0	100	100
14	j6	432/437~(99%)	423 (98%)	9 (2%)	0	100	100
14	j7	434/437~(99%)	423 (98%)	11 (2%)	0	100	100
14	j8	433/437~(99%)	425 (98%)	8 (2%)	0	100	100
14	j9	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	k0	432/437~(99%)	426 (99%)	5 (1%)	1 (0%)	47	81
14	k1	433/437~(99%)	427 (99%)	6 (1%)	0	100	100
14	k2	$\overline{433/437}\ (99\%)$	424 (98%)	8 (2%)	1 (0%)	47	81
14	k3	$432/\overline{437}~(99\%)$	422 (98%)	10 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
14	k4	434/437~(99%)	426 (98%)	8 (2%)	0	100	100
14	k5	434/437~(99%)	425 (98%)	9 (2%)	0	100	100
14	k6	433/437~(99%)	426 (98%)	7 (2%)	0	100	100
14	k7	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	k8	433/437~(99%)	425~(98%)	8 (2%)	0	100	100
14	k9	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	10	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	l1	433/437~(99%)	423~(98%)	10 (2%)	0	100	100
14	12	432/437~(99%)	423 (98%)	9 (2%)	0	100	100
14	13	434/437~(99%)	426 (98%)	8 (2%)	0	100	100
15	14	64/98~(65%)	63 (98%)	1 (2%)	0	100	100
All	All	39415/43355~(91%)	38213 (97%)	1138 (3%)	64 (0%)	50	81

5 of 64 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	a1	203	PRO
3	a2	283	ASN
4	a4	199	TRP
9	b0	198	PRO
9	b1	192	MET

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	a0	78/309~(25%)	78~(100%)	0	100 100
2	a1	64/179~(36%)	60~(94%)	4 (6%)	18 51
3	a2	60/249~(24%)	57~(95%)	3~(5%)	24 58
3	a3	42/249~(17%)	42 (100%)	0	100 100
4	a4	92/222~(41%)	89~(97%)	3~(3%)	38 68

$\alpha \cdot \cdot \cdot \cdot$	ſ		
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
5	a5	119/188~(63%)	117~(98%)	2(2%)	60	82
6	a6	124/145~(86%)	124~(100%)	0	100	100
7	a7	45/139~(32%)	42 (93%)	3~(7%)	16	48
8	a8	87/125~(70%)	85~(98%)	2 (2%)	50	77
9	a9	25/181~(14%)	25 (100%)	0	100	100
9	b0	34/181~(19%)	31 (91%)	3(9%)	10	38
9	b1	30/181~(17%)	27 (90%)	3 (10%)	7	32
9	b2	31/181~(17%)	31 (100%)	0	100	100
9	b3	26/181 (14%)	26 (100%)	0	100	100
9	b4	26/181 (14%)	23 (88%)	3 (12%)	5	26
9	b5	25/181 (14%)	23 (92%)	2 (8%)	12	41
9	b7	35/181~(19%)	33 (94%)	2 (6%)	20	53
9	b8	28/181 (16%)	27 (96%)	1 (4%)	35	66
9	c0	29/181~(16%)	29 (100%)	0	100	100
9	c1	27/181~(15%)	27 (100%)	0	100	100
9	15	29/181~(16%)	28 (97%)	1 (3%)	37	68
10	b6	264/479~(55%)	256 (97%)	8 (3%)	41	71
11	c2	32/161~(20%)	31 (97%)	1 (3%)	40	70
11	c3	29/161~(18%)	29 (100%)	0	100	100
11	c4	24/161~(15%)	22 (92%)	2 (8%)	11	40
11	c5	31/161~(19%)	31 (100%)	0	100	100
12	c6	78/144~(54%)	77~(99%)	1 (1%)	69	86
12	c7	81/144 (56%)	73 (90%)	8 (10%)	8	33
12	c8	73/144 (51%)	73 (100%)	0	100	100
13	c9	114/148~(77%)	114 (100%)	0	100	100
14	d0	355/358~(99%)	355 (100%)	0	100	100
14	d1	356/358~(99%)	356 (100%)	0	100	100
14	d2	356/358~(99%)	356 (100%)	0	100	100
14	d3	356/358~(99%)	356 (100%)	0	100	100
14	d4	356/358~(99%)	356 (100%)	0	100	100
14	d5	355/358~(99%)	355 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
14	d6	356/358~(99%)	356~(100%)	0	100	100
14	d7	355/358~(99%)	355~(100%)	0	100	100
14	d8	357/358~(100%)	357~(100%)	0	100	100
14	d9	357/358~(100%)	357~(100%)	0	100	100
14	e0	357/358~(100%)	356 (100%)	1 (0%)	92	97
14	e1	356/358~(99%)	356 (100%)	0	100	100
14	e2	356/358~(99%)	356 (100%)	0	100	100
14	e3	356/358~(99%)	356 (100%)	0	100	100
14	e4	356/358~(99%)	356 (100%)	0	100	100
14	e5	357/358~(100%)	357 (100%)	0	100	100
14	e6	357/358~(100%)	356 (100%)	1 (0%)	92	97
14	e7	357/358~(100%)	355 (99%)	2 (1%)	86	94
14	e8	357/358~(100%)	357~(100%)	0	100	100
14	e9	356/358~(99%)	356 (100%)	0	100	100
14	fO	355/358~(99%)	354 (100%)	1 (0%)	92	97
14	f1	356/358~(99%)	356 (100%)	0	100	100
14	f2	357/358~(100%)	356 (100%)	1 (0%)	92	97
14	f3	356/358~(99%)	356 (100%)	0	100	100
14	f4	356/358~(99%)	356 (100%)	0	100	100
14	f5	355/358~(99%)	355 (100%)	0	100	100
14	f6	356/358~(99%)	356 (100%)	0	100	100
14	f7	354/358~(99%)	354 (100%)	0	100	100
14	f8	356/358~(99%)	355 (100%)	1 (0%)	92	97
14	f9	356/358~(99%)	356 (100%)	0	100	100
14	g0	356/358~(99%)	355 (100%)	1 (0%)	92	97
14	g1	356/358~(99%)	356 (100%)	0	100	100
14	g2	356/358~(99%)	356 (100%)	0	100	100
14	g3	356/358~(99%)	355 (100%)	1 (0%)	92	97
14	g4	357/358~(100%)	356 (100%)	1 (0%)	92	97
14	g5	356/358~(99%)	356 (100%)	0	100	100
14	g6	356/358~(99%)	356 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
14	g7	355/358~(99%)	355~(100%)	0	100	100
14	g8	357/358~(100%)	356~(100%)	1 (0%)	92	97
14	g9	357/358~(100%)	357~(100%)	0	100	100
14	h0	356/358~(99%)	356 (100%)	0	100	100
14	h1	356/358~(99%)	356 (100%)	0	100	100
14	h2	356/358~(99%)	356 (100%)	0	100	100
14	h3	357/358~(100%)	356 (100%)	1 (0%)	92	97
14	h4	356/358~(99%)	355 (100%)	1 (0%)	92	97
14	h5	356/358~(99%)	356 (100%)	0	100	100
14	h6	356/358~(99%)	356 (100%)	0	100	100
14	h7	357/358~(100%)	357~(100%)	0	100	100
14	h8	356/358~(99%)	356 (100%)	0	100	100
14	h9	355/358~(99%)	355 (100%)	0	100	100
14	iO	357/358~(100%)	357 (100%)	0	100	100
14	i1	356/358~(99%)	355 (100%)	1 (0%)	92	97
14	i2	356/358~(99%)	356 (100%)	0	100	100
14	i3	356/358~(99%)	356 (100%)	0	100	100
14	i4	356/358~(99%)	356 (100%)	0	100	100
14	i5	357/358~(100%)	357 (100%)	0	100	100
14	i6	356/358~(99%)	355 (100%)	1 (0%)	92	97
14	i7	356/358~(99%)	354 (99%)	2 (1%)	86	94
14	i8	356/358~(99%)	356 (100%)	0	100	100
14	i9	356/358~(99%)	356 (100%)	0	100	100
14	j0	356/358~(99%)	354 (99%)	2 (1%)	86	94
14	j1	356/358~(99%)	356 (100%)	0	100	100
14	j2	356/358~(99%)	355 (100%)	1 (0%)	92	97
14	j3	356/358~(99%)	354 (99%)	2 (1%)	86	94
14	j4	356/358~(99%)	355 (100%)	1 (0%)	92	97
14	j5	356/358~(99%)	356 (100%)	0	100	100
14	j6	356/358~(99%)	356 (100%)	0	100	100
14	j7	357/358~(100%)	356 (100%)	1 (0%)	92	97

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
14	j8	357/358~(100%)	354~(99%)	3~(1%)	81	91
14	j9	356/358~(99%)	356 (100%)	0	100	100
14	k0	356/358~(99%)	356 (100%)	0	100	100
14	k1	356/358~(99%)	356 (100%)	0	100	100
14	k2	356/358~(99%)	356~(100%)	0	100	100
14	k3	356/358~(99%)	356 (100%)	0	100	100
14	k4	357/358~(100%)	357 (100%)	0	100	100
14	k5	357/358~(100%)	356 (100%)	1 (0%)	92	97
14	k6	357/358~(100%)	355~(99%)	2(1%)	86	94
14	k7	356/358~(99%)	354~(99%)	2(1%)	86	94
14	k8	357/358~(100%)	356 (100%)	1 (0%)	92	97
14	k9	355/358~(99%)	355 (100%)	0	100	100
14	10	357/358~(100%)	357~(100%)	0	100	100
14	l1	357/358~(100%)	356 (100%)	1 (0%)	92	97
14	12	356/358~(99%)	355 (100%)	1 (0%)	92	97
14	13	357/358~(100%)	357~(100%)	0	100	100
15	14	42/79~(53%)	42 (100%)	0	100	100
All	All	31742/35831 (89%)	31655 (100%)	87 (0%)	92	97

5 of 87 residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
14	f8	399	ASN
14	j3	11	TYR
14	g3	399	ASN
14	i6	399	ASN
14	j8	399	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 46 such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
14	e3	257	HIS
14	f5	14	GLN
14	e6	63	ASN
14	fO	376	ASN

Continued from previous page...

\mathbf{Mol}	Chain	\mathbf{Res}	Type
14	g1	63	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-0436. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal surface views (i)

This section was not generated.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

