

wwPDB EM Validation Summary Report (i)

Nov 19, 2022 - 04:08 pm GMT

PDB ID	:	5ND9
EMDB ID	:	EMD-3625
Title	:	Hibernating ribosome from Staphylococcus aureus (Rotated state)
Authors	:	Khusainov, I.; Vicens, Q.; Ayupov, R.; Usachev, K.; Myasnikov, A.; Simonetti,
		A.; Validov, S.; Kieffer, B.; Yusupova, G.; Yusupov, M.; Hashem, Y.
Deposited on	:	2017-03-07
Resolution	:	3.70 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.2
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	a	1556	70%	27% ••
2	b	255	63% 84%	• 13%
3	С	217	74% 91%	• 6%
4	d	200	46% 97%	•••
5	е	166	40%	• •
6	f	98	60% 93%	• •
7	g	156	74%	6% • 8%
8	h	132	97%	•••

Mol	Chain	Length	Quality of chain	
9	i	132	77%	
	1	102	78%	•
10	j	102	94%	• •
11	k	129	34%	110/
- 11	K	125	23%	• 1176
12	1	137	93%	6% •
13	m	121	//%	. 9%
10			66%	
14	n	61	93%	5% •
15	0	89	96%	<u> </u>
			19%	
16	р	91	97%	••
17	a	87	95%	
	1		30%	
18	r	80	69% •	30%
19	s	92	90%	• 9%
			27%	
20	t	83	95%	• •
21	u	58	59% 19%	22%
21	u	58	59% 19% 46%	22%
21 22	u v	58 190	59% 19% 46% 35% 15% • 47% 7%	22%
21 22 23	u v A	58 190 2923	59% 19% 46% 35% 15% • 47% 7% 63% 33%	22% % •
21 22 23	u v A	58 190 2923	59% 19% 46% 35% 15% • 47% 7% 63% 33%	22% %
21 22 23 24	u v A B	58 190 2923 114	59% 19% 46% 35% 15% • 47% 7% 63% 33%	22% %••• 27%
21 22 23 24 25	u v A B D	58 190 2923 114 277	59% 19% 46% 35% 15% 47% 7% 63% 339 9% 9%	22% % • 27%
$ \begin{array}{r} 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ \end{array} $	u v A B D F	58 190 2923 114 277 220	59% 19% 46% 35% 15% • 47% 7% 63% 33% • 73% 9% 9%	22% % • 27%
$ \begin{array}{c} 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ \end{array} $	u v A B D E	58 190 2923 114 277 220	59% 19% 46% 35% 15% 47% 7% 63% 33% 9% 9% 96% 10% 95%	22% % • 27% ••
$ \begin{array}{r} 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ \end{array} $	u v A B D E F	58 190 2923 114 277 220 207	59% 19% 46% 47% 35% 15% 47% 7% 63% 339 63% 339 9% 9% 9% 95% 9% 94%	22% % • 27% ••
$ \begin{array}{r} 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ \end{array} $	u v A B D E F G	58 190 2923 114 277 220 207 179	59% 19% 46% 47% 35% 15% 47% 7% 63% 33° 63% 33° 33° 73% 9% 96% 10% 95% 95% 9% 94% 54%	22% % • 27% ••
21 22 23 24 25 26 27 28	u v A B D E F G	58 190 2923 114 277 220 207 179	59% 19% 46% 47% 35% 15% 47% 7% 63% 33% 63% 33% 33% 9% 96% 10% 9% 96% 95% 9% 94% 54% 92% 30% 92%	22% % • 27% •• ••
21 22 23 24 25 26 27 28 29	u v A B D E F G H	58 190 2923 114 277 220 207 179 178	59% 19% 46% 47% 35% 15% 47% 7% 63% 33% 63% 33% 9% 9% 96% 10% 9% 96% 10% 9% 96% 10% 9% 96% 10% 9% 95% 94% 54% 92% 30% 91% 91% 91%	22% % · 27% · · · · · · · ·
$ \begin{array}{c} 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ \end{array} $	u v A B D E F G H	58 190 2923 114 277 220 207 179 178 145	59% 19% 46% 47% 35% 15% 47% 7% 63% 33° 63% 33° 33° 73% 96% 10% 9% 96% 10% 9% 96% 10% 9% 96% 10% 9% 96% 10% 9% 91% 8% 99% 99% 99%	22% % • 27% • • • • • • • • • 8%
21 22 23 24 25 26 27 28 29 30	u v A B D E F G H M	58 190 2923 114 277 220 207 179 178 145	59% 19% 46% 35% 35% 15% 47% 7% 63% 33% 63% 33% 33% 9% 96% 10% 9% 96% 10% 9% 96% 10% 9% 96% 10% 9% 96% 10% 9% 91% 8% 91% 99% 16%	22% % • 27% • • • • • • • • • • • 8%
21 22 23 24 25 26 27 28 29 30 31	u v A B D E F G H M N	58 190 2923 114 277 220 207 179 178 145 122	59% 19% 46% 47% 35% 15% 47% 7% 63% 33° 63% 33° 33° 9% 96% 10% 9% 96% 96% 10% 95% 96% 9% 94% 54% 92% 30% 91% 8% 99% 99% 16% 99% 99%	22% % · 27% · · · · · · · · · · · · · ·
$ \begin{array}{c} 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ \end{array} $	u v A B D E F G H M N O	58 190 2923 114 277 220 207 179 178 145 122 146	59% 19% 46% 33% 35% 15% 47% 7% 63% 33% 63% 33% 33% 9% 96% 10% 9% 96% 10% 9% 96% 10% 9% 95% 95% 9% 94% 54% 92% 30% 91% 8% 99% 16% 99% 8% 99%	22% % · 27% · · · · · · · · · · · · · · · · · · ·
21 22 23 24 25 26 27 28 29 30 31 32	u v A B D E F G H M N N O	58 190 2923 114 277 220 207 179 178 145 122 146	59% 19% 46% 35% 35% 15% 47% 7% 63% 339 63% 339 9% 96% 339 9% 96% 96% 10% 95% 96% 9% 96% 96% 9% 96% 96% 9% 96% 95% 9% 91% 8% 99% 91% 8% 99% 8% 99% 10% 84% 10%	22% % · · 27% · · · · · · · · · · · · · · · · · · ·

34 Q 122 35 R 119	13% 95% 28% 97%	• •
34 Q 122 35 R 119	95% 28% 97%	• •
35 R 119	97%	
		·
20 0 110	12%	
30 5 110	89%	•• 8%
37 T 118	96%	• •
38 U 102	97%	
	9%	
39 V 117	96%	·
40 W 91	98%	·
41 V 105	18%	
41 A 105	82% • 39%	17%
42 Y 217	42% • 57%	
43 Z 94	5% 79% •	18%
44 0 62	15%	260/
<u> </u>	19%	20%
45 1 69	94%	6%
46 2 59	90%	7% •
	82%	
47 3 84	88%	8% •
48 4 58	72%	24%
49 5 49	53%	
50 6 45	89%	7% ••
51 7 66	82%	9% 9%
52 8 37	97%	<u> </u>

2 Entry composition (i)

There are 52 unique types of molecules in this entry. The entry contains 141051 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	a	1541	Total 33006	C 14736	N 6021	O 10708	Р 1541	0	0

• Molecule 2 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	b	222	Total 1788	C 1139	N 313	O 330	S 6	0	0

• Molecule 3 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		Ate	AltConf	Trace			
3	С	203	Total 1600	C 1007	N 301	O 290	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 4 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	d	197	Total 1600	C 1009	N 300	O 289	${S \over 2}$	0	0

• Molecule 5 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	е	160	Total 1194	C 750	N 218	0 224	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 6 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	f	94	Total 781	C 494	N 137	0 147	${ m S} { m 3}$	0	0

• Molecule 7 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	g	143	Total 1142	С 712	N 216	O 210	${S \atop 4}$	0	0

• Molecule 8 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	h	131	Total 1032	C 652	N 183	O 193	$\frac{S}{4}$	0	0

• Molecule 9 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	i	128	Total 1017	C 629	N 203	0 184	S 1	0	0

• Molecule 10 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	j	99	Total 791	C 498	N 144	0 147	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 11 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	k	115	Total 851	C 526	N 160	0 162	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
12	1	135	Total 1058	C 658	N 214	0 184	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	m	110	Total 877	C 537	N 175	0 164	S 1	0	0

• Molecule 14 is a protein called 30S ribosomal protein S14 type Z.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
14	n	60	Total 502	C 317	N 100	O 80	${f S}{5}$	0	0

• Molecule 15 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	О	88	Total 738	C 454	N 153	O 130	S 1	0	0

• Molecule 16 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	р	90	Total 712	C 448	N 132	0 131	S 1	0	0

• Molecule 17 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	q	85	Total 698	C 441	N 125	0 131	S 1	0	0

• Molecule 18 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
18	r	56	Total 466	C 295	N 88	0 81	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 19 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	S	84	Total 677	C 434	N 120	0 121	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	t	80	Total 606	C 367	N 119	0 118	${ m S} { m 2}$	0	0

• Molecule 21 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
21	u	45	Total 377	C 233	N 76	O 68	0	0

• Molecule 22 is a protein called Ribosome hibernation promotion factor.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
22	v	101	Total 831	C 518	N 156	O 157	0	0

• Molecule 23 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues			AltConf	Trace			
23	А	2914	Total 62480	C 27894	N 11427	O 20245	Р 2914	0	0

• Molecule 24 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
24	В	114	Total 2430	C 1086	N 436	0 794	Р 114	0	0

• Molecule 25 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	AltConf	Trace			
25	D	275	Total 2103	C 1309	N 417	0 372	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		Ate	AltConf	Trace			
26	Е	218	Total 1649	C 1030	N 304	O 310	${f S}{5}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	F	199	Total 1524	C 955	N 281	O 286	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	G	166	Total 1311	C 832	N 223	O 250	S 6	0	0

• Molecule 29 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	Н	164	Total 1284	C 799	N 232	O 250	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	М	145	Total 1151	C 717	N 211	O 220	${ m S} { m 3}$	0	0

• Molecule 31 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
31	Ν	122	Total 920	C 572	N 174	0 170	${S \atop 4}$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	О	131	Total 997	C 618	N 197	0 181	S 1	0	0

• Molecule 33 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	Р	133	Total 1065	C 681	N 203	0 178	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	Q	117	Total 924	C 564	N 179	0 180	S 1	0	0

• Molecule 35 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	R	119	Total 922	С 574	N 174	0 173	S 1	0	0

• Molecule 36 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
36	S	107	Total 862	C 544	N 173	0 145	0	0

• Molecule 37 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	Т	116	Total 943	C 593	N 189	0 157	S 4	0	0

• Molecule 38 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	U	102	Total 799	C 506	N 142	O 150	S 1	0	0

• Molecule 39 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	V	112	Total 862	C 537	N 164	0 158	${ m S} { m 3}$	0	0

• Molecule 40 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	W	89	Total 725	C 457	N 130	0 134	${f S}$ 4	0	0

• Molecule 41 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	Х	87	Total 668	C 423	N 122	0 122	S 1	0	0

• Molecule 42 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	Y	94	Total 738	C 471	N 131	0 134	${ m S} { m 2}$	0	0

• Molecule 43 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
43	Ζ	77	Total 591	C 364	N 115	0 112	0	0

• Molecule 44 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
44	0	46	Total 373	C 231	N 83	O 59	0	0

• Molecule 45 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
45	1	65	Total 536	C 330	N 101	O 105	0	0

• Molecule 46 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
46	2	57	Total 441	С 274	N 83	0 84	0	0

• Molecule 47 is a protein called 50S ribosomal protein L31 type B.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	3	81	Total 663	C 423	N 113	0 124	${ m S} { m 3}$	0	0

• Molecule 48 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
48	4	44	Total 360	C 220	N 78	O 58	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 49 is a protein called 50S ribosomal protein L33 2.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
49	5	28	Total 229	C 137	N 45	0 43	${f S}{4}$	0	0

• Molecule 50 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
50	6	44	Total 373	C 228	N 90	0 54	S 1	0	0

• Molecule 51 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
51	7	60	Total 487	C 300	N 108	0 77	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 52 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
52	8	37	Total 297	C 186	N 60	O 46	${ m S}{ m 5}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S ribosomal RNA

• Molecule 4: 30S ribosomal protein S4

• Molecule 12: 30S ribosomal protein S12

• Molecule 13: 30S ribosomal protein S13

- Molecule 14: 30S ribosomal protein S14 type Z

• Molecule 15: 30S ribosomal protein S15

• Molecule 17: 30S ribosomal protein S17

TYR GLY LLEU ILEU THR GLN GLU GLN

G1265	G1266 A1267	61273 61273 61274	A1275 G1276	C1277 G1278	A1282	G1286 U1287 C1288	d1200 A1289 G1290	A1291 A1292	U1293 G1294 G1205	C1296 C1296	<mark>G1300</mark> U1301	G1302 A1303	G1304 U1305	C1306 G1307	C1308 G1309	A1310 A1311 A1312	C1315	A1323	A1324	C1328	61333 01334 01335	G1336 A1337	01330 U1339	A1345 G1346	G1347	U1350							
C1351 C1352	A1358	A1359 G1360 G1361	01363 01363	C1364	C1368 C1368 G1369	C1370	61380 61380	U1381 C1382	U1386	A1391 61392	C1393 U1394	G1395	G1 <mark>398</mark> C1399	C1400	A1404 G1405	<mark>G1408</mark>	C1413 C1414	A1415 U1416	G1417 G1418	A1419 U1420	A1421 A1422 C1423	G1429	A1430 U1431 A1433	C1435	U1451	C1452							
G1453 U1454	U1455 U1456	U1457 A1458		U1464	G1469 G1470 A1471	61473	C1474 A1475	A1478	G1480	G1484 G1485	C1486	61490 61490 61401		61494 C1495 C1496	41497 11498 11498	U1499	U1503 U1504	G1509	U1510 C1511		C1516 C1516 A1517	G1518 U1519 A1520	A1521 61522	U1525	G1526	U1532 A1533							
G1534 G1535	C1536 A1537	A1538 A1539	C1542	C1547	U1551	A1553	G1555	G1559 A1560	G1561	41500 A1567 U1568	A1576	G1577 A1578	C1579 A1580	U1581 U1582	G1583	A1584 G1585	U1586 C1587	C1590	41592 A1592 G1593	U1594 C1595	G1596	A1605 C1606		A1014 G1615 A1616	A1617 A1618	U1625	-						
A1630 G1631	A1632 A1633	A1634 A1635 U1636	G1650	C1651 A1652 A1652	A1000 A1654 C1655	C1656 G1657 A1658	A1000 C1659 A1660	C1661 A1662	G1663	C1669 A1670	A1678	A1685	A1690 G1691	C1692	G1695 C1696	G1697 A1698	C1702 U1703	C1704	A1708 A1709	A1712	C1714	G1717 G1718	01/19 A1720 A1721	A1722	C1727	G1731							
A1734	C1735	C1738 G1739	A1742 G1743	G1751	G1759	<mark>G1767</mark> C1768	G1772	C1781	01784 G1785	G1790 G1791	A1795	C1798	G1799 A1800	C1801 U1802	G1803	U1808 C1809 A1810	A1610 A1811 A1812	A1813 A1814 A1814	C1815	C1822 U1823	01024 01825 G1826	C1827 U1828	A1629 A1830 A1831	C1832 C1833	G1834 U1835	A1836							
A1837	<mark>A1842</mark> U1843	G1844 U1845 A1846	G1850	G1855	C1857	A1875	A1880	U1891	U1892 A1893	U1897	C1898	61900 C1901	G1902	A1908	A1917 G1918	C1919 C1920	G1930	C1932 C1932	G1934	G1937	A1939 A	C1941	A1943	G1949	U1950 C1951	C1952 U1953	A1954 A1955						
G1956 G1957	U1958	A1963 A1964 A1965	01966 01967	U1 <mark>970</mark>	A1979 A1980	G1981 U1982	C1989	C1 <mark>992</mark> A1993	C1994	A1997 A1998 G1999	<mark>G2000</mark> C2001	A2004	A2005 C2006	U2009	C2017	02018 62019 112020	02020 C2021 U2022	C2023	C2026 G2027	A2028	02035 02034 C2035	G2039	A2040	G2048	C2051 C2052	-							
G2056 A2057	A2058 G2059	A2060 U2061 G2062	C2063 A2064	A2069	C2070 C2071 C2072	G2073 C2074	C2077 A2078	G2079	C2082 G2083	A2086 A2086	G2089 A2089	C2090 C2091	C2092 C2093	G2096	G2097 A2098	62099 C2100	U2103 A2104	C2105 U2106	G2107	G2120	C2129 A2130	C2131 A2132	G2133 C2134	U2135 U2136	G2137	A2139	C2140						
G2142	G2143 A2144	U2145 A2146	G2147 G2148	U2149 A2150	G2151 0 G2152	A2153	C2155	U2157	U2158	G2160	A2162	C2164	G2165 U2166	G2167	A2168 G2169	C2170 • G2171 •	C2172	021/3 A2174	G2175 C2176	U2177	A2179	G2181	G2183	62184 A2185	G2186 • G2187 •	C2188 G2189	C2190	G2192	U2194	G2195 G2196	G2197	U2199	A2200
U2202	A2203 C2204	C2205 C2206	U2207	G2209	U2211 • G2212 •	U2213 G2214	62 <mark>217</mark>	U2221	A2225 A2226	G2230	C2231	C2234 A2235 C2236		02241	A2250 G2251	A2252 C2253	A2254	C2259	G2265 G2265 G2266	U2270	C2275	G2278	G2286 C2287	C2288 U2289 C2290	40003	A2294 A2295	A2301						
<mark>C2302</mark>	A2305	C2308 G2309 C2310	A2314	<mark>G2317</mark>	<mark>G2326</mark> A2327	G2331 117337	G2335	A2336	A2338 U2339	A2347	G2348	A2354 G2357	G2358 C2359	A2360 U2361	<mark>A2362</mark>	G2372 A2373	C2374	C2377 G2378 A2370	62380 62381 82381	A2385	<mark>G24</mark> 02	<mark>G2409</mark> G2410	A2411 C2412	U2417 G2418	A2419	C2422							
	02429 C2430 C2431	G2432 C2433	C2443 C2444	A2445 U2446	C2447	C2451 A2452	A2453 C2454 G2455	G2456 A2457	U2458	A2461 A2462	C2467	C2469 C2469 C2470	G2471 G2472	G2473 G2474	A2475	C2479 A2480	G2481 G2482 G0462	C2483 U2484 II3485	02480 A2486 U2487	C2488	C2492 C2493	A2495 A2496	U2501	C2502 A2503 C2504	A2505	G2511							

• Molecule 28: 50S ribosomal protein L5

 \bullet Molecule 40: 50S ribosomal protein L23

19	9%			
Chain W:		98%		
MET E2 A3 A3 B5 D5 D28 V47 V48 V48	V50 K63 R64 R65 R67 Y68 Y68 R67 S83 C85 E84 C85	SS6 187 188 188 1890 ASW		
• Molecule 41: 5	0S ribosomal protein l	L24		
Chain X:	82%		• 17%	
MET HIS I3 D7 K19 E20 K29	D31 44 44 445 445 17 445 17 17 445 610 610 610 610 610 610 610 610 610 610	T59 E60 L71 D72 E77 R80 R80	F85 VAL ASP ASP ASP ASP ASP CLYS LYS V91 E100 E100 E100 T101 K102	ASN
• Molecule 42: 5	0S ribosomal protein	L25		
Chain Y:	39% 42%	5	7%	
MET ALA S3 K5 K5 K5 K5 R9 R9 R9 R9 R9	G11 K12 C13 C14 R15 S16 C13 C13 C12 C20 C20 C21 C21 C21 C21 C21 C22	R23 S24 C25 C25 R26 R26 R26 R26 R26 R29 R29 R29 R29 R29 R24	G35 T36 K37 N38 V39 S40 V41 K42 V43 D44 E45	V46 E47 F48 F48 K50 V61 112 H63 E54 V55 K65 K67 K67 K67 K67 K65 K65 V55 K65 K67 K67 K67 K65 K65 K65 K65 K65 K65 K65 K65 K65 K65
E62 L63 G64 V65 G66 G66 S67 K68 K68 T169	N1 N72 N73 N74 N75 N77 Q78 C79 E80 P81 P81 K83	N84 (85 (85 (85 (85 (90 (90) (90) (90) (95) (95) (95) (95) (95) (95) (95) (95	Mag Bar GLU ARG ARG ALU VAL PRO CLU VAL CLU VAL CLU VAL CLU VAL	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA
PRO LEU PHE ASN LEU GLU GLU GLU THR ALA THR ALA ASP PRO	ASN ILE PRO GLU ALA ALA ALA CLU CLU CLU ASN ASN ASN	ASP SER LEU THR VAL ALA ALA ASP VAL LYS VAL LYS CLY SP	PHE LLYS TLE GLU GLU ASN ASN ASN ASN ALA SER SER VAL VAL VAL	VAL PRO THR GLU
GLU PRO THR GLU GLU GLU GLU MET MET GLU GLV GLY	GLU GLN GLN GLN GLU GLU PRO CLU PRO CLU SER SER SER CLU SER CLU SER	GLU GLU GLU GLU		
• Molecule 43: 5	0S ribosomal protein l	L27		
Chain Z:	79%		• 18%	
MET LEU LLYS LLYS ASN LEU GLN PHE PHE ALA SER SER	LYS CLY VAL SER 118 K19 D23 D23 R28 R28 R28 R28 R28 R28 R28 R28 R28 R28	A93 GLU		
• Molecule 44: 5	0S ribosomal protein l	L28		
Chain 0:	71%		• 26%	
MET GLY GLY CYS GLN CYS CYS PHE VAL THR THA K10	R17 R17 R27 R27 R27 R37 R37 R37 R37	G42 K55 SER G17 UAL THR ARC VAL VAL		
• Molecule 45: 5	0S ribosomal protein l	L29		
Chain 1:	6	94%	6%	

MET K2 E5 E5 R7 B6 16 B8 12 812 E13 \$21 \$21 \$24	L37 E38 K64 K64 K66 K66 AlA ASN ALA ASN ALA ASN CLN		
• Molecule 46: 50S ribo	somal protein L30		
Chain 2: 7%	90%	7% •	
MET A2 K3 K3 K3 K3 K3 K30 K30 K30 K30 K30 K30			
• Molecule 47: 50S ribo	somal protein L31 type B		
Chain 3:	82% 88%	8% •	
MI K2 G4 G4 F5 F7 F7 F1 M10 F13 F14 F14	LID LIC TIJ T12 T19 F21 F22 F23 F23 F23 F23 F23 F23 F28 F28 F28 F28 F28 F28 F28 F28 F28 F28	M35 E36 W37 E38 E38 E42 P44 P44 P44 P44 P44 P44 P44 P44 P44 P	L48 D49 S51 S52 S52 S54 H55 F55 F55 F55 F56 F56 F56 F56 F56 F56 F
K63 F64 A65 A66 A66 A67 A67 D68 G69 G70 K71 E74 K73 K73 K75 K73	KV 0 F77 F78 C79 K81 K81 K81 K81 K81 K81		
• Molecule 48: 50S ribo	somal protein L32		
Chain 4:	72%	•• 24%	
MET 42 42 122 523 523 6 523 6 730 6 731 6 733 6 733 6 733 6 733 6 733 6 733 6 733 6 733 7 733 7	R42 C44 C443 C445 C445 C445 K45 C45 C45 C45 C45 C45 C45 C45 C45 C45 C		
• Molecule 49: 50S ribo	somal protein L33 2		
Chain 5:	53% 55% •	43%	
MET ARG VAL ASAL ASAL ASAL LEU CS CS CS CS CS CS CS CS CS CS CS CS CS	N16 Y17 118 T20 LYS LYS ASN LYS ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	C36 S37 R38 R38 E39 R40 Q42 L44 H45 R46 R46 CLU	LYS
• Molecule 50: 50S ribo	somal protein L34		
Chain 6:	89%	7% ••	
MET V2 Q7 K15 V16 R40 A45			
• Molecule 51: 50S ribo	somal protein L35		
Chain 7:	82%	9% 9%	

97%

•

• Molecule 52: 50S ribosomal protein L36

Chain 8:

8%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	83000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON II $(4k \ge 4k)$	Depositor
Maximum map value	0.299	Depositor
Minimum map value	-0.132	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.017	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	374.0, 374.0, 374.0	wwPDB
Map dimensions	340, 340, 340	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.1, 1.1, 1.1	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	a	0.97	3/36954~(0.0%)	1.25	166/57629~(0.3%)
2	b	0.47	0/1815	0.72	3/2436~(0.1%)
3	с	0.39	0/1622	0.68	0/2178
4	d	0.46	0/1629	0.69	0/2185
5	е	0.53	0/1208	0.73	0/1628
6	f	0.54	0/792	0.68	0/1062
7	g	0.45	0/1157	0.73	2/1557~(0.1%)
8	h	0.58	0/1044	0.75	0/1401
9	i	0.41	0/1033	0.71	0/1386
10	j	0.42	0/803	0.69	0/1082
11	k	0.48	0/866	0.67	1/1169~(0.1%)
12	1	0.62	0/1075	0.80	0/1439
13	m	0.42	0/883	0.79	0/1182
14	n	0.46	0/512	0.81	0/678
15	0	0.53	0/747	0.80	0/996
16	р	0.56	0/723	0.69	0/971
17	q	0.57	0/706	0.73	0/944
18	r	0.51	0/473	0.76	0/632
19	s	0.40	0/695	0.68	0/934
20	t	0.43	0/606	0.69	0/810
21	u	0.35	0/380	0.53	0/498
22	V	0.37	0/841	0.72	0/1131
23	А	1.33	155/69971~(0.2%)	1.40	719/109124~(0.7%)
24	В	0.94	1/2717~(0.0%)	1.26	19/4232~(0.4%)
25	D	0.86	2/2138~(0.1%)	0.82	2/2869~(0.1%)
26	Ε	0.78	2/1673~(0.1%)	0.73	0/2243
27	F	0.72	0/1547	0.76	1/2088~(0.0%)
28	G	0.42	0/1326	0.73	0/1780
29	Н	0.51	1/1302~(0.1%)	0.70	0/1757
30	М	0.68	0/1173	0.71	0/1578
31	Ν	0.77	0/927	0.83	0/1243
32	0	0.70	0/1010	0.89	$\overline{4/1344}~(0.3\%)$
33	Р	0.75	0/1089	0.84	0/1460
34	Q	0.63	0/927	0.77	1/1238~(0.1%)

Mol	Chain	E	Bond lengths	I	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
35	R	0.48	0/931	0.74	0/1244
36	S	0.70	0/874	0.86	2/1168~(0.2%)
37	Т	0.81	0/955	0.82	3/1265~(0.2%)
38	U	0.72	0/809	0.75	1/1080~(0.1%)
39	V	0.69	0/870	0.78	0/1171
40	W	0.69	0/733	0.76	0/978
41	Х	0.50	0/672	0.66	0/893
42	Y	0.76	1/746~(0.1%)	1.56	4/1000~(0.4%)
43	Ζ	0.72	0/597	0.69	0/793
44	0	0.59	0/378	0.90	0/504
45	1	0.53	0/537	0.71	0/714
46	2	0.64	0/443	0.76	1/597~(0.2%)
47	3	0.47	0/680	0.83	1/911~(0.1%)
48	4	0.73	0/366	0.76	0/485
49	5	0.40	0/230	0.85	0/303
50	6	0.91	0/377	0.89	1/491~(0.2%)
51	7	0.73	0/491	0.96	$\overline{2}/643~(0.3\%)$
52	8	0.70	0/300	0.88	2/393~(0.5%)
All	All	1.08	165/153353~(0.1%)	1.23	935/229517~(0.4%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	b	0	2
3	с	0	1
4	d	0	2
5	е	0	1
6	f	0	1
7	g	0	6
11	k	0	1
12	1	0	3
13	m	0	1
14	n	0	2
17	q	0	2
19	s	0	1
22	V	0	7
25	D	0	2
26	Е	0	5
27	F	0	2

Mol	Chain	#Chirality outliers	#Planarity outliers
30	М	0	1
31	N	0	1
32	0	0	4
33	Р	0	3
35	R	0	3
36	S	0	2
37	Т	0	1
38	U	0	1
41	Х	0	1
43	Ζ	0	1
46	2	0	1
47	3	0	3
50	6	0	2
51	7	0	2
All	All	0	65

The worst 5 of 165 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
42	Y	25	GLY	C-N	17.38	1.74	1.34
26	Ε	147	PHE	CA-CB	-8.04	1.36	1.53
23	А	806	А	C5-C6	-7.55	1.34	1.41
23	А	2606	С	N1-C6	-7.36	1.32	1.37
23	А	2503	А	N9-C4	-7.23	1.33	1.37

The worst 5 of 935 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
42	Y	25	GLY	CA-C-N	-26.58	58.73	117.20
42	Y	25	GLY	O-C-N	25.46	163.44	122.70
42	Y	25	GLY	C-N-CA	-23.37	63.28	121.70
23	А	806	А	N1-C6-N6	18.77	129.86	118.60
23	А	2451	С	C6-N1-C2	-17.47	113.31	120.30

There are no chirality outliers.

5 of 65 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	b	19	GLN	Peptide
2	b	21	ARG	Peptide
3	с	160	ASP	Peptide

Continued from previous page...

Mol	Chain	Res	Type	Group
4	d	160	PHE	Peptide
4	d	93	ARG	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	b	220/255~(86%)	192 (87%)	27~(12%)	1 (0%)	29	66
3	с	201/217~(93%)	166 (83%)	34~(17%)	1 (0%)	29	66
4	d	193/200~(96%)	163 (84%)	30~(16%)	0	100	100
5	е	158/166~(95%)	124 (78%)	34~(22%)	0	100	100
6	f	92/98~(94%)	73 (79%)	18 (20%)	1 (1%)	14	50
7	g	139/156~(89%)	117 (84%)	20~(14%)	2(1%)	11	45
8	h	129/132~(98%)	107~(83%)	21~(16%)	1 (1%)	19	56
9	i	126/132~(96%)	107 (85%)	19~(15%)	0	100	100
10	j	97/102~(95%)	87 (90%)	10~(10%)	0	100	100
11	k	113/129~(88%)	89~(79%)	24~(21%)	0	100	100
12	1	133/137~(97%)	98 (74%)	33~(25%)	2(2%)	10	44
13	m	108/121~(89%)	87 (81%)	21~(19%)	0	100	100
14	n	58/61~(95%)	40 (69%)	18 (31%)	0	100	100
15	0	86/89~(97%)	78 (91%)	8~(9%)	0	100	100
16	р	$8\overline{8}/91~(97\%)$	69~(78%)	19(22%)	0	100	100
17	q	$8\overline{3}/87~(95\%)$	64 (77%)	19(23%)	0	100	100
18	r	$5\overline{4/80}~(68\%)$	41 (76%)	13(24%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
19	s	82/92~(89%)	63 (77%)	19(23%)	0	100	100
20	t	78/83~(94%)	73~(94%)	5~(6%)	0	100	100
21	u	43/58~(74%)	31 (72%)	9~(21%)	3~(7%)	1	15
22	v	99/190~(52%)	70 (71%)	21 (21%)	8 (8%)	1	11
25	D	273/277~(99%)	228 (84%)	44 (16%)	1 (0%)	34	69
26	Е	216/220~(98%)	172 (80%)	41 (19%)	3 (1%)	11	45
27	F	197/207~(95%)	157 (80%)	40 (20%)	0	100	100
28	G	164/179~(92%)	123 (75%)	40 (24%)	1 (1%)	25	62
29	Н	162/178~(91%)	140 (86%)	22~(14%)	0	100	100
30	М	143/145~(99%)	117 (82%)	25~(18%)	1 (1%)	22	59
31	Ν	120/122~(98%)	83 (69%)	37 (31%)	0	100	100
32	Ο	129/146~(88%)	90 (70%)	39~(30%)	0	100	100
33	Р	131/144 (91%)	101 (77%)	30~(23%)	0	100	100
34	Q	115/122~(94%)	89 (77%)	26~(23%)	0	100	100
35	R	117/119~(98%)	95 (81%)	22~(19%)	0	100	100
36	S	105/116~(90%)	86 (82%)	17~(16%)	2 (2%)	8	40
37	Т	114/118~(97%)	102 (90%)	12~(10%)	0	100	100
38	U	100/102~(98%)	79 (79%)	20~(20%)	1 (1%)	15	51
39	V	110/117~(94%)	98 (89%)	12 (11%)	0	100	100
40	W	87/91~(96%)	68 (78%)	19~(22%)	0	100	100
41	Х	81/105~(77%)	50 (62%)	31~(38%)	0	100	100
42	Y	92/217~(42%)	68 (74%)	24~(26%)	0	100	100
43	Ζ	75/94~(80%)	65 (87%)	9~(12%)	1 (1%)	12	47
44	0	44/62~(71%)	33~(75%)	11 (25%)	0	100	100
45	1	63/69~(91%)	56 (89%)	7~(11%)	0	100	100
46	2	55/59~(93%)	48 (87%)	6 (11%)	1 (2%)	8	41
47	3	79/84~(94%)	47 (60%)	31~(39%)	1 (1%)	12	47
48	4	$42/\overline{58}~(72\%)$	36 (86%)	5(12%)	1 (2%)	6	35
49	5	24/49~(49%)	19 (79%)	5(21%)	0	100	100
50	6	42/45~(93%)	34 (81%)	6 (14%)	2(5%)	2	22
51	7	58/66~(88%)	38~(66%)	20 (34%)	0	100	100

- $ -$								
Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles	;
52	8	35/37~(95%)	27 (77%)	8 (23%)	0	100	100	
All	All	5353/6024~(89%)	4288 (80%)	1031 (19%)	34 (1%)	29	62	

 $5~{\rm of}~34$ Ramachandran outliers are listed below:

Mol	Chain	Res	Type
21	u	13	GLU
21	u	50	GLU
22	V	97	ASN
22	V	99	LYS
22	V	100	SER

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
2	b	192/221~(87%)	188 (98%)	4 (2%)	53 74	
3	с	164/175~(94%)	160 (98%)	4 (2%)	49 71	
4	d	172/175~(98%)	171 (99%)	1 (1%)	86 93	
5	е	126/131~(96%)	120 (95%)	6~(5%)	25 56	
6	f	82/86~(95%)	81 (99%)	1 (1%)	71 84	
7	g	122/132~(92%)	118 (97%)	4 (3%)	38 64	
8	h	112/113~(99%)	110 (98%)	2(2%)	59 77	
9	i	106/109~(97%)	106 (100%)	0	100 100	
10	j	89/91~(98%)	86 (97%)	3~(3%)	37 64	
11	k	91/104~(88%)	90 (99%)	1 (1%)	73 85	
12	1	117/119~(98%)	114 (97%)	3~(3%)	46 69	
13	m	94/104~(90%)	93~(99%)	1 (1%)	73 85	
14	n	52/53~(98%)	51 (98%)	1 (2%)	57 76	
15	0	80/81~(99%)	77 (96%)	3 (4%)	33 61	
16	р	76/77~(99%)	74 (97%)	2(3%)	46 69	

Mol	Chain	Analysed Rotameric		Outliers	Perce	ntiles
17	q	80/82~(98%)	80 (100%)	0	100	100
18	r	51/68~(75%)	50~(98%)	1 (2%)	55	74
19	\mathbf{S}	73/80~(91%)	73~(100%)	0	100	100
20	\mathbf{t}	67/69~(97%)	66~(98%)	1 (2%)	65	81
21	u	41/54~(76%)	33~(80%)	8 (20%)	1	9
22	v	91/173~(53%)	66 (72%)	25 (28%)	0	3
25	D	222/224~(99%)	219 (99%)	3 (1%)	67	82
26	Е	175/177~(99%)	174 (99%)	1 (1%)	86	93
27	F	163/169~(96%)	162 (99%)	1 (1%)	86	93
28	G	147/158~(93%)	146 (99%)	1 (1%)	84	91
29	Н	144/155~(93%)	143 (99%)	1 (1%)	84	91
30	М	123/123~(100%)	123 (100%)	0	100	100
31	Ν	100/100~(100%)	100 (100%)	0	100	100
32	О	104/112~(93%)	102 (98%)	2(2%)	57	76
33	Р	110/119~(92%)	104 (94%)	6 (6%)	21	53
34	Q	98/102~(96%)	98 (100%)	0	100	100
35	R	95/95~(100%)	95 (100%)	0	100	100
36	S	93/102~(91%)	93 (100%)	0	100	100
37	Т	96/98~(98%)	96 (100%)	0	100	100
38	U	86/86~(100%)	86 (100%)	0	100	100
39	V	91/94~(97%)	91 (100%)	0	100	100
40	W	80/82~(98%)	80 (100%)	0	100	100
41	Х	73/90~(81%)	73 (100%)	0	100	100
42	Y	83/190 (44%)	82 (99%)	1 (1%)	71	84
43	Ζ	60/75~(80%)	59~(98%)	1 (2%)	60	79
44	0	39/52~(75%)	37~(95%)	2(5%)	24	55
45	1	59/62~(95%)	59 (100%)	0	100	100
46	2	51/53~(96%)	50 (98%)	1 (2%)	55	74
47	3	72/75~(96%)	70 (97%)	2(3%)	43	67
48	4	41/51 (80%)	39~(95%)	2(5%)	25	56
49	5	26/47~(55%)	25~(96%)	1 (4%)	33	61

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
50	6	39/40~(98%)	39 (100%)	0	100 100
51	7	52/57~(91%)	50~(96%)	2(4%)	33 61
52	8	35/35~(100%)	35~(100%)	0	100 100
All	All	4635/5120 (90%)	4537 (98%)	98 (2%)	56 74

5 of 98 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
22	V	78	ILE
25	D	69	ASN
22	V	82	ASN
22	V	93	LYS
27	F	135	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 51 such side chains are listed below:

Mol	Chain	\mathbf{Res}	Type
22	V	88	GLN
27	F	148	GLN
44	0	32	ASN
22	V	97	ASN
26	Е	50	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	a	1540/1556~(98%)	373~(24%)	0
23	А	2909/2923~(99%)	727 (24%)	18 (0%)
24	В	113/114~(99%)	23~(20%)	0
All	All	4562/4593~(99%)	1123 (24%)	18 (0%)

5 of 1123 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	а	8	G
1	a	9	А
1	а	10	G
1	a	11	А
1	a	15	U

5 of 18 RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
23	А	2418	G
23	А	2501	U
23	А	2467	С
23	А	1104	U
23	А	2360	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
23	А	1
42	Y	1
25	D	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	А	1569:G	O3'	1570:G	Р	3.00
1	Y	25:GLY	С	26:LYS	Ν	1.74
1	D	5:TYR	С	6:LYS	Ν	1.17

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-3625. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 170

Y Index: 170

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 144

Y Index: 212

Z Index: 187

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 989 nm^3 ; this corresponds to an approximate mass of 894 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.270 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-3625 and PDB model 5ND9. Per-residue inclusion information can be found in section 3 on page 13.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.05).

9.4 Atom inclusion (i)

At the recommended contour level, 76% of all backbone atoms, 73% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.05) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.7350	0.3860
0	0.5854	0.4000
1	0.5923	0.3850
2	0.6744	0.4350
3	0.1659	0.2440
4	0.5710	0.4250
5	0.1622	0.3020
6	0.7330	0.4740
7	0.6951	0.4180
8	0.6323	0.4370
А	0.8542	0.4220
В	0.8737	0.3600
D	0.7000	0.4740
Ε	0.6911	0.4530
F	0.6752	0.4230
G	0.3561	0.2770
Η	0.5151	0.3260
Μ	0.7044	0.4470
Ν	0.5964	0.4550
О	0.6869	0.4070
Р	0.6641	0.4230
Q	0.6614	0.4210
R	0.5611	0.3230
S	0.6389	0.4310
Т	0.7330	0.4450
U	0.6518	0.4290
V	0.6833	0.4580
W	0.6153	0.4130
X	0.5825	0.3730
Y	0.1214	0.3050
Ζ	0.7203	0.4400
a	0.8055	0.3510
b	0.2801	0.3130
с	0.2192	0.2750
d	0.4103	0.2760

0.0 <0.0

1.0

Chain	Atom inclusion	Q-score
е	0.4342	0.3600
f	0.3646	0.3660
g	0.2342	0.2470
h	0.5302	0.3770
i	0.2431	0.2360
j	0.2085	0.2290
k	0.4844	0.3560
1	0.5712	0.3890
m	0.1998	0.2280
n	0.3222	0.2550
О	0.5416	0.3410
р	0.6014	0.3850
q	0.5242	0.3650
r	0.4321	0.3540
s	0.2568	0.1900
t	0.5401	0.3160
u	0.0801	0.2820
V	0.1948	0.2990

