Full wwPDB NMR Structure Validation Report (i) Jun 24, 2024 – 11:52 AM EDT PDB ID : 7NIP BMRB ID : 50117 Title: titin N2A unique sequence (UN2A) core Authors: Zhou, T.; Kovermann, M.; Fleming, J.R.; Mayans, O. Deposited on : 2021-02-13 This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry. We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol. The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types. The following versions of software and data (see references (i)) were used in the production of this report: MolProbity: 4.02b-467 Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019) wwPDB-RCI : v 1n 11 5 13 A (Berjanski et al., 2005) PANAV : Wang et al. (2010) wwPDB-ShiftChecker : v1.2 Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.37.1 ## 1 Overall quality at a glance (i) The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$ The overall completeness of chemical shifts assignment is 1%. Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based. | Metric | Whole archive | NMR archive | |-----------------------|-------------------------|----------------------| | Metric | $(\# \mathrm{Entries})$ | $(\# ext{Entries})$ | | Clashscore | 158937 | 12864 | | Ramachandran outliers | 154571 | 11451 | | Sidechain outliers | 154315 | 11428 | The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% | Mol | Chain | Length | Quality of chain | | |-----|-------|--------|------------------|------| | | | | | | | 1 | A | 41 | 93% | 5% • | ## 2 Ensemble composition and analysis (i) This entry contains 10 models. Model 8 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: closest to the average. The following residues are included in the computation of the global validation metrics. | Well-defined (core) protein residues | | | | | |--|---------------|------|---|--| | Well-defined core Residue range (total) Backbone RMSD (Å) Medoid mod | | | | | | 1 | A:3-A:40 (38) | 0.50 | 8 | | Ill-defined regions of proteins are excluded from the global statistics. Ligands and non-protein polymers are included in the analysis. The models can be grouped into 3 clusters. No single-model clusters were found. | Cluster number | Models | |----------------|-------------| | 1 | 2, 3, 4, 5 | | 2 | 1, 7, 8, 10 | | 3 | 6, 9 | ## 3 Entry composition (i) There is only 1 type of molecule in this entry. The entry contains 676 atoms, of which 339 are hydrogens and 0 are deuteriums. • Molecule 1 is a protein called Isoform 11 of Titin. | Mol | Chain | Residues | Atoms | | | | Trace | | | |-----|-------|----------|-------|-----|-----|----|-------|---|---| | 1 | Λ | 40 | Total | С | Н | N | О | S | 0 | | | A | 40 | 676 | 217 | 339 | 54 | 64 | 2 | U | There is a discrepancy between the modelled and reference sequences: | Chain | Residue | Modelled | Actual | Comment | Reference | |-------|---------|----------|--------|-----------------------|------------| | A | 0 | MET | - | initiating methionine | UNP Q8WZ42 | ## 4 Residue-property plots (i) ### 4.1 Average score per residue in the NMR ensemble These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey. • Molecule 1: Isoform 11 of Titin ## 4.2 Scores per residue for each member of the ensemble Colouring as in section 4.1 above. #### 4.2.1 Score per residue for model 1 • Molecule 1: Isoform 11 of Titin #### 4.2.2 Score per residue for model 2 • Molecule 1: Isoform 11 of Titin #### 4.2.3 Score per residue for model 3 • Molecule 1: Isoform 11 of Titin Chain A: 93% 5% • #### 4.2.4 Score per residue for model 4 • Molecule 1: Isoform 11 of Titin Chain A: 93% 5% • #### 4.2.5 Score per residue for model 5 • Molecule 1: Isoform 11 of Titin Chain A: 93% 5% · #### 4.2.6 Score per residue for model 6 • Molecule 1: Isoform 11 of Titin Chain A: 93% 5% ### 4.2.7 Score per residue for model 7 • Molecule 1: Isoform 11 of Titin Chain A: 93% 5% • ### 4.2.8 Score per residue for model 8 (medoid) • Molecule 1: Isoform 11 of Titin ### 4.2.9 Score per residue for model 9 • Molecule 1: Isoform 11 of Titin Chain A: 93% 5% • #### 4.2.10 Score per residue for model 10 • Molecule 1: Isoform 11 of Titin Chain A: 93% 5% • ## 5 Refinement protocol and experimental data overview (i) Of the 32500 calculated structures, 10 were deposited, based on the following criterion: all calculated structures submitted. The following table shows the software used for structure solution, optimisation and refinement. | Software name | Classification | Version | |---------------|-----------------------|---------| | CS-ROSETTA | structure calculation | | The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report. | Chemical shift file(s) | working_cs.cif | |--|----------------| | Number of chemical shift lists | 1 | | Total number of shifts | 403 | | Number of shifts mapped to atoms | 5 | | Number of unparsed shifts | 0 | | Number of shifts with mapping errors | 398 | | Number of shifts with mapping warnings | 0 | | Assignment completeness (well-defined parts) | 1% | ## 6 Model quality (i) ## 6.1 Standard geometry (i) There are no covalent bond-length or bond-angle outliers. There are no bond-length outliers. There are no bond-angle outliers. There are no chirality outliers. There are no planarity outliers. ### 6.2 Too-close contacts (i) In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble. | Mol | Chain | Non-H | H(model) | H(added) | Clashes | |-----|-------|-------|----------|----------|---------| | All | All | 3210 | 3240 | 3240 | - | The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is -. There are no clashes. ## 6.3 Torsion angles (i) ### 6.3.1 Protein backbone (i) In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues. | Mol | Chain | Analysed | Favoured | Allowed | Outliers | Perce | entiles | |-----|-------|---------------|---------------|------------|------------|-------|---------| | 1 | A | 37/41 (90%) | 37±0 (100±1%) | 0±0 (0±1%) | 0±0 (0±0%) | 100 | 100 | | All | All | 370/410 (90%) | 369 (100%) | 1 (0%) | 0 (0%) | 100 | 100 | There are no Ramachandran outliers. #### 6.3.2 Protein sidechains (i) In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues. | Mol | Chain | Analysed | Rotameric | Outliers | Perce | \mathbf{ntiles} | |-----|-------|------------------|---------------|------------|-------|-------------------| | 1 | A | $34/37 \ (92\%)$ | 34±0 (100±0%) | 0±0 (0±0%) | 100 | 100 | | All | All | 340/370 (92%) | 340 (100%) | 0 (0%) | 100 | 100 | There are no protein residues with a non-rotameric sidechain to report. #### 6.3.3 RNA (i) There are no RNA molecules in this entry. ### 6.4 Non-standard residues in protein, DNA, RNA chains (i) There are no non-standard protein/DNA/RNA residues in this entry. ## 6.5 Carbohydrates (i) There are no monosaccharides in this entry. ## 6.6 Ligand geometry (i) There are no ligands in this entry. ## 6.7 Other polymers (i) There are no such molecules in this entry. ## 6.8 Polymer linkage issues (i) There are no chain breaks in this entry. ## 7 Chemical shift validation (i) The completeness of assignment taking into account all chemical shift lists is 1% for the well-defined parts
and 1% for the entire structure. ### 7.1 Chemical shift list 1 File name: working_cs.cif Chemical shift list name: starch_output ### 7.1.1 Bookkeeping (i) The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts. | Total number of shifts | 403 | |---|-----| | Number of shifts mapped to atoms | 5 | | Number of unparsed shifts | 0 | | Number of shifts with mapping errors | 398 | | Number of shifts with mapping warnings | 0 | | Number of shift outliers (ShiftChecker) | 0 | The following assigned chemical shifts were not mapped to the molecules present in the coordinate file. • No matching atom found in the structure. All 398 occurrences are reported below. | T:-4 ID | Clasica | Dag | Т | A + | | Shift Data | 1 | |---------|---------|-----|------|------|---------|-------------|-----------| | List ID | Chain | Res | Type | Atom | Value | Uncertainty | Ambiguity | | 1 | A | 1 | MET | CA | 56.5 | | 2 | | 1 | A | 1 | MET | СВ | 29.96 | • | 2 | | 1 | A | 1 | MET | С | 176.42 | | 2 | | 1 | A | 2 | ASP | Н | 8.103 | • | 2 | | 1 | A | 2 | ASP | N | 123.071 | | 2 | | 1 | A | 2 | ASP | CA | 55.44 | | 2 | | 1 | A | 2 | ASP | СВ | 41.58 | • | 2 | | 1 | A | 2 | ASP | С | 176.381 | | 2 | | 1 | A | 3 | GLU | Н | 8.187 | | 2 | | 1 | A | 3 | GLU | N | 121.433 | | 2 | | 1 | A | 3 | GLU | CA | 56.473 | | 2 | | 1 | A | 3 | GLU | СВ | 29.459 | | 2 | | 1 | A | 11 | GLU | CA | 57.885 | • | 2 | | 1 | A | 11 | GLU | СВ | 29.525 | | 2 | $Continued\ from\ previous\ page...$ | Name Oncertainty Ambiguity 1 | T:-4 ID | | | | A 4 | Shift Data | | | | |---|---------|-------|-----|------|------|------------|-------------|-----------|--| | 1 A 12 GLY H 8.135 . 2 1 A 12 GLY N 108.676 . 2 1 A 12 GLY C 176.845 . 2 1 A 12 GLY CA 45.947 . 2 1 A 13 ASP H 8.161 . 2 1 A 13 ASP N 122.991 . 2 1 A 13 ASP C 177.902 . 2 1 A 13 ASP CA 56.385 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU CA 57.149 . 2 1 A 14 | List ID | Chain | Res | Type | Atom | Value | Uncertainty | Ambiguity | | | 1 A 12 GLY N 108.676 . 2 1 A 12 GLY C 176.845 . 2 1 A 12 GLY CA 45.947 . 2 1 A 13 ASP N 122.991 . 2 1 A 13 ASP N 122.991 . 2 1 A 13 ASP C 177.902 . 2 1 A 13 ASP CA 56.385 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU N 123.311 . 2 1 A 14 LEU C 178.537 . 2 1 A 14 LEU CA 57.149 . 2 1 A 15 | 1 | A | 11 | | С | 177.824 | | | | | 1 A 12 GLY C 176.845 . 2 1 A 12 GLY CA 45.947 . 2 1 A 13 ASP H 8.161 . 2 1 A 13 ASP N 122.991 . 2 1 A 13 ASP C 177.902 . 2 1 A 13 ASP CA 56.385 . 2 1 A 13 ASP CB 40.787 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU C 178.537 . 2 1 A 14 LEU CB 40.989 . 2 1 A 15 | 1 | A | 12 | GLY | Н | 8.135 | • | | | | 1 A 12 GLY CA 45.947 . 2 1 A 13 ASP H 8.161 . 2 1 A 13 ASP N 122.991 . 2 1 A 13 ASP C 177.902 . 2 1 A 13 ASP CA 56.385 . 2 1 A 13 ASP CA 56.385 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU C 178.537 . 2 1 A 14 LEU CB 40.989 . 2 1 A 15 ARG H 8.116 . 2 1 A 15 | 1 | A | 12 | GLY | N | | | | | | 1 A 13 ASP H 8.161 . 2 1 A 13 ASP N 122.991 . 2 1 A 13 ASP C 177.902 . 2 1 A 13 ASP CA 56.385 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU C 178.537 . 2 1 A 14 LEU CA 57.149 . 2 1 A 14 LEU CB 40.989 . 2 1 A 15 ARG H 8.116 . 2 1 A 15 ARG N 118.6 . 2 1 A 15 | 1 | A | 12 | GLY | С | 176.845 | • | | | | 1 A 13 ASP N 122.991 . 2 1 A 13 ASP C 177.902 . 2 1 A 13 ASP CA 56.385 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU H 123.311 . 2 1 A 14 LEU C 178.537 . 2 1 A 14 LEU C 178.537 . 2 1 A 14 LEU CA 57.149 . 2 1 A 14 LEU CB 40.989 . 2 1 A 15 ARG H 8.116 . 2 1 A 15 ARG C 178.169 . 2 1 A 15 | 1 | A | 12 | | CA | | • | | | | 1 A 13 ASP C 177.902 . 2 1 A 13 ASP CA 56.385 . 2 1 A 13 ASP CB 40.787 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU CA 57.149 . 2 1 A 14 LEU CB 40.989 . 2 1 A 15 ARG H 8.116 . 2 1 A 15 ARG H 8.116 . 2 1 A 15 ARG C 178.169 . 2 1 A 15 ARG CA 62.634 . 2 1 A 16 | 1 | A | 13 | ASP | Н | | • | | | | 1 A 13 ASP CA 56.385 . 2 1 A 13 ASP CB 40.787 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU N 123.311 . 2 1 A 14 LEU C 178.537 . 2 1 A 14 LEU CA 57.149 . 2 1 A 14 LEU CA 57.149 . 2 1 A 15 ARG H 8.166 . 2 1 A 15 ARG H 8.166 . 2 1 A 15 ARG H 8.166 . 2 1 A 15 ARG N 118.6 . 2 1 A 15 | 1 | A | 13 | ASP | N | | • | 2 | | | 1 A 13 ASP CB 40.787 . 2 1 A 14 LEU H 8.166 . 2 1 A 14 LEU N 123.311 . 2 1 A 14 LEU C 178.537 . 2 1 A 14 LEU C 178.537 . 2 1 A 14 LEU CA 57.149 . 2 1 A 14 LEU CB 40.989 . 2 1 A 15 ARG H 8.116 . 2 1 A 15 ARG N 118.6 . 2 1 A 15 ARG CA 62.634 . 2 1 A 15 ARG CB 29.229 . 2 1 A 16 | 1 | A | 13 | | | 177.902 | • | | | | 1 A 14 LEU H 8.166 . 2 1 A 14 LEU N 123.311 . 2 1 A 14 LEU C 178.537 . 2 1 A 14 LEU CA 57.149 . 2 1 A 14 LEU CB 40.989 . 2 1 A 14 LEU CB 40.989 . 2 1 A 15 ARG H 8.116 . 2 1 A 15 ARG H 8.116 . 2 1 A 15 ARG N 118.6 . 2 1 A 15 ARG C 178.169 . 2 1 A 15 ARG C 178.169 . 2 1 A 16 | 1 | A | 13 | ASP | CA | 56.385 | • | | | | 1 A 14 LEU N 123.311 . 2 1 A 14 LEU C 178.537 . 2 1 A 14 LEU CA 57.149 . 2 1 A 14 LEU CB 40.989 . 2 1 A 15 ARG H 8.116 . 2 1 A 15 ARG N 118.6 . 2 1 A 15 ARG C 178.169 . 2 1 A 16 ALA H 7.75 . 2 1 A 16 | 1 | A | 13 | ASP | CB | 40.787 | • | | | | 1 A 14 LEU C 178.537 . 2 1 A 14 LEU CA 57.149 . 2 1 A 14 LEU CB 40.989 . 2 1 A 15 ARG H 8.116 . 2 1 A 15 ARG N 118.6 . 2 1 A 15 ARG C 178.169 . 2 1 A 15 ARG CA 62.634 . 2 1 A 16 ALA H 7.75 . 2 1 A 16 ALA N 121.471 . 2 1 A 16 ALA | 1 | A | 14 | LEU | Н | 8.166 | | 2 | | | 1 A 14 LEU CA 57.149 2 1 A 14 LEU CB 40.989 2 1 A 15 ARG H 8.116 2 1 A 15 ARG N 118.6 2 1 A 15 ARG N 118.6 2 1 A 15 ARG N 118.6 2 1 A 15 ARG C 178.169 2 1 A 15 ARG CA 62.634 2 1 A 16 ALA H 7.75 2 1 A 16 ALA H 7.75 2 1 A 16 ALA C 179.493 2 1 A < | 1 | A | 14 | LEU | N | 123.311 | • | 2 | | | 1 A 14 LEU CB 40.989 . 2 1 A 15 ARG H 8.116 . 2 1 A 15 ARG N 118.6 . 2 1 A 15 ARG C 178.169 . 2 1 A 15 ARG CA 62.634 . 2 1 A 15 ARG CB 29.229 . 2 1 A 16 ALA H 7.75 . 2 1 A 16 ALA N 121.471 . 2 1 A 16 ALA C 179.493 . 2 1 A 16 ALA CA 53.834 . 2 1 A 16 ALA CB 17.901 . 2 1 A 17 MET H 7.768 . 2 1 A 17 MET< | 1 | A | 14 | LEU | С | 178.537 | | 2 | | | 1 A 15 ARG H 8.116 . 2 1 A 15 ARG N 118.6 . 2 1 A 15 ARG C 178.169 . 2 1 A 15 ARG CA 62.634 . 2 1 A 15 ARG CB 29.229 . 2 1 A 16 ALA H 7.75 . 2 1 A 16 ALA N 121.471 . 2 1 A 16 ALA C 179.493 . 2 1 A 16 ALA CA 53.834 . 2 1 A 16 ALA CB 17.901 . 2 1 A 16 ALA CB 17.901 . 2 1 A 17 MET H 7.768 . 2 1 A 17 MET< | 1 | A | 14 | LEU | CA | 57.149 | • | 2 | | | 1 A 15 ARG N 118.6 . 2 1 A 15 ARG C 178.169 . 2 1 A 15 ARG CA 62.634 . 2 1 A 16 ALA H 7.75 . 2 1 A 16 ALA H 7.75 . 2 1 A 16 ALA N 121.471 . 2 1 A 16 ALA N 121.471 . 2 1 A 16 ALA C 179.493 . 2 1 A 16 ALA CA 53.834 . 2 1 A 16 ALA CB 17.901 . 2 1 A 17 MET H 7.768 . 2 1 A 17 MET N 118.1833 . 2 1 A 17 MET< | 1 | A | 14 | LEU | СВ | 40.989 | | 2 | | | 1 A 15 ARG C 178.169 . 2 1 A 15 ARG CA 62.634 . 2 1 A 15 ARG CB 29.229 . 2 1 A 16 ALA H 7.75 . 2 1 A 16 ALA N 121.471 . 2 1 A 16 ALA C 179.493 . 2 1 A 16 ALA CA 53.834 . 2 1 A 16 ALA CA 53.834 . 2 1 A 16 ALA CB 17.901 . 2 1 A 17 MET H 7.768 . 2 1 A 17 MET N 118.183 . 2 1 A 17 MET CA 57.094 . 2 1 A 18 | 1 | A | 15 | ARG | Н | 8.116 | | 2 | | | 1 A 15 ARG CA 62.634 . 2 1 A 15 ARG CB 29.229 . 2 1 A 16 ALA H 7.75 . 2 1 A 16 ALA N 121.471 . 2 1 A 16 ALA C 179.493 . 2 1 A 16 ALA CA 53.834 . 2 1 A 16 ALA CB 17.901 . 2 1 A 16 ALA CB 17.901 . 2 1 A 17 MET H 7.768 . 2 1 A 17 MET N 118.183 . 2 1 A 17 MET CA 57.094 . 2 1 A 18 LEU CA 54.674 . 2 1 A 18 | 1 | A | 15 | ARG | N | 118.6 | | 2 | | | 1 A 15 ARG CB 29.229 . 2 1 A 16 ALA H 7.75 . 2 1 A 16 ALA N 121.471 . 2 1 A 16 ALA C 179.493 . 2 1 A 16 ALA CA 53.834 . 2 1 A 16 ALA CB 17.901 . 2 1 A 16 ALA CB 17.901 . 2 1 A 17 MET H 7.768 . 2 1 A 17 MET N 118.183 . 2 1 A 17 MET CA 57.094 . 2 1 A 17 MET CB 32.271 . 2 1 A 18 LEU CA 54.674 . 2 1 A 18 | 1 | A | 15 | ARG | С | 178.169 | | 2 | | | 1 A 16 ALA H 7.75 . 2 1 A 16 ALA N 121.471 . 2 1 A 16 ALA C 179.493 . 2 1 A 16 ALA CA 53.834 . 2 1 A 16 ALA CB 17.901 . 2 1 A 17 MET H 7.768 . 2 1 A 17 MET N 118.183 . 2 1 A 17 MET CA 57.094 . 2 1 A 17 MET CB 32.271 . 2 1 A 18 LEU CA 54.674 . 2 1 A 18 LEU CB 41.711 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 LY | 1 | A | 15 | ARG | CA | 62.634 | | 2 | | | 1 A 16 ALA N 121.471 . 2 1 A 16 ALA C 179.493 . 2 1 A 16 ALA CA 53.834 . 2 1 A 16 ALA CB 17.901 . 2 1 A 17 MET H 7.768 . 2 1 A 17 MET N 118.183 . 2 1 A 17 MET N 118.183 . 2 1 A 17 MET CA 57.094 . 2 1 A 17 MET CB 32.271 . 2 1 A 18 LEU CA 54.674 . 2 1 A 18 LEU CB 41.711 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 <td< td=""><td>1</td><td>A</td><td>15</td><td>ARG</td><td>СВ</td><td>29.229</td><td></td><td>2</td></td<> | 1 | A | 15 | ARG | СВ | 29.229 | | 2 | | | 1 A 16 ALA C 179.493 . 2 1 A 16 ALA CA 53.834 . 2 1 A 16 ALA CB 17.901 . 2 1 A 17 MET H 7.768 . 2 1 A 17 MET N 118.183 . 2 1 A 17 MET CA 57.094 . 2 1 A 17 MET CB 32.271 . 2 1 A 18 LEU CA 54.674 . 2 1 A 18 LEU CB 41.711 . 2 1 A 18 LEU C 176.723 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 LYS N 122.966 . 2 1 A 19 <td<
td=""><td>1</td><td>A</td><td>16</td><td>ALA</td><td>Н</td><td>7.75</td><td></td><td>2</td></td<> | 1 | A | 16 | ALA | Н | 7.75 | | 2 | | | 1 A 16 ALA CA 53.834 . 2 1 A 16 ALA CB 17.901 . 2 1 A 17 MET H 7.768 . 2 1 A 17 MET N 118.183 . 2 1 A 17 MET CA 57.094 . 2 1 A 17 MET CB 32.271 . 2 1 A 18 LEU CA 54.674 . 2 1 A 18 LEU CB 41.711 . 2 1 A 18 LEU C 176.723 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 LYS N 122.966 . 2 1 A 19 LYS C 176.228 . 2 1 A 19 <td< td=""><td>1</td><td>A</td><td>16</td><td>ALA</td><td>N</td><td>121.471</td><td></td><td>2</td></td<> | 1 | A | 16 | ALA | N | 121.471 | | 2 | | | 1 A 16 ALA CB 17.901 . 2 1 A 17 MET H 7.768 . 2 1 A 17 MET N 118.183 . 2 1 A 17 MET CA 57.094 . 2 1 A 17 MET CB 32.271 . 2 1 A 18 LEU CA 54.674 . 2 1 A 18 LEU CB 41.711 . 2 1 A 18 LEU C 176.723 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 LYS N 122.966 . 2 1 A 19 LYS C 176.228 . 2 1 A 19 LYS CA 55.738 . 2 1 A 19 <td< td=""><td>1</td><td>A</td><td>16</td><td>ALA</td><td>С</td><td>179.493</td><td></td><td>2</td></td<> | 1 | A | 16 | ALA | С | 179.493 | | 2 | | | 1 A 17 MET H 7.768 . 2 1 A 17 MET N 118.183 . 2 1 A 17 MET CA 57.094 . 2 1 A 17 MET CB 32.271 . 2 1 A 18 LEU CA 54.674 . 2 1 A 18 LEU CB 41.711 . 2 1 A 18 LEU C 176.723 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 LYS N 122.966 . 2 1 A 19 LYS C 176.228 . 2 1 A 19 LYS CA 55.738 . 2 1 A 19 LYS CB 32.478 . 2 1 A 20 <td< td=""><td>1</td><td>A</td><td>16</td><td>ALA</td><td>CA</td><td>53.834</td><td></td><td>2</td></td<> | 1 | A | 16 | ALA | CA | 53.834 | | 2 | | | 1 A 17 MET N 118.183 . 2 1 A 17 MET CA 57.094 . 2 1 A 17 MET CB 32.271 . 2 1 A 18 LEU CA 54.674 . . 2 1 A 18 LEU CB 41.711 . . 2 1 A 18 LEU C 176.723 . . 2 1 A 19 LYS H 8.136 . . 2 1 A 19 LYS N 122.966 . . 2 1 A 19 LYS C 176.228 . . 2 1 A 19 LYS CA 55.738 . . 2 1 A 19 LYS CB 32.478 . . . 1 A 20 LYS H | 1 | A | 16 | ALA | СВ | 17.901 | | 2 | | | 1 A 17 MET CA 57.094 . 2 1 A 17 MET CB 32.271 . 2 1 A 18 LEU CA 54.674 . 2 1 A 18 LEU CB 41.711 . 2 1 A 18 LEU C 176.723 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 LYS N 122.966 . 2 1 A 19 LYS C 176.228 . 2 1 A 19 LYS CA 55.738 . 2 1 A 19 LYS CB 32.478 . 2 1 A 20 LYS H 8.302 . 2 1 A 20 L | 1 | A | 17 | MET | Н | 7.768 | | 2 | | | 1 A 17 MET CB 32.271 . 2 1 A 18 LEU CA 54.674 . 2 1 A 18 LEU CB 41.711 . 2 1 A 18 LEU C 176.723 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 LYS N 122.966 . 2 1 A 19 LYS C 176.228 . 2 1 A 19 LYS CA 55.738 . 2 1 A 19 LYS CB 32.478 . 2 1 A 20 LYS H 8.302 . 2 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 17 | MET | N | 118.183 | | 2 | | | 1 A 18 LEU CA 54.674 . 2 1 A 18 LEU CB 41.711 . 2 1 A 18 LEU C 176.723 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 LYS N 122.966 . 2 1 A 19 LYS C 176.228 . 2 1 A 19 LYS CA 55.738 . 2 1 A 19 LYS CB 32.478 . 2 1 A 20 LYS H 8.302 . 2 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 17 | MET | CA | 57.094 | • | 2 | | | 1 A 18 LEU CB 41.711 . 2 1 A 18 LEU C 176.723 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 LYS N 122.966 . 2 1 A 19 LYS C 176.228 . 2 1 A 19 LYS CA 55.738 . 2 1 A 19 LYS CB 32.478 . 2 1 A 20 LYS H 8.302 . 2 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 17 | MET | СВ | 32.271 | | 2 | | | 1 A 18 LEU CB 41.711 . 2 1 A 18 LEU C 176.723 . 2 1 A 19 LYS H 8.136 . 2 1 A 19 LYS N 122.966 . 2 1 A 19 LYS C 176.228 . 2 1 A 19 LYS CA 55.738 . 2 1 A 19 LYS CB 32.478 . 2 1 A 20 LYS H 8.302 . 2 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 18 | LEU | CA | 54.674 | | 2 | | | 1 A 19 LYS H 8.136 . 2 1 A 19 LYS N 122.966 . 2 1 A 19 LYS C 176.228 . 2 1 A 19 LYS CA 55.738 . 2 1 A 19 LYS CB 32.478 . 2 1 A 20 LYS H 8.302 . 2 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 18 | | | 41.711 | | 2 | | | 1 A 19 LYS N 122.966 . 2 1 A 19 LYS C 176.228 . 2 1 A 19 LYS CA 55.738 . 2 1 A 19 LYS CB 32.478 . 2 1 A 20 LYS H 8.302 . 2 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 18 | LEU | С | 176.723 | | 2 | | | 1 A 19 LYS C 176.228 . 2 1 A 19 LYS CA 55.738 . 2 1 A 19 LYS CB 32.478 . 2 1 A 20 LYS H 8.302 . 2 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 19 | LYS | Н | 8.136 | | 2 | | | 1 A 19 LYS C 176.228 . 2 1 A 19 LYS CA 55.738 . 2 1 A 19 LYS CB 32.478 . 2 1 A 20 LYS H 8.302 . 2 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 19 | LYS | N | 122.966 | | 2 | | | 1 A 19 LYS CB 32.478 . 2 1 A 20 LYS H 8.302 . 2 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 19 | | С | 176.228 | | 2 | | | 1 A 19 LYS CB 32.478 . 2 1 A 20 LYS H 8.302 . 2 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 19 | LYS | CA | 55.738 | | 2 | | | 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 19 | | СВ | 32.478 | | 2 | | | 1 A 20 LYS N 123.757 . 2 1 A 20 LYS C 175.352 . 2 | 1 | A | 20 | LYS | Н | 8.302 | | 2 | | | | 1 | A | 20 | | N | 123.757 | | 2 | | | 1 A 20 LYS CA 56.131 . 2 | 1 | A | 20 | LYS | С | 175.352 | | 2 | | | | 1 | A | 20 | LYS | CA | 56.131 | | 2 | | $Continued\ from\ previous\ page...$ | Dist ID Chain Res Type Arom Value Uncertainty Ambiguity | T:-4 ID | | | | A 4 | Shift Data | | | | |---|---------|-------|-----|------|------|------------|-------------|-----------|--| | 1 A 21 THR H 7.671 . 2 1 A 21 THR N 114.811 . 2 1 A 21 THR CB 69.958 . 2 1 A 21 THR CB 69.958 . 2 1 A 22 PRO CA 62.982 . 2 1 A 22 PRO CB 31.257 . 2 1 A 22 PRO CB 176.592 . 2 1 A 24 LEU H 8.021 . 2 1 A 24 LEU CB 46.694 . 2 1 A 24 LEU CB 44.694 . 2 1 A 26 LYS CA 55.982 . 2 1 A 26 | List ID | Chain | Res | Type | Atom | Value | Uncertainty | Ambiguity | | | 1 A 21 THR N 114.811 2 1 A 21 THR CA 58.739 2 1 A 21 THR CB 69.958 2 1 A 22 PRO CB 62.982 2 1 A 22 PRO CB 63.952 2 1 A 22 PRO CB 63.952 2 1 A 24 LEU H 8.021 2 1 A 24 LEU CA 54.464 2 1 A 24 LEU CB 55.982 2 1 A 26 LYS CA 55.982 2 1 A 27 GLY H 8.39 2 1 A | 1 | A | 20 | LYS | СВ | 32.377 | • | 2 | | | 1 A 21 THR CA 58.739 . 2 1 A 21 THR CB 69.958 . 2 1 A 22 PRO CA 62.982 . 2 1 A 22 PRO CB 31.257 . 2 1 A 22 PRO CC 176.592 . 2 1 A 24 LEU H 8.021 . 2 1 A 24 LEU N 125.563 . 2 1 A 24 LEU CA 54.464 . 2 1 A 26 LYS CA 55.982 . 2 1 A 26 LYS CA 55.982 . 2 1 A 27 GLY H 8.39 . 2 1 A 27 | 1 | A | 21 | THR | Н | 7.671 | • | 2 | | | 1 A 21 THR CB 69.958 . 2 1 A 22 PRO CA 62.982 . 2 1 A 22 PRO CB 31.257 . 2 1 A 22 PRO C 176.592 . 2 1 A 24 LEU H 8.021 . 2 1 A 24 LEU N 125.563 . 2 1 A 24 LEU CA 54.464 . 2 1 A 26 LYS CA 55.982 . 2 1 A 26 LYS CA 55.982 . 2 1 A 27 GLY C 177.08 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 | 1 | A | 21 | THR | N | 114.811 | • | | | | 1 A 22 PRO CA 62.982 . 2 1 A 22 PRO CB 31.257 . 2 1 A 22 PRO C 176.592 . 2 1 A 24 LEU H 8.021 . 2 1 A 24 LEU N 125.563 . 2 1 A 24 LEU CB 54.464 . 2 1 A 24 LEU CB 41.694 . 2 1 A 26 LYS CA 55.982 . 2 1 A 26 LYS CA 55.982 . 2 1 A 27 GLY H 8.39 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 | 1 | A | 21 | THR | CA | 58.739 | • | | | | 1 A 22 PRO CB 31.257 . 2 1 A 22 PRO C 176.592 . 2 1 A 24 LEU H 8.021 . 2 1 A 24 LEU N 125.563 . 2 1 A 24 LEU CB 41.694 . 2 1 A 24 LEU CB 41.694 . 2 1 A 26 LYS CA 55.982 . 2 1 A 26 LYS C 177.08 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 GLY N 111.364 . 2 1 A 28 | 1 | A | 21 | | СВ | 69.958 | • | | | | 1 A 22 PRO C 176.592 . 2 1 A 24 LEU H 8.021 . 2 1 A 24 LEU N 125.563 . 2 1 A 24 LEU CA 54.464 . 2 1 A 24 LEU CB 41.694 . 2 1 A 26 LYS CA 55.982 . 2 1 A 26 LYS CA 55.982 . 2 1 A 26 LYS C 177.08 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 GLY N 111.364 . 2 1 A 28 | 1 | A | 22 | | CA | 62.982 | • | | | | 1 A 24 LEU H 8.021 . 2 1 A 24 LEU N 125.563 . 2 1 A 24 LEU CA 54.464 . 2 1 A 24 LEU CB 41.694 . 2 1 A 26 LYS CA 55.982 . 2 1 A 26 LYS C 177.08 . 2 1 A 27 GLY H 8.39 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 GLY CA 45.079 . 2 1 A 28 ALA H 8.174 . 2 1 A 28 | 1 | A | 22 | PRO | СВ | 31.257 | • | | | | 1 A 24 LEU N 125.563 . 2 1 A 24 LEU CA 54.464 . 2 1 A 24 LEU CB 41.694 . 2 1 A 26 LYS CA 55.982 . 2 1 A 26 LYS C 177.08 . 2 1 A 26 LYS C 177.08 . 2 1 A 27 GLY H 8.39 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 GLY C 173.796 . 2 1 A 28 ALA N 124.471 . 2 1 A 28 | 1 | A | 22 | PRO | С | 176.592 | • | | | | 1 A 24 LEU CA 54.464 2 1 A 24 LEU CB 41.694 2 1 A 26 LYS CA 55.982 2 1 A 26 LYS C 177.08 2 1 A 27 GLY H 8.39 2 1 A 27 GLY N 11.364 2 1 A 27 GLY C 173.796 2 1 A 27 GLY CA 45.079 2 1 A 28 ALA H 8.174 2 1 A 28 ALA H 8.174 2 1 A 28 ALA C 178.315 2 1 A | 1 | A | 24 | LEU | Н | 8.021 | • | 2 | | | 1 A 24 LEU CB 41.694 . 2 1 A 26 LYS CA 55.982 . 2 1 A 26 LYS C 177.08 . 2 1 A 27 GLY H 8.39 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 GLY C 173.796 . 2 1 A 27 GLY CA 45.079 . 2 1 A 28 ALA H 8.174 . 2 1 A 28 ALA H 8.174 . 2 1 A 28 ALA C 178.315 . 2 1 A 28 ALA CA 52.309 . 2 1 A 29 | 1 | A | 24 | LEU | N | 125.563 | • | 2 | | | 1 A 26 LYS CA 55.982 2 1 A 26 LYS C 177.08 2 1 A 27 GLY H 8.39 2 1 A 27 GLY N 111.364 2 1 A 27 GLY C 173.796 2 1 A 27 GLY CA 45.079 2 1 A 28 ALA H 8.174 2 1 A 28 ALA H 8.174 2 1 A 28 ALA N 124.471 2 1 A 28 ALA C 178.315 2 1 A 28 ALA CA 52.309 2 1 A | 1 | A | 24 | LEU | CA | 54.464 | • | 2 | | | 1 A 26 LYS C 177.08 . 2 1 A 27 GLY H 8.39 . 2
1 A 27 GLY N 111.364 . 2 1 A 27 GLY C 173.796 . 2 1 A 27 GLY CA 45.079 . 2 1 A 28 ALA H 8.174 . 2 1 A 28 ALA N 124.471 . 2 1 A 28 ALA C 178.315 . 2 1 A 28 ALA CA 52.309 . 2 1 A 28 ALA CB 18.356 . 2 1 A 29 GLY H 8.386 . 2 1 A 29 | 1 | A | 24 | LEU | СВ | 41.694 | • | 2 | | | 1 A 27 GLY H 8.39 . 2 1 A 27 GLY N 111.364 . 2 1 A 27 GLY C 173.796 . 2 1 A 28 ALA H 8.174 . 2 1 A 28 ALA H 8.174 . 2 1 A 28 ALA N 124.471 . 2 1 A 28 ALA C 178.315 . 2 1 A 28 ALA CA 52.309 . 2 1 A 28 ALA CB 18.356 . 2 1 A 29 GLY H 8.386 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 | 1 | A | 26 | LYS | CA | 55.982 | • | | | | 1 A 27 GLY N 111.364 . 2 1 A 27 GLY C 173.796 . 2 1 A 27 GLY CA 45.079 . 2 1 A 28 ALA H 8.174 . 2 1 A 28 ALA N 124.471 . 2 1 A 28 ALA C 178.315 . 2 1 A 28 ALA CA 52.309 . 2 1 A 28 ALA CB 18.356 . 2 1 A 29 GLY H 8.386 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY C 174.362 . 2 1 A 30 G | 1 | A | 26 | LYS | С | 177.08 | • | 2 | | | 1 A 27 GLY C 173.796 . 2 1 A 27 GLY CA 45.079 . 2 1 A 28 ALA H 8.174 . 2 1 A 28 ALA N 124.471 . 2 1 A 28 ALA C 178.315 . 2 1 A 28 ALA CA 52.309 . 2 1 A 28 ALA CB 18.356 . 2 1 A 29 GLY H 8.386 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY CA 45.148 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU | 1 | A | 27 | GLY | Н | 8.39 | | 2 | | | 1 A 27 GLY CA 45.079 . 2 1 A 28 ALA H 8.174 . 2 1 A 28 ALA N 124.471 . 2 1 A 28 ALA C 178.315 . 2 1 A 28 ALA CA 52.309 . 2 1 A 28 ALA CB 18.356 . 2 1 A 29 GLY H 8.386 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY C 174.362 . 2 1 A 29 GLY CA 45.148 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU | 1 | A | 27 | GLY | N | 111.364 | • | 2 | | | 1 A 28 ALA H 8.174 . 2 1 A 28 ALA N 124.471 . 2 1 A 28 ALA C 178.315 . 2 1 A 28 ALA CA 52.309 . 2 1 A 28 ALA CB 18.356 . 2 1 A 29 GLY H 8.386 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY C 174.362 . 2 1 A 29 GLY CA 45.148 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU< | 1 | A | 27 | GLY | С | 173.796 | | 2 | | | 1 A 28 ALA N 124.471 . 2 1 A 28 ALA C 178.315 . 2 1 A 28 ALA CA 52.309 . 2 1 A 28 ALA CB 18.356 . 2 1 A 29 GLY H 8.386 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY C 174.362 . 2 1 A 29 GLY CA 45.148 . 2 1 A 29 GLY CA 45.148 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU C 177.44 . 2 1 A 30 GL | 1 | A | 27 | GLY | CA | 45.079 | | 2 | | | 1 A 28 ALA C 178.315 . 2 1 A 28 ALA CA 52.309 . 2 1 A 28 ALA CB 18.356 . 2 1 A 29 GLY H 8.386 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY C 174.362 . 2 1 A 29 GLY CA 45.148 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU C 177.44 . 2 1 A 30 GLU </td <td>1</td> <td>A</td> <td>28</td> <td>ALA</td> <td>Н</td> <td>8.174</td> <td></td> <td>2</td> | 1 | A | 28 | ALA | Н | 8.174 | | 2 | | | 1 A 28 ALA CA 52.309 . 2 1 A 28 ALA CB 18.356 . 2 1 A 29 GLY H 8.386 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY C 174.362 . 2 1 A 29 GLY CA 45.148 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU C 177.44 . 2 1 A 30 GLU CA 57.069 . 2 1 A 31 GLU </td <td>1</td> <td>A</td> <td>28</td> <td>ALA</td> <td>N</td> <td>124.471</td> <td></td> <td>2</td> | 1 | A | 28 | ALA | N | 124.471 | | 2 | | | 1 A 28 ALA CB 18.356 . 2 1 A 29 GLY H 8.386 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY C 174.362 . 2 1 A 29 GLY CA 45.148 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU C 177.44 . 2 1 A 30 GLU CB 29.437 . 2 1 A 31 GLU H 8.005 . 2 1 A 31 GLU <td>1</td> <td>A</td> <td>28</td> <td>ALA</td> <td>С</td> <td>178.315</td> <td></td> <td>2</td> | 1 | A | 28 | ALA | С | 178.315 | | 2 | | | 1 A 29 GLY H 8.386 . 2 1 A 29 GLY N 109.31 . 2 1 A 29 GLY C 174.362 . 2 1 A 29 GLY CA 45.148 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU C 177.44 . 2 1 A 30 GLU CA 57.069 . 2 1 A 30 GLU CB 29.437 . 2 1 A 31 GLU H 8.005 . 2 1 A 31 GLU N 121.259 . 2 1 A 31 GLU CA 56.974 . 2 1 A 32 GLU< | 1 | A | 28 | ALA | CA | 52.309 | | 2 | | | 1 A 29 GLY N 109.31 . 2 1 A 29 GLY C 174.362 . 2 1 A 29 GLY CA 45.148 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU C 177.44 . 2 1 A 30 GLU CA 57.069 . 2 1 A 30 GLU CB 29.437 . . 2 1 A 31 GLU CB 29.437 . . 2 1 A 31 GLU H 8.005 . . 2 1 A 31 GLU N 121.259 . . . 1 A 31 GLU CA 56.974 . . . <td>1</td> <td>A</td> <td>28</td> <td>ALA</td> <td>СВ</td> <td>18.356</td> <td>•</td> <td>2</td> | 1 | A | 28 | ALA | СВ | 18.356 | • | 2 | | | 1 A 29 GLY C 174.362 . 2 1 A 29 GLY CA 45.148 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU C 177.44 . 2 1 A 30 GLU CA 57.069 . 2 1 A 30 GLU CB 29.437 . 2 1 A 31 GLU CB 29.437 . 2 1 A 31 GLU H 8.005 . 2 1 A 31 GLU N 121.259 . 2 1 A 31 GLU CA 56.974 . 2 1 A 32 GLU CA 56.22 . 2 1 A 32 GL | 1 | A | 29 | GLY | Н | 8.386 | | 2 | | | 1 A 29 GLY CA 45.148 . 2 1 A 30 GLU H 8.123 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU C 177.44 . 2 1 A 30 GLU CA 57.069 . 2 1 A 30 GLU CB 29.437 . 2 1 A 31 GLU H 8.005 . 2 1 A 31 GLU H 8.005 . 2 1 A 31 GLU N 121.259 . 2 1 A 31 GLU CA 56.974 . 2 1 A 32 GLU CA 56.22 . 2 1 A 32 GLU CB 30.156 . 2 1 A 33 GLU< | 1 | A | 29 | GLY | N | 109.31 | | 2 | | | 1 A 30 GLU H 8.123 . 2 1 A 30 GLU N 120.83 . 2 1 A 30 GLU C 177.44 . 2 1 A 30 GLU CA 57.069 . 2 1 A 30 GLU CB 29.437 . 2 1 A 31 GLU H 8.005 . 2 1 A 31 GLU H 8.005 . 2 1 A 31 GLU N 121.259 . 2 1 A 31 GLU CA 56.974 . 2 1 A 32 GLU CB 31.917 . 2 1 A 32 GLU CB 30.156 . 2 1 A 32 GLU C 176.105 . 2 1 A 33 GLU | 1 | A | 29 | GLY | С | 174.362 | | 2 | | | 1 A 30 GLU N 120.83 . 2 1 A 30 GLU C 177.44 . 2 1 A 30 GLU CA 57.069 . 2 1 A 30 GLU CB 29.437 . 2 1 A 31 GLU H 8.005 . 2 1 A 31 GLU N 121.259 . 2 1 A 31 GLU CA 56.974 . 2 1 A 31 GLU CB 31.917 . 2 1 A 32 GLU CA 56.22 . 2 1 A 32 GLU CB 30.156 . 2 1 A 32 GLU C 176.105 . 2 1 A 33 GLU H 8.285 . 2 | 1 | A | 29 | GLY | CA | 45.148 | | 2 | | | 1 A 30 GLU C 177.44 . 2 1 A 30 GLU CA 57.069 . 2 1 A 30 GLU CB 29.437 . 2 1 A 31 GLU H 8.005 . 2 1 A 31 GLU N 121.259 . 2 1 A 31 GLU CA 56.974 . 2 1 A 31 GLU CB 31.917 . 2 1 A 32 GLU CA 56.22 . 2 1 A 32 GLU CB 30.156 . 2 1 A 32 GLU C 176.105 . 2 1 A 33 GLU H 8.285 . 2 | 1 | A | 30 | GLU | Н | 8.123 | | 2 | | | 1 A 30 GLU CA 57.069 . 2 1 A 30 GLU CB 29.437 . 2 1 A 31 GLU H 8.005 . 2 1 A 31 GLU N 121.259 . 2 1 A 31 GLU CA 56.974 . 2 1 A 31 GLU CB 31.917 . 2 1 A 32 GLU CA 56.22 . 2 1 A 32 GLU CB 30.156 . 2 1 A 32 GLU C 176.105 . 2 1 A 33 GLU H 8.285 . 2 | 1 | A | 30 | GLU | N | 120.83 | | 2 | | | 1 A 30 GLU CB 29.437 . 2 1 A 31 GLU H 8.005 . 2 1 A 31 GLU N 121.259 . 2 1 A 31 GLU CA 56.974 . 2 1 A 31 GLU CB 31.917 . 2 1 A 32 GLU CA 56.22 . 2 1 A 32 GLU CB 30.156 . 2 1 A 32 GLU C 176.105 . 2 1 A 33 GLU H 8.285 . 2 | 1 | A | 30 | GLU | С | 177.44 | | 2 | | | 1 A 31 GLU H 8.005 . 2 1 A 31 GLU N 121.259 . 2 1 A 31 GLU CA 56.974 . 2 1 A 31 GLU CB 31.917 . 2 1 A 32 GLU CA 56.22 . 2 1 A 32 GLU CB 30.156 . 2 1 A 32 GLU C 176.105 . 2 1 A 33 GLU H 8.285 . 2 | 1 | A | 30 | GLU | CA | 57.069 | | 2 | | | 1 A 31 GLU N 121.259 . 2 1 A 31 GLU CA 56.974 . 2 1 A 31 GLU CB 31.917 . 2 1 A 32 GLU CA 56.22 . 2 1 A 32 GLU CB 30.156 . 2 1 A 32 GLU C 176.105 . 2 1 A 33 GLU H 8.285 . 2 | 1 | A | 30 | GLU | СВ | 29.437 | | 2 | | | 1 A 31 GLU CA 56.974 . 2 1 A 31 GLU CB 31.917 . 2 1 A 32 GLU CA 56.22 . 2 1 A 32 GLU CB 30.156 . 2 1 A 32 GLU C 176.105 . 2 1 A 33 GLU H 8.285 . 2 | 1 | A | 31 | GLU | Н | 8.005 | | 2 | | | 1 A 31 GLU CB 31.917 . 2 1 A 32 GLU CA 56.22 . 2 1 A 32 GLU CB 30.156 . 2 1 A 32 GLU C 176.105 . 2 1 A 33 GLU H 8.285 . 2 | 1 | A | 31 | GLU | N | 121.259 | | 2 | | | 1 A 32 GLU CA 56.22 . 2 1 A 32 GLU CB 30.156 . 2 1 A 32 GLU C 176.105 . 2 1 A 33 GLU H 8.285 . 2 | 1 | A | 31 | GLU | CA | 56.974 | | 2 | | | 1 A 32 GLU CB 30.156 . 2 1 A 32 GLU C 176.105 . 2 1 A 33 GLU H 8.285 . 2 | 1 | A | 31 | GLU | СВ | 31.917 | | 2 | | | 1 A 32 GLU C 176.105 . 2 1 A 33 GLU H 8.285 . 2 | 1 | A | 32 | GLU | CA | 56.22 | | 2 | | | 1 A 33 GLU H 8.285 . 2 | 1 | A | 32 | GLU | СВ | 30.156 | | 2 | | | | 1 | A | 32 | GLU | С | 176.105 | | 2 | | | 1 A 33 GLU N 122.785 . 2 | 1 | A | 33 | GLU | Н | 8.285 | • | 2 | | | | 1 | A | 33 | GLU | N | 122.785 | | 2 | | $Continued\ from\ previous\ page...$ | | $\frac{a \text{ from } pr}{a}$ | | | A . | | Shift Data | <u> </u> | |---------|--------------------------------|-----|------|------------|---------|-------------|-----------| | List ID | Chain | Res | Type | Atom | Value | Uncertainty | Ambiguity | | 1 | A | 33 | GLU | С | 176.135 | • | 2 | | 1 | A | 33 | GLU | CA | 56.025 | • | 2 | | 1 | A | 33 | GLU | СВ | 29.992 | | 2 | | 1 | A | 34 | ILE | Н | 8.111 | • | 2 | | 1 | A | 34 | ILE | N | 122.778 | | 2 | | 1 | A | 34 | ILE | С | 175.045 | • | 2 | | 1 | A | 34 | ILE | CA | 60.293 | • | 2 | | 1 | A | 34 | ILE | СВ | 38.675 | • | 2 | | 1 | A | 35 | ASP | Н | 8.288 | • | 2 | | 1 | A | 35 | ASP | N | 126.205 | • | 2 | | 1 | A | 35 | ASP | С | 177.024 | • | 2 | | 1 | A | 35 | ASP | CA | 53.074 | • | 2 | | 1 | A | 35 | ASP | СВ | 41.149 | | 2 | | 1 | A | 36 | ILE | Н | 8.3 | | 2 | | 1 | A | 36 | ILE | N | 125.219 | | 2 | | 1 | A | 36 | ILE | С | 176.381 | | 2 | | 1 | A | 36 | ILE | CA | 62.545 | • | 2 | | 1 | A | 36 | ILE | СВ | 37.298 | • | 2 | | 1 | A | 37 | MET | Н | 8.007 | • | 2 | | 1 | A | 37 | MET | N | 119.227 | • | 2 | | 1 | A | 37 | MET | С | 178.763 | • | 2 | | 1 | A | 37 | MET | CA | 57.236 | • | 2 | | 1 | A | 37 | MET | СВ | 30.072 | • | 2 | | 1 | A | 38 | GLU | Н | 7.435 | • | 2 | | 1 | A | 38 | GLU | N | 119.404 | • | 2 | | 1 | A | 38 | GLU | С | 178.922 | • | 2 | | 1 | A | 38 | GLU | CA | 58.078 | • | 2 | | 1 | A | 38 | GLU | СВ | 28.671 | • | 2 | | 1 | A | 39 | LEU | Н | 7.529 | • | 2 | | 1 | A | 39 | LEU | N | 119.918 | | 2 | | 1 | A | 39 | LEU | С | 179.268 | | 2 | | 1 | A | 39 | LEU | CA | 57.499 | | 2 | | 1 | A | 39 | LEU | СВ | 41.263 | | 2 | | 1 | A | 40 | LEU | Н | 7.761 | • | 2 | | 1 | A | 40 | LEU | N | 116.939 | | 2 | | 1 | A | 40 | LEU | С | 178.457 | | 2 | | 1 | A | 40 | LEU | CA | 56.264 | | 2 | | 1 | A | 40 | LEU | СВ | 40.748 | | 2 | | 1 | A | 41 |
LYS | Н | 7.457 | | 2 | | 1 | A | 41 | LYS | N | 118.411 | | 2 | | 1 | A | 41 | LYS | С | 177.181 | | 2 | $Continued\ from\ previous\ page...$ | | a from pr | | | A 4 | | Shift Data | | | | |---------|-----------|-----|------|------|---------|-------------|-----------|--|--| | List ID | Chain | Res | Type | Atom | Value | Uncertainty | Ambiguity | | | | 1 | A | 41 | LYS | CA | 58.607 | • | 2 | | | | 1 | A | 41 | LYS | СВ | 31.853 | • | 2 | | | | 1 | A | 42 | ASN | Н | 7.668 | • | 2 | | | | 1 | A | 42 | ASN | N | 115.507 | | 2 | | | | 1 | A | 42 | ASN | С | 174.932 | | 2 | | | | 1 | A | 42 | ASN | CA | 53.385 | | 2 | | | | 1 | A | 42 | ASN | СВ | 39.504 | | 2 | | | | 1 | A | 43 | VAL | Н | 7.347 | • | 2 | | | | 1 | A | 43 | VAL | N | 119.994 | | 2 | | | | 1 | A | 43 | VAL | CA | 61.621 | • | 2 | | | | 1 | A | 43 | VAL | СВ | 32.446 | | 2 | | | | 1 | A | 45 | PRO | CA | 64.385 | • | 2 | | | | 1 | A | 45 | PRO | СВ | 31.797 | | 2 | | | | 1 | A | 45 | PRO | С | 178.761 | | 2 | | | | 1 | A | 46 | LYS | Н | 8.474 | | 2 | | | | 1 | A | 46 | LYS | N | 117.949 | | 2 | | | | 1 | A | 46 | LYS | С | 179.079 | | 2 | | | | 1 | A | 46 | LYS | CA | 58.402 | | 2 | | | | 1 | A | 46 | LYS | СВ | 31.004 | | 2 | | | | 1 | A | 47 | GLU | Н | 8.192 | | 2 | | | | 1 | A | 47 | GLU | N | 119.047 | | 2 | | | | 1 | A | 47 | GLU | С | 177.689 | | 2 | | | | 1 | A | 47 | GLU | CA | 56.5 | | 2 | | | | 1 | A | 47 | GLU | CB | 29.318 | | 2 | | | | 1 | A | 48 | TYR | Н | 7.545 | | 2 | | | | 1 | A | 48 | TYR | N | 119.101 | | 2 | | | | 1 | A | 48 | TYR | С | 177.514 | | 2 | | | | 1 | A | 48 | TYR | CA | 59.85 | | 2 | | | | 1 | A | 48 | TYR | CB | 36.917 | | 2 | | | | 1 | A | 49 | GLU | Н | 8.197 | | 2 | | | | 1 | A | 49 | GLU | N | 119.158 | | 2 | | | | 1 | A | 49 | GLU | С | 178.258 | | 2 | | | | 1 | A | 49 | GLU | CA | 59.463 | | 2 | | | | 1 | A | 49 | GLU | СВ | 28.631 | | 2 | | | | 1 | A | 50 | LYS | Н | 7.481 | | 2 | | | | 1 | A | 50 | LYS | N | 119.686 | | 2 | | | | 1 | A | 50 | LYS | С | 178.995 | | 2 | | | | 1 | A | 50 | LYS | CA | 59.07 | | 2 | | | | 1 | A | 50 | LYS | СВ | 31.166 | | 2 | | | | 1 | A | 51 | TYR | Н | 7.667 | | 2 | | | | 1 | A | 51 | TYR | N | 119.195 | | 2 | | | $Continued\ from\ previous\ page...$ | | $\frac{a \text{ from } pr}{a}$ | | | A . | | Shift Data | <u> </u> | |---------|--------------------------------|-----|------|------------|---------|-------------|-----------| | List ID | Chain | Res | Type | Atom | Value | Uncertainty | Ambiguity | | 1 | A | 51 | TYR | С | 177.57 | • | 2 | | 1 | A | 51 | TYR | CA | 61.195 | • | 2 | | 1 | A | 51 | TYR | СВ | 37.972 | | 2 | | 1 | A | 52 | ALA | Н | 8.461 | • | 2 | | 1 | A | 52 | ALA | N | 122.435 | | 2 | | 1 | A | 52 | ALA | С | 180.012 | • | 2 | | 1 | A | 52 | ALA | CA | 55.24 | • | 2 | | 1 | A | 52 | ALA | СВ | 17.346 | • | 2 | | 1 | A | 53 | ARG | Н | 7.815 | • | 2 | | 1 | A | 53 | ARG | N | 116.862 | • | 2 | | 1 | A | 53 | ARG | С | 179.234 | • | 2 | | 1 | A | 53 | ARG | CA | 58.422 | • | 2 | | 1 | A | 53 | ARG | СВ | 29.348 | | 2 | | 1 | A | 54 | MET | Н | 7.717 | • | 2 | | 1 | A | 54 | MET | N | 119.243 | | 2 | | 1 | A | 54 | MET | С | 177.279 | | 2 | | 1 | A | 54 | MET | CA | 58.146 | • | 2 | | 1 | A | 54 | MET | СВ | 32.427 | • | 2 | | 1 | A | 55 | TYR | Н | 7.655 | • | 2 | | 1 | A | 55 | TYR | N | 115.756 | • | 2 | | 1 | A | 55 | TYR | С | 175.841 | • | 2 | | 1 | A | 55 | TYR | CA | 57.972 | • | 2 | | 1 | A | 55 | TYR | СВ | 38.464 | • | 2 | | 1 | A | 56 | GLY | Н | 7.627 | • | 2 | | 1 | A | 56 | GLY | N | 109.004 | • | 2 | | 1 | A | 56 | GLY | С | 174.489 | • | 2 | | 1 | A | 56 | GLY | CA | 46.17 | • | 2 | | 1 | A | 57 | ILE | Н | 7.844 | • | 2 | | 1 | A | 57 | ILE | N | 119.981 | • | 2 | | 1 | A | 57 | ILE | CA | 60.563 | | 2 | | 1 | A | 57 | ILE | СВ | 37.709 | | 2 | | 1 | A | 60 | PHE | CA | 60.3 | | 2 | | 1 | A | 60 | PHE | СВ | 38.758 | | 2 | | 1 | A | 60 | PHE | С | 176.854 | | 2 | | 1 | A | 61 | ARG | Н | 8.268 | | 2 | | 1 | A | 61 | ARG | N | 119.593 | | 2 | | 1 | A | 61 | ARG | С | 178.991 | | 2 | | 1 | A | 61 | ARG | CA | 59.216 | | 2 | | 1 | A | 61 | ARG | СВ | 28.603 | | 2 | | 1 | A | 62 | GLY | Н | 8.07 | | 2 | | 1 | A | 62 | GLY | N | 108.387 | | 2 | $Continued\ from\ previous\ page...$ | | $\frac{a \text{ from } pr}{a}$ | | | A . | | Shift Data | <u> </u> | |---------|--------------------------------|-----|------|------------|---------|-------------|-----------| | List ID | Chain | Res | Type | Atom | Value | Uncertainty | Ambiguity | | 1 | A | 62 | GLY | С | 176.424 | • | 2 | | 1 | A | 62 | GLY | CA | 46.489 | • | 2 | | 1 | A | 63 | LEU | Н | 7.59 | • | 2 | | 1 | A | 63 | LEU | N | 124.57 | • | 2 | | 1 | A | 63 | LEU | С | 178.016 | | 2 | | 1 | A | 63 | LEU | CA | 57.493 | • | 2 | | 1 | A | 63 | LEU | СВ | 40.849 | • | 2 | | 1 | A | 64 | LEU | Н | 7.767 | • | 2 | | 1 | A | 64 | LEU | N | 118.74 | • | 2 | | 1 | A | 64 | LEU | С | 179.665 | • | 2 | | 1 | A | 64 | LEU | CA | 57.588 | • | 2 | | 1 | A | 64 | LEU | СВ | 40.422 | • | 2 | | 1 | A | 65 | GLN | Н | 7.892 | | 2 | | 1 | A | 65 | GLN | N | 118.591 | • | 2 | | 1 | A | 65 | GLN | С | 178.339 | • | 2 | | 1 | A | 65 | GLN | CA | 58.235 | • | 2 | | 1 | A | 65 | GLN | СВ | 27.787 | | 2 | | 1 | A | 66 | ALA | Н | 7.783 | • | 2 | | 1 | A | 66 | ALA | N | 122.975 | | 2 | | 1 | A | 66 | ALA | С | 179.749 | | 2 | | 1 | A | 66 | ALA | CA | 54.597 | | 2 | | 1 | A | 66 | ALA | СВ | 17.45 | | 2 | | 1 | A | 67 | PHE | Н | 8.058 | | 2 | | 1 | A | 67 | PHE | N | 118.553 | | 2 | | 1 | A | 67 | PHE | С | 177.404 | | 2 | | 1 | A | 67 | PHE | CA | 60.036 | | 2 | | 1 | A | 67 | PHE | СВ | 38.144 | | 2 | | 1 | A | 68 | GLU | Н | 8.033 | • | 2 | | 1 | A | 68 | GLU | N | 119.899 | | 2 | | 1 | A | 68 | GLU | С | 178.849 | | 2 | | 1 | A | 68 | GLU | CA | 58.898 | • | 2 | | 1 | A | 68 | GLU | СВ | 28.698 | | 2 | | 1 | A | 69 | LEU | Н | 7.722 | • | 2 | | 1 | A | 69 | LEU | N | 119.973 | • | 2 | | 1 | A | 69 | LEU | С | 179.517 | | 2 | | 1 | A | 69 | LEU | CA | 57.068 | | 2 | | 1 | A | 69 | LEU | СВ | 40.956 | | 2 | | 1 | A | 70 | LEU | Н | 7.709 | • | 2 | | 1 | A | 70 | LEU | N | 121.043 | | 2 | | 1 | A | 70 | LEU | С | 178.913 | • | 2 | | 1 | A | 70 | LEU | CA | 56.887 | • | 2 | Continued from previous page... | | a from pr | | | A 4 | | Shift Data | l | |---------|-----------|-----|------|------|---------|-------------|-----------| | List ID | Chain | Res | Type | Atom | Value | Uncertainty | Ambiguity | | 1 | A | 70 | LEU | СВ | 40.974 | • | 2 | | 1 | A | 71 | LYS | Н | 7.813 | • | 2 | | 1 | A | 71 | LYS | N | 120.389 | • | 2 | | 1 | A | 71 | LYS | С | 178.216 | • | 2 | | 1 | A | 71 | LYS | CA | 57.844 | • | 2 | | 1 | A | 71 | LYS | СВ | 31.482 | • | 2 | | 1 | A | 72 | GLN | Н | 7.908 | • | 2 | | 1 | A | 72 | GLN | N | 119.427 | • | 2 | | 1 | A | 72 | GLN | С | 177.436 | • | 2 | | 1 | A | 72 | GLN | CA | 57.156 | • | 2 | | 1 | A | 72 | GLN | СВ | 28.16 | • | 2 | | 1 | A | 73 | SER | Н | 7.983 | • | 2 | | 1 | A | 73 | SER | N | 116.117 | | 2 | | 1 | A | 73 | SER | CA | 59.572 | • | 2 | | 1 | A | 73 | SER | СВ | 63.527 | • | 2 | | 1 | A | 77 | GLU | CA | 55.999 | • | 2 | | 1 | A | 77 | GLU | СВ | 32.223 | | 2 | | 1 | A | 77 | GLU | С | 176.375 | | 2 | | 1 | A | 78 | THR | Н | 7.847 | | 2 | | 1 | A | 78 | THR | N | 117.326 | | 2 | | 1 | A | 78 | THR | CA | 59.736 | | 2 | | 1 | A | 78 | THR | СВ | 69.534 | | 2 | | 1 | A | 80 | ARG | CA | 56.619 | • | 2 | | 1 | A | 80 | ARG | СВ | 30.116 | | 2 | | 1 | A | 80 | ARG | С | 176.574 | | 2 | | 1 | A | 81 | LEU | Н | 8.239 | | 2 | | 1 | A | 81 | LEU | N | 122.102 | | 2 | | 1 | A | 81 | LEU | CA | 54.834 | | 2 | | 1 | A | 81 | LEU | СВ | 40.79 | | 2 | | 1 | A | 82 | GLU | CA | 56.722 | | 2 | | 1 | A | 82 | GLU | СВ | 29.37 | | 2 | | 1 | A | 82 | GLU | С | 176.843 | | 2 | | 1 | A | 83 | ILE | Н | 7.876 | | 2 | | 1 | A | 83 | ILE | N | 121.054 | | 2 | | 1 | A | 83 | ILE | С | 176.496 | | 2 | | 1 | A | 83 | ILE | CA | 61.302 | | 2 | | 1 | A | 83 | ILE | СВ | 37.951 | | 2 | | 1 | A | 84 | GLU | Н | 8.223 | | 2 | | 1 | A | 84 | GLU | N | 123.978 | | 2 | | 1 | A | 84 | GLU | С | 176.394 | | 2 | | 1 | A | 84 | GLU | CA | 56.89 | | 2 | $Continued\ from\ previous\ page...$ | | a from pr | | | A . | Shift Data | | | | |---------|-----------|-----|------|------|------------|-------------|-----------|--| | List ID | Chain | Res | Type | Atom | Value | Uncertainty | Ambiguity | | | 1 | A | 84 | GLU | CB | 29.606 | • | 2 | | | 1 | A | 85 | GLU | Н | 8.143 | • | 2 | | | 1 | A | 85 | GLU | N | 122.132 | • | 2 | | | 1 | A | 85 | GLU | С | 176.833 | | 2 | | | 1 | A | 85 | GLU | CA | 56.745 | • | 2 | | | 1 | A | 85 | GLU | СВ | 29.502 | | 2 | | | 1 | A | 86 | ILE | Н | 7.892 | | 2 | | | 1 | A | 86 | ILE | N | 122.077 | | 2 | | | 1 | A | 86 | ILE | С | 176.572 | | 2 | | | 1 | A | 86 | ILE | CA | 61.5 | | 2 | | | 1 | A | 86 | ILE | СВ | 38.146 | | 2 | | | 1 | A | 87 | GLU | Н | 8.26 | • | 2 | | | 1 | A | 87 | GLU | N | 124.399 | | 2 | | | 1 | A | 87 | GLU | С | 176.802 | | 2 | | | 1 | A | 87 | GLU | CA | 56.782 | | 2 | | | 1 | A | 87 | GLU | СВ | 29.399 | | 2 | | | 1 | A | 88 | ARG | Н | 8.184 | | 2 | | | 1 | A | 88 | ARG | N | 121.829 | | 2 | | | 1 | A | 88 | ARG | С | 176.677 | | 2 | | | 1 | A | 88 | ARG | CA | 56.568 | | 2 | | | 1 | A | 88 | ARG | СВ | 29.524 | | 2 | | | 1 | A | 89 | SER | Н | 8.301 | | 2 | | | 1 | A | 89 | SER | N | 117.605 | | 2 | | | 1 | A | 89 | SER | CA | 58.634 | | 2 | | | 1 | A | 89 | SER | СВ | 63.702 | | 2 | | | 1 | A | 90 | GLU | CA | 57.462 | | 2 | | | 1 | A | 90 | GLU | СВ | 31.856 | | 2 | | | 1 | A | 90 | GLU | С | 177.944 | | 2 | | | 1 | A | 91 | ARG | Н | 8.179 | | 2 | | | 1 | A | 91 | ARG | N | 120.802 | | 2 | | | 1 | A | 91 | ARG | С | 178.224 | | 2 | | | 1 | A | 91 | ARG | CA | 58.009 | | 2 | | | 1 | A | 91 | ARG | СВ | 29.095 | | 2 | | | 1 | A | 92 | ASP | Н | 7.864 | | 2 | | | 1 | A | 92 | ASP | N | 123.395 | | 2 | | | 1 | A | 92 | ASP | С | 178.094 | | 2 | | | 1 | A | 92 | ASP | CA | 56.887 | | 2 | | | 1 | A | 92 | ASP | СВ | 40.826 | | 2 | | | 1
| A | 93 | GLU | Н | 7.98 | | 2 | | | 1 | A | 93 | GLU | N | 119.674 | | 2 | | | 1 | A | 93 | GLU | CA | 57.176 | | 2 | | Continued from previous page... | | | | | A 4 | | Shift Data | l | |---------|-------|-----|------|------|---------|--------------|-----------| | List ID | Chain | Res | Type | Atom | Value | Uncertainty | Ambiguity | | 1 | A | 93 | GLU | CB | 28.293 | • | 2 | | 1 | A | 97 | GLU | CA | 56.217 | • | 2 | | 1 | A | 97 | GLU | СВ | 30.196 | | 2 | | 1 | A | 97 | GLU | С | 175.045 | • | 2 | | 1 | A | 98 | GLU | Н | 8.273 | • | 2 | | 1 | A | 98 | GLU | N | 123.148 | • | 2 | | 1 | A | 98 | GLU | С | 177.734 | | 2 | | 1 | A | 98 | GLU | CA | 56.271 | | 2 | | 1 | A | 98 | GLU | СВ | 29.778 | • | 2 | | 1 | A | 99 | LEU | Н | 8.118 | | 2 | | 1 | A | 99 | LEU | N | 124.423 | • | 2 | | 1 | A | 99 | LEU | С | 177.278 | | 2 | | 1 | A | 99 | LEU | CA | 54.915 | | 2 | | 1 | A | 99 | LEU | СВ | 41.436 | | 2 | | 1 | A | 100 | VAL | Н | 7.937 | • | 2 | | 1 | A | 100 | VAL | N | 121.795 | • | 2 | | 1 | A | 100 | VAL | CA | 61.884 | • | 2 | | 1 | A | 100 | VAL | СВ | 32.156 | • | 2 | | 1 | A | 101 | SER | CA | 60.636 | • | 2 | | 1 | A | 101 | SER | СВ | 62.942 | • | 2 | | 1 | A | 101 | SER | С | 175.915 | • | 2 | | 1 | A | 102 | PHE | Н | 7.952 | • | 2 | | 1 | A | 102 | PHE | N | 123.15 | • | 2 | | 1 | A | 102 | PHE | С | 175.836 | • | 2 | | 1 | A | 102 | PHE | CA | 59.931 | • | 2 | | 1 | A | 102 | PHE | СВ | 38.853 | • | 2 | | 1 | A | 103 | ILE | Н | 8.066 | • | 2 | | 1 | A | 103 | ILE | N | 120.484 | • | 2 | | 1 | A | 103 | ILE | CA | 63.407 | | 2 | | 1 | A | 103 | ILE | СВ | 38.853 | | 2 | | 1 | A | 105 | GLN | CA | 56.798 | | 2 | | 1 | A | 105 | GLN | СВ | 29.298 | | 2 | | 1 | A | 106 | ARG | CA | 56.965 | | 2 | | 1 | A | 106 | ARG | СВ | 32.319 | | 2 | | 1 | A | 106 | ARG | С | 177.615 | | 2 | | 1 | A | 107 | LEU | Н | 7.827 | | 2 | | 1 | A | 107 | LEU | N | 120.63 | | 2 | | 1 | A | 107 | LEU | С | 177.828 | | 2 | | 1 | A | 107 | LEU | CA | 55.678 | | 2 | | 1 | A | 107 | LEU | CB | 41.073 | • | 2 | | 1 | A | 108 | SER | Н | 7.782 | Continued on | 2 | Continued from previous page... | List ID | Chain | Dag | Trens | Atom | | Shift Data | ı | |---------|-------|-----|-------|------|---------|-------------|-----------| | LISUID | Chain | Res | Type | Atom | Value | Uncertainty | Ambiguity | | 1 | A | 108 | SER | N | 115.141 | | 2 | | 1 | A | 108 | SER | CA | 58.648 | • | 2 | | 1 | A | 108 | SER | СВ | 63.897 | • | 2 | | 1 | A | 109 | GLN | CA | 57.172 | • | 2 | | 1 | A | 109 | GLN | СВ | 29.464 | • | 2 | | 1 | A | 109 | GLN | С | 177.407 | • | 2 | | 1 | A | 110 | THR | Н | 7.981 | • | 2 | | 1 | A | 110 | THR | N | 115.568 | | 2 | | 1 | A | 110 | THR | С | 173.765 | • | 2 | | 1 | A | 110 | THR | CA | 62.962 | • | 2 | | 1 | A | 110 | THR | СВ | 69.384 | • | 2 | | 1 | A | 111 | GLU | Н | 7.865 | • | 2 | | 1 | A | 111 | GLU | N | 128.524 | • | 2 | | 1 | A | 111 | GLU | CA | 57.93 | • | 2 | | 1 | A | 111 | GLU | СВ | 30.52 | | 2 | #### 7.1.2 Chemical shift referencing (i) The following table shows the suggested chemical shift referencing corrections. | Nucleus | # values | Correction \pm precision, ppm | Suggested action | |----------------------------|----------|-----------------------------------|-------------------------------------| | $^{13}\mathrm{C}_{\alpha}$ | 92 | 0.00 ± 0.00 | None needed ($< 0.5 \text{ ppm}$) | | $^{13}C_{\beta}$ | 86 | 0.00 ± 0.00 | None needed ($< 0.5 \text{ ppm}$) | | ¹³ C′ | 75 | 0.00 ± 0.00 | None needed (< 0.5 ppm) | | ^{15}N | 75 | 0.00 ± 0.00 | None needed ($< 0.5 \text{ ppm}$) | ### 7.1.3 Completeness of resonance assignments (i) The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 1%, i.e. 5 atoms were assigned a chemical shift out of a possible 560. 0 out of 7 assigned methyl groups (LEU and VAL) were assigned stereospecifically. | | Total | $^{1}\mathrm{H}$ | $^{13}\mathbf{C}$ | $^{15}{ m N}$ | |-----------|------------|------------------|-------------------|---------------| | Backbone | 4/190 (2%) | 1/77 (1%) | 2/76 (3%) | 1/37 (3%) | | Sidechain | 1/323 (0%) | 0/208 (0%) | 1/101 (1%) | 0/14 (0%) | | Aromatic | 0/47 (0%) | 0/22~(0%) | 0/25~(0%) | 0/0 (%) | | Overall | 5/560 (1%) | 1/307 (0%) | 3/202 (1%) | 1/51 (2%) | The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 1%, i.e. 5 atoms were assigned a chemical shift out of a possible 587. | 0 | out of 7 | assigned | methvl | groups | (LEU | and | VAL) | were | assigned | stereos | pecifically | | |--------|----------|-------------|--------|--------|-----------------|-----|------|------|-------------|---------|---------------------------|---| | \sim | out or . | 00001011001 | | 0-046 | \ - | ~~~ | , , | | 00001011001 | 2002 | 0 0 0 1 1 1 0 0 0 1 1 . / | • | | | Total | $^{1}\mathbf{H}$ | $^{13}\mathbf{C}$ | $^{15}\mathbf{N}$ | |-----------|------------|------------------|-------------------|-------------------| | Backbone | 4/200 (2%) | 1/81 (1%) | 2/80 (2%) | 1/39 (3%) | | Sidechain | 1/340 (0%) | 0/219~(0%) | 1/107 (1%) | 0/14 (0%) | | Aromatic | 0/47 (0%) | 0/22~(0%) | 0/25~(0%) | 0/0 (%) | | Overall | 5/587 (1%) | 1/322~(0%) | 3/212 (1%) | 1/53 (2%) | #### 7.1.4 Statistically unusual chemical shifts (i) There are no statistically unusual chemical shifts. #### 7.1.5 Random Coil Index (RCI) plots (i) The image below reports random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition. If well-defined core and ill-defined regions are not identified then it is shown as gray bars. Random coil index (RCI) for chain A: