

wwPDB EM Validation Summary Report (i)

May 15, 2023 – 06:43 pm BST

PDB ID	:	5NRL
EMDB ID	:	EMD-3683
Title	:	Structure of a pre-catalytic spliceosome.
Authors	:	Plaschka, C.; Lin, PC.; Nagai, K.
Deposited on	:	2017-04-24
Resolution	:	7.20 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev50
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.32.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 7.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Qu	ality of chain	
1	2	1175	9% 5% 6% •	87%	
2	3	89	31%	7%	13%
3	4	160	• 46%	24% •	29%
4	5	214	7% 48%	31%	21%
5	6	112	 53%	32%	15%
6	7	115	26%	4	3%
7	8	109	20%		41%
8	А	2413	5%	92%	8%

Mol	Chain	Length	Quality of chain					
9	В	2163	19%	21%				
10	q	1000	· · · ·					
10	С	1008	84%	16%				
11	D	143	99%					
12	Е	587	21% 79%					
10	Б	40.4	5%					
13	F	494	<u> </u>	16%				
14	G	469	79%	21%				
15	Н	465	92%	8%				
16	Ι	95	2 1% 9% 69%					
17	J	899	88%	• 11%				
18	Κ	126	<u>8%</u> 98%	•				
19	L	194	5 6% 44%					
20	М	242	7%	28%				
21	Ν	291	5% 29% 71%					
22	0	971	86%	14%				
23	Р	1361	26%	• 13%				
24	Q	435	21%					
		010	37%					
25	R	213	81%	19%				
26	S	107	96%	·				
27	Т	530	86%	• 13%				
28	U	266	73% •	26%				
29	V	280	45% • 55%					
30	W	238	71% 62% 8% •	29%				
31	X	111	14% 27% 73%					
32	Y	111	76% 74%	24%				
33	Z	85	<u>20%</u> 96%					

Continued from previous page...

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• 5%
35 b 196 7% 35 k 196 36% 64% 35 k 196 36% 64% 36% 36% 64%	%
35 b 196 36% 64% 35 k 196 36% 64% 35 k 196 36% 64%	%
35 k 196 36% 64%	%
36%	%
	%
35 S 190 36% 64% 12%	%
36 d 101 82% 18	
36 n 101 50%	
S0 II IOI 79% 19% 81% 81% 81% 81% 19%	/0
36 v 101 79% · 199	6
37 e 94 82% 18	%
31%	
37 p 94 81% · 18	%
37 w 94 81% · 18	%
20% 20%	
30 1 80 84% 16	5%
38 q 86 85% 1	5%
38 x 86	5%
39 g 77 92%	8%
39 r 77 94%	•••
97%	_
<u>39 y 77</u> 94%	• •
40 h 146 55% 45%	
40 1 140 66% • 32% 49% 49% 1 <t< td=""><td></td></t<>	
40 t 146 49% · 51%	
41 i 110 84% 10	5%
35%	
41 m 110 84% 10	5%
41 u 110 84% 10	5%
12 i 187	
±2 J ±01 ±00% 17% 17%	
43 o 93 81% 199	6
44 z 86 86%	4%

2 Entry composition (i)

There are 46 unique types of molecules in this entry. The entry contains 118701 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called U2 snRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	2	155	Total 3275	C 1464	N 552	0 1104	Р 155	0	0

• Molecule 2 is a protein called U6 snRNA-associated Sm-like protein LSm3.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	3	77	Total 611	C 382	N 105	0 121	${ m S} { m 3}$	0	0

• Molecule 3 is a RNA chain called U4 snRNA.

Mol	Chain	Residues		A	AltConf	Trace			
3	4	114	Total 2423	C 1084	N 419	O 806	Р 114	0	0

• Molecule 4 is a RNA chain called U5 snRNA.

Mol	Chain	Residues		Α	AltConf	Trace			
4	5	170	Total 3615	C 1618	N 640	0 1188	Р 169	0	0

• Molecule 5 is a RNA chain called U6 snRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	6	95	Total 2019	C 904	N 355	O 665	Р 95	0	0

• Molecule 6 is a protein called U6 snRNA-associated Sm-like protein LSm7.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	7	66	Total 504	C 325	N 85	0 91	${ m S} { m 3}$	0	0

• Molecule 7 is a protein called U6 snRNA-associated Sm-like protein LSm8.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
7	8	64	Total	С	Ν	Ο	\mathbf{S}	0	0
1	0	04	498	320	86	90	2	0	0

• Molecule 8 is a protein called Pre-mRNA-splicing factor 8.

Mol	Chain	Residues		At	toms			AltConf	Trace
8	А	2216	Total	С	Ν	0	\mathbf{S}	0	0
0	11	2210	18122	11661	3103	3294	64	Ū	Ū

• Molecule 9 is a protein called Pre-mRNA-splicing helicase BRR2.

Mol	Chain	Residues		A	AltConf	Trace			
9	В	1699	Total 13607	C 8720	N 2269	O 2564	S 54	1	0

• Molecule 10 is a protein called Pre-mRNA-splicing factor SNU114.

Mol	Chain	Residues		Α	toms			AltConf	Trace
10	С	850	Total 6784	C 4392	N 1129	0 1237	$\frac{S}{26}$	0	0

• Molecule 11 is a protein called Spliceosomal protein DIB1.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
11	D	142	Total 1164	C 736	N 202	0 215	S 11	0	0

• Molecule 12 is a protein called 66 kDa U4/U6.U5 small nuclear ribonucleoprotein component.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	Е	124	Total 825	C 501	N 153	0 170	S 1	0	0

• Molecule 13 is a protein called Pre-mRNA-processing factor 31.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	F	413	Total 3238	C 2064	N 578	0 584	S 12	0	0

• Molecule 14 is a protein called U4/U6 small nuclear ribonucleoprotein PRP3.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	G	372	Total 2835	C 1786	N 523	O 512	S 14	0	0

• Molecule 15 is a protein called U4/U6 small nuclear ribonucleoprotein PRP4.

Mol	Chain	Residues		Atoms					Trace
15	Н	429	Total 3396	C 2120	N 609	O 653	S 14	0	0

• Molecule 16 is a RNA chain called Yeast UBC4 gene for ubiquitin-conjugating enzyme.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
16	Ι	29	Total 600	С 271	N 95	O 205	Р 29	0	0

• Molecule 17 is a protein called Pre-mRNA-splicing factor 6.

Mol	Chain	Residues		Α		AltConf	Trace		
17	J	800	Total 6485	C 4151	N 1106	O 1201	S 27	0	0

• Molecule 18 is a protein called 13 kDa ribonucleoprotein-associated protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	К	124	Total 936	C 597	N 161	0 174	${S \over 4}$	0	0

• Molecule 19 is a protein called 23 kDa U4/U6.U5 small nuclear ribonucleoprotein component.

Mol	Chain	Residues		At	oms		AltConf	Trace	
19	L	109	Total 882	C 570	N 150	O 159	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called Pre-mRNA-splicing factor 38.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	М	174	Total 1407	C 915	N 236	0 249	${f S}7$	0	0

• Molecule 21 is a protein called Pre-mRNA-splicing factor SPP381.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
21	Ν	85	Total 425	C 255	N 85	O 85	0	0

• Molecule 22 is a protein called U2 snRNP component HSH155.

Mol	Chain	Residues		Α	AltConf	Trace			
22	О	833	Total 6612	C 4258	N 1121	O 1192	S 41	0	0

• Molecule 23 is a protein called Pre-mRNA-splicing factor RSE1.

Mol	Chain	Residues		Α	AltConf	Trace			
23	Р	1186	Total 9437	C 6034	N 1589	O 1763	S 51	0	0

• Molecule 24 is a protein called Cold sensitive U2 snRNA suppressor 1.

Mol	Chain	Residues		Ate		AltConf	Trace		
24	Q	220	Total 1786	C 1157	N 307	0 313	S 9	0	0

• Molecule 25 is a protein called Protein HSH49.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	R	173	Total 1429	C 930	N 239	O 258	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called Pre-mRNA-splicing factor RDS3.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
26	S	103	Total 814	C 503	N 154	0 143	S 14	0	0

• Molecule 27 is a protein called Pre-mRNA-splicing factor PRP9.

Mol	Chain	Residues		At	AltConf	Trace			
27	Т	462	Total 3915	C 2487	N 677	O 735	S 16	0	0

• Molecule 28 is a protein called Pre-mRNA-splicing factor PRP11.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	U	196	Total 1488	C 933	N 258	O 291	S 6	0	0

• Molecule 29 is a protein called Pre-mRNA-splicing factor PRP21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	V	127	Total 1084	C 689	N 193	O 196	S 6	0	0

• Molecule 30 is a protein called U2 small nuclear ribonucleoprotein A'.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	W	170	Total 1383	C 866	N 253	0 257	${f S}{7}$	0	0

• Molecule 31 is a protein called Unknown.

Mol	Chain	Residues		Ator	\mathbf{ns}	AltConf	Trace	
31	Х	30	Total 150	C 90	N 30	O 30	0	0

• Molecule 32 is a protein called U2 small nuclear ribonucleoprotein B".

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	Y	84	Total 683	C 439	N 119	0 122	${ m S} { m 3}$	0	0

• Molecule 33 is a protein called RDS3 complex subunit 10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	Z	83	Total 685	C 424	N 129	0 131	S 1	0	0

• Molecule 34 is a protein called U6 snRNA-associated Sm-like protein LSm2.

Mol	Chain	Residues	Atoms					AltConf	Trace
34	a	90	Total 735	C 469	N 124	O 139	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called Small nuclear ribonucleoprotein-associated protein B.

Mol	Chain	Residues		At	\mathbf{oms}		AltConf	Trace	
35	h	70	Total	С	Ν	0	\mathbf{S}	0	0
- 55	U	10	563	360	98	102	3	0	0
25	l,	70	Total	С	Ν	0	S	0	0
- 55	K	10	563	360	98	102	3	0	0
25	9	70	Total	С	Ν	0	S	0	0
- 55	5	10	563	360	98	102	3	0	0

• Molecule 36 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues		At	oms		AltConf	Trace	
36	d	83	Total	С	Ν	Ο	\mathbf{S}	0	0
50	u	00	641	408	111	120	2	0	0
36	n	82	Total	С	Ν	0	\mathbf{S}	0	0
50	11	02	632	402	109	119	2	0	0
26	17	80	Total	С	Ν	0	S	0	0
- 50	v	02	632	402	109	119	2	0	0

• Molecule 37 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues		Ate	\mathbf{oms}		AltConf	Trace	
27	0	77	Total	С	Ν	0	S	0	0
- 57	е	11	602	396	95	108	3	0	0
27	n	77	Total	С	Ν	0	\mathbf{S}	0	0
57	р	11	602	396	95	108	3	0	0
27		77	Total	С	Ν	0	S	0	0
51	W	11	602	396	95	108	3	0	0

• Molecule 38 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues		At	oms		AltConf	Trace	
38	f	79	Total	С	Ν	0	S	0	0
00	L	12	578	371	101	105	1	0	0
38	a	73	Total	С	Ν	0	S	0	0
30	Ч	15	585	376	102	106	1	0	0
20		72	Total	С	Ν	0	S	0	0
00	X	10	585	376	102	106	1		

• Molecule 39 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues		Ate	AltConf	Trace			
39	g	71	Total 549	C 345	N 96	0 106	${S \over 2}$	0	0

Contre	naca fron	i previous pu	.yc						
Mol	Chain	Residues		At	oms		AltConf	Trace	
30	r	75	Total	С	Ν	0	S	0	0
59	1	15	577	363	100	112	2	0	0
20	17	75	Total	С	Ν	0	\mathbf{S}	0	0
39	У	10	577	363	100	112	2	0	0

Continued from previous page

• Molecule 40 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
40	h	80	Total	С	Ν	Ο	S	0	0
40	11	80	630	402	108	118	2	0	0
40	1	00	Total	С	Ν	Ο	\mathbf{S}	0	0
40	1	99	751	475	137	137	2	0	0
40	+	79	Total	С	Ν	0	S	0	0
40	U	12	569	364	99	104	2	0	0

• Molecule 41 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues		At	oms		AltConf	Trace	
41	i	02	Total	С	Ν	0	S	0	0
41	1	92	752	481	136	131	4	0	0
41	m	02	Total	С	Ν	0	S	0	0
41	111	92	752	481	136	131	4	0	0
41	11	02	Total	С	Ν	0	S	0	0
41	u	92	752	481	136	131	4		

• Molecule 42 is a protein called U6 snRNA-associated Sm-like protein LSm4.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
42	j	74	Total 588	C 381	N 96	0 108	${ m S} { m 3}$	0	0

• Molecule 43 is a protein called U6 snRNA-associated Sm-like protein LSm5.

Mol	Chain	Residues		Ate	\mathbf{oms}			AltConf	Trace
43	О	75	Total 588	C 378	N 98	0 110	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 44 is a protein called U6 snRNA-associated Sm-like protein LSm6.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
44	Z	74	Total 577	C 364	N 95	0 116	${ m S} { m 2}$	0	0

• Molecule 45 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
45	С	1	Total	С	Ν	Ο	Р	0
40	U	1	32	10	5	14	3	0

• Molecule 46 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
46	L	1	Total Zn 1 1	0
46	S	3	Total Zn 3 3	0
46	Т	2	Total Zn 2 2	0
46	U	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 \bullet Molecule 1: U2 snRNA

 \bullet Molecule 6: U6 snRNA-associated Sm-like protein LSm7

V2136 A2137 V2141 V2141 V2149 V2167 V2167 V2175 V2175 V2175 V2176 V2176 V2176 V2176 V2176 V2176 V2176 V2243 V2244 V2177 V2213 V2244 V2217 V2244 V2213 V2244 V2214 V2214 V2244 V244
LEU GLU GLU CLN TLE ASP PHE SER
• Molecule 9: Pre-mRNA-splicing helicase BRR2
Chain B: 78% • 21%
MET THR GLU GLU GLU HIS CLU HIS CLU HIS ASP ASP ASP ASP CLU TTR ASP ASP ASP CLU TTR ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
MET CICY CICY CICY CICY CICY CICY CICY CIC
GLN CLN CLN CLN CLN CLN CLN CLN CLN CLN C
LYS PHE ASN GUU CLU CLU CLU CLU CLU CLU CLU CLU CLU C
ASP ASP CLU CLU CLU CLU CLU CLU CLU VAL ASP VAL ASP VAL ASP CLU VAL ASP CLU VAL ASN ASN CLU VAL ASN ASN CLU VAL ASN ASN ASN CLU VAL ASN ASN ASN ASN ASN CLU VAL ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
LEU LEU ASP ASP ASP VAL TYR ASP VAL ASP CLU CTR ASP CLU CTR ASP CLU CTR ASP CLU CTR ASP CLU CTR ASP CLU CTR ASP CLU CTR CTR CTR CTR CTR CTR CTR CTR CTR CTR
ARG LEBU LEBU LEBU ALA ASIN GLU TTHR GLU TLE CLU CLEU CLEU CLEU CLEU CLEU CLEU CLE
PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0
L550 N579 S553 S553 S553 S553 S553 F580 L581 G582 G582 C582 G581 C584 E691 C593 C593 C593 C593 C593 C593 C593 C593
K857 G858 G858 P956 P956 P958 P958 P958 P958 P958 P958 P958 P958 P958 P958 P958 P958 P958 P958 P958 P958 P958 P958 P1008 P108
L1324 E1326 E1326 S1328 S1328 S1336 S1336 S1336 F1336 F1336 F1336 F1336 F1336 F1336 F1336 F1336 F1336 F1336 F1349 F1346 F1346 F1346 F1346 F1346 F1346 F1346 F1346 F1349 F1346 F1349 F1340 F1340 S1401 F1400 S1401 F1400 S1401 F1408 F1407 F1408
P.1432 K.1441 V.1450 S.1480 S.1480 A.1489 A.1502 A.1503 A.1504 A.1504 A.1534 A.1534 A.1534 A.1534 A.1544 A.1544 A.1544 A.1544 A.1544 A.1574 A.1574 A.1574 A.1574 A.1574 A.1573 A.1574
K1 603 A1 604 E1 605 E1 605 E1 615 M1 611 V1 612 E1 615 E1 625 E1 625 H1 653 H1 652 H1 652 H1 653 H1 652 H1 653 H1 655 H1 705 H1 705 H1 705 H1 705 H1

• Molecule 18: 13 kDa ribonucleoprotein-associated protein

• Molecule 28: Pre-mRNA-splicing factor PRP11

LEU VAL LYNS CULV CULV CULVS C

• Molecule 35: Small nuclear ribonucleoprotein-associated protein B

	16%					
Chain k:	36%		64%			
MET SER LYS LYS LIE GLN GLN ALA ALA HIS SER SER	ARG L12 A13 A13 D17 Y18 K19 K19 L20	124 025 026 026 129 149 149 149 149	W53 P54 LYS CLN CLN CLN CLN CSP CO ASP CO	LANG ANG SER SER LYS ASP GLY THR THR	LEU ASN ILE K76 V77 E78 K79	
V81 L82 G83 L93 V96 V96	B98 D99 F101 F102 L102 L102 SER L102 SER L102 ARG GLU ARG	VAL VAL ASP LYS LYS GLU CYS GLN ALA ALA ALA ALA ALA CLN CHN THR	LYS LEU ARG CLU CYS CLU CYS CLU FYS PRO CLY	LYS TLE ALA LYS PRO PRO ASN ALA ASN	ALA LYS HIS THR SER SER	
ASN SER ARG GLU ILE ALA GLN FRO SER SER	SER ARG TYR ASN GLY GLY ASN ASN ALA ASN ASN	ARG SER ARG ARG ASN ASN ALA PRO PRO PRO GLN THR THR	PHE GLN PRO PRO PRO GLY PHE LYS ARG LYS			
• Molecule 35	5: Small nuclear ri	bonucleoprotein-as	sociated protein	ιВ		
Chain s:	36%	-	64%			
MET SER LYS LYS ILYS GLN VAL ALA ALA ALA ALA SER SER	ARG L12 A13 A13 L15 L15 L15 Y16 Y18 Y18 K19 K19	R21 V22 L23 C124 C25 C25 C27 C27 C26 C27 C27 C26 C27 C26 C27 C26 C27 C26 C27 C26 C27 C26 C27 C26 C27 C26 C27 C27 C27 C27 C27 C27 C27 C27 C27 C27	G32 Q33 M35 A36 A36 F37 F37 K39 H40	N42 N42 L43 V44 L45 L45 N46 N46	C48 C48 E50 E51 R52 V53	P54 LYS LYS GLN GLN LEU ASP LYS
	*****	•••••	*******	•		
LEU ARG ARG ARG ASP SER SER SER SER GLY GLY	THR THR LEU ASN ILE K76 K76 E78 E78 K79 K79 K79 K79	L82 G83 L84 L84 L87 L87 L87 C89 G89 G89 G89 G91	L93 S94 T95 V96 V97 E98 E98 K100 K100	LEU LEU SER LYS LYS GLU GLU ARG	VAL ARG ASP LYS LYS CLYS LYS	GLN
LYS GLN THR LYS LEU LYS GLU GLU GLU	LYS LYS PRO RYO GLY LYS TLZ PRO PRO ASN ASN ASN	ALA LYS LYS HIS THR SER SER ASN SER ASN SER ALU CLU CLU GLU PRO	SER SER ARG ARG ASN GLY GLY ASN ASP ASN	ILE GLY ALA ASN ARG SER ARG PHE ASN	ASN GLU ALA	
PRO PRO GLN GLN ARG LYS PHE GLN PRO PRO	PRO GLY PHE LYS ARG LYS					
• Molecule 36	6: Small nuclear ri	bonucleoprotein Sn	n D3			
Chain d:	2%	82%		18%		
MET THR MET MET 125 836	D38 D46 D46 D54 D55 C54 A55 A55 A55 H57 H58 M59	DGO K86 ASN SER ASN SER ARG PRO PRO PRO PRO PRO PRO PRO PRO PRO	PRO LYS ARG ARG			
• Molecule 36	5: Small nuclear ri	bonucleoprotein Sn	n D3			
Chain n:	50%	79%	·	19%		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	9559	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	56	Depositor
Minimum defocus (nm)	350	Depositor
Maximum defocus (nm)	5300	Depositor
Magnification	81000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.080	Depositor
Minimum map value	-0.019	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.003	Depositor
Recommended contour level	0.0258	Depositor
Map size (Å)	686.39996, 686.39996, 686.39996	wwPDB
Map dimensions	480, 480, 480	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.43, 1.43, 1.43	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GTP, PSU, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		I	Bond angles		
1VIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	2	1.35	52/3579~(1.5%)	1.69	123/5551~(2.2%)		
2	3	0.25	0/617	0.45	0/836		
3	4	0.45	4/2705~(0.1%)	0.95	10/4204~(0.2%)		
4	5	0.42	1/4039~(0.0%)	0.90	6/6284~(0.1%)		
5	6	0.24	0/2253	0.83	3/3497~(0.1%)		
6	7	0.24	0/505	0.44	0/675		
7	8	0.24	0/501	0.45	0/673		
8	А	0.29	0/18580	0.46	1/25189~(0.0%)		
9	В	0.40	1/13905~(0.0%)	0.62	6/18852~(0.0%)		
10	С	0.32	0/6928	0.47	0/9377		
11	D	0.28	0/1185	0.46	0/1596		
12	Ε	0.24	0/822	0.40	0/1109		
13	F	0.27	0/3292	0.45	1/4432~(0.0%)		
14	G	0.29	0/2885	0.45	0/3882		
15	Н	0.27	0/3455	0.49	0/4663		
16	Ι	0.28	0/665	0.82	0/1024		
17	J	0.26	0/6613	0.43	0/8942		
18	Κ	0.26	0/949	0.45	0/1292		
19	L	0.25	0/899	0.44	0/1204		
20	М	0.24	0/1430	0.44	0/1927		
21	Ν	0.22	0/421	0.29	0/583		
22	0	0.28	0/6745	0.45	0/9157		
23	Р	0.30	1/9623~(0.0%)	0.53	1/13041~(0.0%)		
24	Q	0.27	0/1835	0.46	0/2480		
25	R	0.26	0/1453	0.42	0/1954		
26	S	0.29	0/827	0.46	0/1105		
27	Т	0.27	0/3992	0.41	0/5346		
28	U	0.25	0/1511	0.41	1/2038~(0.0%)		
29	V	0.24	0/1105	0.36	0/1475		
30	W	0.42	0/1406	0.69	4/1905~(0.2%)		
31	Х	0.25	0/148	0.39	0/204		
32	Y	0.30	0/692	0.54	0/923		

Mol	Chain	B	Bond lengths		Bond angles
10101	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
33	Ζ	0.28	0/694	0.47	0/929
34	a	0.26	0/745	0.51	1/1005~(0.1%)
35	b	0.29	0/567	0.47	0/762
35	k	0.41	0/567	0.61	0/762
35	s	0.40	0/567	0.63	0/762
36	d	0.30	0/650	0.50	0/879
36	n	0.41	0/641	0.65	2/868~(0.2%)
36	V	0.43	0/641	0.65	2/868~(0.2%)
37	е	0.26	0/612	0.44	0/830
37	р	0.39	0/612	0.59	1/830~(0.1%)
37	W	0.40	0/612	0.61	1/830~(0.1%)
38	f	0.27	0/589	0.46	0/796
38	q	0.39	0/597	0.62	0/807
38	Х	0.42	0/597	0.63	0/807
39	g	0.25	0/554	0.53	0/746
39	r	0.32	0/582	0.63	0/785
39	у	0.26	0/582	0.49	0/785
40	h	0.25	0/635	0.48	0/861
40	l	0.38	0/756	0.70	1/1023~(0.1%)
40	t	0.41	0/574	0.68	1/777~(0.1%)
41	i	0.25	0/764	0.44	0/1026
41	m	0.38	0/764	0.57	0/1026
41	u	0.40	0/764	0.57	0/1026
42	j	0.25	0/594	0.42	0/802
43	0	0.24	0/595	0.41	0/806
44	Z	0.24	0/584	0.43	0/787
All	All	0.39	$59/\overline{122004}~(0.0\%)$	0.62	$165/\overline{167605}~(0.1\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	2	0	2
8	А	0	2
9	В	0	4
17	J	0	2
20	М	0	2
23	Р	0	2
27	Т	0	1
30	W	0	1

Continued from previous page...

Mol	Chain	#Chirality outliers	#Planarity outliers
39	r	0	1
All	All	0	17

The worst 5 of 59 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	2	1149	G	O3'-P	24.35	1.90	1.61
1	2	143	G	O3'-P	18.92	1.83	1.61
4	5	105	А	O3'-P	18.04	1.82	1.61
1	2	1161	U	O3'-P	-15.56	1.42	1.61
1	2	143	G	C3'-O3'	15.28	1.63	1.42

The worst 5 of 165 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	144	G	C4'-C3'-O3'	-16.52	74.71	109.40
1	2	1093	С	P-O5'-C5'	14.80	144.59	120.90
1	2	1162	U	C5'-C4'-O4'	14.80	126.86	109.10
1	2	1147	А	C5'-C4'-C3'	-14.15	93.35	116.00
1	2	1092	A	C2'-C3'-O3'	14.11	140.53	109.50

There are no chirality outliers.

5 of 17 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	2	1109	С	Sidechain
1	2	141	А	Sidechain
8	А	1190	ASN	Peptide
8	А	1481	GLU	Peptide
9	В	684	LEU	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	3	75/89~(84%)	74 (99%)	1 (1%)	0	100	100
6	7	62/115~(54%)	62~(100%)	0	0	100	100
7	8	62/109~(57%)	61 (98%)	1 (2%)	0	100	100
8	А	2202/2413~(91%)	2095~(95%)	105 (5%)	2 (0%)	51	86
9	В	1694/2163~(78%)	1631 (96%)	60 (4%)	3 (0%)	47	81
10	С	838/1008~(83%)	785 (94%)	52 (6%)	1 (0%)	51	86
11	D	140/143~(98%)	126 (90%)	14 (10%)	0	100	100
12	Е	114/587~(19%)	103 (90%)	9 (8%)	2(2%)	8	40
13	F	409/494~(83%)	387 (95%)	21 (5%)	1 (0%)	47	81
14	G	358/469~(76%)	335 (94%)	23 (6%)	0	100	100
15	Н	425/465~(91%)	398 (94%)	27 (6%)	0	100	100
17	J	788/899~(88%)	722 (92%)	61 (8%)	5 (1%)	25	66
18	K	122/126~(97%)	121 (99%)	1 (1%)	0	100	100
19	L	101/194~(52%)	94 (93%)	7 (7%)	0	100	100
20	М	164/242~(68%)	141 (86%)	23 (14%)	0	100	100
21	Ν	77/291~(26%)	76 (99%)	1 (1%)	0	100	100
22	Ο	829/971~(85%)	789~(95%)	40 (5%)	0	100	100
23	Р	1170/1361~(86%)	1059 (90%)	104 (9%)	7 (1%)	25	66
24	Q	214/435~(49%)	202 (94%)	11 (5%)	1 (0%)	29	69
25	R	165/213~(78%)	162 (98%)	3 (2%)	0	100	100
26	S	101/107~(94%)	88 (87%)	13 (13%)	0	100	100
27	Т	454/530~(86%)	416 (92%)	38 (8%)	0	100	100
28	U	188/266~(71%)	159 (85%)	28 (15%)	1 (0%)	29	69
29	V	123/280~(44%)	112 (91%)	11 (9%)	0	100	100
30	W	168/238~(71%)	129 (77%)	28 (17%)	11 (6%)	1	16

Continued	from	nrevious	naae
Commueu	JIOIII	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
31	Х	26/111~(23%)	26 (100%)	0	0	100	100
32	Y	82/111~(74%)	76~(93%)	5~(6%)	1 (1%)	13	50
33	Z	81/85~(95%)	76~(94%)	4(5%)	1 (1%)	13	50
34	a	88/95~(93%)	81 (92%)	7 (8%)	0	100	100
35	b	66/196~(34%)	61~(92%)	5 (8%)	0	100	100
35	k	66/196~(34%)	62~(94%)	4 (6%)	0	100	100
35	S	66/196~(34%)	62~(94%)	4 (6%)	0	100	100
36	d	81/101~(80%)	79~(98%)	2(2%)	0	100	100
36	n	80/101~(79%)	77~(96%)	3~(4%)	0	100	100
36	v	80/101~(79%)	77~(96%)	3(4%)	0	100	100
37	е	73/94~(78%)	71~(97%)	2(3%)	0	100	100
37	р	73/94~(78%)	72~(99%)	1 (1%)	0	100	100
37	W	73/94~(78%)	72~(99%)	1 (1%)	0	100	100
38	f	70/86~(81%)	67~(96%)	3(4%)	0	100	100
38	q	71/86~(83%)	68~(96%)	3~(4%)	0	100	100
38	x	71/86~(83%)	69~(97%)	2(3%)	0	100	100
39	g	69/77~(90%)	63~(91%)	6 (9%)	0	100	100
39	r	73/77~(95%)	66~(90%)	5 (7%)	2(3%)	5	31
39	У	73/77~(95%)	64~(88%)	6 (8%)	3~(4%)	3	22
40	h	76/146~(52%)	75~(99%)	1 (1%)	0	100	100
40	1	93/146~(64%)	89~(96%)	3(3%)	1 (1%)	14	52
40	t	68/146~(47%)	67~(98%)	1 (2%)	0	100	100
41	i	90/110~(82%)	90 (100%)	0	0	100	100
41	m	90/110~(82%)	89~(99%)	1 (1%)	0	100	100
41	u	90/110~(82%)	$89 \ (99\%)$	1 (1%)	0	100	100
42	j	70/187~(37%)	67~(96%)	3(4%)	0	100	100
43	0	71/93 (76%)	66~(93%)	5 (7%)	0	100	100
44	Z	72/86~(84%)	70~(97%)	2(3%)	0	100	100
All	All	$13\overline{125}/17406~(75\%)$	12318 (94%)	765 (6%)	42 (0%)	44	77

 $5~{\rm of}~42$ Ramachandran outliers are listed below:

Mol	Chain	Res	Type
17	J	881	VAL
23	Р	1299	ILE
24	Q	368	ILE
30	W	34	LEU
30	W	52	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	3	71/81~(88%)	71~(100%)	0	100	100
6	7	56/103~(54%)	56~(100%)	0	100	100
7	8	56/99~(57%)	56 (100%)	0	100	100
8	А	1982/2182~(91%)	1982 (100%)	0	100	100
9	В	1525/1955~(78%)	1523 (100%)	2 (0%)	93	97
10	С	761/910~(84%)	761 (100%)	0	100	100
11	D	131/132~(99%)	131 (100%)	0	100	100
12	Е	60/534~(11%)	60 (100%)	0	100	100
13	F	354/445~(80%)	354~(100%)	0	100	100
14	G	267/436~(61%)	267~(100%)	0	100	100
15	Н	377/410~(92%)	377~(100%)	0	100	100
17	J	708/813~(87%)	708~(100%)	0	100	100
18	Κ	102/104~(98%)	102 (100%)	0	100	100
19	L	92/179~(51%)	92 (100%)	0	100	100
20	М	154/224~(69%)	154 (100%)	0	100	100
22	Ο	739/867~(85%)	738 (100%)	1 (0%)	93	97
23	Р	1093/1244~(88%)	1093 (100%)	0	100	100
24	Q	192/391~(49%)	192 (100%)	0	100	100
25	R	154/189~(82%)	154 (100%)	0	100	100
26	S	93/97~(96%)	93 (100%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentil	
27	Т	429/492~(87%)	424~(99%)	5 (1%)	71	83
28	U	158/236~(67%)	157~(99%)	1 (1%)	86	92
29	V	118/259~(46%)	116~(98%)	2 (2%)	60	78
30	W	161/219~(74%)	151 (94%)	10 (6%)	18	43
32	Υ	76/100~(76%)	75~(99%)	1 (1%)	69	81
33	Ζ	75/77~(97%)	75~(100%)	0	100	100
34	a	85/91~(93%)	85 (100%)	0	100	100
35	b	64/176~(36%)	64 (100%)	0	100	100
35	k	64/176~(36%)	64 (100%)	0	100	100
35	\mathbf{S}	64/176~(36%)	64 (100%)	0	100	100
36	d	72/89~(81%)	72 (100%)	0	100	100
36	n	71/89~(80%)	71 (100%)	0	100	100
36	V	71/89~(80%)	71 (100%)	0	100	100
37	е	69/83~(83%)	69 (100%)	0	100	100
37	р	69/83~(83%)	69 (100%)	0	100	100
37	W	69/83~(83%)	69 (100%)	0	100	100
38	f	64/77~(83%)	64 (100%)	0	100	100
38	q	65/77~(84%)	65 (100%)	0	100	100
38	х	65/77~(84%)	65 (100%)	0	100	100
39	g	61/66~(92%)	61 (100%)	0	100	100
39	r	64/66~(97%)	64 (100%)	0	100	100
39	у	64/66~(97%)	64 (100%)	0	100	100
40	h	75/129~(58%)	75 (100%)	0	100	100
40	1	81/129~(63%)	81 (100%)	0	100	100
40	t	67/129~(52%)	67 (100%)	0	100	100
41	i	85/103~(82%)	85 (100%)	0	100	100
41	m	85/103 (82%)	85 (100%)	0	100	100
41	u	85/103~(82%)	85 (100%)	0	100	100
42	j	64/172~(37%)	64 (100%)	0	100	100
43	0	66/84~(79%)	66 (100%)	0	100	100
44	Z	66/75~(88%)	66 (100%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
All	All	11739/15369~(76%)	11717 (100%)	22~(0%)	93 96

5 of 22 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
30	W	31	LEU
30	W	41	GLU
30	W	36	LEU
30	W	50	LEU
27	Т	298	HIS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 193 such side chains are listed below:

Mol	Chain	Res	Type
22	0	853	HIS
24	Q	288	HIS
22	0	908	GLN
23	Р	609	HIS
27	Т	167	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	2	147/1175~(12%)	47 (31%)	25~(17%)
16	Ι	26/95~(27%)	8~(30%)	2(7%)
3	4	110/160~(68%)	33~(30%)	6 (5%)
4	5	166/214~(77%)	61 (36%)	8 (4%)
5	6	91/112 (81%)	33~(36%)	8 (8%)
All	All	540/1756~(30%)	182 (33%)	49 (9%)

5 of 182 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	2	33	U
1	2	41	С
1	2	46	С
1	2	47	U
1	2	66	А

5 of 49 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
3	4	91	U
4	5	114	G
3	4	134	U
4	5	40	С
4	5	130	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

3 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Bond lengths				Bond angles			
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	PSU	2	35	1,16	18,21,22	1.07	1 (5%)	22,30,33	1.73	4 (18%)
1	PSU	2	44	1,16	18,21,22	1.03	1 (5%)	22,30,33	1.65	4 (18%)
1	PSU	2	42	1,16	18,21,22	1.08	1 (5%)	22,30,33	1.73	4 (18%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	PSU	2	35	1,16	-	0/7/25/26	0/2/2/2
1	PSU	2	44	1,16	-	0/7/25/26	0/2/2/2
1	PSU	2	42	$1,\!16$	-	0/7/25/26	0/2/2/2

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	2	42	PSU	C6-C5	3.46	1.39	1.35
1	2	35	PSU	C6-C5	3.35	1.39	1.35
1	2	44	PSU	C6-C5	3.22	1.39	1.35

The worst 5 of 12 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	2	42	PSU	C4-N3-C2	-4.57	119.75	126.34
1	2	35	PSU	C4-N3-C2	-4.49	119.87	126.34
1	2	42	PSU	N1-C2-N3	4.43	120.14	115.13
1	2	35	PSU	N1-C2-N3	4.37	120.08	115.13
1	2	44	PSU	N1-C2-N3	4.28	119.98	115.13

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 8 ligands modelled in this entry, 7 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Tink	Bond lengths			Bond angles		
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
45	GTP	С	1101	-	26,34,34	1.19	2 (7%)	32,54,54	1.66	7 (21%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
45	GTP	С	1101	-	-	0/18/38/38	0/3/3/3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
45	С	1101	GTP	C5-C6	-4.24	1.38	1.47
45	С	1101	GTP	C2-N3	2.11	1.38	1.33

The worst 5 of 7 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
45	С	1101	GTP	PB-O3B-PG	-4.88	116.09	132.83
45	С	1101	GTP	PA-O3A-PB	-3.57	120.59	132.83
45	С	1101	GTP	C5-C6-N1	3.39	119.93	113.95
45	С	1101	GTP	C2-N1-C6	-2.98	119.61	125.10
45	С	1101	GTP	C8-N7-C5	2.94	108.60	102.99

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
4	5	3
1	2	3
12	Е	1
31	Х	1

The worst 5 of 8 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Е	236:SER	С	297:LYS	Ν	126.30
1	Х	19:ALA	С	101:ALA	Ν	56.70
1	5	72:C	O3'	73:U	Р	3.93

$\alpha \cdot \cdot \cdot \cdot$	ſ	•	
Continued	from	previous	page
	5	1	1 0

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	5	42:A	O3'	43:G	Р	3.10
1	2	1149:G	O3'	1150:U	Р	1.90

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-3683. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 240

Y Index: 240

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 253

Y Index: 232

Z Index: 232

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0258. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1240 $\rm nm^3;$ this corresponds to an approximate mass of 1120 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.139 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-3683 and PDB model 5NRL. Per-residue inclusion information can be found in section 3 on page 13.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0258 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0258).

9.4 Atom inclusion (i)

At the recommended contour level, 74% of all backbone atoms, 60% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0258) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.5990	0.1170
2	0.2760	0.0470
3	0.5440	0.0880
4	0.9080	0.1920
5	0.8050	0.1610
6	0.8490	0.1950
7	0.5250	0.0490
8	0.5600	0.0820
А	0.7100	0.1500
В	0.6040	0.1240
С	0.7390	0.1500
D	0.6650	0.1440
E	0.5550	0.1590
F	0.7210	0.1670
G	0.7410	0.1600
Н	0.7760	0.1380
Ι	0.7900	0.1290
J	0.7460	0.1600
K	0.6930	0.1580
L	0.7210	0.1510
М	0.7060	0.1400
N	0.7880	0.2460
0	0.6550	0.1020
Р	0.6160	0.0950
Q	0.5210	0.1160
R	0.4630	0.0960
S	0.7310	0.0980
Т	0.1060	0.0240
U	0.2500	0.0420
V	0.0000	0.0440
W	0.0000	-0.0000
Х	0.5070	0.2310
Y	0.0000	0.0080
Z	0.6490	0.1080
a	0.6180	0.0880

Continued from previous page...

Chain	Atom inclusion	Q-score
b	0.6820	0.1200
d	0.6500	0.1270
е	0.6880	0.1190
f	0.6930	0.1170
g	0.6540	0.1230
h	0.7060	0.1050
i	0.7160	0.1360
j	0.5100	0.0780
k	0.4970	0.0340
1	0.3620	0.0730
m	0.4950	0.0640
n	0.3060	0.0440
О	0.6960	0.0800
р	0.5580	0.0620
q	0.5850	0.0790
r	0.3290	0.0510
s	0.0000	0.0010
t	0.0000	0.0150
u	0.0000	-0.0050
V	0.0000	-0.0080
W	0.0000	0.0040
X	0.0000	-0.0260
У	0.0000	-0.0010
Z	0.5740	0.0700

