wwPDB EM Validation Summary Report (i)

Jul 7, 2021-03:33 pm BST

PDB ID : 7NVG
EMDB ID : EMD-12603
Title : Salmonella flagellar basal body refined in C1 map
Authors : Johnson, S.; Furlong, E.; Lea, S.M.
Deposited on : 2021-03-15
Resolution : $3.70 \AA$ (reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.
We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (i)) were used in the production of this report:

```
        EMDB validation analysis : 0.0.0.dev84
            MolProbity : 4.02b-467
            Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
        Ideal geometry (proteins) : Engh & Huber (2001)
    Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : 2.22
```


1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is $3.70 \AA$.
Percentile scores (ranging between $0-100$) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (\#Entries)	EM structures (\#Entries)
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $>=3,2,1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $<=5 \%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion $<40 \%$). The numeric value is given above the bar.

Continued from previous page...

Continued on next page...

Continued from previous page...

Continued on next page...

Continued from previous page...

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
9	u2	260	7\% 100\%	
			6\%	
9	v2	260	100\%	
			5\%	
9	w2	260	100\%	
			9\%	
9	x2	260	100\%	
			19\%	
9	y2	260	100\%	
			27\%	
9	z2	260	99\%	
			85\%	
10	A3	232	88\%	9\%
			85\%	
10	B3	232	88\%	9\%
			85\%	
10	C3	232	88\%	9\%
			86\%	
10	D3	232	88\%	9\%
			85\%	
10	E3	232	88\%	9\%
			84\%	
10	F3	232	88\%	9\%
			86\%	
10	G3	232	88\%	9\%
			86\%	
10	H3	232	88\%	9\%
			87\%	
10	I3	232	88\%	9\%
			85\%	
10	J3	232	88\%	9\%
			85\%	
10	K3	232	88\%	9\%
			85\%	
10	L3	232	88\%	9\%
			86\%	
10	M3	232	88\%	9\%
			85\%	
10	N3	232	88\%	9\%
			86\%	
10	O3	232	88\%	9\%
			87\%	
10	P3	232	88\%	9\%
			88\%	
10	Q3	232	88\%	9\%
			86\%	
10	R3	232	88\%	9\%
			88\%	
10	S3	232	88\%	9\%

Continued on next page...

Page 7
wwPDB EM Validation Summary Report

Continued from previous page...

Mol	Chain	Length	Quality of chain	
			87\%	
10	T3	232	88\%	. 9\%
			87\%	
10	U3	232	88\%	9\%
			87\%	
10	V3	232	88\%	9\%
			86\%	
10	W3	232	88\%	9\%
			88\%	
10	X3	232	88\%	- 9\%
			87\%	
10	Y3	232	88\%	9\%
			84\%	
10	Z3	232	88\%	. 9\%
			83\%	
11	a3	365	80\%	16\%
			83\%	
11	b3	365	80\%	16\%
			84\%	
11	c3	365	80\%	16\%
			83\%	
11	d3	365	80\%	16\%
			83\%	
11	e3	365	80\%	16\%
			84\%	
11	f3	365	80\%	16\%
			83\%	
11	g3	365	80\%	16\%
			84\%	
11	h3	365	80\%	16\%
			83\%	
11	i3	365	80\%	16\%
			84\%	
11	j3	365	80\%	16\%
			84\%	
11	k3	365	80\%	16\%
			84\%	
11	13	365	80\%	16\%
			84\%	
11	m3	365	80\%	16\%
			83\%	
11	n3	365	80\%	16\%
			84\%	
11	o3	365	80\%	16\%
			84\%	
11	p3	365	80\%	16\%
			84\%	
11	q3	365	80\%	16\%
			84\%	
11	r3	365	80\%	16\%

Continued on next page...

Continued from previous page...

2 Entry composition (i)

There are 12 unique types of molecules in this entry. The entry contains 246311 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Flagellar M-ring protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	A1	151	$\begin{aligned} & \hline \text { Total } \\ & 1193 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 726 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 223 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 241 \end{gathered}$	S 3	0	0
1	B1	250	$\begin{aligned} & \text { Total } \\ & 1931 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1187 \end{gathered}$	N 355	O	S	0	0
1	C1	250	$\begin{aligned} & \text { Total } \\ & 1931 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1187 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 355 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 385 \end{gathered}$	S 4	0	0
1	D1	151	$\begin{aligned} & \text { Total } \\ & 1193 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 726 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 223 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 241 \end{gathered}$	S 3	0	0
1	E1	250	$\begin{aligned} & \text { Total } \\ & 1931 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1187 \end{gathered}$	N 355	O 385	S	0	0
1	F1	151	$\begin{aligned} & \hline \text { Total } \\ & 1193 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 726 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 223 \end{gathered}$	O 241	S 3	0	0
1	G1	250	$\begin{aligned} & \text { Total } \\ & 1931 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1187 \end{gathered}$	N 355	O 385	S 4	0	0
1	H1	250	$\begin{aligned} & \text { Total } \\ & 1931 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1187 \end{gathered}$	N 355	O	S	0	0
1	I1	250	$\begin{aligned} & \hline \text { Total } \\ & 1931 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1187 \end{gathered}$	N 355	O 385	S	0	0
1	J1	151	Total 1193	C 726	N 223	O 241	S 3	0	0
1	K1	250	$\begin{aligned} & \text { Total } \\ & 1931 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1187 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 355 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 385 \end{gathered}$	S	0	0
1	L1	250	$\begin{aligned} & \text { Total } \\ & 1931 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1187 \end{gathered}$	N 355	O 385	S	0	0
1	M1	151	$\begin{aligned} & \text { Total } \\ & 1193 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 726 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 223 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 241 \end{gathered}$	S 3	0	0
1	N1	250	$\begin{aligned} & \text { Total } \\ & 1931 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1187 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 355 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 385 \end{gathered}$	S	0	0
1	O1	250	$\begin{aligned} & \text { Total } \\ & 1931 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1187 \end{gathered}$	N 355	O 385	S	0	0
1	P1	151	$\begin{aligned} & \text { Total } \\ & 1193 \end{aligned}$	C 726	N 223	O 241		0	0
1	Q1	250	$\begin{aligned} & \text { Total } \\ & 1931 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1187 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 355 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 385 \end{gathered}$	S	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
1	R1	250	Total 1931	C 1187	N	355	O	S	0

- Molecule 2 is a protein called Flagellar biosynthetic protein FliP.

Mol	Chain	Residues	Atoms					AltConf	Trace		
2	A2	209	$\begin{array}{c}\text { Total } \\ 1623\end{array}$	$\begin{array}{c}\text { C } \\ 1084\end{array}$	$\begin{array}{c}\text { N }\end{array}$	251	276	O	12	$) 0$	0
:---:											
2											

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
2	C2	209	$\begin{array}{c}\text { Total } \\ 1623\end{array}$	$\begin{array}{c}\text { C } \\ 1084\end{array}$	251	N	276	12	0

- Molecule 3 is a protein called Flagellar biosynthetic protein FliR.

Mol	Chain	Residues	Atoms				AltConf	Trace
3	F2	258	Total 1986	C 1329	N	314	327	O
			16	0	0			

- Molecule 4 is a protein called Flagellar biosynthetic protein FliQ.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	G2	89	Total 670	C	N 100	O 114	S	0	0
4	H2	89	Total 670	C 449	N 100	O	S 7	0	0
4	I2	89	Total 670	C 449	N 100	O 114	S 7	0	0
4	J2	89	Total 670	C 449	N 100	O 114	S	0	0

- Molecule 5 is a protein called Flagellar hook-basal body complex protein FliE.

Mol	Chain	Residues	Atoms				AltConf	Trace	
5	K2	39	$\begin{array}{c}\text { Total } \\ 296\end{array}$	$\begin{array}{c}\mathrm{C} \\ 183\end{array}$	$\begin{array}{c}\mathrm{N}\end{array}$	O	56	S	0

- Molecule 6 is a protein called Flagellar basal body rod protein FlgB.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	Q2	133	$\begin{aligned} & \text { Total } \\ & 1023 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 630 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 188 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 200 \end{gathered}$	S	0	0
6	R2	120	$\begin{gathered} \text { Total } \\ 932 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 578 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 169 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 180 \end{gathered}$	S	0	0
6	S2	122	$\begin{gathered} \text { Total } \\ 942 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 583 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 173 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 181 \end{gathered}$	S	0	0
6	T2	106	$\begin{gathered} \text { Total } \\ 835 \end{gathered}$	C 516	N 153	O 161	S	0	0
6	U2	119	$\begin{gathered} \text { Total } \\ 925 \end{gathered}$	C 573	N 168	O 179	5	0	0

- Molecule 7 is a protein called Flagellar basal-body rod protein FlgC.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	V2	133	$\begin{gathered} \hline \text { Total } \\ 969 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 604 \end{gathered}$	N 167	O 193	S 5	0	0
7	W2	132	$\begin{gathered} \hline \text { Total } \\ 964 \end{gathered}$	C 601	N 166	O 192	S 5	0	0
7	X2	132	$\begin{gathered} \text { Total } \\ 964 \end{gathered}$	C 601	N 166	O 192	S 5	0	0
7	Y2	132	$\begin{gathered} \text { Total } \\ 964 \end{gathered}$	C 601	N 166	O 192	S 5	0	0
7	Z2	132	$\begin{gathered} \hline \text { Total } \\ 964 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 601 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 166 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 192 \end{gathered}$	S 5	0	0
7	a2	132	$\begin{gathered} \text { Total } \\ 964 \end{gathered}$	C 601	N 166	O 192	S 5	0	0

- Molecule 8 is a protein called Flagellar basal body protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	b2	249	$\begin{aligned} & \hline \text { Total } \\ & 1812 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1111 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 325 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 368 \end{gathered}$	S 8	0	0
8	c2	249	$\begin{aligned} & \hline \text { Total } \\ & 1812 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1111 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 325 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 368 \end{gathered}$	S 8	0	0
8	d2	249	$\begin{aligned} & \text { Total } \\ & 1812 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1111 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 325 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 368 \end{gathered}$	S 8	0	0
8	e2	249	$\begin{aligned} & \text { Total } \\ & 1812 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1111 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 325 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 368 \end{gathered}$	S 8	0	0
8	f2	249	Total 1812	C 1111	N 325	O 368	S 8	0	0

- Molecule 9 is a protein called Flagellar basal-body rod protein FlgG.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	g2	260	$\begin{aligned} & \hline \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 341 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 400 \end{gathered}$	S	0	0
9	h2	260	$\begin{aligned} & \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 341 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 400 \end{gathered}$	S	0	0
9	i2	260	$\begin{aligned} & \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 341 \end{gathered}$	O 400		0	0
9	j2	260	$\begin{aligned} & \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 341 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 400 \end{gathered}$	S	0	0
9	k2	260	$\begin{aligned} & \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 341 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 400 \end{gathered}$		0	0
9	12	249	Total 1871	C 1157	N 328	O 381	S 5	0	0
9	m2	249	$\begin{aligned} & \text { Total } \\ & 1871 \end{aligned}$	C 1157	N 328	O	S 5	0	0
9	n2	249	Total 1871	$\begin{gathered} \mathrm{C} \\ 1157 \end{gathered}$	N 328	O	S 5	0	0
9	o2	249	$\begin{aligned} & \text { Total } \\ & 1871 \end{aligned}$	C 1157	N 328	O	S 5	0	0
9	p2	249	$\begin{aligned} & \text { Total } \\ & 1871 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1157 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 328 \end{gathered}$	O	S 5	0	0
9	q2	251	$\begin{aligned} & \text { Total } \\ & 1885 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1166 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 330 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 384 \end{gathered}$		0	0
9	r2	260	$\begin{aligned} & \hline \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 341 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 400 \end{gathered}$		0	0
9	s2	260	Total 1949	C 1202	N 341	O 400	S	0	0
9	t2	260	$\begin{aligned} & \text { Total } \\ & 1949 \end{aligned}$	C 1202	N 341	O 400	S	0	0
9	u2	260	$\begin{aligned} & \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 341 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 400 \end{gathered}$	S	0	0
9	v2	260	$\begin{aligned} & \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 341 \end{gathered}$	O 400	S	0	0
9	w2	260	$\begin{aligned} & \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 341 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 400 \end{gathered}$	S	0	0
9	x2	260	$\begin{aligned} & \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 341 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 400 \end{gathered}$		0	0
9	y2	260	$\begin{aligned} & \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 341 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 400 \end{gathered}$	S	0	0
9	z2	260	Total 1949	C 1202	N 341	O 400	S 6	0	0
9	12	260	$\begin{gathered} \hline \text { Total } \\ 1949 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 341 \end{gathered}$	O 400	S	0	0
9	22	260	$\begin{aligned} & \hline \text { Total } \\ & 1949 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1202 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 341 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 400 \end{gathered}$	S	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace		
9	32	260	$\begin{array}{c}\text { Total } \\ 1948\end{array}$	$\begin{array}{c}\text { C } \\ 1202\end{array}$	$\begin{array}{c}\text { N } \\ 340\end{array}$	$\begin{array}{c}\text { O }\end{array}$	S	60	6	$) 0$	0
:---:											
9											

- Molecule 10 is a protein called Flagellar L-ring protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	A3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 310 \end{gathered}$	$\begin{aligned} & \hline \mathrm{S} \\ & 4 \end{aligned}$	0	0
10	B3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	C3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	D3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & 4 \end{aligned}$	0	0
10	E3	211	Total 1581	C 985	N 282	O 310	S	0	0
10	F3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	G3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	H3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	S 4	0	0
10	I3	211	$\begin{aligned} & \hline \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 310 \end{gathered}$	$\begin{aligned} & \hline \mathrm{S} \\ & 4 \end{aligned}$	0	0
10	J3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & 4 \end{aligned}$	0	0
10	K3	211	Total 1581	C 985	N 282	O	S 4	0	0
10	L3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	C 985	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	O 310	S	0	0
10	M3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	N3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	O3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 310 \\ \hline \end{gathered}$	S	0	0
10	P3	211	$\begin{aligned} & \hline \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	Q3	211	Total 1581	C 985	N 282	O 310	S 4	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
10	R3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 310 \end{gathered}$	$\begin{aligned} & \hline \mathrm{S} \\ & 4 \end{aligned}$	0	0
10	S3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	T3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	U3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	V3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	W3	211	Total 1580	C 984	N 282	O 310	S	0	0
10	X3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & 4 \end{aligned}$	0	0
10	Y3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 310 \end{gathered}$	S	0	0
10	Z3	211	$\begin{aligned} & \text { Total } \\ & 1581 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 985 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 282 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 310 \end{gathered}$	S	0	0

- Molecule 11 is a protein called Flagellar P-ring protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	a3	306	$\begin{aligned} & \hline \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	b3	306	$\begin{aligned} & \hline \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	c3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 13 \end{gathered}$	0	0
11	d3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	e3	306	$\begin{aligned} & \hline \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	f3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	g3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	h3	306	$\begin{aligned} & \hline \text { Total } \\ & 2251 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 408 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	i3	306	$\begin{aligned} & \hline \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	j3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 13 \end{gathered}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
11	k3	306	$\begin{aligned} & \hline \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ 13 \end{gathered}$	0	0
11	13	306	$\begin{aligned} & \hline \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ 13 \end{gathered}$	0	0
11	m3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ 13 \end{gathered}$	0	0
11	n3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 13 \end{gathered}$	0	0
11	o3	306	$\begin{aligned} & \hline \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ 13 \end{gathered}$	0	0
11	p3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 13 \end{gathered}$	0	0
11	q3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 13 \end{gathered}$	0	0
11	r3	306	$\begin{aligned} & \hline \text { Total } \\ & 2251 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1378 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ 13 \end{gathered}$	0	0
11	s3	306	$\begin{aligned} & \hline \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 13 \end{gathered}$	0	0
11	t3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	u3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	v3	306	$\begin{aligned} & \hline \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 451 \end{gathered}$		0	0
11	w3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	x3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0
11	y3	306	$\begin{aligned} & \hline \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ 13 \end{gathered}$	0	0
11	z3	306	$\begin{aligned} & \text { Total } \\ & 2252 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1379 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 451 \end{gathered}$		0	0

- Molecule 12 is a protein called Basal-body rod modification protein FlgD.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	A4	201	Total 1475	$\begin{gathered} \hline \mathrm{C} \\ 914 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 253 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 307 \end{gathered}$	S 1	0	0
12	B4	204	$\begin{aligned} & \hline \text { Total } \\ & 1493 \end{aligned}$	$\begin{gathered} \hline \mathrm{C} \\ 924 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 256 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 312 \end{gathered}$	S 1	0	0
12	C4	199	Total 1458	C	N 250	O 304	S 1	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace		
12	D4	202	$\begin{array}{c}\text { Total } \\ 1482\end{array}$	$\begin{array}{c}\text { C } \\ 917\end{array}$	$\begin{array}{c}\text { N }\end{array}$	254	310	O	1	$) 0$	0
:---:											
12											

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green $=0$, yellow $=1$, orange $=2$ and red $=3$ or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion $<40 \%$). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

Chain T1:

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

\square

- Molecule 1: Flagellar M-ring protein

- Molecule 1: Flagellar M-ring protein

Chain e1:

- Molecule 1: Flagellar M-ring protein

- Molecule 2: Flagellar biosynthetic protein FliP

- Molecule 3: Flagellar biosynthetic protein FliR

- Molecule 4: Flagellar biosynthetic protein FliQ

- Molecule 4: Flagellar biosynthetic protein FliQ

Chain H2:

- Molecule 4: Flagellar biosynthetic protein FliQ

Chain I2:
12%

- Molecule 4: Flagellar biosynthetic protein FliQ

- Molecule 5: Flagellar hook-basal body complex protein FliE

- Molecule 5: Flagellar hook-basal body complex protein FliE

- Molecule 5: Flagellar hook-basal body complex protein FliE

- Molecule 5: Flagellar hook-basal body complex protein FliE

- Molecule 5: Flagellar hook-basal body complex protein FliE

- Molecule 5: Flagellar hook-basal body complex protein FliE

- Molecule 6: Flagellar basal body rod protein FlgB

- Molecule 6: Flagellar basal body rod protein FlgB

- Molecule 6: Flagellar basal body rod protein FlgB

- Molecule 6: Flagellar basal body rod protein FlgB

- Molecule 6: Flagellar basal body rod protein FlgB

Chain U2:
20\%
84\%

- Molecule 7: Flagellar basal-body rod protein FlgC

- Molecule 8: Flagellar basal body protein

- Molecule 8: Flagellar basal body protein

- Molecule 8: Flagellar basal body protein

Chain d2:

- Molecule 8: Flagellar basal body protein

Chain e2:

- Molecule 8: Flagellar basal body protein

Chain f2:

- Molecule 9: Flagellar basal-body rod protein FlgG

- Molecule 9: Flagellar basal-body rod protein FlgG

- Molecule 9: Flagellar basal-body rod protein FlgG

- Molecule 9: Flagellar basal-body rod protein FlgG

- Molecule 9: Flagellar basal-body rod protein FlgG

Chain k2:
100\%

- Molecule 9: Flagellar basal-body rod protein FlgG

Chain 12:

- Molecule 9: Flagellar basal-body rod protein FlgG

- Molecule 9: Flagellar basal-body rod protein FlgG

- Molecule 9: Flagellar basal-body rod protein FlgG

Chain 02: $\stackrel{5 \%}{ } \quad 96 \% \quad \bullet$

- Molecule 9: Flagellar basal-body rod protein FlgG

- Molecule 9: Flagellar basal-body rod protein FlgG

- Molecule 9: Flagellar basal-body rod protein FlgG

Chain r2:

- Molecule 9: Flagellar basal-body rod protein FlgG

- Molecule 9: Flagellar basal-body rod protein FlgG

- Molecule 9: Flagellar basal-body rod protein FlgG

Chain u2: ${ }^{7 \%}$

—

- Molecule 9: Flagellar basal-body rod protein FlgG

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

M

- Molecule 10: Flagellar L-ring protein
Chain N3: 85\% 80% (
为

[^0]－Molecule 10：Flagellar L－ring protein

－Molecule 10：Flagellar L－ring protein

$\bullet \bullet ゃ ~$

－Molecule 10：Flagellar L－ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

PROTEIN DATA BANK
M

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 10: Flagellar L-ring protein

- Molecule 11: Flagellar P-ring protein

..

- Molecule 11: Flagellar P-ring protein

[^1]

llllllll

- Molecule 11: Flagellar P-ring protein

"~

Wo R L D W I D E

- Molecule 11: Flagellar P-ring protein

- Molecule 11: Flagellar P-ring protein

$\rightarrow\rangle$ 人
\square

- Molecule 11: Flagellar P-ring protein

- Molecule 11: Flagellar P-ring protein

		\#		

©

우웅

- Molecule 11: Flagellar P-ring protein

- Molecule 11: Flagellar P-ring protein

\section*{

- Molecule 11: Flagellar P-ring protein

$\rightarrow \rightarrow$

- Molecule 11: Flagellar P-ring protein

- Molecule 11: Flagellar P-ring protein

- Molecule 11: Flagellar P-ring protein

Mr

- Molecule 11: Flagellar P-ring protein

- Molecule 11: Flagellar P-ring protein

- No

- Molecule 11: Flagellar P-ring protein

llllllll

- Molecule 11: Flagellar P-ring protein

$\rightarrow \ggg$
 "た

- Molecule 11: Flagellar P-ring protein

- Molecule 11: Flagellar P-ring protein

WO R L D W I D E

- Molecule 11: Flagellar P-ring protein

$\rightarrow \ggg \rightarrow\langle\rightarrow\rangle \rightarrow\langle\rightarrow\rangle \rightarrow\rangle \rightarrow\rangle$
걱 N

Cl

- Molecule 11: Flagellar P-ring protein

걱 N

- Molecule 11: Flagellar P-ring protein

- Molecule 11: Flagellar P-ring protein

Clllll

- Molecule 11: Flagellar P-ring protein

PROTEIN DATA BANK

- Molecule 11: Flagellar P-ring protein

- Molecule 11: Flagellar P-ring protein

- \uparrow 人

- Molecule 12: Basal-body rod modification protein FlgD

- Molecule 12: Basal-body rod modification protein FlgD

- Molecule 12: Basal-body rod modification protein FlgD

Chain C4: $\quad 79 \% \quad 86 \% ~ 14 \% ~$

- Molecule 12: Basal-body rod modification protein FlgD

- Molecule 12: Basal-body rod modification protein FlgD

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	60497	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $\left(e^{-} / \AA^{2}\right)$	59	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	Depositor
Image detector	GATAN K3 BIOQUANTUM $(6 \mathrm{k} \mathrm{x} \mathrm{4k)}$	Depositor
Maximum map value	0.023	Depositor
Minimum map value	-0.010	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.001	Depositor
Recommended contour level	0.0075	wwPDB
Map size (\AA)	$638.976,638.976,638.976$	wwPDB
Map dimensions	$768,768,768$	wepositor
Map angles $\left({ }^{\circ}\right)$	$90.0,90.0,90.0$	
Pixel spacing (\AA)	$0.832,0.832,0.832$	

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z|>5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
1	A1	0.39	0/1205	0.52	0/1624
1	B1	0.38	0/1955	0.55	0/2645
1	C1	0.39	0/1955	0.54	1/2645 (0.0\%)
1	D1	0.40	0/1205	0.53	0/1624
1	E1	0.38	0/1955	0.55	1/2645 (0.0\%)
1	F1	0.39	0/1205	0.57	1/1624 (0.1\%)
1	G1	0.37	0/1955	0.54	0/2645
1	H1	0.38	0/1955	0.56	0/2645
1	I1	0.37	0/1955	0.53	0/2645
1	J1	0.42	0/1205	0.53	1/1624 (0.1\%)
1	K1	0.36	0/1955	0.52	0/2645
1	L1	0.36	0/1955	0.54	0/2645
1	M1	0.40	0/1205	0.55	1/1624 (0.1\%)
1	N1	0.36	0/1955	0.55	0/2645
1	O1	0.35	0/1955	0.53	1/2645 (0.0\%)
1	P1	0.37	0/1205	0.52	1/1624 (0.1\%)
1	Q1	0.35	0/1955	0.52	0/2645
1	R1	0.35	0/1955	0.51	1/2645 (0.0\%)
1	S1	0.38	0/1205	0.50	1/1624 (0.1\%)
1	T1	0.35	0/1955	0.52	0/2645
1	U1	0.36	0/1955	0.56	0/2645
1	V1	0.38	0/1205	0.52	0/1624
1	W1	0.35	0/1955	0.52	1/2645 (0.0\%)
1	X1	0.35	0/1955	0.52	1/2645 (0.0\%)
1	Y1	0.34	0/1955	0.53	0/2645
1	Z1	0.41	0/1205	0.54	0/1624
1	a1	0.36	0/1955	0.53	0/2645
1	b1	0.39	0/1205	0.51	0/1624
1	c1	0.37	0/1955	0.53	1/2645 (0.0\%)
1	d1	0.37	0/1955	0.54	0/2645
1	e1	0.39	0/1205	0.52	1/1624 (0.1\%)
1	f1	0.37	0/1955	0.53	0/2645
1	g1	0.37	0/1955	0.54	1/2645 (0.0\%)
1	h1	0.37	0/1955	0.51	0/2645

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
2	A2	0.39	0/1662	0.62	1/2263 (0.0\%)
2	B2	0.41	0/1662	0.61	0/2263
2	C2	0.40	0/1662	0.61	0/2263
2	D2	0.43	1/1662 (0.1\%)	0.58	0/2263
2	E2	0.61	1/1662 (0.1\%)	0.71	1/2263 (0.0\%)
3	F2	0.35	0/2035	0.58	0/2777
4	G2	0.34	0/681	0.61	0/930
4	H2	0.34	0/681	0.55	0/930
4	I2	0.37	0/681	0.53	0/930
4	J2	2.82	6/681 (0.9\%)	0.65	0/930
5	K2	0.35	0/296	0.60	1/395 (0.3\%)
5	L2	0.33	0/567	0.44	0/761
5	M2	0.36	0/567	0.45	0/761
5	N2	0.36	0/567	0.46	0/761
5	O2	0.34	0/567	0.47	0/761
5	P2	0.36	0/567	0.47	0/761
6	Q2	0.39	0/1035	0.52	0/1399
6	R2	0.37	0/941	0.53	0/1269
6	S2	0.40	0/951	0.51	0/1281
6	T2	0.40	0/842	0.53	0/1132
6	U2	0.37	0/934	0.50	0/1259
7	V2	0.44	0/981	0.65	0/1334
7	W2	0.44	0/976	0.57	0/1327
7	X2	0.48	0/976	0.56	0/1327
7	Y2	0.46	0/976	0.56	0/1327
7	Z2	0.46	0/976	0.55	0/1327
7	a2	0.42	0/976	0.57	0/1327
8	b2	0.39	0/1836	0.59	0/2502
8	c2	0.42	0/1836	0.59	0/2502
8	d2	0.44	0/1836	0.58	0/2502
8	e2	0.43	0/1836	0.56	0/2502
8	f2	0.40	0/1836	0.56	0/2502
9	12	0.38	0/1973	0.55	0/2682
9	22	0.37	0/1973	0.54	0/2682
9	32	0.36	0/1971	0.55	1/2677 (0.0\%)
9	42	0.31	0/1973	0.56	1/2682 (0.0\%)
9	g2	0.41	0/1973	0.52	0/2682
9	h2	0.43	0/1973	0.51	0/2682
9	i2	0.43	0/1973	0.53	0/2682
9	j2	0.44	0/1973	0.52	0/2682
9	k2	0.43	0/1973	0.54	0/2682
9	12	0.43	0/1894	0.51	0/2573
9	m2	0.46	0/1894	0.54	0/2573

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
9	n2	0.43	0/1894	0.51	$0 / 2573$
9	o2	0.44	0/1894	0.53	0/2573
9	p2	0.44	0/1894	0.52	0/2573
9	q2	0.43	0/1907	0.52	0/2590
9	r2	0.42	0/1973	0.56	0/2682
9	s2	0.43	0/1973	0.56	0/2682
9	t2	0.42	0/1973	0.58	2/2682 (0.1\%)
9	u2	0.42	0/1973	0.56	0/2682
9	v2	0.43	0/1973	0.54	0/2682
9	w2	0.42	0/1973	0.57	1/2682 (0.0\%)
9	x2	0.39	0/1973	0.54	0/2682
9	y2	0.36	0/1973	0.53	0/2682
9	z2	0.35	0/1973	0.54	2/2682 (0.1\%)
10	A3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	B3	0.27	0/1614	0.52	1/2194 (0.0\%)
10	C3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	D3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	E3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	F3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	G3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	H3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	I3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	J3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	K3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	L3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	M3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	N3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	O3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	P3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	Q3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	R3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	S3	0.27	0/1614	0.52	1/2194 (0.0\%)
10	T3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	U3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	V3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	W3	0.26	0/1611	0.52	1/2188 (0.0\%)
10	X3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	Y3	0.26	0/1614	0.52	1/2194 (0.0\%)
10	Z3	0.26	0/1614	0.52	1/2194 (0.0\%)
11	a3	0.24	0/2267	0.50	0/3073
11	b3	0.24	0/2267	0.50	0/3073
11	c3	0.24	0/2267	0.50	0/3073
11	d3	0.24	0/2267	0.50	0/3073

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
11	e 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	f 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	g 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	h 3	0.24	$0 / 2266$	0.50	$0 / 3071$
11	i 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	j 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	k 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	13	0.24	$0 / 2267$	0.50	$0 / 3073$
11	m 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	n 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	o 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	p 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	q 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	r 3	0.24	$0 / 2264$	0.50	$0 / 3066$
11	s 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	t 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	u 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	v 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	w 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	x 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	y 3	0.24	$0 / 2267$	0.50	$0 / 3073$
11	z 3	0.24	$0 / 2267$	0.50	$0 / 3073$
12	A4	0.25	$0 / 1491$	0.47	$0 / 2033$
12	B 4	0.25	$0 / 1509$	0.48	$0 / 2058$
12	C 4	0.25	$0 / 1474$	0.48	$0 / 2010$
12	D 4	0.25	$0 / 1496$	0.49	$0 / 2040$
12	E 4	0.25	$0 / 1509$	0.48	$0 / 2058$
All	All	0.37	$8 / 249431(0.0 \%)$	0.53	$50 / 338382(0.0 \%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand.A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	\#Chirality outliers	\#Planarity outliers
1	B1	0	1
1	E1	0	1
1	G1	0	1
1	H1	0	1
1	L1	0	1
1	N1	0	1
2	B2	0	2

Continued on next page...

Continued from previous page...

Mol	Chain	\#Chirality outliers	\#Planarity outliers
2	C2	0	2
2	D2	0	2
2	E2	0	1
3	F2	0	2
4	G2	0	1
4	H2	0	1
4	I2	0	1
4	J2	0	1
6	U2	0	1
8	b2	0	2
8	c2	0	2
8	d2	0	1
8	e2	0	3
8	f2	0	3
All	All	0	31

The worst 5 of 8 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(\AA)	Ideal (\AA)
4	J2	51	PHE	CE2-CZ	34.87	2.03	1.37
4	J2	51	PHE	CE1-CZ	33.72	2.01	1.37
4	J2	51	PHE	CD1-CE1	32.60	2.04	1.39
4	J2	51	PHE	CD2-CE2	31.33	2.02	1.39
4	J2	51	PHE	CG-CD1	21.84	1.71	1.38

The worst 5 of 50 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed $\left({ }^{\boldsymbol{o}}\right)$	Ideal $\left({ }^{o}\right)$
2	E2	205	MET	CG-SD-CE	20.16	132.46	100.20
9	t2	167	PRO	CA-N-CD	-8.46	99.66	111.50
1	E1	282	TYR	C-N-CA	-6.66	105.04	121.70
1	g1	282	TYR	C-N-CA	-6.65	105.07	121.70
10	Z3	43	PRO	CA-N-CD	-6.36	102.59	111.50

There are no chirality outliers.
5 of 31 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	B1	163	SER	Peptide
1	E1	162	PRO	Peptide
1	G1	165	PHE	Peptide

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Group
1	H1	165	PHE	Peptide
1	L1	125	GLN	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	A1	$145 / 560(26 \%)$	$143(99 \%)$	$2(1 \%)$	0	100	100
1	B1	$242 / 560(43 \%)$	$227(94 \%)$	$15(6 \%)$	0	100	100
1	C1	$242 / 560(43 \%)$	$230(95 \%)$	$11(4 \%)$	$1(0 \%)$	34	69
1	D1	$145 / 560(26 \%)$	$142(98 \%)$	$3(2 \%)$	0	100	100
1	E1	$242 / 560(43 \%)$	$226(93 \%)$	$16(7 \%)$	0	100	100
1	F1	$145 / 560(26 \%)$	$141(97 \%)$	$4(3 \%)$	0	100	100
1	G1	$242 / 560(43 \%)$	$225(93 \%)$	$16(7 \%)$	$1(0 \%)$	34	69
1	H1	$242 / 560(43 \%)$	$221(91 \%)$	$19(8 \%)$	$2(1 \%)$	19	56
1	I1	$242 / 560(43 \%)$	$229(95 \%)$	$12(5 \%)$	$1(0 \%)$	34	69
1	J1	$145 / 560(26 \%)$	$142(98 \%)$	$3(2 \%)$	0	100	100
1	K1	$242 / 560(43 \%)$	$230(95 \%)$	$11(4 \%)$	$1(0 \%)$	34	69
1	L1	$242 / 560(43 \%)$	$224(93 \%)$	$18(7 \%)$	0	100	100
1	M1	$145 / 560(26 \%)$	$141(97 \%)$	$4(3 \%)$	0	100	100
1	N1	$242 / 560(43 \%)$	$223(92 \%)$	$19(8 \%)$	0	100	100
1	O1	$242 / 560(43 \%)$	$231(96 \%)$	$10(4 \%)$	$1(0 \%)$	34	69
1	P1	$145 / 560(26 \%)$	$142(98 \%)$	$3(2 \%)$	0	100	100
1	Q1	$242 / 560(43 \%)$	$224(93 \%)$	$17(7 \%)$	$1(0 \%)$	34	69

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	R1	$242 / 560(43 \%)$	$229(95 \%)$	$13(5 \%)$	0	100	100
1	S1	$145 / 560(26 \%)$	$142(98 \%)$	$3(2 \%)$	0	100	100
1	T1	$242 / 560(43 \%)$	$230(95 \%)$	$12(5 \%)$	0	100	100
1	U1	$242 / 560(43 \%)$	$231(96 \%)$	$11(4 \%)$	0	100	100
1	V1	$145 / 560(26 \%)$	$141(97 \%)$	$4(3 \%)$	0	100	100
1	W1	$242 / 560(43 \%)$	$227(94 \%)$	$14(6 \%)$	$1(0 \%)$	34	69
1	X1	$242 / 560(43 \%)$	$225(93 \%)$	$17(7 \%)$	0	100	100
1	Y1	$242 / 560(43 \%)$	$228(94 \%)$	$14(6 \%)$	0	100	100
1	Z1	$145 / 560(26 \%)$	$142(98 \%)$	$3(2 \%)$	0	100	100
1	a1	$242 / 560(43 \%)$	$227(94 \%)$	$14(6 \%)$	$1(0 \%)$	34	69
1	b1	$145 / 560(26 \%)$	$140(97 \%)$	$5(3 \%)$	0	100	100
1	c1	$242 / 560(43 \%)$	$225(93 \%)$	$16(7 \%)$	$1(0 \%)$	34	69
1	d1	$242 / 560(43 \%)$	$225(93 \%)$	$16(7 \%)$	$1(0 \%)$	34	69
1	e1	$145 / 560(26 \%)$	$144(99 \%)$	$1(1 \%)$	0	100	100
1	f1	$242 / 560(43 \%)$	$229(95 \%)$	$12(5 \%)$	$1(0 \%)$	34	69
1	g1	$242 / 560(43 \%)$	$226(93 \%)$	$15(6 \%)$	$1(0 \%)$	34	69
1	h1	$242 / 560(43 \%)$	$232(96 \%)$	$10(4 \%)$	0	100	100
2	A2	$207 / 245(84 \%)$	$182(88 \%)$	$23(11 \%)$	$2(1 \%)$	15	51
2	B2	$207 / 245(84 \%)$	$183(88 \%)$	$22(11 \%)$	$2(1 \%)$	15	51
2	C2	$207 / 245(84 \%)$	$177(86 \%)$	$29(14 \%)$	$1(0 \%)$	29	66
2	D2	$207 / 245(84 \%)$	$181(87 \%)$	$25(12 \%)$	$1(0 \%)$	29	66
2	E2	$207 / 245(84 \%)$	$183(88 \%)$	$22(11 \%)$	$2(1 \%)$	15	51
3	F2	$254 / 264(96 \%)$	$223(88 \%)$	$30(12 \%)$	$1(0 \%)$	34	69
4	G2	$87 / 89(98 \%)$	$75(86 \%)$	$12(14 \%)$	0	100	100
4	H2	$87 / 89(98 \%)$	$77(88 \%)$	$10(12 \%)$	0	100	100
5	M2	$73 / 104(70 \%)$	$68(93 \%)$	$5(7 \%)$	0	100	100
4	I2	$87 / 89(98 \%)$	$78(90 \%)$	$9(10 \%)$	0	100	100
4	J2	$87 / 89(98 \%)$	$77(88 \%)$	$10(12 \%)$	0	100	100
5	K2	$37 / 104(36 \%)$	$37(100 \%)$	0	0	100	100
5	L2	$73 / 104(70 \%)$	$68(93 \%)$	$5(7 \%)$	0	100	100
$5(70 \%)$	$69(94 \%)$	$4(6 \%)$	0	100	100		

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
5	O2	73/104 (70\%)	69 (94\%)	4 (6\%)	0	100	100
5	P2	73/104 (70\%)	68 (93\%)	5 (7\%)	0	100	100
6	Q2	131/138 (95\%)	115 (88\%)	16 (12\%)	0	100	100
6	R2	114/138 (83\%)	98 (86\%)	16 (14\%)	0	100	100
6	S2	116/138 (84\%)	104 (90\%)	12 (10\%)	0	100	100
6	T2	102/138 (74\%)	95 (93\%)	7 (7\%)	0	100	100
6	U2	113/138 (82\%)	102 (90\%)	11 (10\%)	0	100	100
7	V2	131/134 (98\%)	112 (86\%)	18 (14\%)	1 (1\%)	19	56
7	W2	130/134 (97\%)	108 (83\%)	22 (17\%)	0	100	100
7	X2	130/134 (97\%)	107 (82\%)	22 (17\%)	1 (1\%)	19	56
7	Y2	130/134 (97\%)	109 (84\%)	21 (16\%)	0	100	100
7	Z2	130/134 (97\%)	113 (87\%)	17 (13\%)	0	100	100
7	a2	130/134 (97\%)	109 (84\%)	21 (16\%)	0	100	100
8	b2	247/251 (98\%)	217 (88\%)	29 (12\%)	1 (0\%)	34	69
8	c2	247/251 (98\%)	212 (86\%)	35 (14\%)	0	100	100
8	d2	247/251 (98\%)	215 (87\%)	32 (13\%)	0	100	100
8	e2	247/251 (98\%)	212 (86\%)	35 (14\%)	0	100	100
8	f2	247/251 (98\%)	210 (85\%)	37 (15\%)	0	100	100
9	12	258/260 (99\%)	231 (90\%)	27 (10\%)	0	100	100
9	22	258/260 (99\%)	231 (90\%)	27 (10\%)	0	100	100
9	32	256/260 (98\%)	230 (90\%)	26 (10\%)	0	100	100
9	42	258/260 (99\%)	239 (93\%)	19 (7\%)	0	100	100
9	g2	258/260 (99\%)	240 (93\%)	18 (7\%)	0	100	100
9	h2	258/260 (99\%)	239 (93\%)	19 (7\%)	0	100	100
9	i2	258/260 (99\%)	240 (93\%)	18 (7\%)	0	100	100
9	j2	258/260 (99\%)	240 (93\%)	18 (7\%)	0	100	100
9	k2	258/260 (99\%)	242 (94\%)	16 (6\%)	0	100	100
9	12	245/260 (94\%)	229 (94\%)	16 (6\%)	0	100	100
9	m2	245/260 (94\%)	230 (94\%)	15 (6\%)	0	100	100
9	n2	245/260 (94\%)	232 (95\%)	13 (5\%)	0	100	100
9	o2	245/260 (94\%)	230 (94\%)	15 (6\%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
9	p2	$245 / 260(94 \%)$	$232(95 \%)$	$13(5 \%)$	0	100	100
9	q2	$247 / 260(95 \%)$	$233(94 \%)$	$14(6 \%)$	0	100	100
9	r2	$258 / 260(99 \%)$	$233(90 \%)$	$25(10 \%)$	0	100	100
9	s2	$258 / 260(99 \%)$	$230(89 \%)$	$28(11 \%)$	0	100	100
9	t2	$258 / 260(99 \%)$	$236(92 \%)$	$22(8 \%)$	0	100	100
9	u2	$258 / 260(99 \%)$	$234(91 \%)$	$24(9 \%)$	0	100	100
9	v2	$258 / 260(99 \%)$	$233(90 \%)$	$25(10 \%)$	0	100	100
9	w2	$258 / 260(99 \%)$	$232(90 \%)$	$26(10 \%)$	0	100	100
9	x2	$258 / 260(99 \%)$	$236(92 \%)$	$22(8 \%)$	0	100	100
9	y2	$258 / 260(99 \%)$	$238(92 \%)$	$20(8 \%)$	0	100	100
9	z2	$258 / 260(99 \%)$	$240(93 \%)$	$18(7 \%)$	0	100	100
10	A3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	B3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	C3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	D3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	E3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	F3	$209 / 232(90 \%)$	$192(92 \%)$	$17(8 \%)$	0	100	100
10	G3	$209 / 232(90 \%)$	$192(92 \%)$	$17(8 \%)$	0	100	100
10	H3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	I3	$209 / 232(90 \%)$	$192(92 \%)$	$17(8 \%)$	0	100	100
10	J3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	K3	$209 / 232(90 \%)$	$192(92 \%)$	$17(8 \%)$	0	100	100
10	L3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	M3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	N3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	O3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	P3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	Q3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	R3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	S3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
T3	$209 / 232(90 \%)$	$192(92 \%)$	$17(8 \%)$	0	100	100	

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
10	U 3	$209 / 232(90 \%)$	$192(92 \%)$	$17(8 \%)$	0	100	100
10	V 3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	W 3	$208 / 232(90 \%)$	$192(92 \%)$	$16(8 \%)$	0	100	100
10	X 3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	Y 3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
10	Z 3	$209 / 232(90 \%)$	$193(92 \%)$	$16(8 \%)$	0	100	100
11	a 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	b 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	c 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	d 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	e 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	f 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	g 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	h 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	i 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	j 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	k 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	13	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	m 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	n 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	o 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	p 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	q 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	r 3	$299 / 365(82 \%)$	$288(96 \%)$	$11(4 \%)$	0	100	100
11	s 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	t 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	u 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	v 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	w 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
11	x 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
y 3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100	

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
11	z3	$300 / 365(82 \%)$	$288(96 \%)$	$12(4 \%)$	0	100	100
12	A4	$199 / 232(86 \%)$	$194(98 \%)$	$5(2 \%)$	0	100	100
12	B4	$202 / 232(87 \%)$	$200(99 \%)$	$2(1 \%)$	0	100	100
12	C4	$197 / 232(85 \%)$	$185(94 \%)$	$12(6 \%)$	0	100	100
12	D4	$200 / 232(86 \%)$	$194(97 \%)$	$6(3 \%)$	0	100	100
12	E4	$202 / 232(87 \%)$	$197(98 \%)$	$5(2 \%)$	0	100	100
All	All	$32138 / 47180(68 \%)$	$29936(93 \%)$	$2176(7 \%)$	$26(0 \%)$	54	83

5 of 26 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	B2	42	VAL
2	C2	42	VAL
2	D2	42	VAL
2	A2	42	VAL
2	E2	42	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	A1	$134 / 467(29 \%)$	$133(99 \%)$	$1(1 \%)$	84	91
1	B1	$217 / 467(46 \%)$	$215(99 \%)$	$2(1 \%)$	78	88
1	C1	$217 / 467(46 \%)$	$216(100 \%)$	$1(0 \%)$	88	94
1	D1	$134 / 467(29 \%)$	$133(99 \%)$	$1(1 \%)$	84	91
1	E1	$217 / 467(46 \%)$	$217(100 \%)$	0	100	100
1	F1	$134 / 467(29 \%)$	$133(99 \%)$	$1(1 \%)$	84	91
1	G1	$217 / 467(46 \%)$	$216(100 \%)$	$1(0 \%)$	88	94
1	H1	$217 / 467(46 \%)$	$216(100 \%)$	$1(0 \%)$	88	94
1	I1	$217 / 467(46 \%)$	$216(100 \%)$	$1(0 \%)$	88	94
1	J1	$134 / 467(29 \%)$	$132(98 \%)$	$2(2 \%)$	65	81

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	K1	217/467 (46\%)	215 (99\%)	2 (1\%)	78	88
1	L1	217/467 (46\%)	216 (100\%)	1 (0\%)	88	94
1	M1	134/467 (29\%)	133 (99\%)	1 (1\%)	84	91
1	N1	217/467 (46\%)	215 (99\%)	2 (1\%)	78	88
1	O1	217/467 (46\%)	213 (98\%)	4 (2\%)	59	77
1	P1	134/467 (29\%)	131 (98\%)	3 (2\%)	52	72
1	Q1	217/467 (46\%)	215 (99\%)	2 (1\%)	78	88
1	R1	217/467 (46\%)	216 (100\%)	1 (0\%)	88	94
1	S1	134/467 (29\%)	133 (99\%)	1 (1\%)	84	91
1	T1	217/467 (46\%)	216 (100\%)	1 (0\%)	88	94
1	U1	217/467 (46\%)	215 (99\%)	2 (1\%)	78	88
1	V1	134/467 (29\%)	132 (98\%)	2 (2\%)	65	81
1	W1	217/467 (46\%)	215 (99\%)	2 (1\%)	78	88
1	X1	217/467 (46\%)	215 (99\%)	2 (1\%)	78	88
1	Y1	217/467 (46\%)	215 (99\%)	2 (1\%)	78	88
1	Z1	134/467 (29\%)	132 (98\%)	2 (2\%)	65	81
1	a1	217/467 (46\%)	215 (99\%)	2 (1\%)	78	88
1	b1	134/467 (29\%)	133 (99\%)	1 (1\%)	84	91
1	c1	217/467 (46\%)	216 (100\%)	1 (0\%)	88	94
1	d1	217/467 (46\%)	215 (99\%)	2 (1\%)	78	88
1	e1	134/467 (29\%)	133 (99\%)	1 (1\%)	84	91
1	f1	217/467 (46\%)	216 (100\%)	1 (0\%)	88	94
1	g1	217/467 (46\%)	216 (100\%)	1 (0\%)	88	94
1	h1	217/467 (46\%)	216 (100\%)	1 (0\%)	88	94
2	A2	179/204 (88\%)	179 (100\%)	0	100	100
2	B2	179/204 (88\%)	179 (100\%)	0	100	100
2	C2	179/204 (88\%)	178 (99\%)	1 (1\%)	86	93
2	D2	179/204 (88\%)	179 (100\%)	0	100	100
2	E2	179/204 (88\%)	179 (100\%)	0	100	100
3	F2	215/221 (97\%)	215 (100\%)	0	100	100
4	G2	74/74 (100\%)	74 (100\%)	0	100	100

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
4	H2	74/74 (100\%)	74 (100\%)	0	100	100
4	I2	74/74 (100\%)	74 (100\%)	0	100	100
4	J2	74/74 (100\%)	74 (100\%)	0	100	100
5	K2	33/79 (42\%)	33 (100\%)	0	100	100
5	L2	59/79 (75\%)	59 (100\%)	0	100	100
5	M2	59/79 (75\%)	59 (100\%)	0	100	100
5	N2	59/79 (75\%)	59 (100\%)	0	100	100
5	O2	59/79 (75\%)	59 (100\%)	0	100	100
5	P2	59/79 (75\%)	59 (100\%)	0	100	100
6	Q2	109/113 (96\%)	109 (100\%)	0	100	100
6	R2	100/113 (88\%)	100 (100\%)	0	100	100
6	S2	100/113 (88\%)	99 (99\%)	1 (1\%)	76	86
6	T2	89/113 (79\%)	88 (99\%)	1 (1\%)	73	85
6	U2	99/113 (88\%)	97 (98\%)	2 (2\%)	55	74
7	V2	104/105 (99\%)	103 (99\%)	1 (1\%)	76	86
7	W2	104/105 (99\%)	104 (100\%)	0	100	100
7	X2	104/105 (99\%)	104 (100\%)	0	100	100
7	Y2	104/105 (99\%)	104 (100\%)	0	100	100
7	Z2	104/105 (99\%)	103 (99\%)	1 (1\%)	76	86
7	a2	104/105 (99\%)	104 (100\%)	0	100	100
8	b2	191/193 (99\%)	191 (100\%)	0	100	100
8	c2	191/193 (99\%)	191 (100\%)	0	100	100
8	d2	191/193 (99\%)	191 (100\%)	0	100	100
8	e2	191/193 (99\%)	191 (100\%)	0	100	100
8	f2	191/193 (99\%)	191 (100\%)	0	100	100
9	12	215/215 (100\%)	215 (100\%)	0	100	100
9	22	215/215 (100\%)	215 (100\%)	0	100	100
9	32	214/215 (100\%)	214 (100\%)	0	100	100
9	42	215/215 (100\%)	214 (100\%)	1 (0\%)	88	94
9	g2	215/215 (100\%)	215 (100\%)	0	100	100
9	h2	215/215 (100\%)	215 (100\%)	0	100	100

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
9	i2	215/215 (100\%)	215 (100\%)	0	100	100
9	j2	215/215 (100\%)	215 (100\%)	0	100	100
9	k2	215/215 (100\%)	215 (100\%)	0	100	100
9	12	206/215 (96\%)	206 (100\%)	0	100	100
9	m2	206/215 (96\%)	206 (100\%)	0	100	100
9	n2	206/215 (96\%)	205 (100\%)	1 (0\%)	88	94
9	o2	206/215 (96\%)	206 (100\%)	0	100	100
9	p2	206/215 (96\%)	206 (100\%)	0	100	100
9	q2	207/215 (96\%)	206 (100\%)	1 (0\%)	88	94
9	r2	215/215 (100\%)	214 (100\%)	1 (0\%)	88	94
9	s2	215/215 (100\%)	215 (100\%)	0	100	100
9	t2	215/215 (100\%)	215 (100\%)	0	100	100
9	u2	215/215 (100\%)	215 (100\%)	0	100	100
9	v2	215/215 (100\%)	215 (100\%)	0	100	100
9	w2	215/215 (100\%)	215 (100\%)	0	100	100
9	x 2	215/215 (100\%)	215 (100\%)	0	100	100
9	y2	215/215 (100\%)	214 (100\%)	1 (0\%)	88	94
9	z2	215/215 (100\%)	215 (100\%)	0	100	100
10	A3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	B3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	C3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	D3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	E3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	F3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	G3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	H3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	I3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	J3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	K3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	L3	170/186 (91\%)	164 (96\%)	$6(4 \%)$	36	63
10	M3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
10	N3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	O3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	P3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	Q3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	R3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	S3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	T3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	U3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	V3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	W3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	X3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	Y3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
10	Z3	170/186 (91\%)	164 (96\%)	6 (4\%)	36	63
11	a3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	b3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	c3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	d3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	e3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	f3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	g3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	h3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	i3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	j3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	k3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	13	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	m3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	n3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	o3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	p3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	q3	251/294 (85\%)	238 (95\%)	13 (5\%)	23	55
11	r3	250/294 (85\%)	237 (95\%)	13 (5\%)	23	55

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
11	s 3	$251 / 294(85 \%)$	$238(95 \%)$	$13(5 \%)$	23	55
11	t 3	$251 / 294(85 \%)$	$238(95 \%)$	$13(5 \%)$	23	55
11	u 3	$251 / 294(85 \%)$	$238(95 \%)$	$13(5 \%)$	23	55
11	v 3	$251 / 294(85 \%)$	$238(95 \%)$	$13(5 \%)$	23	55
11	w 3	$251 / 294(85 \%)$	$237(94 \%)$	$14(6 \%)$	21	53
11	x 3	$251 / 294(85 \%)$	$238(95 \%)$	$13(5 \%)$	23	55
11	y 3	$251 / 294(85 \%)$	$238(95 \%)$	$13(5 \%)$	23	55
11	z3	$251 / 294(85 \%)$	$238(95 \%)$	$13(5 \%)$	23	55
12	A4	$164 / 188(87 \%)$	$162(99 \%)$	$2(1 \%)$	71	84
12	B4	$165 / 188(88 \%)$	$165(100 \%)$	0	100	100
12	C4	$162 / 188(86 \%)$	$162(100 \%)$	0	100	100
12	D4	$164 / 188(87 \%)$	$163(99 \%)$	$1(1 \%)$	86	93
12	E4	$165 / 188(88 \%)$	$164(99 \%)$	$1(1 \%)$	86	93
All	All	$27146 / 38629(70 \%)$	$26584(98 \%)$	$562(2 \%)$	56	74

5 of 562 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
11	s 3	256	ASN
11	t 3	256	ASN
11	s 3	252	LYS
11	x 3	84	VAL
10	V3	144	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 200 such sidechains are listed below:

Mol	Chain	Res	Type
11	e 3	161	ASN
11	m 3	161	ASN
12	E 4	54	GLN
11	f 3	350	GLN
11	j 3	161	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues

(i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
3	F2	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (\AA)
1	F2	$115:$ ASP	C	$116: \mathrm{PRO}$	N	5.09

6 Map visualisation

This section contains visualisations of the EMDB entry EMD-12603. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections

6.1.1 Primary map

X

6.1.2 Raw map

X

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 384
6.2.2 Raw map

X Index: 384

Y Index: 384

Z Index: 384

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 402

6.3.2 Raw map

X Index: 402

Y Index: 371

Y Index: 371

Z Index: 144

Z Index: 350

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

X

Y

Z

The images above show the 3D surface view of the map at the recommended contour level 0.0075. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

Z

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure
6.5.1 emd_12603_msk_1.map (i)

7 Map analysis

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x -axis. The y -axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is $648 \mathrm{~nm}^{3}$; this corresponds to an approximate mass of 586 kDa .

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.
7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of $0.270 \AA^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of $0.270 \AA^{-1}$

8.2 Resolution estimates (i)

Resolution estimate (\AA)	Estimation criterion (FSC cut-off)		
	0.143	0.5	Half-bit
Reported by author	3.70	-	-
Author-provided FSC curve	3.73	6.30	3.88
Calculated*	6.58	8.88	6.89

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 6.58 differs from the reported value 3.7 by more than 10%

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12603 and PDB model 7NVG. Per-residue inclusion information can be found in section 3 on page 18.

9.1 Map-model overlay

X

Y

The images above show the 3D surface view of the map at the recommended contour level 0.0075 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 43% of all backbone atoms, 31% of all non-hydrogen atoms, are inside the map.

[^0]:

[^1]:

