

wwPDB X-ray Structure Validation Summary Report (i)

May 23, 2020 – 08:14 pm BST

PDB ID : 6NXM

Title : Crystal structure of computationally designed protein XAA_GVDQ

Authors: Wei, K.Y.; Bick, M.J.

Deposited on : 2019-02-08

Resolution : 2.20 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

 $\begin{array}{ccc} Mol Probity & : & 4.02b\text{-}467 \\ Xtriage \ (Phenix) & : & 1.13 \end{array}$

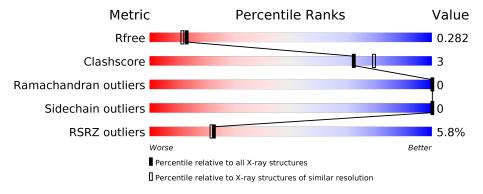
EDS: 2.11

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac: 5.8.0158

CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ (\#\text{Entries}) \end{array}$	$\begin{array}{c} {\rm Similar \; resolution} \\ (\#{\rm Entries, \; resolution \; range(\AA)}) \end{array}$
R_{free}	130704	4898 (2.20-2.20)
Clashscore	141614	5594 (2.20-2.20)
Ramachandran outliers	138981	5503 (2.20-2.20)
Sidechain outliers	138945	5504 (2.20-2.20)
RSRZ outliers	127900	4800 (2.20-2.20)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	A	96	7% 92%		
1	В	96	6% 85%	9%	5%
1	С	96	88%	7%	5%

2 Entry composition (i)

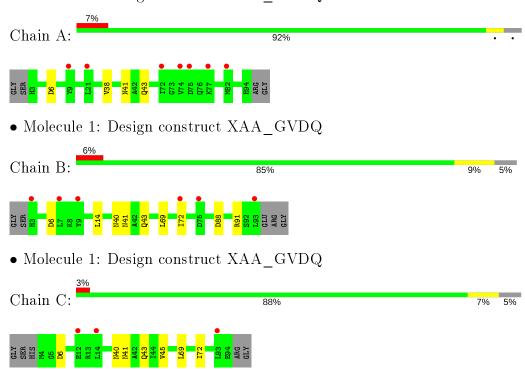
There are 2 unique types of molecules in this entry. The entry contains 3602 atoms, of which 1728 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Design construct XAA GVDQ.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace		
1	Λ	92	Total	С	Н	N	О	S	0	0	0
1	A	92	1180	393	563	109	113	2		U	
1	D	91	Total	С	Н	N	О	S	0	0	0
1	Б	91	1210	398	585	109	117	1	0	U	
1	С	91	Total	С	Н	N	О	S	0	0	0
		91	1206	396	580	108	120	2	U	U	U

• Molecule 2 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	1	Total O 1 1	0	0
2	В	1	Total O 1 1	0	0
2	С	4	Total O 4 4	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Design construct XAA GVDQ

Data and refinement statistics (i) 4

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	101.05Å 58.28Å 58.79Å	Depositor
a, b, c, α , β , γ	90.00° 125.05° 90.00°	Depositor
Resolution (Å)	48.13 - 2.20	Depositor
Resolution (A)	48.13 - 1.82	EDS
% Data completeness	96.4 (48.13-2.20)	Depositor
(in resolution range)	83.6 (48.13-1.82)	EDS
R_{merge}	0.04	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	0.28 (at 1.82Å)	Xtriage
Refinement program	PHENIX dev_3026	Depositor
R, R_{free}	0.246 , 0.277	Depositor
· ·	0.246 , 0.282	DCC
R_{free} test set	2020 reflections (8.68%)	wwPDB-VP
Wilson B-factor (\mathring{A}^2)	41.3	Xtriage
Anisotropy	0.395	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.38 , 78.0	EDS
L-test for twinning ²	$< L >=0.52, < L^2>=0.37$	Xtriage
Estimated twinning fraction	$\begin{array}{c} 0.000 \; {\rm for} \; -1/2*{\rm h-}3/2*{\rm k-}l, -1/2*{\rm h+}1/2*{\rm k} \\ *{\rm h+}1/2*{\rm k} \\ 0.000 \; {\rm for} \; 1/2*{\rm h+}1/2*{\rm k+}2*{\rm l}, 1/2*{\rm h+}1/2*{\rm k}, -1 \\ /2*{\rm h+}1/2*{\rm k-}l \\ 0.000 \; {\rm for} \; -{\rm h-}{\rm k-}l, l, {\rm k} \\ 0.000 \; {\rm for} \; -{\rm h-}{\rm k-}l, -{\rm l}, -{\rm k} \\ 0.000 \; {\rm for} \; 1/2*{\rm h-}1/2*{\rm k+}2*{\rm l}, -1/2*{\rm h+}1/2*{\rm k}, -1 \\ /2*{\rm h-}1/2*{\rm k-}l \\ 0.000 \; {\rm for} \; -1/2*{\rm h+}3/2*{\rm k-}l, 1/2*{\rm h+}1/2*{\rm k} + {\rm l}, 1 \\ /2*{\rm h-}1/2*{\rm k} \\ 0.487 \; {\rm for} \; 1/2*{\rm h-}3/2*{\rm k}, -1/2*{\rm h-}1/2*{\rm k}, -1/2*{\rm h-}1/2*{\rm k-}1/2*{\rm h-}1/2*{\rm k-}1/2*{\rm h-}1/2*{\rm k-}1/2*{\rm h-}1/2*{\rm k-}1/2*{\rm h-}1/2*{\rm k-}1/2*{\rm h-}1/2*{\rm k-}1/2*{\rm k$	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	3602	wwPDB-VP
Average B, all atoms (\mathring{A}^2)	78.0	wwPDB-VP

¹Intensities estimated from amplitudes.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 21.44 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 7.0143e-03. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond	angles
	Chain	RMSZ	# Z >5	RMSZ	# Z > 5
1	A	0.24	0/618	0.36	0/842
1	В	0.24	0/626	0.38	0/854
1	С	0.24	0/627	0.39	0/853
All	All	0.24	0/1871	0.38	0/2549

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Α	617	563	558	3	0
1	В	625	585	580	6	0
1	С	626	580	575	6	0
2	A	1	0	0	0	0
2	В	1	0	0	0	0
2	С	4	0	0	0	0
All	All	1874	1728	1713	12	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

The worst 5 of 12 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$egin{aligned} ext{Interatomic} \ ext{distance} & (ext{Å}) \end{aligned}$	$egin{aligned} ext{Clash} \ ext{overlap } (ext{Å}) \end{aligned}$
1:C:6:ASP:HB2	1:C:43:GLN:OE1	2.05	0.56
1:B:6:ASP:HB3	1:B:43:GLN:OE1	2.09	0.53
1:B:88:ASP:OD1	1:B:91:ARG:NH2	2.43	0.50
1:C:69:LEU:HD23	1:C:72:ILE:HD12	1.93	0.50
1:A:6:ASP:HB3	1:A:43:GLN:OE1	2.11	0.50

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	A	90/96 (94%)	89 (99%)	1 (1%)	0	100	100
1	В	89/96 (93%)	88 (99%)	1 (1%)	0	100	100
1	С	89/96 (93%)	87 (98%)	2 (2%)	0	100	100
All	All	268/288 (93%)	264 (98%)	4 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	A	45/83 (54%)	45 (100%)	0	100 100
1	В	50/83 (60%)	50 (100%)	0	100 100
1	С	50/83 (60%)	50 (100%)	0	100 100

Continued on next page...

 $Continued\ from\ previous\ page...$

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
All	All	145/249 (58%)	145 (100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	$\#\mathrm{RSRZ}{>}2$	$\mathbf{OWAB}(\mathbf{\mathring{A}}^2)$	Q < 0.9
1	A	92/96~(95%)	0.08	7 (7%) 13 12	48, 70, 99, 106	0
1	В	91/96 (94%)	0.05	6 (6%) 18 17	50, 72, 98, 106	0
1	С	91/96 (94%)	0.07	3 (3%) 46 44	51, 73, 100, 118	0
All	All	274/288 (95%)	0.07	16 (5%) 23 22	48, 72, 100, 118	0

The worst 5 of 16 RSRZ outliers are listed below:

Mol	Chain	${f Res}$	Type	RSRZ
1	В	93	LEU	5.1
1	С	93	LEU	4.7
1	С	14	LEU	3.6
1	A	21	LEU	3.2
1	В	9	TYR	3.2

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

