

wwPDB X-ray Structure Validation Summary Report (i)

Jun 17, 2024 – 01:25 AM EDT

PDB ID : 3O3V

Title : Crystal structure of ClbP peptidase domain

Authors: Dubois, D.; Cougnoux, A.; Delmas, J.; Bonnet, R.

Deposited on : 2010-07-26

Resolution : 2.40 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467 Xtriage (Phenix) : 1.20.1

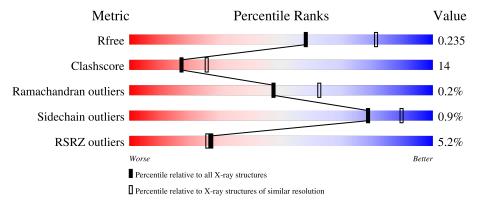
EDS : 2.37.1

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac : 5.8.0158

CCP4 : 7.0.044 (Gargrove) roteins) : Engh & Huber (2001)

Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
Metric	$(\# ext{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
R_{free}	130704	3907 (2.40-2.40)
Clashscore	141614	4398 (2.40-2.40)
Ramachandran outliers	138981	4318 (2.40-2.40)
Sidechain outliers	138945	4319 (2.40-2.40)
RSRZ outliers	127900	3811 (2.40-2.40)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	A	335	75%	25%
1	В	335	75%	24%
1	С	335	75%	25%

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 7968 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called beta-lactamase.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	۸	335	Total	С	N	О	S	0	0	0
1	A	333	2571	1634	450	477	10	0	0	
1	В	335	Total	С	N	О	S	0	0	0
1	Б	333	2571	1634	450	477	10	0	0	
1	С	335	Total	С	N	О	S	0	1	0
1		ააა	2577	1638	451	478	10	U	1	

• Molecule 2 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	81	Total O 81 81	0	0
2	В	82	Total O 82 82	0	0
2	С	86	Total O 86 86	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: beta-lactamase Chain A: 75% 25% • Molecule 1: beta-lactamase Chain B: 75% 24% • Molecule 1: beta-lactamase Chain C: 75% 25%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	103.94Å 149.93Å 87.33Å	Depositor
a, b, c, α , β , γ	90.00° 123.90° 90.00°	Depositor
Resolution (Å)	19.94 - 2.40	Depositor
, ,	19.94 - 2.40	EDS
% Data completeness	92.1 (19.94-2.40)	Depositor
(in resolution range)	91.0 (19.94-2.40)	EDS
R_{merge}	0.09	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	3.43 (at 2.41Å)	Xtriage
Refinement program	REFMAC 5.5.0072	Depositor
R, R_{free}	0.204 , 0.241	Depositor
it, it free	0.201 , 0.235	DCC
R_{free} test set	1993 reflections (5.01%)	wwPDB-VP
Wilson B-factor (\mathring{A}^2)	20.1	Xtriage
Anisotropy	0.035	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.41, 23.4	EDS
L-test for twinning ²	$< L > = 0.49, < L^2> = 0.32$	Xtriage
Estimated twinning fraction	$\begin{array}{c} 0.013 \; \text{for -h,h+2*l,1/2*h+1/2*k} \\ 0.018 \; \text{for -h,-h-2*l,1/2*h-1/2*k} \\ 0.014 \; \text{for -1/2*h+1/2*k-l,3/2*h+1/2*k+l,1} \\ & /2*h-1/2*k \\ 0.014 \; \text{for 1/2*h-1/2*k+l,-1/2*h+1/2*k+l,-h} \\ 0.011 \; \text{for -1/2*h-1/2*k-l,-3/2*h+1/2*k-l,1/2} \\ & *h+1/2*k \\ 0.012 \; \text{for 1/2*h+1/2*k+l,1/2*h+1/2*k-l,-h-l} \\ 0.467 \; \text{for 1/2*h+1/2*k+l,3/2*h-1/2*k-l,-h-l} \\ 0.467 \; \text{for 1/2*h-1/2*k+l,-3/2*h-1/2*k-l,-l} \\ 0.014 \; for -1/2*h-1/2*k-l,-1/2*h-1/2*k-l,$	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	7968	wwPDB-VP
Average B, all atoms (Å ²)	22.0	wwPDB-VP

¹Intensities estimated from amplitudes.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.37% of the height of the origin peak. No significant pseudotranslation is detected.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles	
IVIOI	Moi Chain		# Z > 5	RMSZ	# Z > 5
1	A	0.29	0/2625	0.47	0/3570
1	В	0.28	0/2625	0.47	0/3570
1	С	0.28	0/2634	0.47	0/3583
All	All	0.28	0/7884	0.47	0/10723

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	2571	0	2569	73	0
1	В	2571	0	2569	75	0
1	С	2577	0	2577	73	0
2	A	81	0	0	1	0
2	В	82	0	0	1	0
2	С	86	0	0	0	0
All	All	7968	0	7715	215	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 14.

The worst 5 of 215 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	$egin{aligned} \operatorname{Clash} \ \operatorname{overlap}\ (\mathring{\mathbf{A}}) \end{aligned}$
1:A:245:LYS:HB2	1:A:354:MET:HE2	1.22	1.14
1:C:244:GLY:O	1:C:246:PRO:HD3	1.48	1.14
1:C:245:LYS:HB2	1:C:354:MET:HE2	1.24	1.11
1:A:244:GLY:O	1:A:246:PRO:HD3	1.48	1.11
1:B:244:GLY:O	1:B:246:PRO:HD3	1.48	1.11

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	A	333/335~(99%)	322 (97%)	10 (3%)	1 (0%)	41	55
1	В	333/335 (99%)	322 (97%)	11 (3%)	0	100	100
1	С	334/335 (100%)	323 (97%)	10 (3%)	1 (0%)	41	55
All	All	1000/1005 (100%)	967 (97%)	31 (3%)	2 (0%)	47	62

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	С	245	LYS
1	A	245	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	A	272/276~(99%)	269 (99%)	3 (1%)	73	87
1	В	272/276 (99%)	270 (99%)	2 (1%)	84	92
1	С	273/276 (99%)	271 (99%)	2 (1%)	84	92
All	All	817/828 (99%)	810 (99%)	7 (1%)	78	90

5 of 7 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	В	245	LYS
1	В	370	LEU
1	С	370	LEU
1	С	245	LYS
1	A	370	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 15 such sidechains are listed below:

Mol	Chain	Res	Type
1	В	160	ASN
1	С	190	ASN
1	В	190	ASN
1	С	368	ASN
1	С	146	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	# RSRZ > 2		$OWAB(A^2)$	Q<0.9	
1	A	335/335~(100%)	0.13	17 (5%)	28	26	7, 19, 47, 50	0
1	В	335/335 (100%)	0.09	18 (5%)	25	24	7, 19, 47, 50	0
1	С	335/335 (100%)	0.13	17 (5%)	28	26	7, 19, 47, 50	0
All	All	1005/1005 (100%)	0.12	52 (5%)	27	26	7, 19, 47, 50	0

The worst 5 of 52 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	С	249	PHE	11.7
1	A	249	PHE	9.7
1	В	249	PHE	8.2
1	В	242	GLY	7.5
1	С	162	MET	6.7

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

