

Full wwPDB X-ray Structure Validation Report (i)

Aug 20, 2023 - 03:00 PM EDT

:	20BE
:	Crystal Structure of Chimpanzee Adenovirus (Type 68/Simian 25) Major Coat
	Protein Hexon
:	Xue, F.; Rux, J.J.; Burnett, R.M.
:	2006-12-18
:	2.10 Å(reported)
	::

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	4.02b-467
:	1.8.5 (274361), CSD as541be (2020)
:	1.13
:	2.35
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	5.8.0158
:	7.0.044 (Gargrove)
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.35
	:::::::::::::::::::::::::::::::::::::::

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
Clashscore	141614	5710 (2.10-2.10)
Ramachandran outliers	138981	5647 (2.10-2.10)
Sidechain outliers	138945	5648 (2.10-2.10)
RSRZ outliers	127900	5083 (2.10-2.10)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	932	83%	14%	•••
1	В	932	81%	14%	•••
1	С	932	78%	17%	•••

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	2HP	А	1619	-	Х	-	-
2	2HP	В	1605	-	Х	-	-
2	2HP	В	1607	-	Х	-	-
2	2HP	В	1609	-	Х	-	-
2	2HP	В	1615	-	Х	-	-
3	MPD	А	1704	Х	-	Х	-
3	MPD	А	1717	Х	-	-	-
3	MPD	А	1720	Х	-	Х	-
3	MPD	В	1703	-	-	Х	-
3	MPD	В	1709	-	-	Х	-
3	MPD	В	1711	-	-	Х	-
3	MPD	В	1718	Х	-	-	-
3	MPD	В	1719	Х	-	-	-
3	MPD	В	1721	Х	-	-	-
3	MPD	В	1722	Х	-	-	-
3	MPD	В	1724	Х	-	-	-
3	MPD	С	1713	Х	-	Х	-

2OBE

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 23334 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	1 A	015	Total	С	Ν	0	\mathbf{S}	2	0	0
		510	7208	4582	1217	1377	32			0
1	1 B	906	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	2	0	0
1			7169	4562	1206	1369	32			
1	1 C	000	Total	С	Ν	Ο	\mathbf{S}	9	0	0
	909	7134	4540	1201	1361	32		0	0	

• Molecule 1 is a protein called Hexon protein.

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	825	ASN	UNK	conflict	UNP Q8UY79
А	921	LEU	UNK	conflict	UNP Q8UY79
В	825	ASN	UNK	conflict	UNP Q8UY79
В	921	LEU	UNK	conflict	UNP Q8UY79
С	825	ASN	UNK	conflict	UNP Q8UY79
С	921	LEU	UNK	conflict	UNP Q8UY79

• Molecule 2 is DIHYDROGENPHOSPHATE ION (three-letter code: 2HP) (formula: H₂O₄P).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 3 is (4S)-2-METHYL-2,4-PENTANEDIOL (three-letter code: MPD) (formula: $C_6H_{14}O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	С	1	$\begin{array}{c cc} Total & C & O \\ 8 & 6 & 2 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \overline{\text{Total}} & \mathrm{C} & \mathrm{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	542	Total O 542 542	0	0
4	В	563	Total O 563 563	0	0
4	С	416	Total O 416 416	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Hexon protein

N876 0811 L881 E886 E886 B91 N929 N929 C928 N128 ALA THR

• Molecule 1: Hexon protein

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 2 2 2	Depositor
Cell constants	90.80Å 433.00Å 159.30Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution (Å)	49.27 - 2.10	Depositor
	49.25 - 2.10	EDS
% Data completeness	$100.0 \ (49.27-2.10)$	Depositor
(in resolution range)	93.7 (49.25-2.10)	EDS
R_{merge}	0.09	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$3.63 (at 2.10 \text{\AA})$	Xtriage
Refinement program	REFMAC $5.2.0019$, CNS	Depositor
B B.	0.169 , 0.210	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.168 , (Not available)	DCC
R_{free} test set	No test flags present.	wwPDB-VP
Wilson B-factor $(Å^2)$	30.6	Xtriage
Anisotropy	0.703	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33, 45.8	EDS
L-test for $twinning^2$	$ < L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	23334	wwPDB-VP
Average B, all atoms $(Å^2)$	38.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.62% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MPD, 2HP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles	
Mol Chain		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.97	9/7404~(0.1%)	0.95	21/10090~(0.2%)
1	В	1.00	10/7364~(0.1%)	1.04	24/10034~(0.2%)
1	С	1.22	42/7328~(0.6%)	1.02	32/9991~(0.3%)
All	All	1.07	61/22096~(0.3%)	1.00	$77/30115 \ (0.3\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	В	0	1
1	С	0	5
All	All	0	7

All (61) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
1	С	825	ASN	CG-OD1	-30.50	0.56	1.24
1	В	825	ASN	CG-OD1	-24.34	0.70	1.24
1	С	615	ARG	NE-CZ	22.69	1.62	1.33
1	С	914	GLY	C-O	19.38	1.54	1.23
1	С	328	VAL	C-O	18.29	1.58	1.23
1	В	425	SER	CB-OG	17.80	1.65	1.42
1	С	912	HIS	C-O	12.83	1.47	1.23
1	С	825	ASN	CG-ND2	12.31	1.63	1.32
1	А	733	GLY	CA-C	11.98	1.71	1.51
1	С	337	ASN	C-N	11.06	1.59	1.34
1	C	70	VAL	C-O	10.76	1.43	1.23
1	С	567	LYS	CE-NZ	10.35	1.75	1.49

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	825	ASN	CG-OD1	-9.96	1.02	1.24
1	С	707	SER	C-O	9.73	1.41	1.23
1	С	913	ARG	CA-C	8.96	1.76	1.52
1	В	825	ASN	CG-ND2	8.34	1.53	1.32
1	А	731	GLY	C-N	8.25	1.53	1.34
1	С	566	ARG	CZ-NH1	8.16	1.43	1.33
1	А	707	SER	CB-OG	7.99	1.52	1.42
1	С	68	VAL	C-O	7.93	1.38	1.23
1	С	615	ARG	CZ-NH1	7.88	1.43	1.33
1	А	704	THR	C-N	7.82	1.52	1.34
1	С	912	HIS	CA-CB	7.68	1.70	1.53
1	С	914	GLY	N-CA	-7.64	1.34	1.46
1	С	278	ASP	CB-CG	-7.49	1.36	1.51
1	С	332	GLN	CB-CG	7.37	1.72	1.52
1	С	335	GLN	C-O	7.28	1.37	1.23
1	С	582	ARG	CZ-NH1	7.27	1.42	1.33
1	С	395	CYS	CB-SG	7.15	1.94	1.82
1	С	559	TYR	CG-CD2	7.12	1.48	1.39
1	С	912	HIS	C-N	7.00	1.50	1.34
1	С	327	GLY	CA-C	7.00	1.63	1.51
1	С	323	THR	C-N	6.94	1.45	1.33
1	В	11	TYR	CE2-CZ	6.85	1.47	1.38
1	С	594	ASN	CG-OD1	6.66	1.38	1.24
1	С	706	ASP	C-O	6.60	1.35	1.23
1	А	743	LYS	CE-NZ	6.23	1.64	1.49
1	А	732	GLU	CD-OE2	6.11	1.32	1.25
1	С	611	GLU	CD-OE2	6.07	1.32	1.25
1	С	323	THR	C-O	6.06	1.34	1.23
1	С	566	ARG	CG-CD	6.01	1.67	1.51
1	В	108	ARG	CD-NE	-5.99	1.36	1.46
1	С	567	LYS	CD-CE	5.96	1.66	1.51
1	В	11	TYR	CG-CD1	5.92	1.46	1.39
1	С	611	GLU	CB-CG	5.88	1.63	1.52
1	В	11	TYR	CG-CD2	5.84	1.46	1.39
1	C	395	CYS	CA-CB	5.82	1.66	1.53
1	В	395	CYS	CA-CB	5.72	1.66	1.53
1	C	333	ALA	C-N	5.70	1.47	1.34
1	А	526	ARG	CG-CD	5.64	1.66	1.51
1	A	526	ARG	CD-NE	-5.59	1.36	1.46
1	С	322	SER	CB-OG	5.57	1.49	1.42
1	C	21	GLU	CG-CD	5.46	1.60	1.51
1	С	554	LEU	CG-CD2	5.43	1.72	1.51

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	В	526	ARG	CD-NE	-5.42	1.37	1.46
1	С	87	VAL	CB-CG2	5.31	1.64	1.52
1	В	11	TYR	CE1-CZ	5.27	1.45	1.38
1	С	342	LEU	CA-CB	5.26	1.65	1.53
1	С	914	GLY	CA-C	5.24	1.60	1.51
1	С	911	PRO	C-O	5.22	1.33	1.23
1	С	582	ARG	CZ-NH2	5.12	1.39	1.33

All (77) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	526	ARG	NE-CZ-NH2	-24.16	108.22	120.30
1	В	817	ARG	NE-CZ-NH2	-23.25	108.68	120.30
1	А	526	ARG	NE-CZ-NH2	-22.85	108.87	120.30
1	В	817	ARG	NE-CZ-NH1	20.77	130.69	120.30
1	В	656	ARG	NE-CZ-NH2	-19.11	110.74	120.30
1	С	278	ASP	CB-CG-OD1	-16.92	103.07	118.30
1	В	526	ARG	NE-CZ-NH1	16.81	128.70	120.30
1	А	526	ARG	NE-CZ-NH1	16.32	128.46	120.30
1	С	817	ARG	NE-CZ-NH2	-16.27	112.17	120.30
1	С	825	ASN	CB-CG-ND2	-16.01	78.28	116.70
1	В	656	ARG	NE-CZ-NH1	15.84	128.22	120.30
1	С	825	ASN	OD1-CG-ND2	15.34	157.17	121.90
1	В	825	ASN	CB-CG-ND2	-13.28	84.83	116.70
1	С	817	ARG	NE-CZ-NH1	13.15	126.88	120.30
1	В	582	ARG	NE-CZ-NH1	13.04	126.82	120.30
1	С	656	ARG	NE-CZ-NH2	-12.27	114.17	120.30
1	А	108	ARG	NE-CZ-NH2	-12.19	114.20	120.30
1	В	108	ARG	NE-CZ-NH2	-11.89	114.36	120.30
1	С	656	ARG	NE-CZ-NH1	11.76	126.18	120.30
1	В	825	ASN	OD1-CG-ND2	11.71	148.82	121.90
1	В	907	ARG	NE-CZ-NH1	11.64	126.12	120.30
1	В	582	ARG	NE-CZ-NH2	-11.20	114.70	120.30
1	А	825	ASN	OD1-CG-ND2	10.77	146.67	121.90
1	А	907	ARG	NE-CZ-NH2	-10.58	115.01	120.30
1	С	615	ARG	NE-CZ-NH1	-10.44	115.08	120.30
1	А	108	ARG	NE-CZ-NH1	10.39	125.49	120.30
1	C	278	ASP	CB-CG-OD2	10.05	127.35	118.30
1	В	817	ARG	CD-NE-CZ	10.01	137.61	123.60
1	C	526	ARG	NE-CZ-NH2	-9.97	115.32	120.30
1	С	311	ARG	NE-CZ-NH2	-9.64	115.48	120.30
1	В	907	ARG	NE-CZ-NH2	-9.28	115.66	120.30

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
1	С	582	ARG	NE-CZ-NH2	-9.19	115.70	120.30
1	A	289	ASP	CB-CG-OD1	-9.18	110.03	118.30
1	С	615	ARG	NE-CZ-NH2	-8.77	115.91	120.30
1	A	656	ARG	NE-CZ-NH2	-8.49	116.06	120.30
1	С	45	ARG	NE-CZ-NH1	8.45	124.52	120.30
1	А	907	ARG	NE-CZ-NH1	8.19	124.39	120.30
1	А	582	ARG	NE-CZ-NH1	8.01	124.30	120.30
1	А	582	ARG	NE-CZ-NH2	-7.75	116.43	120.30
1	В	817	ARG	CG-CD-NE	-7.70	95.63	111.80
1	С	45	ARG	NE-CZ-NH2	-7.63	116.48	120.30
1	А	825	ASN	CB-CG-ND2	-7.51	98.68	116.70
1	В	108	ARG	NE-CZ-NH1	7.41	124.00	120.30
1	А	656	ARG	NE-CZ-NH1	7.31	123.96	120.30
1	А	526	ARG	CD-NE-CZ	7.17	133.64	123.60
1	С	817	ARG	CG-CD-NE	-6.94	97.23	111.80
1	В	526	ARG	CD-NE-CZ	6.76	133.07	123.60
1	С	311	ARG	NE-CZ-NH1	6.51	123.56	120.30
1	С	108	ARG	NE-CZ-NH2	-6.38	117.11	120.30
1	А	701	VAL	CB-CA-C	-6.25	99.52	111.40
1	С	526	ARG	NE-CZ-NH1	6.20	123.40	120.30
1	С	345	ARG	NE-CZ-NH1	6.10	123.35	120.30
1	А	713	GLY	N-CA-C	-6.10	97.86	113.10
1	С	907	ARG	NE-CZ-NH1	6.09	123.34	120.30
1	С	278	ASP	CB-CA-C	-5.97	98.46	110.40
1	В	656	ARG	CD-NE-CZ	5.93	131.91	123.60
1	В	700	LYS	CD-CE-NZ	5.93	125.35	111.70
1	С	568	ASP	CB-CG-OD1	5.92	123.63	118.30
1	А	211	ASP	CB-CG-OD1	-5.89	113.00	118.30
1	А	62	ARG	CG-CD-NE	-5.81	99.59	111.80
1	С	554	LEU	CB-CG-CD2	-5.74	101.24	111.00
1	В	453	LEU	CB-CG-CD1	5.66	120.62	111.00
1	С	912	HIS	O-C-N	5.62	131.70	122.70
1	С	328	VAL	CA-CB-CG2	-5.62	102.47	110.90
1	В	913	ARG	NE-CZ-NH2	-5.61	117.49	120.30
1	С	907	ARG	NE-CZ-NH2	-5.56	117.52	120.30
1	В	341	ASP	CB-CG-OD2	-5.46	113.38	118.30
1	В	399	ASP	CB-CG-OD2	5.45	123.20	118.30
1	С	817	ARG	CD-NE-CZ	5.27	130.97	123.60
1	A	526	ARG	CG-CD-NE	-5.21	100.86	111.80
1	С	615	ARG	CD-NE-CZ	-5.15	116.39	123.60
1	С	716	ARG	NE-CZ-NH1	5.15	122.87	120.30
1	В	395	CYS	CA-CB-SG	-5.10	104.82	114.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	71	ASP	CB-CG-OD1	5.05	122.85	118.30
1	С	656	ARG	CD-NE-CZ	5.03	130.63	123.60
1	А	395	CYS	CA-CB-SG	-5.02	104.97	114.00
1	С	45	ARG	CD-NE-CZ	5.01	130.62	123.60

There are no chirality outliers.

All (7) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	849	VAL	Peptide
1	В	817	ARG	Sidechain
1	С	236	THR	Peptide
1	С	323	THR	Peptide
1	С	331	GLY	Mainchain
1	С	615	ARG	Sidechain
1	С	914	GLY	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	7208	0	6804	109	0
1	В	7169	0	6783	144	0
1	С	7134	0	6705	137	0
2	А	25	0	0	1	0
2	В	60	0	0	2	0
2	С	25	0	0	0	0
3	А	56	0	98	33	0
3	В	96	0	168	53	0
3	С	40	0	70	9	0
4	А	542	0	0	2	0
4	В	563	0	0	10	0
4	С	416	0	0	6	0
All	All	23334	0	20628	385	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:913:ARG:C	1:C:913:ARG:CA	1.76	1.49
1:C:567:LYS:NZ	1:C:567:LYS:CE	1.74	1.48
1:B:425:SER:CB	1:B:425:SER:OG	1.65	1.41
1:B:227:LYS:H	3:B:1703:MPD:C1	1.53	1.19
3:B:1711:MPD:H11	3:B:1711:MPD:C5	1.72	1.17
3:B:1711:MPD:C1	3:B:1711:MPD:H52	1.76	1.16
1:B:72:ARG:HG3	1:B:72:ARG:HH11	1.01	1.14
3:B:1707:MPD:C5	3:B:1707:MPD:H11	1.77	1.11
3:B:1707:MPD:C1	3:B:1707:MPD:H52	1.78	1.11
3:A:1716:MPD:H31	1:B:766:GLY:H	1.02	1.11
1:A:666:LYS:HB2	1:A:666:LYS:HZ3	1.19	1.04
3:B:1707:MPD:H11	3:B:1707:MPD:H52	1.07	1.04
1:A:227:LYS:H	1:A:227:LYS:HE2	0.94	1.04
1:B:852:ARG:HD3	4:B:2225:HOH:O	1.57	1.03
3:A:1717:MPD:H12	3:A:1717:MPD:C5	1.88	1.03
1:A:336:LEU:HD21	4:A:2233:HOH:O	1.57	1.03
3:A:1717:MPD:H12	3:A:1717:MPD:H53	1.02	1.01
1:B:226:ASN:HB2	3:B:1703:MPD:H13	1.43	1.01
3:C:1713:MPD:H11	4:C:2068:HOH:O	1.59	1.00
1:B:170:ASP:HB2	1:B:174:GLN:H	1.26	1.00
1:B:227:LYS:H	3:B:1703:MPD:H11	1.20	1.00
3:B:1711:MPD:H11	3:B:1711:MPD:H52	1.01	0.98
3:A:1717:MPD:H53	3:A:1717:MPD:C1	1.94	0.98
1:A:227:LYS:HE2	1:A:227:LYS:N	1.79	0.97
1:C:74:ASP:OD1	1:C:567:LYS:HE2	1.68	0.94
3:A:1720:MPD:H11	1:C:405:ASP:HB3	1.49	0.94
1:A:666:LYS:HB2	1:A:666:LYS:NZ	1.84	0.93
1:C:61:GLN:HE22	1:C:604:HIS:HE1	0.97	0.93
1:B:227:LYS:N	3:B:1703:MPD:C1	2.32	0.92
1:A:253:ASN:OD1	3:A:1720:MPD:H12	1.69	0.92
1:B:61:GLN:HE22	1:B:604:HIS:HE1	1.17	0.92
3:A:1717:MPD:HM1	1:C:227:LYS:H	1.36	0.91
3:A:1716:MPD:H31	1:B:766:GLY:N	1.85	0.90
1:C:319:TYR:CZ	1:C:566:ARG:HG2	2.06	0.90
1:B:719:THR:HG21	1:B:724:GLU:OE2	1.72	0.89
1:B:72:ARG:HH11	1:B:72:ARG:CG	1.79	0.89
3:B:1718:MPD:HO2	3:B:1718:MPD:HO4	1.07	0.89
1:B:72:ARG:HG3	1:B:72:ARG:NH1	1.83	0.89
1:A:743:LYS:HE2	1:C:596:TYR:CZ	2.09	0.88
1:A:170:ASP:HB3	1:A:172:ASP:H	1.38	0.88

All (385) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:61:GLN:HE22	1:C:604:HIS:CE1	1.88	0.88
1:B:227:LYS:H	3:B:1703:MPD:H13	1.40	0.87
1:C:61:GLN:NE2	1:C:604:HIS:HE1	1.73	0.86
3:A:1720:MPD:HM3	1:C:406:THR:H	1.39	0.85
1:B:418:THR:HA	3:B:1722:MPD:H4	1.56	0.84
1:A:791:TYR:CE1	1:A:836:VAL:HG23	2.12	0.84
1:A:651:ASN:HD21	1:A:653:ALA:HB3	1.45	0.82
1:C:616:ASN:HD22	1:C:618:THR:HG22	1.45	0.80
1:B:227:LYS:N	3:B:1703:MPD:H11	1.95	0.80
1:C:555:LEU:H	1:C:910:GLN:HE22	1.30	0.79
1:A:650:ARG:NH1	1:A:925:PHE:CE1	2.51	0.79
3:A:1720:MPD:CM	1:C:406:THR:H	1.95	0.78
1:B:226:ASN:CB	3:B:1703:MPD:H13	2.13	0.78
1:C:792:LYS:H	1:C:792:LYS:HD3	1.47	0.77
1:B:482:ASP:OD1	3:B:1718:MPD:H32	1.85	0.77
3:A:1716:MPD:H11	1:B:766:GLY:HA3	1.66	0.76
1:C:567:LYS:NZ	1:C:567:LYS:CG	2.48	0.76
1:A:393:ASN:HD21	1:C:451:ASN:HD21	1.33	0.76
1:B:513:ASN:H	3:B:1709:MPD:H51	1.51	0.76
1:A:227:LYS:H	1:A:227:LYS:CE	1.87	0.75
3:B:1719:MPD:CM	3:B:1719:MPD:O4	2.35	0.75
1:A:371:ALA:HB3	1:A:526:ARG:CD	2.17	0.73
1:A:371:ALA:HB3	1:A:526:ARG:HD3	1.70	0.73
1:B:61:GLN:NE2	1:B:604:HIS:HE1	1.84	0.73
3:A:1705:MPD:O4	3:A:1705:MPD:HM1	1.89	0.72
1:B:248:MET:CE	1:B:266:VAL:HG21	2.18	0.72
1:B:666:LYS:HD3	3:B:1709:MPD:HM2	1.70	0.72
1:A:647:ILE:HD13	1:A:881:LEU:HD23	1.70	0.72
1:A:650:ARG:NH1	1:A:925:PHE:CD1	2.58	0.72
1:B:164:GLY:CA	1:B:248:MET:HE1	2.19	0.72
1:B:164:GLY:HA3	1:B:248:MET:HE1	1.73	0.71
1:A:666:LYS:HD3	3:A:1704:MPD:H12	1.72	0.71
1:C:629:ALA:HB1	1:C:899:VAL:HG13	1.71	0.71
1:C:792:LYS:HD3	1:C:792:LYS:N	2.03	0.71
1:C:615:ARG:HH22	1:C:913:ARG:HA	1.54	0.70
3:A:1720:MPD:H13	1:C:406:THR:O	1.91	0.70
1:B:891:ASP:HB3	4:B:2254:HOH:O	1.91	0.70
1:B:164:GLY:HA2	1:B:248:MET:CE	2.22	0.69
1:C:666:LYS:NZ	3:C:1713:MPD:H13	2.07	0.69
1:A:743:LYS:HE2	1:C:596:TYR:CE1	2.28	0.68
1:C:235:LYS:C	1:C:237:GLY:HA3	2.13	0.68

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:C:629:ALA:CB	1:C:899:VAL:HG13	2.24	0.68	
1:B:334:SER:O	1:B:334:SER:OG	2.11	0.67	
1:A:334:SER:O	1:A:335:GLN:CB	2.42	0.67	
1:A:651:ASN:HD21	1:A:653:ALA:CB	2.08	0.67	
1:A:687:TYR:HD1	1:A:688:LEU:HD13	1.57	0.67	
1:A:791:TYR:CD1	1:A:836:VAL:HG23	2.30	0.67	
1:B:470:ALA:O	1:B:471:ASN:OD1	2.11	0.67	
1:B:629:ALA:CB	1:B:899:VAL:HG13	2.24	0.67	
1:B:450:ARG:HD3	4:B:1903:HOH:O	1.94	0.67	
1:C:74:ASP:OD1	1:C:567:LYS:CE	2.42	0.67	
1:C:331:GLY:HA3	1:C:914:GLY:O	1.93	0.67	
1:C:567:LYS:NZ	1:C:567:LYS:HG2	2.09	0.66	
1:B:451:ASN:HD21	1:C:393:ASN:HD21	1.42	0.66	
1:C:913:ARG:CA	1:C:914:GLY:N	2.56	0.66	
1:B:555:LEU:H	1:B:910:GLN:HE22	1.42	0.66	
1:C:472:VAL:HG12	1:C:474:LEU:HD13	1.77	0.66	
1:B:80:LYS:HD3	3:B:1723:MPD:H11	1.76	0.66	
1:A:666:LYS:CE	3:A:1704:MPD:H12	2.27	0.65	
1:A:787:ASP:OD2	1:A:790:ASN:HB2	1.97	0.65	
1:B:170:ASP:HB3	1:B:172:ASP:H	1.61	0.64	
1:B:371:ALA:HB3	1:B:526:ARG:CD	2.27	0.64	
1:B:624:ASN:ND2	3:B:1711:MPD:C1	2.61	0.64	
1:B:72:ARG:CG	1:B:72:ARG:NH1	2.47	0.63	
1:B:248:MET:HE2	1:B:266:VAL:HG21	1.79	0.63	
1:A:743:LYS:HE3	1:C:99:TYR:OH	1.97	0.63	
1:B:59:ARG:NH2	4:B:2122:HOH:O	2.32	0.63	
1:A:170:ASP:HB2	1:A:174:GLN:H	1.65	0.62	
1:A:743:LYS:HE2	1:C:596:TYR:CE2	2.33	0.62	
1:C:319:TYR:CE2	1:C:566:ARG:HG2	2.33	0.62	
1:B:170:ASP:HB3	1:B:172:ASP:N	2.15	0.62	
1:C:282:VAL:HG13	1:C:815:THR:HG22	1.81	0.62	
1:C:526:ARG:NH2	1:C:574:GLN:OE1	2.30	0.62	
1:A:786:VAL:HG23	1:A:836:VAL:HG21	1.82	0.61	
1:C:61:GLN:NE2	1:C:604:HIS:CE1	2.57	0.61	
1:C:913:ARG:C	1:C:913:ARG:CB	2.67	0.61	
1:B:371:ALA:HB3	1:B:526:ARG:HD3	1.83	0.61	
1:B:399:ASP:OD1	1:C:150:TYR:OH	2.17	0.61	
1:B:568:ASP:OD1	1:B:582:ARG:HD3	2.01	0.61	
1:B:563:TRP:C	1:B:564:ASN:HD22	2.04	0.61	
1:A:170:ASP:HB3	1:A:172:ASP:N	2.12	0.60	
1:A:253:ASN:OD1	3:A:1720:MPD:C1	2.46	0.60	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:425:SER:CB	1:B:425:SER:HG	2.09	0.60	
1:A:629:ALA:CB	1:A:899:VAL:HG13	2.31	0.60	
1:A:666:LYS:CD	3:A:1704:MPD:H12	2.31	0.60	
1:A:472:VAL:HG12	1:A:474:LEU:HD13	1.84	0.60	
1:C:792:LYS:H	1:C:792:LYS:CD	2.14	0.60	
1:B:513:ASN:H	3:B:1709:MPD:C5	2.14	0.59	
1:A:666:LYS:HE3	3:A:1704:MPD:H12	1.85	0.59	
1:C:550:LYS:HD2	4:C:2042:HOH:O	2.01	0.59	
1:B:164:GLY:CA	1:B:248:MET:CE	2.79	0.59	
1:C:699:LYS:HB2	1:C:886:GLU:HG2	1.85	0.59	
1:A:470:ALA:O	1:A:471:ASN:OD1	2.19	0.59	
1:B:424:ASP:O	1:C:146:LYS:HE2	2.03	0.59	
1:B:667:GLU:OE2	3:B:1709:MPD:HM1	2.02	0.59	
1:A:45:ARG:HD3	1:B:624:ASN:HB2	1.85	0.58	
1:C:666:LYS:HD3	3:C:1713:MPD:HM3	1.84	0.58	
1:B:468:THR:HG23	1:B:474:LEU:HD22	1.86	0.58	
1:B:666:LYS:HD3	3:B:1709:MPD:H12	1.84	0.58	
1:C:687:TYR:HD1	1:C:688:LEU:HD13	1.69	0.58	
1:A:666:LYS:HZ3	1:A:666:LYS:CB	2.06	0.58	
1:A:687:TYR:CD1	1:A:688:LEU:HD13	2.39	0.58	
1:B:564:ASN:HD22	1:B:564:ASN:N	2.02	0.58	
1:A:468:THR:HG23	1:A:474:LEU:HD22	1.86	0.57	
1:B:164:GLY:HA2	1:B:248:MET:HE2	1.86	0.57	
1:C:83:TYR:O	1:C:560:THR:HA	2.05	0.57	
1:A:568:ASP:OD1	1:A:582:ARG:HD3	2.05	0.56	
1:B:629:ALA:HB1	1:B:899:VAL:HG13	1.86	0.56	
1:B:666:LYS:HD3	3:B:1709:MPD:CM	2.34	0.56	
1:B:226:ASN:CA	3:B:1703:MPD:H13	2.35	0.56	
1:C:445:GLN:HG2	4:C:1732:HOH:O	2.06	0.56	
1:A:666:LYS:HD3	3:A:1704:MPD:C1	2.36	0.56	
1:B:477:ASN:O	1:B:480:THR:HB	2.06	0.56	
1:B:226:ASN:HA	3:B:1703:MPD:H12	1.87	0.55	
3:B:1719:MPD:O4	3:B:1719:MPD:HM2	2.06	0.55	
1:A:454:TYR:CD2	1:B:391:LEU:HD13	2.41	0.55	
1:A:791:TYR:CZ	1:A:836:VAL:HG23	2.42	0.55	
1:C:515:PHE:CD1	1:C:691:THR:HB	2.42	0.55	
1:A:703:ILE:HG23	1:A:881:LEU:HD11	1.88	0.55	
1:B:819:GLY:H	1:C:436:ASN:ND2	2.03	0.55	
1:C:69:PRO:HB3	1:C:81:VAL:HG22	1.89	0.55	
1:A:620:ASP:OD2	1:A:907:ARG:HD3	2.07	0.54	
1:B:61:GLN:HE22	1:B:604:HIS:CE1	2.09	0.54	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:70:VAL:HG23	1:C:71:ASP:OD2	2.08	0.54
1:A:818:GLN:HE21	1:C:189:GLY:H	1.56	0.54
1:A:61:GLN:OE1	1:A:604:HIS:HE1	1.90	0.54
1:A:515:PHE:CD1	1:A:691:THR:HB	2.43	0.54
1:B:227:LYS:CB	3:B:1703:MPD:H11	2.38	0.54
1:A:656:ARG:HD3	1:A:902:VAL:O	2.08	0.54
1:B:45:ARG:HG3	1:B:45:ARG:HH11	1.72	0.54
1:C:67:PHE:HB2	1:C:595:LEU:HB3	1.90	0.54
1:C:615:ARG:NH2	1:C:913:ARG:HA	2.21	0.54
1:A:513:ASN:HB3	3:A:1704:MPD:H51	1.90	0.53
3:B:1719:MPD:O4	3:B:1719:MPD:HM1	2.08	0.53
1:B:227:LYS:N	3:B:1703:MPD:H13	2.11	0.53
1:A:666:LYS:NZ	1:A:666:LYS:CB	2.55	0.53
1:B:284:LYS:HE2	4:B:2044:HOH:O	2.07	0.53
1:C:570:ASN:ND2	1:C:582:ARG:HG3	2.24	0.53
3:B:1722:MPD:O4	3:B:1722:MPD:H11	2.08	0.53
1:A:303:ASN:HB3	1:A:481:TYR:OH	2.09	0.53
1:B:82:ARG:HE	1:B:560:THR:HG23	1.74	0.53
1:B:451:ASN:ND2	1:C:393:ASN:HD21	2.06	0.53
1:A:874:TYR:C	1:A:876:ASN:N	2.63	0.52
1:C:318:MET:HG2	1:C:565:PHE:CE1	2.44	0.52
1:A:73:GLU:OE1	1:A:80:LYS:HD2	2.08	0.52
1:B:515:PHE:CD1	1:B:691:THR:HB	2.45	0.52
1:B:676:ASP:OD1	2:B:1616:2HP:O1	2.27	0.52
1:C:333:ALA:O	1:C:334:SER:CB	2.56	0.52
1:A:216:PRO:HG2	1:A:300:ALA:HB2	1.91	0.52
1:A:667:GLU:OE2	3:A:1704:MPD:HM1	2.09	0.52
1:C:816:MET:SD	1:C:817:ARG:NH2	2.83	0.52
1:C:909:HIS:CD2	1:C:911:PRO:HD3	2.45	0.52
1:A:430:ASN:HD22	1:B:149:THR:H	1.58	0.52
1:C:450:ARG:HD3	4:C:1815:HOH:O	2.09	0.52
1:C:303:ASN:HB3	1:C:481:TYR:OH	2.10	0.52
1:C:666:LYS:CD	3:C:1713:MPD:HM3	2.39	0.52
1:B:226:ASN:HA	3:B:1703:MPD:C1	2.39	0.52
1:A:393:ASN:HD21	1:C:451:ASN:ND2	2.05	0.52
3:A:1720:MPD:C1	1:C:405:ASP:HB3	2.32	0.52
1:C:567:LYS:CG	1:C:567:LYS:HZ3	2.20	0.51
1:B:164:GLY:HA2	1:B:248:MET:HE1	1.88	0.51
1:A:516:ASN:HD22	3:A:1704:MPD:C5	2.24	0.51
1:A:242:LYS:HE2	1:A:244:TYR:OH	2.10	0.51
3:A:1720:MPD:HM3	1:C:406:THR:N	2.16	0.51

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:B:822:TYR:CD2	1:B:823:PRO:HD2	2.45	0.51	
1:C:567:LYS:NZ	1:C:567:LYS:CD	2.68	0.51	
1:B:58:ASP:OD1	1:B:58:ASP:N	2.39	0.50	
1:B:301:MET:CG	1:B:302:PRO:HD2	2.42	0.50	
1:C:567:LYS:HG2	1:C:567:LYS:HZ2	1.74	0.50	
1:B:226:ASN:CA	3:B:1703:MPD:C1	2.88	0.50	
1:A:659:SER:HA	1:A:851:TRP:O	2.12	0.50	
1:C:687:TYR:CD1	1:C:688:LEU:HD13	2.46	0.50	
1:B:114:PRO:HG2	1:C:501:GLY:HA3	1.94	0.50	
1:B:482:ASP:CG	3:B:1718:MPD:H4	2.32	0.50	
1:B:620:ASP:OD2	1:B:907:ARG:HD3	2.12	0.49	
1:C:568:ASP:HB2	1:C:675:PHE:HE1	1.77	0.49	
1:A:791:TYR:CD1	1:A:836:VAL:CG2	2.96	0.49	
3:B:1723:MPD:O2	3:B:1723:MPD:H53	2.12	0.49	
1:B:201:GLU:N	4:B:2154:HOH:O	2.46	0.49	
1:C:568:ASP:OD1	1:C:582:ARG:HD3	2.13	0.49	
1:C:711:TRP:CG	1:C:712:PRO:HA	2.48	0.49	
1:C:313:ASN:HD21	1:C:370:GLN:HG3	1.78	0.49	
1:A:847:ASP:O	1:A:848:ARG:HB2	2.11	0.49	
1:B:427:ASN:HB3	1:B:430:ASN:HD21	1.77	0.49	
1:B:61:GLN:NE2	1:B:604:HIS:CE1	2.72	0.48	
1:C:478:THR:HG23	1:C:483:TYR:CE1	2.48	0.48	
1:B:653:ALA:O	1:B:654:ALA:HB3	2.14	0.48	
3:A:1716:MPD:H32	4:B:1988:HOH:O	2.14	0.48	
1:A:172:ASP:O	1:A:173:ASP:HB2	2.14	0.48	
1:A:651:ASN:ND2	1:A:653:ALA:H	2.11	0.48	
1:C:454:TYR:CE1	1:C:489:VAL:HG13	2.48	0.48	
1:C:513:ASN:HB3	3:C:1713:MPD:H51	1.94	0.48	
1:A:307:TYR:O	1:A:575:SER:HA	2.14	0.48	
1:B:307:TYR:O	1:B:575:SER:HA	2.13	0.48	
1:B:610:LEU:HA	1:B:613:MET:HE2	1.96	0.48	
1:A:701:VAL:HG13	1:A:885:PHE:CD2	2.49	0.47	
1:C:110:PRO:HD2	1:C:584:ASP:O	2.14	0.47	
1:A:126:LYS:HE2	1:B:389:ASP:O	2.15	0.47	
1:B:248:MET:HE3	1:B:266:VAL:HG21	1.93	0.47	
1:A:501:GLY:HA3	1:C:114:PRO:HG2	1.96	0.47	
1:C:103:ARG:HG3	1:C:539:HIS:CD2	2.49	0.47	
1:C:700:LYS:HD3	1:C:722:GLU:OE2	2.15	0.47	
1:C:572:ILE:HD11	1:C:588:ILE:HG21	1.95	0.47	
1:B:816:MET:HA	1:C:394:TYR:OH	2.15	0.47	
1:A:472:VAL:CG1	1:A:474:LEU:HD13	2.45	0.47	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:819:GLY:H	1:B:436:ASN:ND2	2.13	0.47	
1:B:475:PRO:HG2	1:B:480:THR:HG21	1.96	0.47	
1:C:666:LYS:CE	3:C:1713:MPD:H13	2.45	0.47	
3:B:1711:MPD:C5	3:B:1711:MPD:C1	2.44	0.47	
1:A:786:VAL:HG23	1:A:836:VAL:CG2	2.45	0.46	
3:A:1702:MPD:HM1	4:A:1815:HOH:O	2.14	0.46	
1:B:666:LYS:CD	3:B:1709:MPD:H12	2.45	0.46	
3:A:1716:MPD:HM2	4:B:2251:HOH:O	2.15	0.46	
1:B:667:GLU:HG2	1:B:681:TYR:CZ	2.50	0.46	
3:C:1714:MPD:H11	3:C:1714:MPD:O4	2.16	0.46	
1:A:440:MET:HE1	1:B:440:MET:HG2	1.97	0.46	
1:B:700:LYS:HB3	1:B:700:LYS:HE3	1.73	0.46	
1:C:550:LYS:NZ	4:C:2076:HOH:O	2.35	0.46	
1:B:175:PRO:HB2	1:B:177:TYR:CE1	2.51	0.46	
1:C:459:LEU:HD23	1:C:489:VAL:CG1	2.45	0.46	
1:C:816:MET:HE3	1:C:817:ARG:HH21	1.81	0.46	
1:C:568:ASP:HB2	1:C:675:PHE:CE1	2.51	0.46	
1:C:555:LEU:HB3	1:C:556:PRO:HD2	1.98	0.46	
1:C:652:TRP:HB2	1:C:872:MET:HG2	1.97	0.46	
1:C:659:SER:HA	1:C:851:TRP:O	2.15	0.46	
3:A:1704:MPD:HM1	3:A:1704:MPD:H4	1.54	0.45	
1:C:307:TYR:O	1:C:575:SER:HA	2.16	0.45	
1:A:717:LEU:HB2	1:A:720:PRO:HA	1.97	0.45	
1:C:599:PHE:CD1	1:C:599:PHE:N	2.84	0.45	
1:B:513:ASN:HB2	3:B:1709:MPD:H51	1.98	0.45	
1:B:555:LEU:H	1:B:910:GLN:NE2	2.10	0.45	
1:B:624:ASN:ND2	3:B:1711:MPD:H12	2.29	0.45	
1:B:819:GLY:H	1:C:436:ASN:HD22	1.63	0.45	
1:C:279:THR:HG22	1:C:302:PRO:HA	1.98	0.45	
1:C:656:ARG:NH1	1:C:901:GLU:HB3	2.31	0.45	
1:A:922:ARG:O	1:A:926:SER:HA	2.16	0.45	
1:B:819:GLY:O	1:C:437:PRO:HD3	2.17	0.45	
1:C:498:ILE:O	1:C:499:ASN:C	2.55	0.45	
1:B:513:ASN:CB	3:B:1709:MPD:H51	2.47	0.45	
1:C:704:THR:O	1:C:881:LEU:HD12	2.16	0.45	
3:B:1709:MPD:HM1	3:B:1709:MPD:H4	1.67	0.45	
3:B:1723:MPD:O4	3:B:1723:MPD:HM1	2.16	0.45	
1:C:574:GLN:HA	1:C:682:SER:O	2.16	0.45	
1:A:616:ASN:HD22	1:A:617:ASP:N	2.15	0.45	
1:A:641:THR:HG22	1:A:889:PRO:HD3	1.99	0.45	
1:C:644:PRO:HA	1:C:884:ASN:HD22	1.82	0.45	

	A	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:72:ARG:HA	1:A:80:LYS:O	2.17	0.45
1:B:80:LYS:HB3	3:B:1723:MPD:HM3	1.99	0.45
1:C:85:LEU:N	1:C:559:TYR:O	2.49	0.45
1:A:394:TYR:OH	1:C:816:MET:HA	2.18	0.44
1:B:498:ILE:O	1:B:499:ASN:C	2.54	0.44
1:B:700:LYS:HG2	1:B:886:GLU:HB3	1.98	0.44
3:A:1720:MPD:HM3	1:C:406:THR:HB	2.00	0.44
1:A:667:GLU:OE2	3:A:1704:MPD:CM	2.66	0.44
1:A:650:ARG:HE	1:A:650:ARG:HB3	1.66	0.44
1:B:242:LYS:HE2	1:B:244:TYR:OH	2.18	0.44
1:B:420:TRP:HB2	1:C:261:LEU:O	2.16	0.44
1:A:69:PRO:HD3	1:A:594:ASN:HD22	1.83	0.44
1:C:617:ASP:OD1	1:C:909:HIS:CE1	2.71	0.44
1:B:313:ASN:HA	1:B:368:TRP:O	2.18	0.44
1:B:656:ARG:HD3	1:B:902:VAL:O	2.18	0.44
2:A:1610:2HP:O2	1:C:539:HIS:ND1	2.41	0.44
1:B:6:LEU:HD23	1:B:9:TRP:CE3	2.53	0.44
1:B:17:GLN:HB3	1:B:21:GLU:HB2	2.00	0.44
1:A:255:SER:OG	3:A:1720:MPD:H4	2.18	0.43
1:B:564:ASN:N	1:B:564:ASN:ND2	2.66	0.43
1:A:430:ASN:ND2	1:B:149:THR:H	2.15	0.43
1:B:279:THR:HG22	1:B:302:PRO:HA	2.00	0.43
1:B:418:THR:CA	3:B:1722:MPD:H4	2.40	0.43
1:B:666:LYS:HD3	3:B:1709:MPD:C1	2.48	0.43
1:B:470:ALA:O	1:B:471:ASN:CB	2.63	0.43
1:A:17:GLN:HB3	1:A:21:GLU:HB2	2.01	0.43
1:A:816:MET:HA	1:B:394:TYR:OH	2.17	0.43
1:A:874:TYR:C	1:A:876:ASN:H	2.21	0.43
1:B:112:PHE:HB2	1:B:308:ILE:HD12	2.00	0.43
1:B:301:MET:HG2	1:B:302:PRO:HD2	1.98	0.43
1:C:319:TYR:CZ	1:C:566:ARG:CG	2.92	0.43
1:B:67:PHE:HB2	1:B:595:LEU:HB3	2.00	0.43
1:C:644:PRO:CA	1:C:884:ASN:HD22	2.31	0.43
1:C:653:ALA:O	1:C:654:ALA:HB3	2.17	0.43
1:A:344:ASP:HB3	1:A:922:ARG:HH12	1.84	0.43
3:B:1723:MPD:O2	3:B:1723:MPD:C5	2.66	0.43
1:C:70:VAL:N	1:C:82:ARG:O	2.50	0.43
1:C:555:LEU:HD12	1:C:910:GLN:HB2	2.00	0.43
1:A:564:ASN:N	1:A:564:ASN:HD22	2.17	0.43
1:A:313:ASN:HD21	1:A:370:GLN:HG3	1.84	0.43
1:C:319:TYR:CE2	1:C:566:ARG:CG	3.01	0.43

	A	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:C:656:ARG:HD3	1:C:902:VAL:O	2.18	0.43	
1:C:329:LEU:O	1:C:338:ALA:N	2.50	0.42	
1:A:407:TYR:HB3	1:B:251:PHE:HB3	2.01	0.42	
3:C:1713:MPD:C1	4:C:2068:HOH:O	2.37	0.42	
1:C:101:ASP:OD1	1:C:539:HIS:NE2	2.52	0.42	
1:A:114:PRO:O	1:B:501:GLY:HA2	2.19	0.42	
1:A:715:ASP:O	1:C:62:ARG:HA	2.20	0.42	
1:A:660:PHE:HA	1:A:897:TYR:O	2.19	0.42	
1:A:743:LYS:CE	1:C:596:TYR:CE1	3.00	0.42	
1:C:70:VAL:HG22	1:C:82:ARG:O	2.20	0.42	
1:C:660:PHE:HA	1:C:897:TYR:O	2.20	0.42	
3:B:1707:MPD:H51	4:B:2256:HOH:O	2.19	0.42	
1:B:468:THR:CG2	1:B:474:LEU:HD22	2.49	0.42	
1:C:427:ASN:HB3	1:C:430:ASN:HD21	1.85	0.42	
1:B:248:MET:HE1	1:B:268:TYR:OH	2.19	0.41	
1:B:650:ARG:HE	1:B:650:ARG:HB3	1.69	0.41	
1:A:644:PRO:HB3	1:A:884:ASN:HD22	1.85	0.41	
1:A:706:ASP:O	1:A:708:SER:N	2.53	0.41	
1:B:58:ASP:OD1	2:B:1606:2HP:O3	2.38	0.41	
1:A:313:ASN:HA	1:A:368:TRP:O	2.20	0.41	
1:C:629:ALA:CB	1:C:899:VAL:CG1	2.98	0.41	
1:C:311:ARG:NH2	1:C:683:GLY:O	2.34	0.41	
1:C:650:ARG:HE	1:C:650:ARG:HB3	1.52	0.41	
1:C:705:PHE:O	1:C:706:ASP:C	2.58	0.41	
1:B:466:LYS:HG2	1:B:489:VAL:HG22	2.03	0.41	
1:A:563:TRP:C	1:A:564:ASN:HD22	2.24	0.41	
1:A:799:LEU:HD23	3:A:1705:MPD:H31	2.03	0.41	
1:A:924:PRO:O	1:A:925:PHE:HB2	2.20	0.41	
1:B:407:TYR:HB3	1:C:251:PHE:HB3	2.03	0.41	
1:C:565:PHE:CD2	1:C:565:PHE:N	2.89	0.41	
1:A:242:LYS:HE2	1:A:244:TYR:CZ	2.56	0.41	
1:B:246:ILE:HA	1:B:269:THR:O	2.21	0.41	
1:B:323:THR:N	1:B:343:GLN:OE1	2.42	0.41	
1:B:790:ASN:ND2	4:B:2247:HOH:O	2.38	0.41	
3:B:1721:MPD:H11	3:B:1721:MPD:H4	1.77	0.41	
1:C:611:GLU:O	1:C:615:ARG:HG3	2.21	0.41	
1:C:666:LYS:HZ3	3:C:1713:MPD:H13	1.86	0.41	
1:A:819:GLY:O	1:B:437:PRO:HD3	2.21	0.41	
3:A:1720:MPD:HM3	1:C:406:THR:CB	2.51	0.41	
1:B:711:TRP:CG	1:B:712:PRO:HA	2.56	0.41	
1:C:704:THR:HA	1:C:709:VAL:O	2.21	0.41	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	$distance ({ m \AA})$	overlap (Å)
1:A:531:GLY:HA3	1:B:784:GLN:OE1	2.20	0.40
1:A:470:ALA:O	1:A:471:ASN:CB	2.68	0.40
1:B:53:HIS:O	1:B:54:ASP:HB2	2.20	0.40
1:B:667:GLU:OE2	3:B:1709:MPD:CM	2.68	0.40
1:B:703:ILE:HG23	1:B:881:LEU:HD11	2.02	0.40
1:C:313:ASN:HA	1:C:368:TRP:O	2.22	0.40
1:C:890:MET:C	1:C:892:GLU:H	2.25	0.40
1:B:482:ASP:OD1	3:B:1718:MPD:H4	2.22	0.40
1:B:624:ASN:CG	3:B:1711:MPD:C1	2.90	0.40
1:C:79:TYR:CE2	1:C:593:ILE:HD12	2.57	0.40
1:C:406:THR:HG22	1:C:429:ALA:HA	2.03	0.40
1:A:170:ASP:HB2	1:A:174:GLN:N	2.32	0.40
1:A:397:PRO:HD3	1:A:438:PHE:O	2.20	0.40
1:A:629:ALA:HB1	1:A:899:VAL:HG13	2.03	0.40
1:B:553:LEU:HD12	1:B:553:LEU:HA	1.93	0.40
1:B:664:LYS:HZ2	3:B:1709:MPD:H52	1.86	0.40
1:C:159:ASN:OD1	1:C:202:LYS:HE2	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	907/932~(97%)	873 (96%)	32~(4%)	2(0%)	47	49
1	В	896/932~(96%)	858 (96%)	38 (4%)	0	100	100
1	С	901/932~(97%)	858 (95%)	41 (5%)	2 (0%)	47	49
All	All	2704/2796~(97%)	2589 (96%)	111 (4%)	4 (0%)	51	54

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	707	SER
1	А	335	GLN
1	С	334	SER
1	С	238	THR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	764/799~(96%)	736~(96%)	28~(4%)	34 35
1	В	764/799~(96%)	730~(96%)	34~(4%)	27 27
1	С	750/799~(94%)	723~(96%)	27 (4%)	35 36
All	All	2278/2397~(95%)	2189 (96%)	89 (4%)	32 33

All (89) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	21	GLU
1	А	162	LYS
1	А	171	THR
1	А	226	ASN
1	А	227	LYS
1	А	323	THR
1	А	336	LEU
1	А	343	GLN
1	А	353	LEU
1	А	358	LEU
1	А	369	ASN
1	А	391	LEU
1	А	398	LEU
1	А	448	LEU
1	А	471	ASN
1	А	474	LEU
1	А	476	THR
1	А	495	ASP
1	А	616	ASN

Mol	Chain	Res	Type
1	А	628	SER
1	А	646	SER
1	А	666	LYS
1	А	688	LEU
1	А	701	VAL
1	А	729	VAL
1	А	817	ARG
1	А	907	ARG
1	А	913	ARG
1	В	6	LEU
1	В	59	ARG
1	В	60	SER
1	В	72	ARG
1	В	108	ARG
1	В	145	GLU
1	В	162	LYS
1	В	172	ASP
1	В	242	LYS
1	В	296	LEU
1	В	332	GLN
1	В	334	SER
1	В	353	LEU
1	В	358	LEU
1	В	361	ARG
1	В	369	ASN
1	В	391	LEU
1	В	418	THR
1	В	448	LEU
1	В	453	LEU
1	В	459	LEU
1	В	471	ASN
1	B	474	LEU
1	B	478	THR
1	B	480	THR
1	B	558	SER
1	B	563	TRP
1	B	589	SER
1	B	624	ASN
1	B	649	SER
1	B	673	SER
1	B	700	LYS
1	В	708	SER

Mol	Chain	Res	Type
1	В	817	ARG
1	С	45	ARG
1	С	59	ARG
1	С	91	ARG
1	С	322	SER
1	С	326	MET
1	С	332	GLN
1	С	343	GLN
1	С	353	LEU
1	С	358	LEU
1	С	361	ARG
1	С	369	ASN
1	С	398	LEU
1	С	440	MET
1	С	474	LEU
1	С	495	ASP
1	С	563	TRP
1	С	624	ASN
1	С	628	SER
1	С	632	MET
1	С	649	SER
1	С	670	SER
1	С	688	LEU
1	С	700	LYS
1	С	702	SER
1	С	727	ARG
1	С	792	LYS
1	С	817	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (49) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	75	ASN
1	А	130	ASN
1	А	226	ASN
1	А	231	GLN
1	А	313	ASN
1	А	325	ASN
1	А	430	ASN
1	А	564	ASN
1	А	594	ASN
1	А	604	HIS

Mol	Chain	Res	Type
1	А	616	ASN
1	А	651	ASN
1	А	803	HIS
1	А	818	GLN
1	А	871	ASN
1	А	884	ASN
1	В	8	GLN
1	В	61	GLN
1	В	253	ASN
1	В	313	ASN
1	В	325	ASN
1	В	430	ASN
1	В	436	ASN
1	В	451	ASN
1	В	471	ASN
1	В	564	ASN
1	В	604	HIS
1	В	624	ASN
1	В	790	ASN
1	В	825	ASN
1	В	910	GLN
1	С	29	GLN
1	С	61	GLN
1	С	130	ASN
1	С	231	GLN
1	С	253	ASN
1	С	313	ASN
1	С	332	GLN
1	С	427	ASN
1	С	430	ASN
1	С	436	ASN
1	С	451	ASN
1	С	604	HIS
1	С	616	ASN
1	С	790	ASN
1	С	825	ASN
1	С	871	ASN
1	С	884	ASN
1	С	910	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

46 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Ros Link Bond lengths Bond an			ond ang	gles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	2HP	С	1611	-	4,4,4	5.94	2(50%)	$6,\!6,\!6$	0.98	0
2	2HP	А	1620	-	4,4,4	5.87	2 (50%)	$6,\!6,\!6$	0.91	0
3	MPD	А	1720	-	7,7,7	0.34	0	9,10,10	0.78	0
3	MPD	В	1718	-	7,7,7	0.87	0	9,10,10	1.50	2 (22%)
3	MPD	В	1703	-	7,7,7	0.72	0	9,10,10	0.75	0
3	MPD	В	1710	-	7,7,7	0.55	0	9,10,10	0.67	0
2	2HP	В	1616	-	4,4,4	6.24	2 (50%)	$6,\!6,\!6$	0.79	0
2	2HP	В	1601	-	4,4,4	<mark>5.09</mark>	2 (50%)	6,6,6	1.37	1 (16%)
2	2HP	С	1613	-	4,4,4	5.84	2 (50%)	6,6,6	1.42	1 (16%)
3	MPD	А	1704	-	7,7,7	0.70	0	9,10,10	0.77	1 (11%)
2	2HP	А	1602	-	4,4,4	5.73	2 (50%)	6,6,6	1.36	1 (16%)
2	2HP	С	1618	-	4,4,4	5.62	2 (50%)	6,6,6	1.48	1 (16%)
3	MPD	А	1705	-	7,7,7	0.33	0	9,10,10	0.76	1 (11%)
3	MPD	А	1702	-	7,7,7	0.45	0	9,10,10	1.84	4 (44%)
3	MPD	С	1701	-	7,7,7	0.35	0	9,10,10	0.82	0

Mal	Tuno	Chain	Pog	Tink	B	ond leng	gths	Bond angles		
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	2HP	В	1614	-	4,4,4	5.74	2(50%)	$6,\!6,\!6$	1.26	1 (16%)
3	MPD	С	1713	-	7,7,7	0.53	0	9,10,10	1.31	1 (11%)
3	MPD	В	1721	-	7,7,7	0.31	0	9,10,10	0.60	0
3	MPD	В	1711	-	7,7,7	0.36	0	9,10,10	0.99	0
2	2HP	С	1604	-	4,4,4	5.16	2 (50%)	$6,\!6,\!6$	1.43	1 (16%)
2	2HP	С	1617	-	4,4,4	6.23	2 (50%)	$6,\!6,\!6$	1.46	1 (16%)
3	MPD	В	1708	-	7,7,7	0.35	0	9,10,10	0.47	0
2	2HP	В	1621	-	4,4,4	6.01	2 (50%)	$6,\!6,\!6$	0.95	0
2	2HP	В	1609	-	4,4,4	4.51	2 (50%)	6,6,6	2.20	3 (50%)
3	MPD	А	1706	-	7,7,7	0.30	0	9,10,10	0.96	0
3	MPD	С	1712	-	7,7,7	0.63	0	9,10,10	0.96	1 (11%)
2	2HP	А	1610	-	4,4,4	<mark>5.33</mark>	2 (50%)	6,6,6	1.84	1 (16%)
2	2HP	А	1619	-	4,4,4	6.32	2 (50%)	6,6,6	1.50	2 (33%)
2	2HP	В	1608	-	4,4,4	5.96	2 (50%)	6,6,6	1.11	1 (16%)
2	2HP	В	1605	-	4,4,4	5.84	2 (50%)	6,6,6	1.58	2 (33%)
3	MPD	С	1714	-	7,7,7	0.41	0	9,10,10	0.33	0
2	2HP	В	1612	-	4,4,4	5.98	2 (50%)	6,6,6	1.11	0
3	MPD	А	1717	-	7,7,7	0.57	0	9,10,10	0.89	0
3	MPD	В	1723	-	7,7,7	0.41	0	9,10,10	0.69	0
2	2HP	В	1622	-	4,4,4	5.11	2 (50%)	$6,\!6,\!6$	1.70	1 (16%)
3	MPD	С	1715	-	7,7,7	0.29	0	9,10,10	0.33	0
3	MPD	В	1709	-	7,7,7	1.10	0	9,10,10	1.12	1 (11%)
2	2HP	А	1603	-	4,4,4	5.40	2 (50%)	6,6,6	1.12	0
2	2HP	В	1607	-	4,4,4	<mark>5.54</mark>	2 (50%)	6,6,6	1.82	2 (33%)
3	MPD	В	1719	-	7,7,7	0.37	0	9,10,10	0.85	0
3	MPD	В	1722	-	7,7,7	0.56	0	9,10,10	0.52	0
3	MPD	В	1724	-	7,7,7	0.32	0	9,10,10	0.67	0
2	2HP	В	1615		4,4,4	<mark>6.35</mark>	2(50%)	6,6,6	1.68	3 (50%)
3	MPD	В	1707	-	7,7,7	0.40	0	9,10,10	0.44	0
3	MPD	A	1716		7,7,7	1.01	0	9,10,10	1.12	0
2	2HP	В	1606	-	4,4,4	<mark>5.39</mark>	2(50%)	$6,\!6,\!6$	0.88	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

20BE

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	MPD	А	1720	-	1/1/2/2	4/5/5/5	-
3	MPD	В	1718	-	1/1/2/2	2/5/5/5	-
3	MPD	В	1703	-	-	0/5/5/5	-
3	MPD	В	1710	-	-	0/5/5/5	-
3	MPD	А	1704	-	1/1/2/2	5/5/5/5	-
3	MPD	А	1705	-	-	2/5/5/5	-
3	MPD	С	1713	-	1/1/2/2	5/5/5/5	-
3	MPD	А	1702	-	-	0/5/5/5	-
3	MPD	С	1701	-	-	3/5/5/5	-
3	MPD	В	1721	-	1/1/2/2	0/5/5/5	-
3	MPD	В	1711	-	-	4/5/5/5	-
3	MPD	В	1708	-	-	0/5/5/5	-
3	MPD	С	1712	-	-	3/5/5/5	-
3	MPD	А	1706	-	-	0/5/5/5	-
3	MPD	С	1714	-	-	0/5/5/5	-
3	MPD	А	1717	-	1/1/2/2	3/5/5/5	-
3	MPD	В	1723	-	-	1/5/5/5	-
3	MPD	С	1715	-	-	0/5/5/5	-
3	MPD	В	1709	-	-	2/5/5/5	-
3	MPD	В	1719	-	1/1/2/2	2/5/5/5	-
3	MPD	В	1722	-	1/1/2/2	2/5/5/5	-
3	MPD	В	1724	-	1/1/2/2	2/5/5/5	-
3	MPD	В	1707	-	-	5/5/5/5	-
3	MPD	А	1716	-	-	2/5/5/5	-

All (44) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	В	1615	2HP	P-04	9.88	1.84	1.54
2	С	1617	2HP	P-O3	9.31	1.82	1.54
2	В	1616	2HP	P-O3	9.14	1.82	1.54
2	А	1619	2HP	P-04	8.94	1.81	1.54
2	А	1619	2HP	P-O3	8.93	1.81	1.54
2	С	1611	2HP	P-04	8.89	1.81	1.54
2	В	1612	2HP	P-O3	8.72	1.80	1.54
2	В	1621	2HP	P-04	8.54	1.80	1.54
2	В	1608	2HP	P-O3	8.42	1.79	1.54
2	В	1605	2HP	P-O3	8.40	1.79	1.54
2	С	1613	2HP	P-04	8.38	1.79	1.54
2	В	1621	2HP	P-03	8.37	1.79	1.54

~~~

| Mol | Chain | Res               | Type | Atoms | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|-------------------|------|-------|------|-------------|----------|
| 2   | В     | 1616              | 2HP  | P-O4  | 8.36 | 1.79        | 1.54     |
| 2   | В     | 1608              | 2HP  | P-O4  | 8.33 | 1.79        | 1.54     |
| 2   | А     | 1620              | 2HP  | P-O3  | 8.32 | 1.79        | 1.54     |
| 2   | В     | 1614              | 2HP  | P-O3  | 8.24 | 1.79        | 1.54     |
| 2   | А     | 1620              | 2HP  | P-O4  | 8.19 | 1.79        | 1.54     |
| 2   | С     | 1618              | 2HP  | P-O4  | 8.18 | 1.79        | 1.54     |
| 2   | В     | 1607              | 2HP  | P-O4  | 8.16 | 1.79        | 1.54     |
| 2   | С     | 1617              | 2HP  | P-04  | 8.10 | 1.79        | 1.54     |
| 2   | В     | 1612              | 2HP  | P-O4  | 8.10 | 1.78        | 1.54     |
| 2   | В     | 1605              | 2HP  | P-04  | 8.09 | 1.78        | 1.54     |
| 2   | А     | 1602              | 2HP  | P-04  | 8.04 | 1.78        | 1.54     |
| 2   | А     | 1602              | 2HP  | P-O3  | 7.99 | 1.78        | 1.54     |
| 2   | А     | 1603              | 2HP  | P-04  | 7.91 | 1.78        | 1.54     |
| 2   | В     | 1614              | 2HP  | P-O4  | 7.88 | 1.78        | 1.54     |
| 2   | С     | 1613              | 2HP  | P-O3  | 7.86 | 1.78        | 1.54     |
| 2   | С     | 1611              | 2HP  | P-O3  | 7.83 | 1.78        | 1.54     |
| 2   | В     | 1606              | 2HP  | P-O3  | 7.82 | 1.78        | 1.54     |
| 2   | В     | 1615              | 2HP  | P-O3  | 7.78 | 1.78        | 1.54     |
| 2   | С     | 1618              | 2HP  | P-O3  | 7.64 | 1.77        | 1.54     |
| 2   | В     | 1622              | 2HP  | P-O3  | 7.64 | 1.77        | 1.54     |
| 2   | В     | 1601              | 2HP  | P-O3  | 7.59 | 1.77        | 1.54     |
| 2   | А     | 1610              | 2HP  | P-O3  | 7.57 | 1.77        | 1.54     |
| 2   | В     | 1607              | 2HP  | P-O3  | 7.47 | 1.77        | 1.54     |
| 2   | В     | 1606              | 2HP  | P-O4  | 7.38 | 1.76        | 1.54     |
| 2   | С     | 1604              | 2HP  | P-O3  | 7.37 | 1.76        | 1.54     |
| 2   | А     | 1610              | 2HP  | P-04  | 7.37 | 1.76        | 1.54     |
| 2   | А     | 1603              | 2HP  | P-O3  | 7.18 | 1.76        | 1.54     |
| 2   | С     | 1604              | 2HP  | P-04  | 7.11 | 1.76        | 1.54     |
| 2   | В     | $16\overline{22}$ | 2HP  | P-04  | 6.49 | 1.74        | 1.54     |
| 2   | В     | 1609              | 2HP  | P-03  | 6.40 | 1.73        | 1.54     |
| 2   | В     | 1601              | 2HP  | P-04  | 6.35 | 1.73        | 1.54     |
| 2   | В     | 1609              | 2HP  | P-04  | 6.23 | 1.73        | 1.54     |

All (33) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|----------|-------|------------------|---------------|
| 2   | А     | 1610 | 2HP  | O2-P-O1  | 3.78  | 124.74           | 110.89        |
| 2   | В     | 1609 | 2HP  | O4-P-O2  | -3.30 | 97.38            | 107.97        |
| 2   | В     | 1622 | 2HP  | O4-P-O3  | 3.14  | 118.06           | 107.97        |
| 3   | В     | 1709 | MPD  | O4-C4-C5 | 3.05  | 122.59           | 109.38        |
| 2   | В     | 1607 | 2HP  | O2-P-O1  | 2.98  | 121.80           | 110.89        |
| 2   | С     | 1617 | 2HP  | O2-P-O1  | 2.85  | 121.33           | 110.89        |



| Mol | Chain | Res  | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|----------|-------|------------------|---------------|
| 3   | А     | 1702 | MPD  | O2-C2-C1 | 2.67  | 116.64           | 108.08        |
| 2   | В     | 1609 | 2HP  | O3-P-O1  | -2.66 | 101.18           | 110.89        |
| 2   | В     | 1607 | 2HP  | O4-P-O3  | -2.60 | 99.62            | 107.97        |
| 3   | В     | 1718 | MPD  | O2-C2-C3 | -2.59 | 100.08           | 109.80        |
| 3   | А     | 1702 | MPD  | CM-C2-C3 | 2.56  | 121.87           | 109.96        |
| 3   | А     | 1702 | MPD  | C1-C2-C3 | -2.54 | 98.13            | 109.96        |
| 3   | А     | 1702 | MPD  | CM-C2-C1 | -2.51 | 105.34           | 110.57        |
| 2   | А     | 1602 | 2HP  | O4-P-O3  | -2.51 | 99.93            | 107.97        |
| 2   | А     | 1619 | 2HP  | O2-P-O1  | 2.50  | 120.04           | 110.89        |
| 2   | А     | 1619 | 2HP  | O3-P-O1  | -2.50 | 101.76           | 110.89        |
| 2   | С     | 1604 | 2HP  | O3-P-O2  | -2.49 | 99.97            | 107.97        |
| 2   | В     | 1615 | 2HP  | O2-P-O1  | 2.48  | 119.97           | 110.89        |
| 2   | В     | 1614 | 2HP  | O2-P-O1  | 2.41  | 119.73           | 110.89        |
| 2   | В     | 1609 | 2HP  | O2-P-O1  | 2.37  | 119.56           | 110.89        |
| 2   | В     | 1608 | 2HP  | O2-P-O1  | 2.28  | 119.24           | 110.89        |
| 3   | С     | 1713 | MPD  | O4-C4-C5 | 2.26  | 119.15           | 109.38        |
| 2   | В     | 1605 | 2HP  | O2-P-O1  | 2.21  | 119.00           | 110.89        |
| 3   | А     | 1704 | MPD  | O4-C4-C5 | 2.18  | 118.83           | 109.38        |
| 2   | В     | 1605 | 2HP  | O3-P-O1  | -2.18 | 102.93           | 110.89        |
| 3   | С     | 1712 | MPD  | CM-C2-C1 | -2.08 | 106.24           | 110.57        |
| 2   | В     | 1615 | 2HP  | O3-P-O2  | -2.06 | 101.34           | 107.97        |
| 3   | А     | 1705 | MPD  | CM-C2-C1 | 2.05  | 114.85           | 110.57        |
| 2   | В     | 1601 | 2HP  | O2-P-O1  | 2.05  | 118.39           | 110.89        |
| 2   | В     | 1615 | 2HP  | 04-P-01  | -2.03 | 103.47           | 110.89        |
| 2   | С     | 1613 | 2HP  | O3-P-O2  | 2.03  | 114.47           | 107.97        |
| 3   | В     | 1718 | MPD  | O4-C4-C3 | 2.02  | 119.51           | 111.36        |
| 2   | С     | 1618 | 2HP  | O3-P-O2  | -2.01 | 101.52           | 107.97        |

Continued from previous page...

All (9) chirality outliers are listed below:

| Mol | Chain | Res  | Type | Atom |
|-----|-------|------|------|------|
| 3   | А     | 1704 | MPD  | C4   |
| 3   | А     | 1717 | MPD  | C4   |
| 3   | А     | 1720 | MPD  | C4   |
| 3   | В     | 1718 | MPD  | C4   |
| 3   | В     | 1719 | MPD  | C4   |
| 3   | В     | 1721 | MPD  | C4   |
| 3   | В     | 1722 | MPD  | C4   |
| 3   | В     | 1724 | MPD  | C4   |
| 3   | С     | 1713 | MPD  | C4   |

All (47) torsion outliers are listed below:



| 2OBE |
|------|
|------|

| Mol | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 3   | А     | 1704 | MPD  | CM-C2-C3-C4 |
| 3   | А     | 1705 | MPD  | C2-C3-C4-O4 |
| 3   | А     | 1716 | MPD  | C2-C3-C4-O4 |
| 3   | А     | 1717 | MPD  | C2-C3-C4-O4 |
| 3   | А     | 1717 | MPD  | C2-C3-C4-C5 |
| 3   | В     | 1707 | MPD  | C1-C2-C3-C4 |
| 3   | В     | 1707 | MPD  | O2-C2-C3-C4 |
| 3   | В     | 1707 | MPD  | C2-C3-C4-O4 |
| 3   | В     | 1707 | MPD  | C2-C3-C4-C5 |
| 3   | В     | 1711 | MPD  | C2-C3-C4-C5 |
| 3   | В     | 1724 | MPD  | C2-C3-C4-C5 |
| 3   | С     | 1713 | MPD  | CM-C2-C3-C4 |
| 3   | А     | 1704 | MPD  | O2-C2-C3-C4 |
| 3   | С     | 1701 | MPD  | O2-C2-C3-C4 |
| 3   | С     | 1713 | MPD  | O2-C2-C3-C4 |
| 3   | А     | 1704 | MPD  | C2-C3-C4-C5 |
| 3   | А     | 1705 | MPD  | C2-C3-C4-C5 |
| 3   | А     | 1720 | MPD  | C2-C3-C4-C5 |
| 3   | В     | 1709 | MPD  | C2-C3-C4-C5 |
| 3   | В     | 1722 | MPD  | C2-C3-C4-C5 |
| 3   | С     | 1712 | MPD  | C2-C3-C4-C5 |
| 3   | С     | 1713 | MPD  | C2-C3-C4-C5 |
| 3   | А     | 1720 | MPD  | C2-C3-C4-O4 |
| 3   | В     | 1718 | MPD  | C2-C3-C4-O4 |
| 3   | В     | 1722 | MPD  | C2-C3-C4-O4 |
| 3   | С     | 1712 | MPD  | C2-C3-C4-O4 |
| 3   | A     | 1704 | MPD  | C1-C2-C3-C4 |
| 3   | А     | 1717 | MPD  | C1-C2-C3-C4 |
| 3   | А     | 1720 | MPD  | CM-C2-C3-C4 |
| 3   | В     | 1707 | MPD  | CM-C2-C3-C4 |
| 3   | В     | 1709 | MPD  | CM-C2-C3-C4 |
| 3   | B     | 1711 | MPD  | C1-C2-C3-C4 |
| 3   | B     | 1719 | MPD  | CM-C2-C3-C4 |
| 3   | C     | 1701 | MPD  | C1-C2-C3-C4 |
| 3   | C     | 1701 | MPD  | CM-C2-C3-C4 |
| 3   | С     | 1712 | MPD  | C1-C2-C3-C4 |
| 3   | Ċ     | 1713 | MPD  | C1-C2-C3-C4 |
| 3   | A     | 1716 | MPD  | O2-C2-C3-C4 |
| 3   | A     | 1720 | MPD  | O2-C2-C3-C4 |
| 3   | B     | 1711 | MPD  | O2-C2-C3-C4 |
| 3   | В     | 1719 | MPD  | O2-C2-C3-C4 |
| 3   | B     | 1718 | MPD  | C2-C3-C4-C5 |
| 3   | В     | 1723 | MPD  | C2-C3-C4-C5 |



| Mol | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 3   | А     | 1704 | MPD  | C2-C3-C4-O4 |
| 3   | В     | 1711 | MPD  | C2-C3-C4-O4 |
| 3   | В     | 1724 | MPD  | C2-C3-C4-O4 |
| 3   | С     | 1713 | MPD  | C2-C3-C4-O4 |

There are no ring outliers.

20 monomers are involved in 98 short contacts:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 3   | А     | 1720 | MPD  | 11      | 0            |
| 3   | В     | 1718 | MPD  | 4       | 0            |
| 3   | В     | 1703 | MPD  | 13      | 0            |
| 2   | В     | 1616 | 2HP  | 1       | 0            |
| 3   | А     | 1704 | MPD  | 10      | 0            |
| 3   | А     | 1705 | MPD  | 2       | 0            |
| 3   | А     | 1702 | MPD  | 1       | 0            |
| 3   | С     | 1713 | MPD  | 8       | 0            |
| 3   | В     | 1721 | MPD  | 1       | 0            |
| 3   | В     | 1711 | MPD  | 7       | 0            |
| 2   | А     | 1610 | 2HP  | 1       | 0            |
| 3   | С     | 1714 | MPD  | 1       | 0            |
| 3   | А     | 1717 | MPD  | 4       | 0            |
| 3   | В     | 1723 | MPD  | 5       | 0            |
| 3   | В     | 1709 | MPD  | 13      | 0            |
| 3   | В     | 1719 | MPD  | 3       | 0            |
| 3   | В     | 1722 | MPD  | 3       | 0            |
| 3   | В     | 1707 | MPD  | 4       | 0            |
| 3   | А     | 1716 | MPD  | 5       | 0            |
| 2   | В     | 1606 | 2HP  | 1       | 0            |

# 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

# 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | <RSRZ $>$ | #RSRZ>2     |    | $OWAB(Å^2)$    | Q<0.9  |
|-----|-------|-----------------|-----------|-------------|----|----------------|--------|
| 1   | А     | 915/932~(98%)   | -0.03     | 32 (3%) 44  | 50 | 29, 36, 52, 73 | 1 (0%) |
| 1   | В     | 906/932~(97%)   | 0.02      | 27 (2%) 50  | 56 | 28, 36, 49, 73 | 1 (0%) |
| 1   | С     | 909/932~(97%)   | 0.18      | 44 (4%) 30  | 36 | 28, 36, 50, 73 | 1 (0%) |
| All | All   | 2730/2796~(97%) | 0.06      | 103 (3%) 40 | 46 | 28, 36, 50, 73 | 3~(0%) |

All (103) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | А     | 928 | GLY  | 8.8  |
| 1   | С     | 876 | ASN  | 8.3  |
| 1   | А     | 5   | MET  | 6.6  |
| 1   | С     | 875 | ALA  | 6.2  |
| 1   | С     | 395 | CYS  | 6.0  |
| 1   | В     | 395 | CYS  | 5.6  |
| 1   | С     | 928 | GLY  | 5.6  |
| 1   | С     | 172 | ASP  | 5.5  |
| 1   | А     | 929 | ASN  | 5.4  |
| 1   | В     | 874 | TYR  | 5.2  |
| 1   | С     | 878 | ALA  | 5.1  |
| 1   | С     | 448 | LEU  | 4.9  |
| 1   | С     | 237 | GLY  | 4.9  |
| 1   | С     | 444 | ILE  | 4.8  |
| 1   | А     | 395 | CYS  | 4.6  |
| 1   | В     | 442 | ILE  | 4.5  |
| 1   | С     | 678 | TYR  | 4.5  |
| 1   | А     | 442 | ILE  | 4.3  |
| 1   | В     | 6   | LEU  | 4.2  |
| 1   | С     | 929 | ASN  | 4.2  |
| 1   | С     | 877 | SER  | 4.2  |
| 1   | A     | 237 | GLY  | 4.0  |
| 1   | А     | 171 | THR  | 4.0  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | С     | 173 | ASP  | 4.0  |
| 1   | В     | 448 | LEU  | 4.0  |
| 1   | А     | 6   | LEU  | 4.0  |
| 1   | А     | 239 | GLY  | 3.9  |
| 1   | В     | 444 | ILE  | 3.9  |
| 1   | С     | 442 | ILE  | 3.9  |
| 1   | С     | 927 | ALA  | 3.7  |
| 1   | С     | 236 | THR  | 3.7  |
| 1   | А     | 198 | GLY  | 3.7  |
| 1   | А     | 444 | ILE  | 3.5  |
| 1   | С     | 333 | ALA  | 3.5  |
| 1   | А     | 875 | ALA  | 3.5  |
| 1   | С     | 238 | THR  | 3.5  |
| 1   | В     | 175 | PRO  | 3.4  |
| 1   | А     | 143 | ALA  | 3.4  |
| 1   | С     | 171 | THR  | 3.3  |
| 1   | С     | 394 | TYR  | 3.3  |
| 1   | В     | 5   | MET  | 3.2  |
| 1   | А     | 448 | LEU  | 3.2  |
| 1   | В     | 123 | LEU  | 3.2  |
| 1   | В     | 171 | THR  | 3.2  |
| 1   | В     | 394 | TYR  | 3.1  |
| 1   | В     | 876 | ASN  | 3.0  |
| 1   | В     | 169 | THR  | 3.0  |
| 1   | В     | 173 | ASP  | 3.0  |
| 1   | С     | 446 | ALA  | 3.0  |
| 1   | А     | 136 | TYR  | 2.9  |
| 1   | А     | 144 | THR  | 2.9  |
| 1   | С     | 396 | PHE  | 2.9  |
| 1   | А     | 387 | VAL  | 2.9  |
| 1   | С     | 71  | ASP  | 2.8  |
| 1   | А     | 173 | ASP  | 2.8  |
| 1   | С     | 616 | ASN  | 2.8  |
| 1   | В     | 138 | ALA  | 2.8  |
| 1   | А     | 396 | PHE  | 2.7  |
| 1   | А     | 77  | TYR  | 2.7  |
| 1   | А     | 123 | LEU  | 2.7  |
| 1   | А     | 394 | TYR  | 2.7  |
| 1   | В     | 396 | PHE  | 2.7  |
| 1   | А     | 172 | ASP  | 2.7  |
| 1   | В     | 323 | THR  | 2.7  |
| 1   | В     | 929 | ASN  | 2.7  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | В     | 439 | ALA  | 2.7  |
| 1   | В     | 334 | SER  | 2.6  |
| 1   | С     | 123 | LEU  | 2.6  |
| 1   | С     | 169 | THR  | 2.6  |
| 1   | С     | 257 | ALA  | 2.6  |
| 1   | А     | 391 | LEU  | 2.6  |
| 1   | В     | 453 | LEU  | 2.5  |
| 1   | А     | 125 | PRO  | 2.5  |
| 1   | А     | 445 | GLN  | 2.5  |
| 1   | А     | 418 | THR  | 2.5  |
| 1   | В     | 53  | HIS  | 2.5  |
| 1   | С     | 77  | TYR  | 2.5  |
| 1   | А     | 446 | ALA  | 2.4  |
| 1   | С     | 443 | ASN  | 2.4  |
| 1   | С     | 453 | LEU  | 2.4  |
| 1   | С     | 387 | VAL  | 2.4  |
| 1   | В     | 391 | LEU  | 2.3  |
| 1   | С     | 338 | ALA  | 2.3  |
| 1   | С     | 447 | ASN  | 2.3  |
| 1   | С     | 73  | GLU  | 2.3  |
| 1   | С     | 440 | MET  | 2.3  |
| 1   | В     | 170 | ASP  | 2.2  |
| 1   | С     | 445 | GLN  | 2.2  |
| 1   | С     | 809 | VAL  | 2.2  |
| 1   | А     | 413 | ASN  | 2.2  |
| 1   | В     | 928 | GLY  | 2.2  |
| 1   | А     | 440 | MET  | 2.2  |
| 1   | А     | 439 | ALA  | 2.2  |
| 1   | С     | 452 | PHE  | 2.1  |
| 1   | С     | 170 | ASP  | 2.1  |
| 1   | В     | 413 | ASN  | 2.1  |
| 1   | С     | 76  | THR  | 2.1  |
| 1   | В     | 37  | TYR  | 2.1  |
| 1   | С     | 391 | LEU  | 2.1  |
| 1   | С     | 393 | ASN  | 2.1  |
| 1   | С     | 915 | VAL  | 2.1  |
| 1   | С     | 422 | LYS  | 2.1  |
| 1   | А     | 393 | ASN  | 2.0  |

# 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



## 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res  | Atoms | RSCC | RSR  | $B-factors(A^2)$    | Q<0.9 |
|-----|------|-------|------|-------|------|------|---------------------|-------|
| 3   | MPD  | А     | 1717 | 8/8   | 0.44 | 0.24 | 67,69,70,70         | 0     |
| 3   | MPD  | В     | 1722 | 8/8   | 0.59 | 0.17 | 95,95,95,95         | 0     |
| 3   | MPD  | В     | 1703 | 8/8   | 0.73 | 0.22 | 61,62,63,64         | 0     |
| 3   | MPD  | В     | 1718 | 8/8   | 0.81 | 0.25 | 34,37,44,44         | 0     |
| 3   | MPD  | А     | 1720 | 8/8   | 0.82 | 0.25 | 63,65,66,66         | 0     |
| 3   | MPD  | А     | 1716 | 8/8   | 0.82 | 0.21 | 33,36,41,44         | 0     |
| 3   | MPD  | В     | 1709 | 8/8   | 0.83 | 0.16 | 28,33,39,42         | 0     |
| 3   | MPD  | А     | 1704 | 8/8   | 0.84 | 0.22 | 35,39,41,46         | 0     |
| 2   | 2HP  | В     | 1612 | 5/5   | 0.84 | 0.23 | 77,78,79,79         | 0     |
| 3   | MPD  | С     | 1701 | 8/8   | 0.84 | 0.22 | 55,55,57,57         | 0     |
| 3   | MPD  | В     | 1708 | 8/8   | 0.85 | 0.20 | 71,72,72,73         | 0     |
| 3   | MPD  | В     | 1723 | 8/8   | 0.86 | 0.20 | 70,74,75,76         | 0     |
| 2   | 2HP  | В     | 1622 | 5/5   | 0.86 | 0.22 | 34,37,46,46         | 0     |
| 3   | MPD  | С     | 1712 | 8/8   | 0.87 | 0.23 | 42,45,46,49         | 0     |
| 2   | 2HP  | В     | 1608 | 5/5   | 0.89 | 0.30 | 78,78,79,79         | 0     |
| 3   | MPD  | В     | 1721 | 8/8   | 0.89 | 0.24 | 61,62,63,64         | 0     |
| 3   | MPD  | А     | 1702 | 8/8   | 0.90 | 0.14 | 41,45,46,48         | 0     |
| 3   | MPD  | С     | 1713 | 8/8   | 0.90 | 0.19 | 39,42,44,44         | 0     |
| 3   | MPD  | В     | 1707 | 8/8   | 0.91 | 0.21 | 49,52,54,54         | 0     |
| 2   | 2HP  | С     | 1617 | 5/5   | 0.91 | 0.28 | 46,50,52,53         | 0     |
| 3   | MPD  | С     | 1714 | 8/8   | 0.91 | 0.25 | 54,55,56,57         | 0     |
| 2   | 2HP  | В     | 1605 | 5/5   | 0.92 | 0.18 | 53,55,56,56         | 0     |
| 2   | 2HP  | А     | 1619 | 5/5   | 0.92 | 0.25 | 59,60,60,61         | 0     |
| 3   | MPD  | В     | 1719 | 8/8   | 0.93 | 0.11 | 44,47,49,49         | 0     |
| 2   | 2HP  | В     | 1621 | 5/5   | 0.93 | 0.27 | 72,72,73,74         | 0     |
| 3   | MPD  | В     | 1711 | 8/8   | 0.93 | 0.20 | $55,\!55,\!56,\!57$ | 0     |
| 3   | MPD  | А     | 1706 | 8/8   | 0.93 | 0.20 | 60,61,62,63         | 0     |
| 2   | 2HP  | A     | 1620 | 5/5   | 0.94 | 0.36 | 69,71,71,71         | 0     |
| 3   | MPD  | А     | 1705 | 8/8   | 0.94 | 0.19 | 58,58,58,59         | 0     |
| 3   | MPD  | С     | 1715 | 8/8   | 0.94 | 0.24 | 64,66,67,67         | 0     |
| 2   | 2HP  | С     | 1613 | 5/5   | 0.95 | 0.16 | 49,51,52,52         | 0     |
| 3   | MPD  | В     | 1710 | 8/8   | 0.95 | 0.21 | 44,45,47,47         | 0     |



| Mol | Type | Chain | Res  | Atoms | RSCC | RSR  | $B-factors(A^2)$    | Q<0.9 |
|-----|------|-------|------|-------|------|------|---------------------|-------|
| 3   | MPD  | В     | 1724 | 8/8   | 0.95 | 0.16 | 58,60,61,61         | 0     |
| 2   | 2HP  | В     | 1606 | 5/5   | 0.95 | 0.16 | 52,52,55,56         | 0     |
| 2   | 2HP  | С     | 1611 | 5/5   | 0.96 | 0.22 | 54,54,55,56         | 0     |
| 2   | 2HP  | В     | 1607 | 5/5   | 0.96 | 0.11 | 45,45,48,48         | 0     |
| 2   | 2HP  | В     | 1615 | 5/5   | 0.96 | 0.24 | 41,41,42,42         | 0     |
| 2   | 2HP  | С     | 1618 | 5/5   | 0.96 | 0.11 | $56,\!57,\!58,\!59$ | 0     |
| 2   | 2HP  | В     | 1616 | 5/5   | 0.97 | 0.29 | 58, 59, 61, 61      | 0     |
| 2   | 2HP  | В     | 1614 | 5/5   | 0.97 | 0.16 | 60,60,61,62         | 0     |
| 2   | 2HP  | А     | 1610 | 5/5   | 0.97 | 0.15 | $51,\!51,\!53,\!54$ | 0     |
| 2   | 2HP  | С     | 1604 | 5/5   | 0.97 | 0.14 | $51,\!52,\!53,\!53$ | 0     |
| 2   | 2HP  | В     | 1609 | 5/5   | 0.98 | 0.13 | 35,35,37,38         | 0     |
| 2   | 2HP  | A     | 1603 | 5/5   | 0.98 | 0.22 | 42,43,44,45         | 0     |
| 2   | 2HP  | В     | 1601 | 5/5   | 0.98 | 0.07 | 37,38,41,41         | 0     |
| 2   | 2HP  | A     | 1602 | 5/5   | 0.99 | 0.17 | 36,39,43,45         | 0     |

# 6.5 Other polymers (i)

There are no such residues in this entry.

