

Full wwPDB X-ray Structure Validation Report (i)

May 16, 2020 - 02:15 am BST

PDB ID	:	50CW
Title	:	Structure of Mycobacterium tuberculosis tryptophan synthase in space group
		F222
Authors	:	Futterer, K.; Abrahams, K.; Cox, J.A.G.; Besra, G.S.
Deposited on	:	2017-07-03
Resolution	:	4.00 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.11
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 4.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	$1087 \ (4.30-3.70)$
Clashscore	141614	1148 (4.30-3.70)
Ramachandran outliers	138981	1108 (4.30-3.70)
Sidechain outliers	138945	1099 (4.30-3.70)
RSRZ outliers	127900	$1028 \ (4.34-3.66)$

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	Λ	20.0				
L	A	290	77%	10%	6 ·	• 11%
	~					
1	C	290	76%	9%	•	14%
			4%			
1	E	290	76%	9%		14%
1	G	290	75%	10%	•	14%
			2%			
1	I	290	75%	9%	•	14%
			3%			
1	K	290	74%	10%	•	14%

Mol	Chain	Length	Quality of chain		
1	М	290	% • 75%	9% •	14%
1	О	290	^{2%} 74%	9% •	14%
1	Q	290	% 76%	9% •	14%
1	S	290	74%	9% •	14%
1	U	290	77%	8% •	14%
1	W	290	74%	10% •	14%
2	В	442	82%	8%	10%
2	D	442	79%	10%	• 10%
2	F	442	79%	10%	• 10%
2	Н	442	80%	10%	• 10%
2	J	442	78%	12%	• 10%
2	L	442	% 	14%	• 10%
2	Ν	442	% 	9%	• 10%
2	Р	442	81%	9%	• 10%
2	R	442	80%	10%	• 10%
2	Т	442	76%	13%	• 10%
2	V	442	81%	8%	• 10%
2	X	442	80%	10%	• 10%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	P1T	D	501	-	-	-	Х
3	P1T	Р	501	-	-	-	Х

$50\mathrm{CW}$

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 57878 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
1	Δ	257	Total	С	Ν	Ο	S	0	1	0
	A	207	1852	1159	335	353	5	0	1	0
1	C	248	Total	С	Ν	Ο	S	0	0	0
		240	1799	1129	322	343	5	0	0	0
1	F	240	Total	С	Ν	Ο	S	0	1	0
		249	1814	1137	327	345	5	0	L	0
1	C	248	Total	С	Ν	Ο	S	0	0	0
	G	240	1799	1129	322	343	5	0	0	0
1	т	240	Total	С	Ν	Ο	S	0	1	0
	1	249	1814	1137	327	345	5	0	L	
1	V	248	Total	С	Ν	Ο	S	0	0	0
	n	240	1799	1129	322	343	5		0	U
1	М	240	Total	С	Ν	Ο	S	0	1	0
	111	249	1814	1137	327	345	5	0		0
1	0	248	Total	С	Ν	Ο	S	0	0	0
	0	240	1799	1129	322	343	5	0	0	U
1	0	240	Total	С	Ν	Ο	S	0	1	0
	Q	249	1814	1137	327	345	5	0	L	0
1	c	248	Total	С	Ν	Ο	S	0	0	0
	G	240	1799	1129	322	343	5	U	0	0
1	TT O	240	Total	С	Ν	Ο	S	0	1	0
	U	249	1814	1137	327	345	5			U
1	XA/	248	Total	С	Ν	Ο	S	0	0	0
	VV	240	1799	1129	322	343	5	0	U	0

• Molecule 1 is a protein called Tryptophan synthase alpha chain.

There are 240 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-19	MET	-	initiating methionine	UNP P9WFY1
А	-18	GLY	-	expression tag	UNP P9WFY1
А	-17	SER	-	expression tag	UNP P9WFY1
А	-16	SER	-	expression tag	UNP P9WFY1
А	-15	HIS	-	expression tag	UNP P9WFY1

50CW	Τ

Chain	Residue	Modelled	Actual	Comment	Reference
A	-14	HIS	-	expression tag	UNP P9WFY1
A	-13	HIS	-	expression tag	UNP P9WFY1
A	-12	HIS	-	expression tag	UNP P9WFY1
A	-11	HIS	-	expression tag	UNP P9WFY1
A	-10	HIS	-	expression tag	UNP P9WFY1
A	-9	SER	-	expression tag	UNP P9WFY1
A	-8	SER	-	expression tag	UNP P9WFY1
А	-7	GLY	-	expression tag	UNP P9WFY1
А	-6	LEU	-	expression tag	UNP P9WFY1
А	-5	VAL	-	expression tag	UNP P9WFY1
А	-4	PRO	-	expression tag	UNP P9WFY1
А	-3	ARG	_	expression tag	UNP P9WFY1
А	-2	GLY	-	expression tag	UNP P9WFY1
А	-1	SER	-	expression tag	UNP P9WFY1
А	0	HIS	_	expression tag	UNP P9WFY1
С	-19	MET	-	initiating methionine	UNP P9WFY1
С	-18	GLY	-	expression tag	UNP P9WFY1
С	-17	SER	-	expression tag	UNP P9WFY1
С	-16	SER	-	expression tag	UNP P9WFY1
С	-15	HIS	-	expression tag	UNP P9WFY1
С	-14	HIS	-	expression tag	UNP P9WFY1
С	-13	HIS	-	expression tag	UNP P9WFY1
С	-12	HIS	-	expression tag	UNP P9WFY1
С	-11	HIS	-	expression tag	UNP P9WFY1
С	-10	HIS	-	expression tag	UNP P9WFY1
С	-9	SER	-	expression tag	UNP P9WFY1
С	-8	SER	-	expression tag	UNP P9WFY1
С	-7	GLY	-	expression tag	UNP P9WFY1
С	-6	LEU	-	expression tag	UNP P9WFY1
С	-5	VAL	-	expression tag	UNP P9WFY1
С	-4	PRO	-	expression tag	UNP P9WFY1
С	-3	ARG	-	expression tag	UNP P9WFY1
С	-2	GLY	-	expression tag	UNP P9WFY1
С	-1	SER	-	expression tag	UNP P9WFY1
С	0	HIS	-	expression tag	UNP P9WFY1
E	-19	MET	-	initiating methionine	UNP P9WFY1
E	-18	GLY	-	expression tag	UNP P9WFY1
E	-17	SER	-	expression tag	UNP P9WFY1
E	-16	SER	-	expression tag	UNP P9WFY1
E	-15	HIS	-	expression tag	UNP P9WFY1
E	-14	HIS	-	expression tag	UNP P9WFY1
Е	-13	HIS	-	expression tag	UNP P9WFY1

50CW	

Chain	Residue	Modelled	Actual	Comment	Reference
Е	-12	HIS	-	expression tag	UNP P9WFY1
Е	-11	HIS	_	expression tag	UNP P9WFY1
Е	-10	HIS	_	expression tag	UNP P9WFY1
Е	-9	SER	-	expression tag	UNP P9WFY1
Е	-8	SER	-	expression tag	UNP P9WFY1
Е	-7	GLY	-	expression tag	UNP P9WFY1
E	-6	LEU	-	expression tag	UNP P9WFY1
Е	-5	VAL	-	expression tag	UNP P9WFY1
Е	-4	PRO	_	expression tag	UNP P9WFY1
Е	-3	ARG	_	expression tag	UNP P9WFY1
Е	-2	GLY	_	expression tag	UNP P9WFY1
Е	-1	SER	-	expression tag	UNP P9WFY1
Е	0	HIS	_	expression tag	UNP P9WFY1
G	-19	MET	_	initiating methionine	UNP P9WFY1
G	-18	GLY	-	expression tag	UNP P9WFY1
G	-17	SER	_	expression tag	UNP P9WFY1
G	-16	SER	-	expression tag	UNP P9WFY1
G	-15	HIS	_	expression tag	UNP P9WFY1
G	-14	HIS	-	expression tag	UNP P9WFY1
G	-13	HIS	_	expression tag	UNP P9WFY1
G	-12	HIS	-	expression tag	UNP P9WFY1
G	-11	HIS	-	expression tag	UNP P9WFY1
G	-10	HIS	-	expression tag	UNP P9WFY1
G	-9	SER	-	expression tag	UNP P9WFY1
G	-8	SER	-	expression tag	UNP P9WFY1
G	-7	GLY	-	expression tag	UNP P9WFY1
G	-6	LEU	-	expression tag	UNP P9WFY1
G	-5	VAL	-	expression tag	UNP P9WFY1
G	-4	PRO	-	expression tag	UNP P9WFY1
G	-3	ARG	-	expression tag	UNP P9WFY1
G	-2	GLY	_	expression tag	UNP P9WFY1
G	-1	SER	-	expression tag	UNP P9WFY1
G	0	HIS	-	expression tag	UNP P9WFY1
Ι	-19	MET	_	initiating methionine	UNP P9WFY1
Ι	-18	GLY	-	expression tag	UNP P9WFY1
I	-17	SER	_	expression tag	UNP P9WFY1
Ι	-16	SER	-	expression tag	UNP P9WFY1
I	-15	HIS	_	expression tag	UNP P9WFY1
I	-14	HIS	-	expression tag	UNP P9WFY1
I	-13	HIS	-	expression tag	UNP P9WFY1
I	-12	HIS	_	expression tag	UNP P9WFY1
I	-11	HIS	-	expression tag	UNP P9WFY1

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	-10	HIS	_	expression tag	UNP P9WFY1
Ι	-9	SER	_	expression tag	UNP P9WFY1
Ι	-8	SER	_	expression tag	UNP P9WFY1
Ι	-7	GLY	_	expression tag	UNP P9WFY1
Ι	-6	LEU	-	expression tag	UNP P9WFY1
Ι	-5	VAL	-	expression tag	UNP P9WFY1
Ι	-4	PRO	-	expression tag	UNP P9WFY1
Ι	-3	ARG	-	expression tag	UNP P9WFY1
Ι	-2	GLY	-	expression tag	UNP P9WFY1
Ι	-1	SER	_	expression tag	UNP P9WFY1
Ι	0	HIS	_	expression tag	UNP P9WFY1
K	-19	MET	_	initiating methionine	UNP P9WFY1
K	-18	GLY	_	expression tag	UNP P9WFY1
K	-17	SER	_	expression tag	UNP P9WFY1
K	-16	SER	-	expression tag	UNP P9WFY1
K	-15	HIS	-	expression tag	UNP P9WFY1
K	-14	HIS	-	expression tag	UNP P9WFY1
K	-13	HIS	-	expression tag	UNP P9WFY1
K	-12	HIS	-	expression tag	UNP P9WFY1
K	-11	HIS	-	expression tag	UNP P9WFY1
K	-10	HIS	-	expression tag	UNP P9WFY1
K	-9	SER	-	expression tag	UNP P9WFY1
K	-8	SER	-	expression tag	UNP P9WFY1
K	-7	GLY	_	expression tag	UNP P9WFY1
K	-6	LEU	-	expression tag	UNP P9WFY1
K	-5	VAL	-	expression tag	UNP P9WFY1
K	-4	PRO	_	expression tag	UNP P9WFY1
K	-3	ARG	-	expression tag	UNP P9WFY1
K	-2	GLY	_	expression tag	UNP P9WFY1
K	-1	SER	_	expression tag	UNP P9WFY1
K	0	HIS	_	expression tag	UNP P9WFY1
M	-19	MET	-	initiating methionine	UNP P9WFY1
M	-18	GLY	_	expression tag	UNP P9WFY1
M	-17	SER	-	expression tag	UNP P9WFY1
M	-16	SER	-	expression tag	UNP P9WFY1
M	-15	HIS	-	expression tag	UNP P9WFY1
M	-14	HIS	-	expression tag	UNP P9WFY1
M	-13	HIS	-	expression tag	UNP P9WFY1
M	-12	HIS	-	expression tag	UNP P9WFY1
M	-11	HIS	-	expression tag	UNP P9WFY1
M	-10	HIS	-	expression tag	UNP P9WFY1
M	-9	SER	-	expression tag	UNP P9WFY1

Chain	Residue	Modelled	Actual	Comment	Reference
М	-8	SER	-	expression tag	UNP P9WFY1
М	-7	GLY	-	expression tag	UNP P9WFY1
М	-6	LEU	_	expression tag	UNP P9WFY1
М	-5	VAL	_	expression tag	UNP P9WFY1
М	-4	PRO	_	expression tag	UNP P9WFY1
М	-3	ARG	_	expression tag	UNP P9WFY1
М	-2	GLY	-	expression tag	UNP P9WFY1
М	-1	SER	-	expression tag	UNP P9WFY1
М	0	HIS	-	expression tag	UNP P9WFY1
0	-19	MET	-	initiating methionine	UNP P9WFY1
0	-18	GLY	-	expression tag	UNP P9WFY1
0	-17	SER	-	expression tag	UNP P9WFY1
0	-16	SER	-	expression tag	UNP P9WFY1
0	-15	HIS	-	expression tag	UNP P9WFY1
0	-14	HIS	-	expression tag	UNP P9WFY1
0	-13	HIS	-	expression tag	UNP P9WFY1
0	-12	HIS	-	expression tag	UNP P9WFY1
0	-11	HIS	-	expression tag	UNP P9WFY1
0	-10	HIS	-	expression tag	UNP P9WFY1
0	-9	SER	-	expression tag	UNP P9WFY1
0	-8	SER	-	expression tag	UNP P9WFY1
0	-7	GLY	-	expression tag	UNP P9WFY1
0	-6	LEU	-	expression tag	UNP P9WFY1
0	-5	VAL	-	expression tag	UNP P9WFY1
0	-4	PRO	-	expression tag	UNP P9WFY1
0	-3	ARG	-	expression tag	UNP P9WFY1
0	-2	GLY	-	expression tag	UNP P9WFY1
0	-1	SER	-	expression tag	UNP P9WFY1
0	0	HIS	-	expression tag	UNP P9WFY1
Q	-19	MET	-	initiating methionine	UNP P9WFY1
Q	-18	GLY	-	expression tag	UNP P9WFY1
Q	-17	SER	-	expression tag	UNP P9WFY1
Q	-16	SER	-	expression tag	UNP P9WFY1
Q	-15	HIS	-	expression tag	UNP P9WFY1
Q	-14	HIS	-	expression tag	UNP P9WFY1
Q	-13	HIS	-	expression tag	UNP P9WFY1
Q	-12	HIS	-	expression tag	UNP P9WFY1
Q	-11	HIS	-	expression tag	UNP P9WFY1
Q	-10	HIS	-	expression tag	UNP P9WFY1
Q	-9	SER	-	expression tag	UNP P9WFY1
Q	-8	SER	-	expression tag	UNP P9WFY1
Q	-7	GLY	-	expression tag	UNP P9WFY1

Chain	Residue	Modelled	Actual	Comment	Reference
Q	-6	LEU	-	expression tag	UNP P9WFY1
Q	-5	VAL	-	expression tag	UNP P9WFY1
Q	-4	PRO	_	expression tag	UNP P9WFY1
Q	-3	ARG	-	expression tag	UNP P9WFY1
Q	-2	GLY	-	expression tag	UNP P9WFY1
Q	-1	SER	-	expression tag	UNP P9WFY1
Q	0	HIS	-	expression tag	UNP P9WFY1
S	-19	MET	-	initiating methionine	UNP P9WFY1
S	-18	GLY	-	expression tag	UNP P9WFY1
S	-17	SER	-	expression tag	UNP P9WFY1
S	-16	SER	-	expression tag	UNP P9WFY1
S	-15	HIS	-	expression tag	UNP P9WFY1
S	-14	HIS	-	expression tag	UNP P9WFY1
S	-13	HIS	-	expression tag	UNP P9WFY1
S	-12	HIS	-	expression tag	UNP P9WFY1
S	-11	HIS	-	expression tag	UNP P9WFY1
S	-10	HIS	-	expression tag	UNP P9WFY1
S	-9	SER	-	expression tag	UNP P9WFY1
S	-8	SER	-	expression tag	UNP P9WFY1
S	-7	GLY	-	expression tag	UNP P9WFY1
S	-6	LEU	-	expression tag	UNP P9WFY1
S	-5	VAL	-	expression tag	UNP P9WFY1
S	-4	PRO	-	expression tag	UNP P9WFY1
S	-3	ARG	-	expression tag	UNP P9WFY1
S	-2	GLY	-	expression tag	UNP P9WFY1
S	-1	SER	-	expression tag	UNP P9WFY1
S	0	HIS	-	expression tag	UNP P9WFY1
U	-19	MET	-	initiating methionine	UNP P9WFY1
U	-18	GLY	-	expression tag	UNP P9WFY1
U	-17	SER	-	expression tag	UNP P9WFY1
U	-16	SER	-	expression tag	UNP P9WFY1
U	-15	HIS	-	expression tag	UNP P9WFY1
U	-14	HIS	-	expression tag	UNP P9WFY1
U	-13	HIS	_	expression tag	UNP P9WFY1
U	-12	HIS	-	expression tag	UNP P9WFY1
U	-11	HIS	-	expression tag	UNP P9WFY1
U	-10	HIS		expression tag	UNP P9WFY1
U	-9	SER	_	expression tag	UNP P9WFY1
U	-8	SER	_	expression tag	UNP P9WFY1
U	-7	GLY	-	expression tag	UNP P9WFY1
U	-6	LEU	-	expression tag	UNP P9WFY1
U	-5	VAL	-	expression tag	UNP P9WFY1

50C	W

Chain	Residue	Modelled	Actual	Comment	Reference
U	-4	PRO	-	expression tag	UNP P9WFY1
U	-3	ARG	-	expression tag	UNP P9WFY1
U	-2	GLY	_	expression tag	UNP P9WFY1
U	-1	SER	-	expression tag	UNP P9WFY1
U	0	HIS	-	expression tag	UNP P9WFY1
W	-19	MET	-	initiating methionine	UNP P9WFY1
W	-18	GLY	-	expression tag	UNP P9WFY1
W	-17	SER	-	expression tag	UNP P9WFY1
W	-16	SER	-	expression tag	UNP P9WFY1
W	-15	HIS	-	expression tag	UNP P9WFY1
W	-14	HIS	-	expression tag	UNP P9WFY1
W	-13	HIS	-	expression tag	UNP P9WFY1
W	-12	HIS	-	expression tag	UNP P9WFY1
W	-11	HIS	-	expression tag	UNP P9WFY1
W	-10	HIS	-	expression tag	UNP P9WFY1
W	-9	SER	-	expression tag	UNP P9WFY1
W	-8	SER	-	expression tag	UNP P9WFY1
W	-7	GLY	-	expression tag	UNP P9WFY1
W	-6	LEU	-	expression tag	UNP P9WFY1
W	-5	VAL	-	expression tag	UNP P9WFY1
W	-4	PRO	-	expression tag	UNP P9WFY1
W	-3	ARG	-	expression tag	UNP P9WFY1
W	-2	GLY	-	expression tag	UNP P9WFY1
W	-1	SER	-	expression tag	UNP P9WFY1
W	0	HIS	-	expression tag	UNP P9WFY1

• Molecule 2 is a protein called Tryptophan synthase beta chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
n D	300	Total	С	Ν	Ο	S	0	2	0	
	D	099	3002	1874	547	567	14	0	J	0
9	п	300	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0
2	D	099	2983	1863	542	565	13	0	L	U
9	F	300	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	2	0
2	T,	099	3002	1874	547	567	14		5	0
9	н	н 300	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0
2	11	099	2983	1863	542	565	13	0		
2	Т	300	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	3	0
2	5	000	3002	1874	547	567	14	0	5	
2	T.	300	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0
2		000	2983	1863	542	565	13	0	I	0
2	2 N	300	Total	$\overline{\mathbf{C}}$	N	Ō	S	0	3	
		033	3002	1874	547	567	14			

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
9		300	Total	С	Ν	Ο	\mathbf{S}	0	1	0
	I	099	2983	1863	542	565	13	0	I	0
9	P	300	Total	С	Ν	Ο	\mathbf{S}	0	3	0
		099	3002	1874	547	567	14	0	5	0
9	2 T	300	Total	С	Ν	Ο	\mathbf{S}	0	1	0
		099	2983	1863	542	565	13	0	1	0
9	V	300	Total	С	Ν	Ο	\mathbf{S}	0	3	0
	099	3002	1874	547	567	14	0	0	0	
o v	300	Total	С	Ν	Ο	S	0	1	0	
		599	2983	1863	542	565	13	0	1	U

There are 240 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	-31	MET	-	initiating methionine	UNP P9WFX9
В	-30	GLY	-	expression tag	UNP P9WFX9
В	-29	SER	-	expression tag	UNP P9WFX9
В	-28	SER	-	expression tag	UNP P9WFX9
В	-27	HIS	-	expression tag	UNP P9WFX9
В	-26	HIS	-	expression tag	UNP P9WFX9
В	-25	HIS	-	expression tag	UNP P9WFX9
В	-24	HIS	-	expression tag	UNP P9WFX9
В	-23	HIS	-	expression tag	UNP P9WFX9
В	-22	HIS	-	expression tag	UNP P9WFX9
В	-21	SER	-	expression tag	UNP P9WFX9
В	-20	SER	-	expression tag	UNP P9WFX9
В	-19	GLY	-	expression tag	UNP P9WFX9
В	-18	LEU	-	expression tag	UNP P9WFX9
В	-17	VAL	-	expression tag	UNP P9WFX9
В	-16	PRO	-	expression tag	UNP P9WFX9
В	-15	ARG	-	expression tag	UNP P9WFX9
В	-14	GLY	-	expression tag	UNP P9WFX9
В	-13	SER	-	expression tag	UNP P9WFX9
В	-12	HIS	-	expression tag	UNP P9WFX9
D	-31	MET	-	initiating methionine	UNP P9WFX9
D	-30	GLY	-	expression tag	UNP P9WFX9
D	-29	SER	_	expression tag	UNP P9WFX9
D	-28	SER	_	expression tag	UNP P9WFX9
D	-27	HIS	-	expression tag	UNP P9WFX9
D	-26	HIS	_	expression tag	UNP P9WFX9
D	-25	HIS	-	expression tag	UNP P9WFX9
D	-24	HIS	-	expression tag	UNP P9WFX9
D	-23	HIS	_	expression tag	UNP P9WFX9

Chain	Residue	Modelled	Actual	Comment	Reference
D	-22	HIS	_	expression tag	UNP P9WFX9
D	-21	SER	_	expression tag	UNP P9WFX9
D	-20	SER	-	expression tag	UNP P9WFX9
D	-19	GLY	_	expression tag	UNP P9WFX9
D	-18	LEU	-	expression tag	UNP P9WFX9
D	-17	VAL	-	expression tag	UNP P9WFX9
D	-16	PRO	-	expression tag	UNP P9WFX9
D	-15	ARG	-	expression tag	UNP P9WFX9
D	-14	GLY	-	expression tag	UNP P9WFX9
D	-13	SER	_	expression tag	UNP P9WFX9
D	-12	HIS	_	expression tag	UNP P9WFX9
F	-31	MET	_	initiating methionine	UNP P9WFX9
F	-30	GLY	_	expression tag	UNP P9WFX9
F	-29	SER	_	expression tag	UNP P9WFX9
F	-28	SER	_	expression tag	UNP P9WFX9
F	-27	HIS	_	expression tag	UNP P9WFX9
F	-26	HIS	-	expression tag	UNP P9WFX9
F	-25	HIS	_	expression tag	UNP P9WFX9
F	-24	HIS	-	expression tag	UNP P9WFX9
F	-23	HIS	-	expression tag	UNP P9WFX9
F	-22	HIS	_	expression tag	UNP P9WFX9
F	-21	SER	-	expression tag	UNP P9WFX9
F	-20	SER	_	expression tag	UNP P9WFX9
F	-19	GLY	-	expression tag	UNP P9WFX9
F	-18	LEU	-	expression tag	UNP P9WFX9
F	-17	VAL	-	expression tag	UNP P9WFX9
F	-16	PRO	-	expression tag	UNP P9WFX9
F	-15	ARG	-	expression tag	UNP P9WFX9
F	-14	GLY	-	expression tag	UNP P9WFX9
F	-13	SER	-	expression tag	UNP P9WFX9
F	-12	HIS	-	expression tag	UNP P9WFX9
Н	-31	MET	-	initiating methionine	UNP P9WFX9
Н	-30	GLY	-	expression tag	UNP P9WFX9
Н	-29	SER	-	expression tag	UNP P9WFX9
Н	-28	SER	-	expression tag	UNP P9WFX9
Н	-27	HIS	-	expression tag	UNP P9WFX9
H	-26	HIS	_	expression tag	UNP P9WFX9
H	-25	HIS	-	expression tag	UNP P9WFX9
H	-24	HIS	-	expression tag	UNP P9WFX9
H	-23	HIS	-	expression tag	UNP P9WFX9
H	-22	HIS	-	expression tag	UNP P9WFX9
Н	-21	SER	-	expression tag	UNP P9WFX9

Chain	Residue	Modelled	Actual	Comment	Reference
Н	-20	SER	-	expression tag	UNP P9WFX9
Н	-19	GLY	_	expression tag	UNP P9WFX9
Н	-18	LEU	-	expression tag	UNP P9WFX9
Н	-17	VAL	-	expression tag	UNP P9WFX9
Н	-16	PRO	-	expression tag	UNP P9WFX9
Н	-15	ARG	-	expression tag	UNP P9WFX9
Н	-14	GLY	-	expression tag	UNP P9WFX9
Н	-13	SER	_	expression tag	UNP P9WFX9
Н	-12	HIS	_	expression tag	UNP P9WFX9
J	-31	MET	_	initiating methionine	UNP P9WFX9
J	-30	GLY	_	expression tag	UNP P9WFX9
J	-29	SER	-	expression tag	UNP P9WFX9
J	-28	SER	-	expression tag	UNP P9WFX9
J	-27	HIS	-	expression tag	UNP P9WFX9
J	-26	HIS	-	expression tag	UNP P9WFX9
J	-25	HIS	-	expression tag	UNP P9WFX9
J	-24	HIS	-	expression tag	UNP P9WFX9
J	-23	HIS	-	expression tag	UNP P9WFX9
J	-22	HIS	-	expression tag	UNP P9WFX9
J	-21	SER	-	expression tag	UNP P9WFX9
J	-20	SER	-	expression tag	UNP P9WFX9
J	-19	GLY	-	expression tag	UNP P9WFX9
J	-18	LEU	_	expression tag	UNP P9WFX9
J	-17	VAL	-	expression tag	UNP P9WFX9
J	-16	PRO	-	expression tag	UNP P9WFX9
J	-15	ARG	-	expression tag	UNP P9WFX9
J	-14	GLY	-	expression tag	UNP P9WFX9
J	-13	SER	-	expression tag	UNP P9WFX9
J	-12	HIS	-	expression tag	UNP P9WFX9
L	-31	MET	-	initiating methionine	UNP P9WFX9
L	-30	GLY	-	expression tag	UNP P9WFX9
L	-29	SER	-	expression tag	UNP P9WFX9
L	-28	SER	-	expression tag	UNP P9WFX9
L	-27	HIS	-	expression tag	UNP P9WFX9
L	-26	HIS	-	expression tag	UNP P9WFX9
L	-25	HIS	_	expression tag	UNP P9WFX9
L	-24	HIS	_	expression tag	UNP P9WFX9
L	-23	HIS	-	expression tag	UNP P9WFX9
L	-22	HIS	_	expression tag	UNP P9WFX9
L	-21	SER	-	expression tag	UNP P9WFX9
L	-20	SER	-	expression tag	UNP P9WFX9
L	-19	GLY	-	expression tag	UNP P9WFX9

Chain	Residue	Modelled	Actual	Comment	Reference
L	-18	LEU	-	expression tag	UNP P9WFX9
L	-17	VAL	-	expression tag	UNP P9WFX9
L	-16	PRO	-	expression tag	UNP P9WFX9
L	-15	ARG	-	expression tag	UNP P9WFX9
L	-14	GLY	-	expression tag	UNP P9WFX9
L	-13	SER	-	expression tag	UNP P9WFX9
L	-12	HIS	-	expression tag	UNP P9WFX9
N	-31	MET	-	initiating methionine	UNP P9WFX9
N	-30	GLY	-	expression tag	UNP P9WFX9
N	-29	SER	-	expression tag	UNP P9WFX9
N	-28	SER	-	expression tag	UNP P9WFX9
N	-27	HIS	-	expression tag	UNP P9WFX9
N	-26	HIS	-	expression tag	UNP P9WFX9
N	-25	HIS	-	expression tag	UNP P9WFX9
N	-24	HIS	-	expression tag	UNP P9WFX9
N	-23	HIS	-	expression tag	UNP P9WFX9
N	-22	HIS	-	expression tag	UNP P9WFX9
N	-21	SER	-	expression tag	UNP P9WFX9
N	-20	SER	-	expression tag	UNP P9WFX9
N	-19	GLY	-	expression tag	UNP P9WFX9
N	-18	LEU	-	expression tag	UNP P9WFX9
N	-17	VAL	-	expression tag	UNP P9WFX9
N	-16	PRO	-	expression tag	UNP P9WFX9
N	-15	ARG	-	expression tag	UNP P9WFX9
N	-14	GLY	-	expression tag	UNP P9WFX9
N	-13	SER	-	expression tag	UNP P9WFX9
N	-12	HIS	-	expression tag	UNP P9WFX9
Р	-31	MET	-	initiating methionine	UNP P9WFX9
Р	-30	GLY	-	expression tag	UNP P9WFX9
Р	-29	SER	-	expression tag	UNP P9WFX9
Р	-28	SER	-	expression tag	UNP P9WFX9
P	-27	HIS	-	expression tag	UNP P9WFX9
Р	-26	HIS	-	expression tag	UNP P9WFX9
Р	-25	HIS	-	expression tag	UNP P9WFX9
Р	-24	HIS	-	expression tag	UNP P9WFX9
P	-23	HIS	-	expression tag	UNP P9WFX9
Р	-22	HIS	-	expression tag	UNP P9WFX9
P	-21	SER	-	expression tag	UNP P9WFX9
P	-20	SER	-	expression tag	UNP P9WFX9
P	-19	GLY	-	expression tag	UNP P9WFX9
Р	-18	LEU	-	expression tag	UNP P9WFX9
Р	-17	VAL	-	expression tag	UNP P9WFX9

Chain	Residue	Modelled	Actual	Comment	Reference
Р	-16	PRO	-	expression tag	UNP P9WFX9
Р	-15	ARG	-	expression tag	UNP P9WFX9
Р	-14	GLY	-	expression tag	UNP P9WFX9
Р	-13	SER	-	expression tag	UNP P9WFX9
Р	-12	HIS	-	expression tag	UNP P9WFX9
R	-31	MET	-	initiating methionine	UNP P9WFX9
R	-30	GLY	-	expression tag	UNP P9WFX9
R	-29	SER	-	expression tag	UNP P9WFX9
R	-28	SER	-	expression tag	UNP P9WFX9
R	-27	HIS	_	expression tag	UNP P9WFX9
R	-26	HIS	-	expression tag	UNP P9WFX9
R	-25	HIS	_	expression tag	UNP P9WFX9
R	-24	HIS	_	expression tag	UNP P9WFX9
R	-23	HIS	_	expression tag	UNP P9WFX9
R	-22	HIS	_	expression tag	UNP P9WFX9
R	-21	SER	_	expression tag	UNP P9WFX9
R	-20	SER	-	expression tag	UNP P9WFX9
R	-19	GLY	_	expression tag	UNP P9WFX9
R	-18	LEU	-	expression tag	UNP P9WFX9
R	-17	VAL	_	expression tag	UNP P9WFX9
R	-16	PRO	_	expression tag	UNP P9WFX9
R	-15	ARG	_	expression tag	UNP P9WFX9
R	-14	GLY	_	expression tag	UNP P9WFX9
R	-13	SER	-	expression tag	UNP P9WFX9
R	-12	HIS	_	expression tag	UNP P9WFX9
Т	-31	MET	-	initiating methionine	UNP P9WFX9
Т	-30	GLY	-	expression tag	UNP P9WFX9
Т	-29	SER	-	expression tag	UNP P9WFX9
Т	-28	SER	-	expression tag	UNP P9WFX9
Т	-27	HIS	-	expression tag	UNP P9WFX9
Т	-26	HIS	-	expression tag	UNP P9WFX9
Т	-25	HIS	-	expression tag	UNP P9WFX9
Т	-24	HIS	-	expression tag	UNP P9WFX9
Т	-23	HIS	-	expression tag	UNP P9WFX9
Т	-22	HIS	-	expression tag	UNP P9WFX9
Т	-21	SER	-	expression tag	UNP P9WFX9
Т	-20	SER	-	expression tag	UNP P9WFX9
Т	-19	GLY	-	expression tag	UNP P9WFX9
	-18	LEU	-	expression tag	UNP P9WFX9
T	-17	VAL	-	expression tag	UNP P9WFX9
T	-16	PRO	-	expression tag	UNP P9WFX9
Т	-15	ARG	_	expression tag	UNP P9WFX9

Chain	Residue	Modelled	Actual	Comment	Reference
Т	-14	GLY	-	expression tag	UNP P9WFX9
Т	-13	SER	-	expression tag	UNP P9WFX9
Т	-12	HIS	-	expression tag	UNP P9WFX9
V	-31	MET	-	initiating methionine	UNP P9WFX9
V	-30	GLY	-	expression tag	UNP P9WFX9
V	-29	SER	-	expression tag	UNP P9WFX9
V	-28	SER	-	expression tag	UNP P9WFX9
V	-27	HIS	-	expression tag	UNP P9WFX9
V	-26	HIS	-	expression tag	UNP P9WFX9
V	-25	HIS	_	expression tag	UNP P9WFX9
V	-24	HIS	-	expression tag	UNP P9WFX9
V	-23	HIS	_	expression tag	UNP P9WFX9
V	-22	HIS	_	expression tag	UNP P9WFX9
V	-21	SER	_	expression tag	UNP P9WFX9
V	-20	SER	_	expression tag	UNP P9WFX9
V	-19	GLY	_	expression tag	UNP P9WFX9
V	-18	LEU	-	expression tag	UNP P9WFX9
V	-17	VAL	_	expression tag	UNP P9WFX9
V	-16	PRO	-	expression tag	UNP P9WFX9
V	-15	ARG	_	expression tag	UNP P9WFX9
V	-14	GLY	_	expression tag	UNP P9WFX9
V	-13	SER	-	expression tag	UNP P9WFX9
V	-12	HIS	_	expression tag	UNP P9WFX9
Х	-31	MET	-	initiating methionine	UNP P9WFX9
Х	-30	GLY	-	expression tag	UNP P9WFX9
X	-29	SER	-	expression tag	UNP P9WFX9
Х	-28	SER	-	expression tag	UNP P9WFX9
X	-27	HIS	-	expression tag	UNP P9WFX9
Х	-26	HIS	-	expression tag	UNP P9WFX9
Х	-25	HIS	-	expression tag	UNP P9WFX9
X	-24	HIS	-	expression tag	UNP P9WFX9
X	-23	HIS	_	expression tag	UNP P9WFX9
X	-22	HIS	-	expression tag	UNP P9WFX9
X	-21	SER	-	expression tag	UNP P9WFX9
X	-20	SER	-	expression tag	UNP P9WFX9
X	-19	GLY	-	expression tag	UNP P9WFX9
X	-18	LEU	_	expression tag	UNP P9WFX9
X	-17	VAL	-	expression tag	UNP P9WFX9
X	-16	PRO	-	expression tag	UNP P9WFX9
X	-15	ARG	_	expression tag	UNP P9WFX9
X	-14	GLY	-	expression tag	UNP P9WFX9
Х	-13	SER	-	expression tag	UNP P9WFX9

Chain	Residue	Modelled	Actual	Comment	Reference
Х	-12	HIS	-	expression tag	UNP P9WFX9

• Molecule 3 is $2-[({3-HYDROXY-2-METHYL-5-[(PHOSPHONOOXY)METHYL]PY RIDIN-4-YL}METHYL)AMINO]ACRYLIC ACID (three-letter code: P1T) (formula: C₁₁H₁₅N₂O₇P).$

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf						
2	В	1	Total	С	Ν	Ο	Р	0	0						
J	D	T	21	11	2	7	1	0	0						
3	П	1	Total	С	Ν	Ο	Р	0	0						
	D	I	21	11	2	7	1	0	0						
3	F	1	Total	\mathbf{C}	Ν	Ο	Р	0	0						
	T	I	21	11	2	7	1	0	0						
3	Н	1	Total	С	Ν	Ο	Р	0	0						
0	11	, I	21	11	2	7	1		0						
3	J	1	Total	С	Ν	Ο	Р	0	0						
		1	21	11	2	7	1	, v							
3	T.	L	T,	T,	L	1	Total	С	Ν	Ο	Р	0	0		
			21	11	2	7	1	0	0						
3	Ν	Ν	Ν	Ν	N	N	Ν	1	Total	\mathbf{C}	Ν	Ο	Р	0	0
		-	21	11	2	7	1								
3	Р	1	Total	С	Ν	Ο	Р	0	0						
	-	-	21	11	2	7	1	0							
3	R	B 1	Total	С	Ν	Ο	Р	0	0						
	10	*	21	11	2	7	1	Ŭ							
3	Т	1	Total	\mathbf{C}	Ν	Ο	Р	0	0						
	*	±	21	11	2	7	1	Ŭ							

e onivina ca front provida pago									
Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
2	V	1	Total	С	Ν	Ο	Р	0	0
o v	1	21	11	2	7	1	0	0	
2	2 V	1	Total	С	Ν	Ο	Р	0	0
	Λ		21	11	2	$\overline{7}$	1		

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Tryptophan synthase alpha chain

VAL THR GLY ALA ALA ALS ALS ALS ALS ALS ALS ALS ALS	6239 12348 1255 12559 12559 12559 12559 12559	1266 GLY NET SER ALA	
• Molecule 1: Tryptophan s	ynthase alpha chai	n	
Chain I:	75%	<mark>9% •</mark> 14	1%
MET GLY SER SER SER HIS SER HIS SER PAL PAL PAL SER PAL SER PAL	MEI VAL ALA ALA ALA ALA GLU GLU GLU BB BG BG BG BG BG BG BG BG BG	R74 E77 E77 E77 E77 E86 R85 R85 R85 R85 R87 R87 R87 R87 R87 R87 R87 R87 R87 R87	D140 E141 L159 L159 A182 A182 A182 A183 A183 A183 A183 A183
THR MET ALY CLY CLY CLY CLY ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS	4225 1232 1232 1232 1232 1232 1232 1255 1255	R265 1266 0267 MET SER ALA	
• Molecule 1: Tryptophan s	ynthase alpha chai	n	
Chain K:	74%	10% •	14%
MET SER SER SER HIS SER HIS SER RIS SER CLEU VAL VAL CLEU VAL SER SER SER SER SER	MEL VAL ALA ALA ALA ALA CLU CLU CLU CLU SG2 SG2 SG2 SG4 SG4	P65 66 86 877 885 885 885 885 887 8111 7111 71114 81114	132 1334 1335 1336 1336 1336 1338 1338 1338
D140 E141 A161 A161 A161 A161 A161 A165 A182 A182 A182 A182 A182 A182 A182 A182	ALA ARA ASP ASP ASP ALA VAL VAL S196 VAL S100 S210 P13	R21 822 8223 8223 8223 8233 7232 7232 7252 852 852 8552 8552	1296 GLY MET SER ALA
• Molecule 1: Tryptophan s	ynthase alpha chai	n	
Chain M:	75%	9% •	14%
MET MET SERR SERR HIS HIS SERR CLEU LLEU VAL PRAC SER SER SER	MALI ALA ALA ALA ALA CUU GLU GLU CS SS SS SS SS SS SS SS SS SS SS SS SS	D68 R74 E77 E77 R12 R122 R122 T134 T134	P130 D140 A161 A161 A161 A182 A182
A183 BER 184 MET MET MET MET MET MET MET MET MET MET	7232 6229 7251 7252 7255 7255 7255 7255	R266 12666 MET SER ALA	
• Molecule 1: Tryptophan s	ynthase alpha chai	n	
Chain O:	74%	9% •	14%
MET SER SER SER SER HIS HIS SER HIS SER SER CUL VAL VAL VAL CUL VAL SER SER SER SER SER SER SER SER SER SER	NEL VAL ALA ALA ALA ALA CLU GLU GLU B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6	R74 E77 E77 R85 N85 N110 N110 R121 R122 R122	L137 L138 L138 P140 A161 R168
1181 1182 1183 1183 1188 1188 1188 1188	R221 8222 8223 8223 8223 8223 8224 8228 8228	12249 1252 1255 1266 1266 1266 1212 6117 MET SER ALA	
• Molecule 1: Tryptophan s	ynthase alpha chai	n	
Chain Q:	76%	9% •	14%
	W O R PROTE		

MET MET SER SER HIS HIS HIS SER HIS SER HIS SER HIS SER ARG PVAL	GLY SER HITS MET MET ALA VAL VAL VAL CA SER SELN CF SE CF SER CF SER CF SER CF SER SER SER SER SER SER SER SER SER SER	L/1 R85 R85 R87 R87 R87 R132 L137 L137 L137 L137 L137	E167 E167 1181 181 1181 1184 1184 MET
0LY VAL THR THR THR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	Y232 (239) 12,125 12,125 12,15	ALLA	
• Molecule 1: Tryptopl	han synthase alpha chain		
Chain S:	74%	9% •	14%
MET GLY SER SER HIS HIS HIS HIS SER SER SER CLEU VAL LEU VAL	CLY SER MET MET MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	R06 666 687 874 874 86 885 885 885 887 887 887 887 887 887	L113 R114 R114 F135 F135 F138 D140
E141 E167 181 181 182 8183 8183 8183 8183 8182 8182	ALA VAL S196 9197 0197 0219 0219 0219 0223 8222 8222 8222 8222 8223 8223 8223	E2 49 R2 52 R2 55 R2 55 R2 55 R2 55 R1 26 R1 2 R 2 55 R1 2 R2 55 R1 2 R1 2 R1 2 R1 2 R1 2 R1 2 R1 2 R1 2	RLA
• Molecule 1: Tryptopl	han synthase alpha chain		
Chain U:	77%	8% •	14%
NET GLY SER SER HIS HIS HIS HIS HIS SER HIS SER CLY VAL VAL	CLY SER MET MET MIA ALA ALA ALA CLU GLU GLU GLU GLU GLU GLU GLU GLU GLU G	E77 R85 N86 N102 N110 N122 L130	P135 1138 P139 D140 D155 V181
S184 THR THR THR GLY CAL GLA ARG ARG ARG ARG ARG ASP ALA ARG ASP ACG ASP C197 C197 C155	V220 N221 S222 N223 R223 C239 C239 C239 C239 R265 R265 R265 R265 R265 R265 R265	NET NET ALA	
• Molecule 1: Tryptopl	han synthase alpha chain		
Chain W:	74%	10% •	14%
MET GLY SER SER HIS HIS HIS HIS SER CVAL VAL PRO	CILY SER HITS NET ALA ALA ALA CILU CILU CILU CILU CILU CILU CILU CILU	E77 86 885 886 887 8111 8114 8122 8122 8122	L137 1138 1138 1139 1159 1159 1159 1160 1160 2163 2163
H168 7181 7181 7181 7181 7181 7181 7181 7	8196 1221 2222 2222 1223 1223 1223 1224 1223 1224 1223 1224 1223 1224 1225 1225 1225 1225 1225 1225 1225	ALA GLY MET SER ALA	
• Molecule 2: Tryptopl	nan synthase beta chain		
Chain B:	82%	8%	10%
MET MET SITA SITA MET SITA SITA SITA SITA SITA SITA CLUY VLL VLL VLL VLL ARG	0.11X HISS MET MET MET MET ASP PRO PRO PRO PRO ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ILLE ALLA ALLA ALLA GLU PRO C23 C23 C23 C23 C24 C24 C24 C24 C24 C24 C24 C24 C24 C24	R60 R60 113 113 113 113 113 113 113
Q80 891 8113 8114 8114 8115 8123 8123 8155 8155 8155 8164	E169 1184 1189 1189 1189 1225 1225 1225 1225 1225 1225 1225 122	R381 R381 R382 D394 D394 R402 R402 L406 L406	ASP ASP

R L D W I D E PDB TEIN DATA BANK

• Molecule 2: Tryptophan synthase beta chain

Chain D: 79% 10% 10% MET MET SERRES SERRES SERRES SERRES HHIS SERRES SERFHIS SERRES MET THR SERRES SERRES THR SERRES SERRES THR SERRES SERRES THR SERRES SE 3LY ASN ASP • Molecule 2: Tryptophan synthase beta chain Chain F: 79% 10% • 10% L407 GLY ASN ASP • Molecule 2: Tryptophan synthase beta chain Chain H: 80% 10% 10% GLY ASN ASF • Molecule 2: Tryptophan synthase beta chain Chain J: 78% 12% 10% .

• Molecule 2: Tryptophan synthase beta chain

881 881 194 114 1148 1148 1148 1148 1148	R155 A161 A164 R164 R164 R189 R189 R189 R189 R189 R189 R255 R255 R256 R256 R256 R256 R256 R256	R280 R355 R355 R355 R355 R355 R355 R397 R397 R397 R397 R397 R397 R397 R400 A400 A400 A400 A400 A400 A400 A400
ASN ASP		
• Molecule 2: Tryptoph	an synthase beta chain	
Chain T:	76%	13% • 10%
MET CLY SER SER SER HIS HIS SER SER SER SER CLU VAL CLU VAL	GLY SER MET MET MET AET AET AET AET AET AET ALA ALA ALA ALA	114 79 70 72 72 72 72 72 72 72 72 72 72 72 72 72
R60 N64 Y65 Y65 A66 G67 G67 G80 R31 R313 R114 R114	E123 0127 1131 11430 11430 11430 11465 11465 1165 1165 1165 1165 1165 11	N185 F188 R189 R189 P192 R225 P226 P226 P226 P226 P226 P260 P260 P260
F285 A292 A292 A292 A396 A396 M356 M356 M356 M356 M356 M356	V397 K402 W403 F404 F404 F406 L406 CLY ASN ASP	
• Molecule 2: Tryptoph	an synthase beta chain	
Chain V:	81%	8% • 10%
MET OLY SER SER SER HIS HIS HIS HIS HIS SER HIS SER RIS SER SER SER SER SER ARG	GLY SER MET MET MET MET MET MET SER PRO ARP ALA ALA ALA ALA ALA	ALA ALA PRD FRD 523 624 731 731 731 734 731 734 731 734 731 736 732 732 732 732 732 732 732 732 732 732
Y65 R77 R31 R31 R113 R114 E123 E123 E123 E123	R155 R162 R162 R165 L165 L165 L165 R169 R169 R189 R189 R189 R189 R189 R189 R189 R18	A292 D305 D305 R365 R361 R361 R361 R361 R362 D394 D394 D394 C833 R392 D394 C833 R392 C833 C833 C833 C833 C834 C837 C837 C837 C837 C837 C837 C837 C837
• Molecule 2: Tryptoph	an synthase beta chain	
Chain X:	80%	10% • 10%
MET MET SER SER SER HIS HIS SER RIS SE	GLY SER MET MET MET MET ARF ARF PRO PRO PRO ARF ALLA ALLA ALLA ALLA	R1.4 PHD PHD PHD PHD PHD PHD PHD PHD PHD PHD
q52 R60 Y65 Y73 R91 R113 R114 T114 T114	G141 L142 D143 D143 R165 R164 R164 R164 E169 R169 R169 R169 R169 R169 R169 R169 R	P238 F258 R280 B305 R355 R355 R355 R355 R355 R355 R355 R
7397 14402 14402 14407 14407 14407 14407 14407 14407 14407 14407		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	F 2 2 2	Depositor
Cell constants	426.05Å 432.11Å 434.03Å	Demositer
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	49.80 - 4.00	Depositor
Resolution (A)	49.80 - 4.00	EDS
% Data completeness	$98.8 \ (49.80-4.00)$	Depositor
(in resolution range)	$95.1 \ (49.80 - 4.00)$	EDS
R_{merge}	0.13	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.44 \; (at \; 4.00 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0073	Depositor
D D .	0.358 , 0.368	Depositor
n, n_{free}	0.346 , 0.355	DCC
R_{free} test set	8243 reflections $(5.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	171.2	Xtriage
Anisotropy	0.223	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.20 , -9.9	EDS
L-test for twinning ²	$< L > = 0.43, < L^2 > = 0.26$	Xtriage
	0.108 for -h,l,k	
	0.036 for l,-k,h	
Estimated twinning fraction	0.060 for -k,-h,-l	Xtriage
	0.029 for -k,-l,h	
	0.029 for l,-h,-k	
F_o, F_c correlation	0.85	EDS
Total number of atoms	57878	wwPDB-VP
Average B, all atoms $(Å^2)$	127.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.77% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: $\rm P1T$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	1.37	29/1881~(1.5%)	1.54	34/2566~(1.3%)	
1	С	1.32	25/1828~(1.4%)	1.42	29/2495~(1.2%)	
1	Е	1.33	24/1843~(1.3%)	1.52	30/2514~(1.2%)	
1	G	1.33	30/1828~(1.6%)	1.43	29/2495~(1.2%)	
1	Ι	1.36	26/1843~(1.4%)	1.55	34/2514~(1.4%)	
1	K	1.34	27/1828~(1.5%)	1.43	31/2495~(1.2%)	
1	М	1.37	27/1843~(1.5%)	1.55	34/2514~(1.4%)	
1	0	1.33	25/1828~(1.4%)	1.43	30/2495~(1.2%)	
1	Q	1.37	28/1843~(1.5%)	1.54	34/2514~(1.4%)	
1	S	1.37	27/1827~(1.5%)	1.46	33/2492~(1.3%)	
1	U	1.36	28/1843~(1.5%)	1.55	34/2514~(1.4%)	
1	W	1.32	24/1828~(1.3%)	1.43	30/2495~(1.2%)	
2	В	1.27	42/3062~(1.4%)	1.24	40/4148~(1.0%)	
2	D	1.24	40/3043~(1.3%)	1.26	37/4123~(0.9%)	
2	F	1.29	40/3062~(1.3%)	1.22	39/4148~(0.9%)	
2	Н	1.22	40/3043~(1.3%)	1.30	35/4123~(0.8%)	
2	J	1.28	42/3062~(1.4%)	1.23	39/4148~(0.9%)	
2	L	1.25	42/3043~(1.4%)	1.27	37/4123~(0.9%)	
2	Ν	1.28	41/3062~(1.3%)	1.24	39/4148~(0.9%)	
2	Р	1.25	43/3043~(1.4%)	1.27	35/4123~(0.8%)	
2	R	1.28	42/3062~(1.4%)	1.23	36/4148~(0.9%)	
2	Т	1.25	42/3043~(1.4%)	1.27	37/4123~(0.9%)	
2	V	1.27	42/3062~(1.4%)	1.24	40/4148~(1.0%)	
2	Х	1.24	42/3043~(1.4%)	1.27	38/4123~(0.9%)	
All	All	1.29	818/58693~(1.4%)	1.35	834/79729~(1.0%)	

All (818) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
2	V	24	GLY	N-CA	-17.82	1.19	1.46
2	В	24	GLY	N-CA	-17.53	1.19	1.46

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	М	221	ARG	CZ-NH2	-17.50	1.10	1.33
2	J	24	GLY	N-CA	-17.49	1.19	1.46
1	Q	221	ARG	CZ-NH2	-17.47	1.10	1.33
2	F	23	SER	CA-CB	-17.40	1.26	1.52
1	U	221	ARG	CZ-NH2	-17.36	1.10	1.33
1	Ι	221	ARG	CZ-NH2	-17.32	1.10	1.33
2	R	24	GLY	N-CA	-17.30	1.20	1.46
2	N	24	GLY	N-CA	-17.26	1.20	1.46
2	F	24	GLY	N-CA	-17.24	1.20	1.46
1	А	221	ARG	CZ-NH2	-17.24	1.10	1.33
1	Е	221	ARG	CZ-NH2	-17.20	1.10	1.33
1	S	252	ARG	CZ-NH1	-16.37	1.11	1.33
1	М	232	TYR	CE1-CZ	-16.34	1.17	1.38
1	Q	232	TYR	CE1-CZ	-16.30	1.17	1.38
1	S	232	TYR	CE1-CZ	-16.08	1.17	1.38
1	Ι	232	TYR	CE1-CZ	-16.07	1.17	1.38
1	А	232	TYR	CE1-CZ	-15.95	1.17	1.38
1	U	232	TYR	CE1-CZ	-15.95	1.17	1.38
1	G	232	TYR	CE1-CZ	-15.94	1.17	1.38
1	Е	232	TYR	CE1-CZ	-15.92	1.17	1.38
1	С	232	TYR	CE1-CZ	-15.87	1.18	1.38
1	W	232	TYR	CE1-CZ	-15.71	1.18	1.38
1	Κ	232	TYR	CE1-CZ	-15.71	1.18	1.38
1	0	232	TYR	CE1-CZ	-15.70	1.18	1.38
2	В	280	ARG	CZ-NH2	-15.61	1.12	1.33
2	V	280	ARG	CZ-NH2	-15.55	1.12	1.33
2	Р	24	GLY	N-CA	-15.54	1.22	1.46
1	Ο	252	ARG	CZ-NH1	-15.52	1.12	1.33
2	L	24	GLY	N-CA	-15.50	1.22	1.46
2	F	280	ARG	CZ-NH2	-15.47	1.12	1.33
2	N	280	ARG	CZ-NH2	-15.47	1.12	1.33
2	J	280	ARG	CZ-NH2	-15.47	1.12	1.33
2	Т	24	GLY	N-CA	-15.41	1.23	1.46
2	Р	280	ARG	CZ-NH2	-15.39	1.13	1.33
2	R	280	ARG	CZ-NH2	-15.39	1.13	1.33
2	Т	280	ARG	CZ-NH2	-15.39	1.13	1.33
1	K	252	ARG	CZ-NH1	-15.39	1.13	1.33
2	L	280	ARG	CZ-NH2	-15.26	1.13	1.33
2	Н	280	ARG	CZ-NH2	-15.25	1.13	1.33
1	С	252	ARG	CZ-NH1	-15.23	1.13	1.33
1	Ι	252	ARG	CZ-NH1	-15.22	1.13	1.33
2	L	113	ARG	CZ-NH2	-15.19	1.13	1.33

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	Е	252	ARG	CZ-NH1	-15.16	1.13	1.33
2	Х	24	GLY	N-CA	-15.14	1.23	1.46
2	Х	280	ARG	CZ-NH2	-15.13	1.13	1.33
1	K	221	ARG	CZ-NH2	-15.12	1.13	1.33
1	G	221	ARG	CZ-NH2	-15.12	1.13	1.33
1	М	252	ARG	CZ-NH1	-15.11	1.13	1.33
1	W	252	ARG	CZ-NH1	-15.10	1.13	1.33
2	D	280	ARG	CZ-NH2	-15.07	1.13	1.33
1	S	221	ARG	CZ-NH2	-15.05	1.13	1.33
1	U	252	ARG	CZ-NH1	-14.97	1.13	1.33
1	Q	252	ARG	CZ-NH1	-14.93	1.13	1.33
1	0	221	ARG	CZ-NH2	-14.93	1.13	1.33
2	D	24	GLY	N-CA	-14.87	1.23	1.46
2	Т	113	ARG	CZ-NH2	-14.85	1.13	1.33
1	G	252	ARG	CZ-NH1	-14.77	1.13	1.33
2	Н	24	GLY	N-CA	-14.71	1.24	1.46
2	Р	113	ARG	CZ-NH2	-14.69	1.14	1.33
1	W	221	ARG	CZ-NH2	-14.65	1.14	1.33
1	А	252	ARG	CZ-NH1	-14.55	1.14	1.33
1	G	232	TYR	CG-CD2	-14.27	1.20	1.39
1	С	221	ARG	CZ-NH2	-14.24	1.14	1.33
1	S	232	TYR	CG-CD2	-14.23	1.20	1.39
2	Х	113	ARG	CZ-NH2	-14.06	1.14	1.33
2	D	113	ARG	CZ-NH2	-13.96	1.15	1.33
1	С	232	TYR	CG-CD2	-13.92	1.21	1.39
2	J	381	ARG	CZ-NH1	-13.86	1.15	1.33
2	R	381	ARG	CZ-NH1	-13.81	1.15	1.33
2	V	381	ARG	CZ-NH1	-13.80	1.15	1.33
2	N	381	ARG	CZ-NH1	-13.79	1.15	1.33
1	K	232	TYR	CG-CD2	-13.75	1.21	1.39
2	В	381	ARG	CZ-NH1	-13.73	1.15	1.33
1	W	232	TYR	CG-CD2	-13.72	1.21	1.39
1	М	232	TYR	CG-CD2	-13.68	1.21	1.39
2	F	113	ARG	CZ-NH1	-13.66	1.15	1.33
1	0	232	TYR	CG-CD2	-13.66	1.21	1.39
1	Q	232	TYR	CG-CD2	-13.54	1.21	1.39
1	I	232	TYR	$CG-\overline{CD2}$	-13.52	1.21	1.39
1	A	232	TYR	CG-CD2	-13.51	1.21	1.39
1	U	232	TYR	CG-CD2	-13.43	1.21	1.39
1	E	232	TYR	CG-CD2	-13.31	1.21	1.39
2	Х	49	ARG	CZ-NH2	-13.31	1.15	1.33
$ 1^{-}$	M	232	TYR	CG-CD1	-13.23	1.22	1.39

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	L	49	ARG	CZ-NH2	-13.22	1.15	1.33
1	A	232	TYR	CG-CD1	-13.21	1.22	1.39
2	J	9	THR	CB-CG2	-13.21	1.08	1.52
2	Т	49	ARG	CZ-NH2	-13.17	1.16	1.33
2	Р	49	ARG	CZ-NH2	-13.07	1.16	1.33
2	N	392	ARG	CZ-NH1	-13.01	1.16	1.33
2	V	9	THR	CB-CG2	-13.01	1.09	1.52
2	F	49	ARG	CZ-NH2	-12.98	1.16	1.33
2	D	49	ARG	CZ-NH2	-12.97	1.16	1.33
1	Ι	232	TYR	CG-CD1	-12.97	1.22	1.39
1	Q	232	TYR	CG-CD1	-12.97	1.22	1.39
2	J	49	ARG	CZ-NH2	-12.94	1.16	1.33
2	V	49	ARG	CZ-NH2	-12.91	1.16	1.33
1	U	232	TYR	CG-CD1	-12.88	1.22	1.39
2	Н	49	ARG	CZ-NH2	-12.84	1.16	1.33
1	С	232	TYR	CG-CD1	-12.76	1.22	1.39
2	N	49	ARG	CZ-NH2	-12.74	1.16	1.33
1	Е	232	TYR	CG-CD1	-12.73	1.22	1.39
2	В	49	ARG	CZ-NH2	-12.71	1.16	1.33
2	L	169	GLU	CD-OE1	-12.71	1.11	1.25
1	G	232	TYR	CG-CD1	-12.65	1.22	1.39
2	J	392	ARG	CZ-NH1	-12.65	1.16	1.33
2	R	9	THR	CB-CG2	-12.64	1.10	1.52
2	R	49	ARG	CZ-NH2	-12.64	1.16	1.33
2	Р	23	SER	CA-CB	-12.63	1.34	1.52
2	R	392	ARG	CZ-NH1	-12.62	1.16	1.33
2	F	392	ARG	CZ-NH1	-12.60	1.16	1.33
2	F	9	THR	CB-CG2	-12.57	1.10	1.52
2	F	258	PHE	CG-CD1	-12.56	1.20	1.38
2	Ν	9	THR	CB-CG2	-12.54	1.10	1.52
2	V	392	ARG	CZ-NH1	-12.48	1.16	1.33
2	R	258	PHE	CG-CD1	-12.48	1.20	1.38
2	Р	169	GLU	CD-OE1	-12.47	1.11	1.25
2	Т	23	SER	CA-CB	-12.45	1.34	1.52
1	W	232	TYR	CG-CD1	-12.45	1.23	1.39
1	S	232	TYR	CG-CD1	-12.44	1.23	1.39
2	N	258	PHE	CG-CD1	-12.42	1.20	1.38
2	В	392	ARG	CZ-NH1	-12.42	1.17	1.33
2	В	9	THR	$CB-\overline{CG2}$	-12.38	1.11	1.52
2	В	258	PHE	CG-CD1	-12.37	1.20	1.38
1	K	232	TYR	$CG-\overline{CD1}$	-12.35	1.23	1.39
1	0	232	TYR	G-CD1	-12.30	1.23	1.39

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	Т	169	GLU	CD-OE1	-12.30	1.12	1.25
2	J	113	ARG	CZ-NH2	-12.27	1.17	1.33
2	J	258	PHE	CG-CD1	-12.27	1.20	1.38
2	L	23	SER	CA-CB	-12.26	1.34	1.52
2	F	113	ARG	CZ-NH2	-12.25	1.17	1.33
2	N	28	ARG	CZ-NH2	-12.23	1.17	1.33
1	М	232	TYR	CE2-CZ	-12.21	1.22	1.38
2	R	113	ARG	CZ-NH2	-12.20	1.17	1.33
2	Х	169	GLU	CD-OE1	-12.15	1.12	1.25
2	V	113	ARG	CZ-NH2	-12.13	1.17	1.33
2	J	28	ARG	CZ-NH2	-12.13	1.17	1.33
2	Н	381	ARG	CZ-NH1	-12.09	1.17	1.33
2	R	28	ARG	CZ-NH2	-12.07	1.17	1.33
2	Ν	113	ARG	CZ-NH2	-12.06	1.17	1.33
2	Р	113	ARG	CZ-NH1	-12.06	1.17	1.33
2	В	28	ARG	CZ-NH2	-12.05	1.17	1.33
1	А	232	TYR	CE2-CZ	-12.03	1.23	1.38
2	L	113	ARG	CZ-NH1	-12.00	1.17	1.33
2	L	381	ARG	CZ-NH1	-11.99	1.17	1.33
2	В	113	ARG	CZ-NH2	-11.97	1.17	1.33
2	V	258	PHE	CG-CD1	-11.97	1.20	1.38
2	V	28	ARG	CZ-NH2	-11.95	1.17	1.33
2	Х	258	PHE	CG-CD2	-11.94	1.20	1.38
2	D	169	GLU	CD-OE1	-11.94	1.12	1.25
2	F	28	ARG	CZ-NH2	-11.92	1.17	1.33
2	Т	392	ARG	CZ-NH1	-11.88	1.17	1.33
2	Р	381	ARG	CZ-NH1	-11.84	1.17	1.33
1	Ι	232	TYR	CE2-CZ	-11.84	1.23	1.38
2	D	258	PHE	CG-CD2	-11.84	1.21	1.38
2	Н	392	ARG	CZ-NH1	-11.82	1.17	1.33
2	D	258	PHE	CG-CD1	-11.80	1.21	1.38
1	G	232	TYR	CE2-CZ	-11.78	1.23	1.38
2	Т	381	ARG	CZ-NH1	-11.78	1.17	1.33
2	D	91	ARG	CZ-NH1	-11.77	1.17	1.33
2	Х	113	ARG	CZ-NH1	-11.76	1.17	1.33
2	X	258	PHE	CG-CD1	-11.74	1.21	1.38
2	Н	28	ARG	CZ-NH2	-11.72	1.17	1.33
2	Н	258	PHE	CG-CD1	-11.71	1.21	1.38
2	D	28	ARG	CZ-NH2	-11.71	1.17	1.33
2	Х	381	ARG	CZ-NH1	-11.69	1.17	1.33
1	G	265	ARG	CZ-NH2	-11.67	1.17	1.33
2	Х	91	ARG	CZ-NH1	-11.66	1.17	1.33

Mol	Chain	Res		Atoms	Z	Observed(Å)	Ideal(Å)
2	L	392	ARG	CZ-NH1	-11.66	1.17	1.33
2	R	155	ARG	CZ-NH1	-11.64	1.18	1.33
2	D	381	ARG	CZ-NH1	-11.63	1.18	1.33
1	U	232	TYR	CE2-CZ	-11.61	1.23	1.38
2	Н	258	PHE	CG-CD2	-11.60	1.21	1.38
2	V	23	SER	CA-CB	-11.60	1.35	1.52
1	Q	232	TYR	CE2-CZ	-11.60	1.23	1.38
2	D	113	ARG	CZ-NH1	-11.59	1.18	1.33
2	Т	258	PHE	CG-CD2	-11.59	1.21	1.38
2	Х	28	ARG	CZ-NH2	-11.59	1.18	1.33
2	L	28	ARG	CZ-NH2	-11.56	1.18	1.33
1	K	265	ARG	CZ-NH2	-11.56	1.18	1.33
2	Т	258	PHE	CG-CD1	-11.55	1.21	1.38
2	F	155	ARG	CZ-NH1	-11.54	1.18	1.33
2	L	258	PHE	CG-CD1	-11.53	1.21	1.38
2	V	155	ARG	CZ-NH1	-11.53	1.18	1.33
2	Т	91	ARG	CZ-NH1	-11.53	1.18	1.33
1	С	232	TYR	CE2-CZ	-11.51	1.23	1.38
1	0	265	ARG	CZ-NH2	-11.49	1.18	1.33
2	F	91	ARG	CZ-NH2	-11.49	1.18	1.33
2	Ν	155	ARG	CZ-NH1	-11.48	1.18	1.33
1	Е	232	TYR	CE2-CZ	-11.48	1.23	1.38
2	J	23	SER	CA-CB	-11.47	1.35	1.52
2	Р	392	ARG	CZ-NH1	-11.46	1.18	1.33
2	Т	28	ARG	CZ-NH2	-11.45	1.18	1.33
2	Р	258	PHE	CG-CD2	-11.45	1.21	1.38
2	R	258	PHE	CG-CD2	-11.44	1.21	1.38
2	Х	155	ARG	CZ-NH2	-11.43	1.18	1.33
2	R	155	ARG	CZ-NH2	-11.42	1.18	1.33
2	Х	392	ARG	CZ-NH1	-11.42	1.18	1.33
1	W	232	TYR	CE2-CZ	-11.42	1.23	1.38
2	Н	91	ARG	CZ-NH1	-11.41	1.18	1.33
2	Н	155	ARG	CZ-NH2	-11.41	1.18	1.33
2	L	28	ARG	CZ-NH1	-11.40	1.18	1.33
1	С	265	ARG	CZ-NH2	-11.40	1.18	1.33
2	F	258	PHE	CG-CD2	-11.40	1.21	1.38
2	J	155	ARG	CZ-NH1	-11.39	1.18	1.33
1	0	85	ARG	CZ-NH1	-11.38	1.18	1.33
2	Р	91	ARG	CZ-NH1	-11.38	1.18	1.33
1	S	265	ARG	CZ-NH2	-11.38	1.18	1.33
2	Р	258	PHE	CG-CD1	-11.37	1.21	1.38
1	U	265	ARG	CZ-NH2	-11.36	1.18	1.33

Mol	Chain	Res	Tvpe	Atoms	Z	Observed(Å)	Ideal(Å)
1	W	265	ARG	CZ-NH2	-11.36	1 18	1 33
2	T.	91	ARG	CZ-NH1	-11.35	1.18	1.33
2	L	258	PHE	CG-CD2	-11.33	1.13	1.38
2	B	91	ARG	CZ-NH2	-11.33	1.21	1.33
$\frac{2}{2}$	B	258	PHE	CG-CD2	-11.30	1.10	1.38
$\frac{2}{2}$	I	155	ARG	CZ-NH2	-11.32	1.21	1.30
$\frac{2}{2}$	P	28	ARG	CZ-NH2	-11.32	1.18	1.33
1	I	265	ARG	CZ-NH1	-11.32	1.18	1.33
1	I	265	ARG	CZ-NH1	-11.31	1.18	1.33
1	C I	85	ARG	CZ-NH1	-11.30	1.18	1.33
2	F	155	ARG	CZ-NH2	-11.30	1.18	1.33
1	E	85	ARG	CZ-NH1	_11.20	1.18	1.33
1	G	85	ARG	CZ-NH1	-11.23	1.10	1.33
$\frac{1}{2}$	N	91	ARG	CZ-NH2	-11.20	1.10	1.33
$\frac{2}{2}$	B	91	ARG	CZ-NH2	-11.20	1.10	1.33
$\frac{2}{2}$	B	155	ARG	CZ-NH1	-11.20	1.10	1.33
$\frac{2}{2}$	L	114	ARG	CZ-NH2	-11.27	1.10	1.33
$\frac{2}{2}$	D	302	ARG	CZ-NH1	-11.27	1.10	1.33
	0	265	ARG	CZ-NH2	-11.27	1.10	1.33
$\frac{1}{2}$	 Т	$\frac{200}{114}$	ARG	CZ-NH2	-11.21	1.10	1.33
$\frac{2}{2}$	H	28	ARG	CZ-NH1	-11.20	1.10	1.33
1	K II	85	ARG	CZ-NH1	-11.20	1.10	1.33
1	S	$\frac{00}{232}$	TYR	CE2-CZ	-11.25	1.10	1.35
1	0	265	ARG	CZ-NH1	-11.20	1.24	1.30
2	H H	91	ARG	CZ-NH2	-11.20	1.18	1.33
1	M	265	ARG	CZ-NH1	-11.22	1.18	1.33
2	X	155	ARG	CZ-NH1	-11.22	1.18	1.33
1	W	85	ARG	CZ-NH1	-11 21	1.18	1.33
1	S	85	ARG	CZ-NH1	-11.21	1.18	1.33
2	V	155	ARG	CZ-NH2	-11 21	1.18	1.33
$\frac{-}{2}$	D	155	ARG	CZ-NH1	-11 20	1.13	1 33
$\frac{-}{2}$	L	91	ARG	CZ-NH2	-11.20	1.18	1.33
$\frac{-}{2}$	- P	114	ARG	CZ-NH2	-11.19	1.18	1.33
$\frac{-}{2}$	T	28	ARG	CZ-NH1	-11 19	1.13	1 33
	Ā	265	ARG	CZ-NH1	-11.19	1.18	1.33
2	L	155	ARG	CZ-NH2	-11.18	1.18	1.33
$\frac{-}{2}$	D	23	SER.	CA-CB	-11.18	1.36	1.52
$\frac{-}{2}$	N	155	ARG	CZ-NH2	-11.18	1.18	1.33
$\frac{1}{2}$	R	91	ARG	CZ-NH1	-11.17	1.18	1.33
2	D	155	ARG	CZ-NH2	-11.17	1.18	1.33
2	Н	114	ARG	CZ-NH2	-11.16	1.18	1.33
2	Т	91	ARG	CZ-NH2	-11.16	1.18	1.33

Continued from previous page...

Continued from previous page							
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
1	Е	265	ARG	CZ-NH2	-11.15	1.18	1.33
2	Т	155	ARG	CZ-NH1	-11.15	1.18	1.33
1	Ι	265	ARG	CZ-NH2	-11.15	1.18	1.33
2	J	258	PHE	CG-CD2	-11.15	1.22	1.38
1	0	232	TYR	CE2-CZ	-11.15	1.24	1.38
2	Х	91	ARG	CZ-NH2	-11.15	1.18	1.33
2	Т	113	ARG	CZ-NH1	-11.14	1.18	1.33
2	Т	155	ARG	CZ-NH2	-11.14	1.18	1.33
2	L	155	ARG	CZ-NH1	-11.13	1.18	1.33
1	М	265	ARG	CZ-NH2	-11.13	1.18	1.33
1	K	232	TYR	CE2-CZ	-11.12	1.24	1.38
1	Е	265	ARG	CZ-NH1	-11.12	1.18	1.33
2	V	91	ARG	CZ-NH2	-11.11	1.18	1.33
2	J	114	ARG	CZ-NH2	-11.11	1.18	1.33
1	А	265	ARG	CZ-NH2	-11.08	1.18	1.33
2	Р	91	ARG	CZ-NH2	-11.06	1.18	1.33
2	F	91	ARG	CZ-NH1	-11.05	1.18	1.33
2	R	114	ARG	CZ-NH2	-11.05	1.18	1.33
2	N	23	SER	CA-CB	-11.05	1.36	1.52
2	Р	155	ARG	CZ-NH2	-11.04	1.18	1.33
2	J	91	ARG	CZ-NH1	-11.04	1.18	1.33
2	N	258	PHE	CG-CD2	-11.04	1.22	1.38
2	V	258	PHE	CG-CD2	-11.04	1.22	1.38
2	N	114	ARG	CZ-NH2	-11.04	1.18	1.33
2	Н	155	ARG	CZ-NH1	-11.03	1.18	1.33
1	0	265	ARG	CZ-NH1	-11.03	1.18	1.33
1	Ι	85	ARG	CZ-NH1	-11.02	1.18	1.33
2	Х	114	ARG	CZ-NH2	-11.01	1.18	1.33
1	Q	85	ARG	CZ-NH1	-11.01	1.18	1.33
2	В	91	ARG	CZ-NH1	-11.00	1.18	1.33
2	В	155	ARG	CZ-NH2	-11.00	1.18	1.33
2	D	28	ARG	CZ-NH1	-10.99	1.18	1.33
2	J	91	ARG	CZ-NH2	-10.98	1.18	1.33
2	D	114	ARG	CZ-NH2	-10.98	1.18	1.33
2	Р	28	ARG	CZ-NH1	-10.98	1.18	1.33
1	K	265	ARG	CZ-NH1	-10.98	1.18	1.33
1	W	265	ARG	CZ-NH1	-10.97	1.18	1.33
2	V	114	ARG	CZ-NH2	-10.96	1.18	1.33
2	J	28	ARG	CZ-NH1	-10.96	1.18	1.33
2	V	91	ARG	CZ-NH1	-10.95	1.18	1.33
2	В	23	SER	CA-CB	-10.94	1.36	1.52
1	S	8	GLU	CD-OE1	-10.94	1.13	1.25

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	Х	28	ARG	CZ-NH1	-10.93	1.18	1.33
2	Ν	91	ARG	CZ-NH1	-10.92	1.18	1.33
2	D	91	ARG	CZ-NH2	-10.90	1.18	1.33
1	G	265	ARG	CZ-NH1	-10.86	1.19	1.33
2	N	28	ARG	CZ-NH1	-10.86	1.19	1.33
2	F	114	ARG	CZ-NH2	-10.84	1.19	1.33
1	А	85	ARG	CZ-NH1	-10.84	1.19	1.33
1	U	85	ARG	CZ-NH1	-10.84	1.19	1.33
1	С	265	ARG	CZ-NH1	-10.83	1.19	1.33
2	Х	23	SER	CA-CB	-10.83	1.36	1.52
2	N	114	ARG	CZ-NH1	-10.82	1.19	1.33
2	Р	155	ARG	CZ-NH1	-10.81	1.19	1.33
2	J	114	ARG	CZ-NH1	-10.80	1.19	1.33
2	В	114	ARG	CZ-NH2	-10.79	1.19	1.33
2	В	28	ARG	CZ-NH1	-10.79	1.19	1.33
2	V	114	ARG	CZ-NH1	-10.76	1.19	1.33
1	М	85	ARG	CZ-NH1	-10.72	1.19	1.33
2	V	28	ARG	CZ-NH1	-10.72	1.19	1.33
1	W	122	ARG	CZ-NH2	-10.70	1.19	1.33
2	R	28	ARG	CZ-NH1	-10.69	1.19	1.33
2	F	114	ARG	CZ-NH1	-10.68	1.19	1.33
1	G	122	ARG	CZ-NH1	-10.65	1.19	1.33
1	А	85	ARG	CZ-NH2	-10.64	1.19	1.33
1	Κ	122	ARG	CZ-NH1	-10.63	1.19	1.33
1	Q	85	ARG	CZ-NH2	-10.63	1.19	1.33
1	Κ	85	ARG	CZ-NH2	-10.60	1.19	1.33
1	S	85	ARG	CZ-NH2	-10.59	1.19	1.33
1	W	122	ARG	CZ-NH1	-10.58	1.19	1.33
1	С	122	ARG	CZ-NH1	-10.57	1.19	1.33
1	0	85	ARG	CZ-NH2	-10.54	1.19	1.33
1	U	85	ARG	CZ-NH2	-10.54	1.19	1.33
1	S	265	ARG	CZ-NH1	-10.53	1.19	1.33
1	K	122	ARG	CZ-NH2	-10.53	1.19	1.33
1	Ι	85	ARG	CZ-NH2	-10.53	1.19	1.33
1	G	122	ARG	CZ-NH2	-10.53	1.19	1.33
1	A	122	ARG	CZ-NH2	-10.52	1.19	1.33
2	В	114	ARG	CZ-NH1	-10.52	1.19	1.33
1	С	122	ARG	CZ-NH2	-10.52	1.19	1.33
1	С	85	ARG	CZ-NH2	-10.52	1.19	1.33
1	0	122	ARG	CZ-NH1	-10.52	1.19	1.33
2	R	114	ARG	CZ-NH1	-10.52	1.19	1.33
2^{-}	F T	28	ARG	CZ-NH1	-10.51	1.19	1.33

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	S	122	ARG	CZ-NH2	-10.51	1.19	1.33
1	Ι	122	ARG	CZ-NH2	-10.50	1.19	1.33
1	М	85	ARG	CZ-NH2	-10.50	1.19	1.33
2	Н	113	ARG	CZ-NH2	-10.48	1.19	1.33
1	0	122	ARG	CZ-NH2	-10.46	1.19	1.33
1	Q	122	ARG	CZ-NH2	-10.45	1.19	1.33
2	J	169	GLU	CG-CD	-10.44	1.36	1.51
1	М	122	ARG	CZ-NH2	-10.44	1.19	1.33
1	U	122	ARG	CZ-NH2	-10.43	1.19	1.33
1	G	85	ARG	CZ-NH2	-10.42	1.19	1.33
1	S	122	ARG	CZ-NH1	-10.40	1.19	1.33
1	W	85	ARG	CZ-NH2	-10.39	1.19	1.33
2	Н	392	ARG	CZ-NH2	-10.37	1.19	1.33
2	V	169	GLU	CG-CD	-10.34	1.36	1.51
1	Е	85	ARG	CZ-NH2	-10.33	1.19	1.33
2	D	392	ARG	CZ-NH2	-10.31	1.19	1.33
2	Х	392	ARG	CZ-NH2	-10.31	1.19	1.33
2	Н	113	ARG	CZ-NH1	-10.24	1.19	1.33
1	Е	122	ARG	CZ-NH2	-10.23	1.19	1.33
2	Т	392	ARG	CZ-NH2	-10.19	1.19	1.33
2	Р	392	ARG	CZ-NH2	-10.19	1.19	1.33
2	Ν	169	GLU	CG-CD	-10.18	1.36	1.51
1	0	87	ARG	CZ-NH2	-10.15	1.19	1.33
1	Е	122	ARG	CZ-NH1	-10.13	1.19	1.33
2	В	169	GLU	CG-CD	-10.07	1.36	1.51
2	F	381	ARG	CZ-NH1	-10.07	1.20	1.33
2	L	392	ARG	CZ-NH2	-10.06	1.20	1.33
2	R	23	SER	CA-CB	-10.02	1.38	1.52
2	R	169	GLU	CG-CD	-9.98	1.36	1.51
1	Q	122	ARG	CZ-NH1	-9.97	1.20	1.33
1	С	87	ARG	CZ-NH2	-9.97	1.20	1.33
1	Ι	122	ARG	CZ-NH1	-9.95	1.20	1.33
2	Η	164	ARG	CZ-NH1	-9.95	1.20	1.33
2	Н	114	ARG	CZ-NH1	-9.94	1.20	1.33
1	М	122	ARG	CZ-NH1	-9.94	1.20	1.33
1	W	87	ARG	CZ-NH2	-9.92	1.20	1.33
1	A	122	ARG	CZ-NH1	-9.91	1.20	1.33
1	U	122	ARG	CZ-NH1	-9.88	1.20	1.33
1	K	87	ARG	CZ-NH2	-9.88	1.20	1.33
1	Q	196	SER	CB-OG	-9.76	1.29	1.42
2	D	114	ARG	CZ-NH1	-9.71	1.20	1.33
2	L	114	ARG	CZ-NH1	-9.65	1.20	1.33

CONI		i previ	ous puyc	•••		0	
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
2	F	392	ARG	CZ-NH2	-9.63	1.20	1.33
2	R	392	ARG	CZ-NH2	-9.62	1.20	1.33
2	N	392	ARG	CZ-NH2	-9.61	1.20	1.33
2	J	392	ARG	CZ-NH2	-9.54	1.20	1.33
2	Х	114	ARG	CZ-NH1	-9.54	1.20	1.33
2	Т	114	ARG	CZ-NH1	-9.53	1.20	1.33
2	V	49	ARG	CZ-NH1	-9.53	1.20	1.33
1	S	87	ARG	CZ-NH2	-9.53	1.20	1.33
2	N	49	ARG	CZ-NH1	-9.52	1.20	1.33
1	А	196	SER	CA-CB	-9.50	1.38	1.52
2	Н	169	GLU	CG-CD	-9.50	1.37	1.51
2	V	392	ARG	CZ-NH2	-9.48	1.20	1.33
2	R	49	ARG	CZ-NH1	-9.48	1.20	1.33
1	Ι	196	SER	CB-OG	-9.46	1.29	1.42
2	В	392	ARG	CZ-NH2	-9.44	1.20	1.33
1	Е	266	LEU	CB-CG	-9.43	1.25	1.52
2	J	49	ARG	CZ-NH1	-9.37	1.20	1.33
2	Р	114	ARG	CZ-NH1	-9.34	1.21	1.33
1	U	196	SER	CA-CB	-9.34	1.39	1.52
2	R	164	ARG	CZ-NH1	-9.29	1.21	1.33
2	В	49	ARG	CZ-NH1	-9.29	1.21	1.33
2	F	49	ARG	CZ-NH1	-9.29	1.21	1.33
1	М	196	SER	CB-OG	-9.28	1.30	1.42
2	J	60	ARG	CD-NE	-9.28	1.30	1.46
1	Ι	196	SER	CA-CB	-9.27	1.39	1.52
1	Q	196	SER	CA-CB	-9.26	1.39	1.52
2	V	164	ARG	CZ-NH1	-9.24	1.21	1.33
1	А	196	SER	CB-OG	-9.23	1.30	1.42
2	N	60	ARG	CD-NE	-9.22	1.30	1.46
1	U	196	SER	CB-OG	-9.15	1.30	1.42
2	R	60	ARG	CD-NE	-9.05	1.31	1.46
2	F	169	GLU	CD-OE1	-9.03	1.15	1.25
2	В	164	ARG	CZ-NH1	-9.02	1.21	1.33
1	М	196	SER	CA-CB	-8.97	1.39	1.52
2	N	9	THR	N-CA	-8.95	1.28	1.46
2	V	60	ARG	CD-NE	-8.93	1.31	1.46
1	Е	196	SER	CA-CB	-8.88	1.39	1.52
2	F	9	THR	N-CA	-8.87	1.28	1.46
2	В	60	ARG	CD-NE	-8.78	1.31	1.46
2	N	164	ARG	CZ-NH1	-8.76	1.21	1.33
2	X	60	ARG	CD-NE	-8.75	1.31	1.46
2	Т	60	ARG	CD-NE	-8.75	1.31	1.46

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	G	167	GLU	CD-OE2	-8.74	1.16	1.25
2	L	60	ARG	CD-NE	-8.70	1.31	1.46
2	Т	49	ARG	CZ-NH1	-8.70	1.21	1.33
2	F	60	ARG	CD-NE	-8.65	1.31	1.46
2	J	9	THR	N-CA	-8.65	1.29	1.46
2	J	164	ARG	CZ-NH1	-8.63	1.21	1.33
2	R	9	THR	N-CA	-8.63	1.29	1.46
2	Н	169	GLU	CD-OE1	-8.62	1.16	1.25
2	Р	60	ARG	CD-NE	-8.62	1.31	1.46
2	Н	49	ARG	CZ-NH1	-8.62	1.21	1.33
2	V	9	THR	N-CA	-8.62	1.29	1.46
2	D	60	ARG	CD-NE	-8.61	1.31	1.46
2	R	169	GLU	CD-OE1	-8.58	1.16	1.25
2	Х	49	ARG	CZ-NH1	-8.58	1.22	1.33
1	Ι	8	GLU	CG-CD	-8.55	1.39	1.51
2	В	9	THR	N-CA	-8.54	1.29	1.46
1	Q	87	ARG	CG-CD	-8.53	1.30	1.51
2	L	113	ARG	NE-CZ	-8.44	1.22	1.33
2	R	113	ARG	CD-NE	-8.42	1.32	1.46
1	U	87	ARG	CB-CG	-8.41	1.29	1.52
2	Р	113	ARG	NE-CZ	-8.41	1.22	1.33
2	V	113	ARG	CD-NE	-8.41	1.32	1.46
2	D	49	ARG	CZ-NH1	-8.41	1.22	1.33
1	Q	87	ARG	CB-CG	-8.40	1.29	1.52
1	U	87	ARG	CG-CD	-8.40	1.30	1.51
2	Т	113	ARG	NE-CZ	-8.39	1.22	1.33
1	G	196	SER	CA-CB	-8.37	1.40	1.52
2	J	113	ARG	CD-NE	-8.35	1.32	1.46
1	S	196	SER	CA-CB	-8.35	1.40	1.52
2	В	113	ARG	CD-NE	-8.34	1.32	1.46
1	М	87	ARG	CB-CG	-8.32	1.30	1.52
2	Ν	113	ARG	CD-NE	-8.31	1.32	1.46
2	L	49	ARG	CZ-NH1	-8.29	1.22	1.33
1	K	196	SER	CA-CB	-8.29	1.40	1.52
1	А	87	ARG	CB-CG	-8.27	1.30	1.52
1	Ι	87	ARG	CB-CG	-8.27	1.30	1.52
2	Р	49	ARG	CZ-NH1	-8.26	1.22	1.33
1	A	87	ARG	CG-CD	-8.21	1.31	1.51
1	W	196	SER	CA-CB	-8.21	1.40	1.52
1	Q	8	GLU	CG-CD	-8.17	1.39	1.51
2	Х	113	ARG	NE-CZ	-8.16	1.22	1.33
1	Е	87	ARG	CB-CG	-8.14	1.30	1.52

Mol	Chain	Res		Atoms	Z	Observed(Å)	Ideal(Å)
1	0	196	SER	CA-CB	-8.13	1.40	1.52
2	Н	60	ARG	CD-NE	-8.04	1.32	1.46
2	V	169	GLU	CD-OE1	-8.03	1.16	1.25
1	М	8	GLU	CG-CD	-8.01	1.40	1.51
1	М	87	ARG	CG-CD	-7.99	1.31	1.51
2	D	258	PHE	CE2-CZ	-7.97	1.22	1.37
2	F	258	PHE	CE2-CZ	-7.94	1.22	1.37
2	D	113	ARG	NE-CZ	-7.94	1.22	1.33
2	R	258	PHE	CE2-CZ	-7.93	1.22	1.37
1	Ι	87	ARG	CG-CD	-7.86	1.32	1.51
2	Н	113	ARG	NE-CZ	-7.84	1.22	1.33
2	F	113	ARG	CD-NE	-7.84	1.33	1.46
2	Х	22	PRO	N-CA	-7.83	1.33	1.47
2	D	258	PHE	CE1-CZ	-7.77	1.22	1.37
1	С	196	SER	CA-CB	-7.77	1.41	1.52
2	Х	258	PHE	CE2-CZ	-7.75	1.22	1.37
2	Н	258	PHE	CE2-CZ	-7.75	1.22	1.37
1	0	87	ARG	CD-NE	-7.74	1.33	1.46
2	В	169	GLU	CD-OE1	-7.72	1.17	1.25
2	В	258	PHE	CE2-CZ	-7.71	1.22	1.37
1	Q	87	ARG	NE-CZ	-7.70	1.23	1.33
2	Х	258	PHE	CE1-CZ	-7.69	1.22	1.37
2	Т	258	PHE	CE2-CZ	-7.67	1.22	1.37
2	L	258	PHE	CE2-CZ	-7.67	1.22	1.37
2	Н	23	SER	CA-CB	-7.66	1.41	1.52
2	В	258	PHE	CE1-CZ	-7.65	1.22	1.37
1	А	8	GLU	CG-CD	-7.63	1.40	1.51
2	Р	258	PHE	CE2-CZ	-7.61	1.22	1.37
2	J	258	PHE	CE2-CZ	-7.59	1.23	1.37
2	R	258	PHE	CE1-CZ	-7.57	1.23	1.37
1	W	87	ARG	CD-NE	-7.56	1.33	1.46
2	Н	258	PHE	CE1-CZ	-7.55	1.23	1.37
2	N	258	PHE	CE2-CZ	-7.55	1.23	1.37
2	V	258	PHE	CE2-CZ	-7.52	1.23	1.37
2	Н	113	ARG	CD-NE	-7.51	1.33	1.46
1	U	8	GLU	CG-CD	-7.50	1.40	1.51
2	Т	258	PHE	CE1-CZ	-7.49	1.23	1.37
2	F	23	SER	CA-C	-7.49	1.33	1.52
1	Ι	87	ARG	NE-CZ	-7.47	1.23	1.33
2	L	22	PRO	N-CA	-7.47	1.34	1.47
2	F	258	PHE	CE1-CZ	-7.47	1.23	1.37
1	K	87	ARG	CD-NE	-7.46	1.33	1.46

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	J	381	ARG	CZ-NH2	-7.45	1.23	1.33
2	Р	22	PRO	N-CA	-7.45	1.34	1.47
1	С	87	ARG	CD-NE	-7.43	1.33	1.46
2	Т	113	ARG	CD-NE	-7.43	1.33	1.46
2	N	381	ARG	CZ-NH2	-7.42	1.23	1.33
2	В	169	GLU	CD-OE2	-7.39	1.17	1.25
2	Х	113	ARG	CD-NE	-7.38	1.33	1.46
2	J	9	THR	CA-CB	-7.38	1.34	1.53
2	D	22	PRO	N-CA	-7.36	1.34	1.47
1	S	87	ARG	CD-NE	-7.36	1.33	1.46
2	В	381	ARG	CZ-NH2	-7.35	1.23	1.33
2	Ν	258	PHE	CE1-CZ	-7.33	1.23	1.37
2	L	113	ARG	CD-NE	-7.33	1.33	1.46
2	Т	169	GLU	CG-CD	-7.30	1.41	1.51
2	Р	258	PHE	CE1-CZ	-7.28	1.23	1.37
2	V	381	ARG	CZ-NH2	-7.26	1.23	1.33
2	J	258	PHE	CE1-CZ	-7.25	1.23	1.37
2	Р	113	ARG	CD-NE	-7.25	1.34	1.46
2	L	258	PHE	CE1-CZ	-7.24	1.23	1.37
2	Ν	9	THR	CA-CB	-7.24	1.34	1.53
1	М	87	ARG	NE-CZ	-7.22	1.23	1.33
2	V	258	PHE	CE1-CZ	-7.22	1.23	1.37
2	В	113	ARG	NE-CZ	-7.22	1.23	1.33
1	K	196	SER	CB-OG	-7.21	1.32	1.42
2	R	113	ARG	CZ-NH1	-7.21	1.23	1.33
2	Н	9	THR	CA-CB	-7.18	1.34	1.53
2	Ν	113	ARG	NE-CZ	-7.18	1.23	1.33
2	R	9	THR	CA-CB	-7.17	1.34	1.53
2	Т	22	PRO	N-CA	-7.15	1.35	1.47
2	R	113	ARG	NE-CZ	-7.15	1.23	1.33
2	V	9	THR	CA-CB	-7.14	1.34	1.53
2	J	169	GLU	CD-OE2	-7.14	1.17	1.25
1	U	87	ARG	NE-CZ	-7.12	1.23	1.33
2	В	113	ARG	CZ-NH1	-7.11	1.23	1.33
2	D	113	ARG	CD-NE	-7.10	1.34	1.46
2	J	113	ARG	NE-CZ	-7.09	1.23	1.33
1	Ε	196	SER	N-CA	-7.08	1.32	1.46
2	F	9	THR	CA-CB	-7.07	1.34	1.53
2	L	9	THR	CA-CB	-7.07	1.34	1.53
2	В	9	THR	CA-CB	-7.03	1.35	1.53
1	A	87	ARG	NE-CZ	-7.01	1.24	1.33
1	Ι	266	LEU	CB-CG	-6.99	1.32	1.52

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	Р	9	THR	CB-CG2	-6.99	1.29	1.52
2	V	113	ARG	NE-CZ	-6.98	1.24	1.33
1	Q	266	LEU	CB-CG	-6.97	1.32	1.52
2	Ν	113	ARG	CZ-NH1	-6.97	1.24	1.33
1	U	221	ARG	CD-NE	-6.95	1.34	1.46
1	А	221	ARG	CD-NE	-6.95	1.34	1.46
1	0	196	SER	CB-OG	-6.95	1.33	1.42
2	L	169	GLU	CB-CG	-6.93	1.39	1.52
2	D	169	GLU	CG-CD	-6.90	1.41	1.51
1	Ι	221	ARG	CD-NE	-6.90	1.34	1.46
1	М	221	ARG	CD-NE	-6.88	1.34	1.46
2	L	9	THR	CB-CG2	-6.88	1.29	1.52
1	Ι	196	SER	N-CA	-6.87	1.32	1.46
1	Е	221	ARG	CD-NE	-6.87	1.34	1.46
2	Т	9	THR	CB-CG2	-6.86	1.29	1.52
1	А	196	SER	N-CA	-6.86	1.32	1.46
1	U	196	SER	N-CA	-6.86	1.32	1.46
2	F	113	ARG	NE-CZ	-6.85	1.24	1.33
2	Х	9	THR	CA-CB	-6.84	1.35	1.53
2	Т	9	THR	CA-CB	-6.82	1.35	1.53
1	S	196	SER	CB-OG	-6.81	1.33	1.42
1	Q	221	ARG	CD-NE	-6.80	1.34	1.46
1	G	196	SER	CB-OG	-6.80	1.33	1.42
1	W	196	SER	CB-OG	-6.80	1.33	1.42
2	Н	9	THR	N-CA	-6.79	1.32	1.46
2	Р	9	THR	N-CA	-6.79	1.32	1.46
2	D	9	THR	CB-CG2	-6.78	1.29	1.52
2	V	113	ARG	CZ-NH1	-6.77	1.24	1.33
2	Ν	169	GLU	CD-OE2	-6.77	1.18	1.25
2	Р	9	THR	CA-CB	-6.74	1.35	1.53
2	D	9	THR	CA-CB	-6.72	1.35	1.53
2	Р	169	GLU	CB-CG	-6.72	1.39	1.52
1	М	266	LEU	CB-CG	-6.72	1.33	1.52
2	Т	164	ARG	CZ-NH1	-6.72	1.24	1.33
1	G	196	SER	N-CA	-6.70	1.32	1.46
2	X	9	THR	N-CA	-6.69	1.32	1.46
2	T	9	THR	N-CA	-6.68	1.32	1.46
2	J	169	GLU	CB-CG	-6.68	1.39	1.52
2	V	169	GLU	CB-CG	-6.64	1.39	1.52
2	F	52	GLN	CG-CD	-6.64	1.35	1.51
2	L	9	THR	N-CA	-6.64	1.33	1.46
2	X	169	GLU	CG-CD	-6.61	1.42	1.51

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	J	113	ARG	CZ-NH1	-6.60	1.24	1.33
2	L	164	ARG	CZ-NH1	-6.60	1.24	1.33
2	Т	169	GLU	CB-CG	-6.58	1.39	1.52
2	D	169	GLU	CB-CG	-6.58	1.39	1.52
2	Ν	169	GLU	CD-OE1	-6.58	1.18	1.25
1	G	8	GLU	CB-CG	-6.57	1.39	1.52
2	J	169	GLU	CD-OE1	-6.57	1.18	1.25
2	D	9	THR	N-CA	-6.55	1.33	1.46
2	Х	169	GLU	CB-CG	-6.55	1.39	1.52
1	G	167	GLU	CD-OE1	6.55	1.32	1.25
2	R	23	SER	CA-C	-6.52	1.35	1.52
1	S	248	GLU	CD-OE2	-6.51	1.18	1.25
2	L	169	GLU	CG-CD	-6.51	1.42	1.51
2	Т	23	SER	CA-C	-6.49	1.36	1.52
2	F	225	GLU	CD-OE1	-6.49	1.18	1.25
1	S	196	SER	N-CA	-6.48	1.33	1.46
1	Q	8	GLU	CD-OE2	-6.47	1.18	1.25
2	N	169	GLU	CB-CG	-6.46	1.39	1.52
1	K	196	SER	N-CA	-6.46	1.33	1.46
2	Н	9	THR	CB-CG2	-6.45	1.31	1.52
2	N	52	GLN	CG-CD	-6.45	1.36	1.51
1	Q	196	SER	N-CA	-6.44	1.33	1.46
2	Р	164	ARG	CZ-NH1	-6.42	1.24	1.33
2	Х	9	THR	CB-CG2	-6.42	1.31	1.52
2	D	164	ARG	CZ-NH1	-6.41	1.24	1.33
2	Х	164	ARG	CZ-NH1	-6.41	1.24	1.33
1	0	196	SER	N-CA	-6.40	1.33	1.46
1	W	196	SER	N-CA	-6.39	1.33	1.46
2	R	52	GLN	CG-CD	-6.38	1.36	1.51
2	V	23	SER	CA-C	-6.38	1.36	1.52
2	B	52	GLN	CG-CD	-6.36	1.36	1.51
2	В	225	GLU	CD-OE1	-6.35	1.18	1.25
2	J	52	GLN	CG-CD	-6.32	1.36	1.51
1	M	196	SER	N-CA	-6.31	1.33	1.46
2	F'	169	GLU	CB-CG	-6.31	1.40	1.52
$\boxed{2}$	N	23	SER	CA-C	-6.30	1.36	1.52
2	H	169	GLU	CB-CG	-6.29	1.40	1.52
2	R	169	GLU	CB-CG	-6.28	1.40	1.52
		196	SER	CB-OG	-6.28	1.34	
	M	77	GLU	CD-OE2	-6.27	1.18	1.25
	A	266		CB-CG	-6.25	1.34	1.52
2	P	169	GLU	CG-CD	-6.23	1.42	1.51

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	V	52	GLN	CG-CD	-6.23	1.36	1.51
2	В	169	GLU	CB-CG	-6.22	1.40	1.52
2	В	381	ARG	CD-NE	-6.21	1.35	1.46
2	В	23	SER	CA-C	-6.20	1.36	1.52
2	Н	169	GLU	CD-OE2	-6.19	1.18	1.25
1	С	196	SER	N-CA	-6.19	1.33	1.46
1	G	266	LEU	CA-C	-6.19	1.36	1.52
2	Н	225	GLU	CD-OE2	-6.18	1.18	1.25
2	Х	225	GLU	CD-OE2	-6.17	1.18	1.25
2	Т	225	GLU	CD-OE2	-6.15	1.18	1.25
2	R	381	ARG	CZ-NH2	-6.13	1.25	1.33
2	J	381	ARG	CD-NE	-6.11	1.36	1.46
2	Т	225	GLU	CD-OE1	-6.11	1.19	1.25
2	Ν	381	ARG	CD-NE	-6.09	1.36	1.46
2	J	23	SER	CA-C	-6.09	1.37	1.52
1	S	8	GLU	CB-CG	-6.09	1.40	1.52
1	S	248	GLU	CD-OE1	-6.08	1.19	1.25
1	А	248	GLU	CD-OE2	-6.08	1.19	1.25
1	U	266	LEU	CB-CG	-6.08	1.34	1.52
1	G	87	ARG	CZ-NH2	-6.07	1.25	1.33
2	D	225	GLU	CD-OE2	-6.07	1.19	1.25
2	Н	225	GLU	CD-OE1	-6.06	1.19	1.25
2	Р	225	GLU	CD-OE2	-6.05	1.19	1.25
2	Н	23	SER	N-CA	-6.01	1.34	1.46
2	V	381	ARG	CD-NE	-6.00	1.36	1.46
1	Ε	248	GLU	CD-OE2	-5.98	1.19	1.25
1	U	77	GLU	CD-OE2	-5.98	1.19	1.25
1	U	248	GLU	CD-OE1	-5.98	1.19	1.25
2	V	40	GLU	CD-OE1	-5.98	1.19	1.25
1	G	74	ARG	CG-CD	-5.98	1.37	1.51
2	Ν	225	GLU	CD-OE1	-5.96	1.19	1.25
1	М	248	GLU	CD-OE1	-5.96	1.19	1.25
2	Х	225	GLU	CD-OE1	-5.96	1.19	1.25
1	U	248	GLU	CD-OE2	-5.95	1.19	1.25
1	Е	77	GLU	CD-OE2	-5.95	1.19	1.25
2	R	225	GLU	CD-OE1	-5.95	1.19	1.25
1	K	248	GLU	CD-OE2	-5.94	1.19	1.25
2	Т	52	GLN	CG-CD	-5.94	1.37	1.51
1	Q	77	GLU	CD-OE2	-5.93	1.19	1.25
2	F	40	GLU	CD-OE1	-5.92	1.19	1.25
2	L	22	PRO	C-O	-5.92	1.11	1.23
1	I	248	GLU	CD-OE2	-5.92	1.19	1.25

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	Р	22	PRO	C-O	-5.91	1.11	1.23
2	J	225	GLU	CD-OE1	-5.90	1.19	1.25
2	V	225	GLU	CD-OE1	-5.88	1.19	1.25
2	R	381	ARG	CD-NE	-5.88	1.36	1.46
2	V	169	GLU	CD-OE2	-5.88	1.19	1.25
1	W	248	GLU	CD-OE1	-5.87	1.19	1.25
2	F	225	GLU	CD-OE2	-5.86	1.19	1.25
1	Q	87	ARG	CZ-NH1	-5.86	1.25	1.33
2	L	225	GLU	CD-OE2	-5.86	1.19	1.25
2	D	225	GLU	CD-OE1	-5.85	1.19	1.25
2	V	40	GLU	CD-OE2	-5.85	1.19	1.25
1	W	248	GLU	CD-OE2	-5.85	1.19	1.25
2	Р	225	GLU	CD-OE1	-5.84	1.19	1.25
2	Х	52	GLN	CG-CD	-5.84	1.37	1.51
1	Ι	77	GLU	CD-OE2	-5.84	1.19	1.25
2	J	40	GLU	CD-OE2	-5.84	1.19	1.25
1	0	74	ARG	CG-CD	-5.84	1.37	1.51
2	F	164	ARG	CZ-NH1	-5.83	1.25	1.33
2	L	52	GLN	CG-CD	-5.83	1.37	1.51
1	С	248	GLU	CD-OE1	-5.82	1.19	1.25
1	Ε	248	GLU	CD-OE1	-5.81	1.19	1.25
2	D	52	GLN	CG-CD	-5.80	1.37	1.51
1	0	248	GLU	CD-OE2	-5.80	1.19	1.25
1	М	266	LEU	CA-CB	-5.80	1.40	1.53
1	G	248	GLU	CD-OE2	-5.80	1.19	1.25
1	0	248	GLU	CD-OE1	-5.80	1.19	1.25
2	F	40	GLU	CD-OE2	-5.79	1.19	1.25
1	Ε	87	ARG	CG-CD	-5.78	1.37	1.51
1	W	74	ARG	CZ-NH1	-5.78	1.25	1.33
2	Р	52	GLN	CG-CD	-5.77	1.37	1.51
1	G	87	ARG	CG-CD	-5.77	1.37	1.51
1	Q	248	GLU	CD-OE1	-5.77	1.19	1.25
1	Κ	74	ARG	CZ-NH2	-5.77	1.25	1.33
1	Q	248	GLU	CD-OE2	-5.77	1.19	1.25
2	Η	40	GLU	CD-OE1	-5.76	1.19	1.25
1	G	248	GLU	CD-OE1	-5.75	1.19	1.25
2	V	225	GLU	CD-OE2	-5.75	1.19	1.25
1	K	74	ARG	CG-CD	-5.75	1.37	1.51
2	Р	23	SER	CA-C	-5.73	1.38	1.52
2	R	40	GLU	CD-OE2	-5.73	1.19	1.25
1	Ι	266	LEU	CA-CB	-5.73	1.40	1.53
1	S	74	ARG	CG-CD	-5.73	1.37	1.51

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	Х	40	GLU	CD-OE2	-5.72	1.19	1.25
2	J	225	GLU	CD-OE2	-5.72	1.19	1.25
2	L	225	GLU	CD-OE1	-5.72	1.19	1.25
1	А	184	SER	CB-OG	-5.72	1.34	1.42
2	Р	40	GLU	CD-OE1	-5.71	1.19	1.25
2	R	404	PHE	C-N	5.71	1.43	1.33
2	L	40	GLU	CD-OE1	-5.71	1.19	1.25
2	J	40	GLU	CD-OE1	-5.70	1.19	1.25
1	С	223	ARG	CD-NE	-5.70	1.36	1.46
2	В	40	GLU	CD-OE2	-5.68	1.19	1.25
1	А	248	GLU	CD-OE1	-5.67	1.19	1.25
1	Ι	248	GLU	CD-OE1	-5.67	1.19	1.25
1	А	266	LEU	CA-CB	-5.65	1.40	1.53
1	K	248	GLU	CD-OE1	-5.65	1.19	1.25
2	Х	40	GLU	CD-OE1	-5.64	1.19	1.25
2	J	23	SER	CB-OG	-5.63	1.34	1.42
2	В	225	GLU	CD-OE2	-5.62	1.19	1.25
1	U	266	LEU	CA-CB	-5.62	1.40	1.53
1	W	74	ARG	CG-CD	-5.62	1.37	1.51
1	А	77	GLU	CD-OE2	-5.62	1.19	1.25
1	С	248	GLU	CD-OE2	-5.62	1.19	1.25
2	L	23	SER	CA-C	-5.62	1.38	1.52
1	S	74	ARG	CZ-NH1	-5.62	1.25	1.33
2	Н	40	GLU	CD-OE2	-5.61	1.19	1.25
2	В	40	GLU	CD-OE1	-5.61	1.19	1.25
1	М	248	GLU	CD-OE2	-5.61	1.19	1.25
2	Ν	40	GLU	CD-OE2	-5.61	1.19	1.25
2	Р	40	GLU	CD-OE2	-5.58	1.19	1.25
1	А	184	SER	CA-CB	-5.57	1.44	1.52
2	F	407	LEU	C-O	5.57	1.33	1.23
2	Т	22	PRO	C-O	-5.56	1.12	1.23
1	0	74	ARG	CZ-NH2	-5.56	1.25	1.33
1	C	74	ARG	CG-CD	-5.56	1.38	1.51
2	R	40	GLU	CD-OE1	-5.55	1.19	1.25
2	N	225	GLU	CD-OE2	-5.55	1.19	1.25
2	H	381	ARG	CD-NE	-5.54	1.37	1.46
2	L	40	GLU	CD-OE2	-5.51	1.19	1.25
2	Т	40	GLU	CD-OE2	-5.49	1.19	1.25
1	W	223	ARG	CD-NE	-5.48	1.37	1.46
1	М	77	GLU	CD-OE1	-5.45	1.19	1.25
1	G	167	GLU	CG-CD	-5.44	1.43	1.51
2	N	$4\overline{0}$	GLU	CD-OE1	-5.44	1.19	1.25

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	R	225	GLU	CD-OE2	-5.43	1.19	1.25
2	Н	52	GLN	CG-CD	-5.40	1.38	1.51
2	F	381	ARG	CD-NE	-5.39	1.37	1.46
2	Х	23	SER	CA-C	-5.38	1.39	1.52
1	Q	223	ARG	CD-NE	-5.37	1.37	1.46
1	C	74	ARG	CZ-NH1	-5.37	1.26	1.33
2	Т	381	ARG	CD-NE	-5.36	1.37	1.46
2	Т	40	GLU	CD-OE1	-5.36	1.19	1.25
1	С	77	GLU	CD-OE2	-5.35	1.19	1.25
1	S	77	GLU	CD-OE2	-5.35	1.19	1.25
2	D	40	GLU	CD-OE2	-5.34	1.19	1.25
1	G	77	GLU	CD-OE1	-5.31	1.19	1.25
1	G	77	GLU	CD-OE2	-5.29	1.19	1.25
1	Е	223	ARG	CD-NE	-5.29	1.37	1.46
2	D	40	GLU	CD-OE1	-5.29	1.19	1.25
1	U	8	GLU	CD-OE2	-5.29	1.19	1.25
1	Е	87	ARG	CZ-NH1	-5.28	1.26	1.33
1	Κ	77	GLU	CD-OE2	-5.28	1.19	1.25
1	0	74	ARG	CZ-NH1	-5.27	1.26	1.33
1	М	223	ARG	CD-NE	-5.26	1.37	1.46
1	С	77	GLU	CD-OE1	-5.26	1.19	1.25
1	Е	196	SER	CB-OG	-5.23	1.35	1.42
2	Р	381	ARG	CD-NE	-5.23	1.37	1.46
1	Κ	223	ARG	CD-NE	-5.23	1.37	1.46
1	S	223	ARG	CD-NE	-5.23	1.37	1.46
2	L	381	ARG	CD-NE	-5.22	1.37	1.46
1	Κ	74	ARG	CZ-NH1	-5.20	1.26	1.33
2	D	23	SER	CA-C	-5.20	1.39	1.52
2	Р	22	PRO	C-N	-5.17	1.22	1.34
2	L	22	PRO	C-N	-5.17	1.22	1.34
1	G	8	GLU	CA-CB	-5.17	1.42	1.53
1	G	87	ARG	NE-CZ	-5.15	1.26	1.33
2	D	381	ARG	CD-NE	-5.14	1.37	1.46
1	0	87	ARG	CB-CG	-5.14	1.38	1.52
1	K	87	ARG	CB-CG	-5.14	1.38	1.52
1	С	87	ARG	CB-CG	-5.14	1.38	1.52
1	А	223	ARG	CD-NE	-5.13	1.37	1.46
2	Т	52	GLN	CD-NE2	-5.13	1.20	1.32
2	В	196	ASP	CB-CG	-5.13	1.41	1.51
2	X	381	ARG	CD-NE	-5.13	1.37	1.46
2	Р	52	GLN	CD-NE2	-5.13	1.20	1.32
2	\mathbf{F}	196	ASP	CB-CG	-5.12	1.41	1.51

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	Ο	223	ARG	CD-NE	-5.12	1.37	1.46
1	W	87	ARG	CB-CG	-5.12	1.38	1.52
1	U	77	GLU	CD-OE1	-5.11	1.20	1.25
1	G	87	ARG	CB-CG	-5.11	1.38	1.52
1	Κ	77	GLU	CD-OE1	-5.09	1.20	1.25
1	Ο	8	GLU	CA-CB	-5.09	1.42	1.53
2	Х	22	PRO	C-N	-5.09	1.22	1.34
1	Ι	87	ARG	CZ-NH1	-5.08	1.26	1.33
1	S	167	GLU	CB-CG	-5.08	1.42	1.52
1	S	87	ARG	CB-CG	-5.07	1.38	1.52
2	R	169	GLU	CD-OE2	-5.06	1.20	1.25
1	U	223	ARG	CD-NE	-5.06	1.37	1.46
1	Κ	8	GLU	CA-CB	-5.02	1.43	1.53
2	V	196	ASP	CB-CG	-5.02	1.41	1.51
2	X	22	PRO	C-O	-5.02	1.13	1.23
1	Q	266	LEU	CA-CB	-5.01	1.42	1.53
1	W	77	GLU	CD-OE2	-5.00	1.20	1.25
1	А	$\overline{77}$	GLU	CD-OE1	-5.00	1.20	1.25

All (834) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	Е	221	ARG	NE-CZ-NH1	28.37	134.49	120.30
1	М	221	ARG	NE-CZ-NH1	28.25	134.43	120.30
1	Q	221	ARG	NE-CZ-NH1	28.08	134.34	120.30
1	Ι	221	ARG	NE-CZ-NH1	28.03	134.32	120.30
1	А	221	ARG	NE-CZ-NH1	28.02	134.31	120.30
1	U	221	ARG	NE-CZ-NH1	27.97	134.28	120.30
1	Е	221	ARG	NE-CZ-NH2	-26.07	107.27	120.30
1	М	221	ARG	NE-CZ-NH2	-25.75	107.43	120.30
1	U	221	ARG	NE-CZ-NH2	-25.63	107.48	120.30
1	Ι	221	ARG	NE-CZ-NH2	-25.45	107.58	120.30
1	А	221	ARG	NE-CZ-NH2	-25.41	107.59	120.30
1	Q	221	ARG	NE-CZ-NH2	-25.37	107.61	120.30
2	Н	164	ARG	NE-CZ-NH2	24.85	132.72	120.30
1	G	221	ARG	NE-CZ-NH1	24.78	132.69	120.30
1	S	221	ARG	NE-CZ-NH1	24.64	132.62	120.30
1	W	221	ARG	NE-CZ-NH1	24.37	132.49	120.30
1	K	221	ARG	NE-CZ-NH1	24.22	132.41	120.30
1	0	221	ARG	NE-CZ-NH1	23.84	132.22	120.30
1	С	221	ARG	NE-CZ-NH1	23.70	132.15	120.30
1	G	221	ARG	NE-CZ-NH2	-22.14	109.23	120.30

51	∇C	¥Λ7
90	\mathcal{I}	V V

Mol	Chain	Res	Tvpe	Atoms	Z	$Observed(^{o})$	Ideal(°)
1	K	221	ARG	NE-CZ-NH2	-21.96	109.32	120.30
1	S	221	ARG	NE-CZ-NH2	-21.90	109.32	120.30 120.30
1	0	221	ARG	NE-CZ-NH2	-21.67	109.46	120.30
2	P	49	ARG	NE-CZ-NH1	21.27	130.94	120.30
1	W	221	ARG	NE-CZ-NH2	-21.16	109.72	120.30
2	L	49	ARG	NE-CZ-NH1	21.11	130.85	120.30
2	X	49	ARG	NE-CZ-NH1	21.05	130.82	120.30
1	С	221	ARG	NE-CZ-NH2	-21.02	109.79	120.30
2	Н	49	ARG	NE-CZ-NH1	21.02	130.81	120.30
2	D	49	ARG	NE-CZ-NH1	20.97	130.78	120.30
2	Т	49	ARG	NE-CZ-NH1	20.66	130.63	120.30
1	S	252	ARG	NE-CZ-NH2	19.68	130.14	120.30
2	В	392	ARG	NE-CZ-NH2	19.47	130.04	120.30
2	N	392	ARG	NE-CZ-NH2	19.22	129.91	120.30
2	R	392	ARG	NE-CZ-NH2	19.13	129.87	120.30
2	V	392	ARG	NE-CZ-NH2	19.04	129.82	120.30
2	J	392	ARG	NE-CZ-NH2	18.98	129.79	120.30
2	N	49	ARG	NE-CZ-NH1	18.95	129.78	120.30
2	N	280	ARG	NE-CZ-NH1	18.95	129.77	120.30
2	V	49	ARG	NE-CZ-NH1	18.91	129.75	120.30
2	В	49	ARG	NE-CZ-NH1	18.78	129.69	120.30
2	Т	280	ARG	NE-CZ-NH1	18.75	129.68	120.30
2	J	49	ARG	NE-CZ-NH1	18.72	129.66	120.30
2	F	392	ARG	NE-CZ-NH2	18.71	129.66	120.30
2	Н	280	ARG	NE-CZ-NH1	18.62	129.61	120.30
2	В	280	ARG	NE-CZ-NH1	18.57	129.59	120.30
2	R	49	ARG	NE-CZ-NH1	18.57	129.58	120.30
2	Р	280	ARG	NE-CZ-NH1	18.47	129.53	120.30
2	L	280	ARG	NE-CZ-NH1	18.45	129.53	120.30
2	V	280	ARG	NE-CZ-NH1	18.38	129.49	120.30
2	J	280	ARG	NE-CZ-NH1	18.37	129.48	120.30
2	Х	280	ARG	NE-CZ-NH1	18.35	129.47	120.30
2	R	280	ARG	NE-CZ-NH1	18.29	129.44	120.30
2	F	49	ARG	NE-CZ-NH1	18.11	129.35	120.30
2	F	280	ARG	NE-CZ-NH1	18.11	129.35	120.30
2	D	280	ARG	NE-CZ-NH1	18.08	129.34	120.30
1	E	252	ARG	NE-CZ-NH2	17.69	129.15	120.30
2	L	114	ARG	NE-CZ-NH1	17.39	129.00	120.30
1	0	252	ARG	NE-CZ-NH2	17.34	128.97	120.30
1	M	$25\overline{2}$	ARG	NE-CZ-NH2	17.29	128.95	120.30
2	P	114	ARG	NE-CZ-NH1	17.26	$128.9\overline{3}$	120.30
1	U	252	ARG	NE-CZ-NH2	17.26	128.93	120.30

5	\cap	\mathbf{C}	W
U.	$\mathbf{\nabla}$	\sim	* *

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
2	D	114	ARG	NE-CZ-NH1	17.23	128.91	120.30
2	T	114	ARG	NE-CZ-NH1	17.18	128.89	120.30
1	K	252	ARG	NE-CZ-NH2	17.16	128.88	120.30
2	Х	114	ARG	NE-CZ-NH1	17.16	128.88	120.30
1	С	252	ARG	NE-CZ-NH2	17.14	128.87	120.30
1	W	252	ARG	NE-CZ-NH2	17.14	128.87	120.30
2	Н	114	ARG	NE-CZ-NH1	17.07	128.83	120.30
1	А	252	ARG	NE-CZ-NH2	17.04	128.82	120.30
1	Ι	252	ARG	NE-CZ-NH2	17.00	128.80	120.30
1	Q	252	ARG	NE-CZ-NH2	16.99	128.80	120.30
1	Е	122	ARG	NE-CZ-NH1	16.93	128.76	120.30
1	Ι	122	ARG	NE-CZ-NH1	16.85	128.73	120.30
1	А	122	ARG	NE-CZ-NH1	16.84	128.72	120.30
1	Q	122	ARG	NE-CZ-NH1	16.80	128.70	120.30
1	U	122	ARG	NE-CZ-NH1	16.72	128.66	120.30
1	С	85	ARG	NE-CZ-NH2	16.70	128.65	120.30
1	М	122	ARG	NE-CZ-NH1	16.70	128.65	120.30
1	G	252	ARG	NE-CZ-NH2	16.57	128.58	120.30
1	W	85	ARG	NE-CZ-NH2	16.43	128.51	120.30
1	K	85	ARG	NE-CZ-NH2	16.41	128.50	120.30
1	0	85	ARG	NE-CZ-NH2	16.41	128.50	120.30
1	G	85	ARG	NE-CZ-NH2	16.33	128.46	120.30
1	S	85	ARG	NE-CZ-NH2	16.27	128.44	120.30
1	Е	87	ARG	NE-CZ-NH1	-16.14	112.23	120.30
1	G	265	ARG	NE-CZ-NH1	15.75	128.18	120.30
2	В	28	ARG	NE-CZ-NH1	15.60	128.10	120.30
1	0	265	ARG	NE-CZ-NH1	15.60	128.10	120.30
2	R	28	ARG	NE-CZ-NH1	15.51	128.06	120.30
1	С	265	ARG	NE-CZ-NH1	15.44	128.02	120.30
2	V	28	ARG	NE-CZ-NH1	15.41	128.01	120.30
2	F	28	ARG	NE-CZ-NH1	15.33	127.97	120.30
1	S	265	ARG	NE-CZ-NH1	15.31	127.96	120.30
1	М	265	ARG	NE-CZ-NH2	15.30	127.95	120.30
2	J	28	ARG	NE-CZ-NH1	15.29	127.94	120.30
1	Κ	265	ARG	NE-CZ-NH1	15.24	127.92	120.30
2	N	28	ARG	NE-CZ-NH1	15.23	127.92	120.30
1	Q	87	ARG	NE-CZ-NH1	-15.23	112.69	120.30
1	W	265	ARG	NE-CZ-NH1	15.18	127.89	120.30
1	A	265	ARG	NE-CZ-NH2	14.94	127.77	120.30
1	Q	265	ARG	NE-CZ-NH2	14.76	127.68	120.30
1	U	265	ARG	NE-CZ-NH2	14.67	127.63	120.30
1	Ι	265	ARG	NE-CZ-NH2	14.64	127.62	120.30

50	CW	
90		

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	F	91	ARG	NE-CZ-NH1	14.60	127.60	120.30
2	D	91	ARG	NE-CZ-NH2	14.55	127.58	120.30
2	Х	91	ARG	NE-CZ-NH2	14.53	127.57	120.30
2	L	392	ARG	NE-CZ-NH2	14.53	127.56	120.30
1	Е	265	ARG	NE-CZ-NH2	14.52	127.56	120.30
2	Т	91	ARG	NE-CZ-NH2	14.50	127.55	120.30
2	Н	392	ARG	NE-CZ-NH2	14.48	127.54	120.30
1	U	223	ARG	NE-CZ-NH2	-14.41	113.09	120.30
1	А	223	ARG	NE-CZ-NH2	-14.33	113.13	120.30
2	Р	91	ARG	NE-CZ-NH2	14.33	127.46	120.30
2	L	155	ARG	NE-CZ-NH2	14.32	127.46	120.30
2	Р	155	ARG	NE-CZ-NH2	14.24	127.42	120.30
2	Т	155	ARG	NE-CZ-NH2	14.24	127.42	120.30
2	L	91	ARG	NE-CZ-NH2	14.20	127.40	120.30
1	U	85	ARG	NE-CZ-NH1	14.16	127.38	120.30
2	Х	392	ARG	NE-CZ-NH2	14.15	127.38	120.30
2	Р	392	ARG	NE-CZ-NH2	14.15	127.38	120.30
2	D	392	ARG	NE-CZ-NH2	14.14	127.37	120.30
1	М	85	ARG	NE-CZ-NH1	14.14	127.37	120.30
2	D	155	ARG	NE-CZ-NH2	14.12	127.36	120.30
1	Е	223	ARG	NE-CZ-NH2	-14.10	113.25	120.30
2	F	155	ARG	NE-CZ-NH1	14.09	127.34	120.30
2	Т	392	ARG	NE-CZ-NH2	14.06	127.33	120.30
2	Х	155	ARG	NE-CZ-NH2	14.03	127.32	120.30
1	G	122	ARG	NE-CZ-NH2	14.03	127.31	120.30
1	А	85	ARG	NE-CZ-NH1	14.02	127.31	120.30
2	R	91	ARG	NE-CZ-NH1	14.02	127.31	120.30
1	W	122	ARG	NE-CZ-NH2	13.99	127.30	120.30
1	Ι	223	ARG	NE-CZ-NH2	-13.94	113.33	120.30
1	Ι	85	ARG	NE-CZ-NH1	13.94	127.27	120.30
2	V	164	ARG	NE-CZ-NH1	-13.93	113.33	120.30
2	Т	164	ARG	NE-CZ-NH1	-13.91	113.35	120.30
2	J	155	ARG	NE-CZ-NH1	13.88	127.24	120.30
1	E	85	ARG	NE-CZ-NH1	13.88	127.24	120.30
2	Н	155	ARG	NE-CZ-NH2	13.87	127.23	120.30
1	Q	85	ARG	NE-CZ-NH1	13.87	$127.2\overline{3}$	120.30
2	H	91	ARG	NE-CZ-NH2	13.86	127.23	120.30
2	V	91	ARG	NE-CZ-NH1	13.83	127.21	120.30
2	J	91	ARG	NE-CZ-NH1	13.80	127.20	120.30
2	Н	28	ARG	NE-CZ-NH1	13.78	127.19	120.30
2	F	114	ARG	NE-CZ-NH2	13.76	127.18	120.30
2	В	164	ARG	NE-CZ-NH1	-13.71	113.44	120.30

5	\cap	\mathbf{C}	W
U.	$\mathbf{\nabla}$	\sim	* *

	Chain	l preui	Type	Atoms	7	Observed $(^{o})$	Ideal(°)
2	N	01	ARC	NE CZ NH1	13 70	197.15	120 30
	M	91 993	ARC	NE-CZ-NH2	13.70	113 45	120.30 120.30
$\frac{1}{2}$	V	$\frac{225}{155}$	ARG	NE-CZ-NH1	13.68	197.14	120.30 120.30
$\frac{2}{2}$	V V	164	ARC	NE-CZ-NH1	13.68	113 46	120.30 120.30
$\frac{2}{2}$	л Н	164	ARG	NE-CZ-NH1	-13.00		120.30 120.30
	II K	104	ARC	NE-CZ-NH2	-13.07	113.47	120.30 120.30
		122	ARG	NE-CZ-NH1	12.00	127.13	120.30
	n T	164	ANG	NE-CZ-NH2	10.00	127.12	120.30
	1	104	ANG	NE-CZ-NH2	10.00	127.12	120.30
	נ ת	122	ANG	$\frac{\text{NE-CZ-NH2}}{\text{NE-CZ-NH1}}$	10.00	127.10	120.30 120.20
	P O	20	ANG	NE-CZ-NH1	13.33	127.08	120.30
	0	122	ARG	NE-CZ-NH2	13.04	127.07	120.30
		122	ARG	NE-CZ-NH2	13.49	127.00	120.30
2		407	LEU	UB-UG-UDI	-13.40	88.11	111.00
2	K V	114	ARG	NE-CZ-NH2	13.45	127.02	120.30
2	X D	164	ARG	NE-CZ-NH2	13.44	127.02	120.30
2	P	407	LEU	CB-CG-CD1	-13.43	88.17	111.00
2	B	91	ARG	NE-CZ-NHI	13.43	127.01	120.30
2	B	114	ARG	NE-CZ-NH2	13.37	126.98	120.30
2	N	155	ARG	NE-CZ-NH1	13.37	126.98	120.30
2	В	155	ARG	NE-CZ-NH1	13.37	126.98	120.30
2	L	28	ARG	NE-CZ-NH2	13.36	126.98	120.30
2	V	114	ARG	NE-CZ-NH2	13.35	126.98	120.30
2	Т	28	ARG	NE-CZ-NH1	13.33	126.97	120.30
2	Х	407	LEU	CB-CG-CD1	-13.31	88.37	111.00
2	D	164	ARG	NE-CZ-NH1	-13.31	113.65	120.30
2	N	114	ARG	NE-CZ-NH2	13.31	126.95	120.30
2	Н	28	ARG	NE-CZ-NH2	13.27	126.94	120.30
2	R	164	ARG	NE-CZ-NH1	-13.27	113.67	120.30
1	С	87	ARG	NE-CZ-NH2	-13.22	113.69	120.30
2	Р	28	ARG	NE-CZ-NH2	13.21	126.91	120.30
1	0	87	ARG	NE-CZ-NH2	-13.21	113.70	120.30
2	L	407	LEU	CB-CG-CD1	-13.20	88.56	111.00
2	Х	28	ARG	NE-CZ-NH1	13.18	126.89	120.30
2	J	114	ARG	NE-CZ-NH2	13.15	126.88	120.30
2	D	28	ARG	NE-CZ-NH1	13.14	126.87	120.30
2	Х	28	ARG	NE-CZ-NH2	13.11	126.86	120.30
1	Ι	87	ARG	NE-CZ-NH1	-13.09	113.76	120.30
2	L	28	ARG	NE-CZ-NH1	13.09	126.84	120.30
2	D	407	LEU	CB-CG-CD1	-12.93	89.01	111.00
2	D	164	ARG	NE-CZ-NH2	12.93	126.76	120.30
1	W	87	ARG	NE-CZ-NH2	-12.92	113.84	120.30
2	D	28	ARG	NE-CZ-NH2	12.88	126.74	120.30

Contir $d f_{2}$ onic

50	CW	
90		

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	K	87	ARG	NE-CZ-NH2	-12.85	113.88	120.30
2	Т	28	ARG	NE-CZ-NH2	12.80	126.70	120.30
2	L	164	ARG	NE-CZ-NH1	-12.80	113.90	120.30
1	S	87	ARG	NE-CZ-NH2	-12.76	113.92	120.30
2	L	164	ARG	NE-CZ-NH2	12.75	126.67	120.30
2	Р	164	ARG	NE-CZ-NH1	-12.74	113.93	120.30
2	Р	164	ARG	NE-CZ-NH2	12.68	126.64	120.30
1	М	87	ARG	NE-CZ-NH1	-12.61	113.99	120.30
2	J	164	ARG	NE-CZ-NH1	-12.59	114.00	120.30
1	S	223	ARG	NE-CZ-NH1	-12.47	114.06	120.30
1	М	265	ARG	NH1-CZ-NH2	-12.47	105.69	119.40
1	Ι	265	ARG	NE-CZ-NH1	12.45	126.52	120.30
1	Е	265	ARG	NE-CZ-NH1	12.43	126.52	120.30
2	N	164	ARG	NE-CZ-NH1	-12.42	114.09	120.30
2	F	407	LEU	CB-CG-CD1	-12.40	89.93	111.00
1	U	87	ARG	NE-CZ-NH1	-12.38	114.11	120.30
1	U	265	ARG	NE-CZ-NH1	12.35	126.47	120.30
1	Ι	265	ARG	NH1-CZ-NH2	-12.31	105.86	119.40
2	Н	28	ARG	NH1-CZ-NH2	-12.31	105.86	119.40
1	Q	265	ARG	NE-CZ-NH1	12.31	126.45	120.30
1	А	87	ARG	NE-CZ-NH1	-12.30	114.15	120.30
1	Q	265	ARG	NH1-CZ-NH2	-12.30	105.87	119.40
1	U	265	ARG	NH1-CZ-NH2	-12.28	105.89	119.40
1	А	265	ARG	NH1-CZ-NH2	-12.28	105.89	119.40
1	Ε	265	ARG	NH1-CZ-NH2	-12.25	105.92	119.40
1	G	265	ARG	NH1-CZ-NH2	-12.22	105.96	119.40
1	W	223	ARG	NE-CZ-NH1	-12.20	114.20	120.30
2	Р	28	ARG	NH1-CZ-NH2	-12.18	106.00	119.40
2	R	164	ARG	NE-CZ-NH2	12.14	126.37	120.30
1	0	265	ARG	NH1-CZ-NH2	-12.13	106.06	119.40
1	М	265	ARG	NE-CZ-NH1	12.13	126.36	120.30
1	K	265	ARG	NH1-CZ-NH2	-12.07	106.12	119.40
2	N	155	ARG	NE-CZ-NH2	12.07	126.34	120.30
1	A	265	ARG	NE-CZ-NH1	12.07	126.33	120.30
2	R	28	ARG	NH1-CZ-NH2	-12.04	106.15	119.40
2	L	28	ARG	NH1-CZ-NH2	-12.04	106.16	119.40
1	W	265	ARG	NH1-CZ-NH2	-12.03	106.17	119.40
1	S	265	ARG	NH1-CZ-NH2	-12.02	106.18	119.40
2	V	164	ARG	NE-CZ-NH2	12.02	126.31	120.30
2	H	49	ARG	NH1-CZ-NH2	-12.01	106.19	119.40
2	V	155	ARG	NE-CZ-NH2	12.01	126.31	120.30
2	J	155	ARG	NE-CZ-NH2	11.98	126.29	120.30

5	\cap	\mathbf{C}	W
U.	$\mathbf{\nabla}$	\sim	* *

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
1	C	265	ARG	NH1-CZ-NH2	-11.97	106.23	119.40
1	Ē	85	ARG	NE-CZ-NH2	11.97	126.29	120.30
2	V	28	ARG	NH1-CZ-NH2	-11.96	106.24	119.40
2	В	155	ARG	NE-CZ-NH2	11.96	126.28	120.30
2	X	28	ARG	NH1-CZ-NH2	-11.96	106.25	119.40
1	С	223	ARG	NE-CZ-NH1	-11.90	114.35	120.30
2	Т	28	ARG	NH1-CZ-NH2	-11.89	106.33	119.40
2	J	114	ARG	NE-CZ-NH1	11.88	126.24	120.30
2	R	114	ARG	NE-CZ-NH1	11.87	126.23	120.30
2	J	28	ARG	NH1-CZ-NH2	-11.86	106.35	119.40
2	R	155	ARG	NE-CZ-NH2	11.84	126.22	120.30
2	D	28	ARG	NH1-CZ-NH2	-11.84	106.38	119.40
2	N	28	ARG	NH1-CZ-NH2	-11.84	106.38	119.40
2	В	114	ARG	NE-CZ-NH1	11.83	126.22	120.30
2	L	49	ARG	NH1-CZ-NH2	-11.83	106.38	119.40
2	L	91	ARG	NH1-CZ-NH2	-11.83	106.38	119.40
2	L	91	ARG	NE-CZ-NH1	11.83	126.22	120.30
2	В	28	ARG	NH1-CZ-NH2	-11.83	106.39	119.40
2	L	155	ARG	NH1-CZ-NH2	-11.81	106.41	119.40
2	Р	49	ARG	NH1-CZ-NH2	-11.80	106.42	119.40
2	Х	91	ARG	NH1-CZ-NH2	-11.80	106.42	119.40
1	Е	122	ARG	NH1-CZ-NH2	-11.79	106.43	119.40
2	Х	49	ARG	NH1-CZ-NH2	-11.79	106.43	119.40
2	Р	91	ARG	NH1-CZ-NH2	-11.79	106.44	119.40
2	Ν	392	ARG	NH1-CZ-NH2	-11.78	106.44	119.40
2	L	392	ARG	NH1-CZ-NH2	-11.77	106.45	119.40
1	А	122	ARG	NH1-CZ-NH2	-11.77	106.45	119.40
1	Ι	122	ARG	NH1-CZ-NH2	-11.77	106.45	119.40
2	J	155	ARG	NH1-CZ-NH2	-11.76	106.47	119.40
1	E	85	ARG	NH1-CZ-NH2	-11.75	106.47	119.40
2	Т	155	ARG	NH1-CZ-NH2	-11.74	106.48	119.40
2	Т	49	ARG	NH1-CZ-NH2	-11.73	106.49	119.40
1	G	87	ARG	NE-CZ-NH2	-11.73	114.44	120.30
2	N	114	ARG	NE-CZ-NH1	11.73	126.16	120.30
1	Q	122	ARG	NH1-CZ-NH2	-11.72	106.51	119.40
1	S	85	ARG	NH1-CZ-NH2	-11.72	106.51	119.40
2	В	392	ARG	NH1-CZ-NH2	-11.71	106.52	119.40
2	F	28	ARG	NH1-CZ-NH2	-11.71	106.52	119.40
1	U	122	ARG	NH1-CZ-NH2	-11.70	106.53	119.40
1	С	85	ARG	NH1-CZ-NH2	-11.69	106.54	119.40
2	V	155	ARG	NH1-CZ-NH2	-11.68	106.55	119.40
1	W	85	ARG	NH1-CZ-NH2	-11.68	106.55	119.40

5	\cap	\mathbf{C}	W
U.	$\mathbf{\nabla}$	\sim	* *

	Chain	l preui	Type	 Atoms	7	Observed $(^{o})$	Ideal(°)
2		155		NU1 C7 NU2	11.67	106 56	110 40
	Г	100	ARG	NH1 CZ NH2	-11.07	106.57	119.40
$\frac{2}{2}$	I	155	ARG	NE CZ NH1	-11.07	100.07	119.40
2	D D	164	ARC	NE-CZ-NH2	11.00	120.13	120.30
	D	104	ARG	NH1 CZ NH2	11.00	120.12	120.30
		110	ANG	NIII-OZ-NIIZ	-11.00	100.09	119.40
	V M	114	ANG	$\frac{\text{NE-OZ-NHI}}{\text{NHI}}$	11.04	120.12	120.30
		122	ARG	NHI-OZ-NH2	-11.04	106.69	119.40
		392	ARG	NHI-OZ-NHZ	-11.04	100.00	119.40
2	H	392	ARG	NHI-CZ-NH2	-11.03	106.61	119.40
	K	85	ARG	NHI-CZ-NH2	-11.63	106.61	119.40
2	H	155	ARG	NE-CZ-NHI	11.62	126.11	120.30
2	F'	155	ARG	NHI-CZ-NH2	-11.62	106.62	119.40
2	D	49	ARG	NH1-CZ-NH2	-11.62	106.62	119.40
1	0	85	ARG	NH1-CZ-NH2	-11.60	106.64	119.40
2	Н	155	ARG	NH1-CZ-NH2	-11.59	106.65	119.40
2	R	155	ARG	NH1-CZ-NH2	-11.59	106.65	119.40
2	Т	155	ARG	NE-CZ-NH1	11.59	126.09	120.30
2	Р	91	ARG	NE-CZ-NH1	11.58	126.09	120.30
2	Н	91	ARG	NE-CZ-NH1	11.57	126.09	120.30
2	N	155	ARG	NH1-CZ-NH2	-11.56	106.68	119.40
2	Н	91	ARG	NH1-CZ-NH2	-11.56	106.68	119.40
2	D	91	ARG	NH1-CZ-NH2	-11.56	106.69	119.40
2	Х	392	ARG	NH1-CZ-NH2	-11.55	106.69	119.40
2	В	155	ARG	NH1-CZ-NH2	-11.51	106.74	119.40
2	Х	155	ARG	NH1-CZ-NH2	-11.51	106.74	119.40
2	R	114	ARG	NH1-CZ-NH2	-11.51	106.74	119.40
2	D	155	ARG	NE-CZ-NH1	11.50	126.05	120.30
2	В	91	ARG	NE-CZ-NH2	11.49	126.04	120.30
2	R	60	ARG	NE-CZ-NH1	11.48	126.04	120.30
2	F	155	ARG	NE-CZ-NH2	11.48	126.04	120.30
2	R	392	ARG	NH1-CZ-NH2	-11.47	106.78	119.40
2	D	392	ARG	NH1-CZ-NH2	-11.47	106.78	119.40
2	В	114	ARG	NH1-CZ-NH2	-11.46	106.80	119.40
2	F	114	ARG	NH1-CZ-NH2	-11.45	106.81	119.40
2	Р	392	ARG	NE-CZ-NH1	11.44	126.02	120.30
2	F	114	ARG	NE-CZ-NH1	11.43	126.02	120.30
2	Р	155	ARG	NE-CZ-NH1	11.43	126.01	120.30
2	Т	392	ARG	NH1-CZ-NH2	-11.42	106.83	119.40
2	X	91	ARG	NE-CZ-NH1	11.42	126.01	120.30
$\frac{-}{2}$	T.	114	ARG	NH1-CZ-NH2	-11.42	106.84	119.40
$\frac{-}{2}$	F	91	ARG	NH1-CZ-NH2	-11 39	106.87	119 40
1	G	85	ARG	NH1-CZ-NH2	-11.39	106.87	119.40

5	\cap	\mathbf{C}	W
U.	$\mathbf{\nabla}$	\sim	* *

Conti	Continued from previous page						
Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	J	392	ARG	NH1-CZ-NH2	-11.38	106.88	119.40
2	N	114	ARG	NH1-CZ-NH2	-11.38	106.88	119.40
2	J	114	ARG	NH1-CZ-NH2	-11.38	106.89	119.40
2	Н	114	ARG	NH1-CZ-NH2	-11.37	106.89	119.40
2	V	114	ARG	NH1-CZ-NH2	-11.36	106.90	119.40
2	Т	114	ARG	NH1-CZ-NH2	-11.34	106.92	119.40
1	Q	87	ARG	CG-CD-NE	-11.34	87.98	111.80
2	L	392	ARG	NE-CZ-NH1	11.34	125.97	120.30
1	Ι	85	ARG	NH1-CZ-NH2	-11.33	106.93	119.40
2	D	114	ARG	NH1-CZ-NH2	-11.33	106.94	119.40
2	В	91	ARG	NH1-CZ-NH2	-11.33	106.94	119.40
2	Р	114	ARG	NH1-CZ-NH2	-11.32	106.94	119.40
1	K	265	ARG	NE-CZ-NH2	11.32	125.96	120.30
2	V	392	ARG	NH1-CZ-NH2	-11.30	106.97	119.40
2	Х	155	ARG	NE-CZ-NH1	11.29	125.94	120.30
1	W	265	ARG	NE-CZ-NH2	11.29	125.94	120.30
2	Х	114	ARG	NH1-CZ-NH2	-11.27	107.00	119.40
1	Q	223	ARG	NE-CZ-NH2	-11.26	114.67	120.30
2	F	392	ARG	NH1-CZ-NH2	-11.26	107.02	119.40
1	М	85	ARG	NH1-CZ-NH2	-11.24	107.03	119.40
2	Х	392	ARG	NE-CZ-NH1	11.24	125.92	120.30
1	U	85	ARG	NH1-CZ-NH2	-11.23	107.05	119.40
2	J	91	ARG	NH1-CZ-NH2	-11.23	107.05	119.40
2	N	91	ARG	NH1-CZ-NH2	-11.20	107.08	119.40
2	Т	91	ARG	NE-CZ-NH1	11.16	125.88	120.30
1	U	87	ARG	CG-CD-NE	-11.15	88.38	111.80
1	Ι	87	ARG	CG-CD-NE	-11.15	88.39	111.80
1	А	87	ARG	CG-CD-NE	-11.14	88.41	111.80
1	М	87	ARG	CG-CD-NE	-11.13	88.43	111.80
1	G	265	ARG	NE-CZ-NH2	11.12	125.86	120.30
1	S	265	ARG	NE-CZ-NH2	11.11	125.86	120.30
2	R	91	ARG	NH1-CZ-NH2	-11.11	107.17	119.40
2	V	91	ARG	NH1-CZ-NH2	-11.11	107.18	119.40
1	А	85	ARG	NH1-CZ-NH2	-11.10	107.19	119.40
2	D	392	ARG	NE-CZ-NH1	11.10	125.85	120.30
2	Н	392	ARG	NE-CZ-NH1	11.09	125.84	120.30
1	0	265	ARG	NE-CZ-NH2	11.08	125.84	120.30
2	Т	392	ARG	NE-CZ-NH1	11.06	125.83	120.30
2	Н	60	ARG	NE-CZ-NH1	-11.03	114.78	120.30
1	Q	85	ARG	NH1-CZ-NH2	-11.02	107.28	119.40
2	J	164	ARG	NE-CZ-NH2	11.00	125.80	120.30
1	Ι	85	ARG	NE-CZ-NH2	10.99	125.80	120.30

50	CW	
90		

	Chain	i previ	Unit Type	 Atoms	7	Observed $(^{o})$	Ideal(°)
2	N	164	ARC	NE CZ NH2	10.08	125.70	120.30
$\frac{2}{2}$	R	28	ARG	NE-CZ-NH2	10.98	125.79	120.30 120.30
$\frac{2}{2}$	N	91	ARG	NE-CZ-NH2	10.90 10.93	125.76	120.00 120.30
$\frac{2}{2}$	Н	407	LEU	CB-CG-CD1	-10.90	92.47	111.00
1	С	265	ARG	NE-CZ-NH2	10.50	125 75	111.00 120.30
$\frac{1}{2}$	I	<u> </u>	ARG	NE-CZ-NH2	10.89	125.75	120.00 120.30
$\frac{2}{2}$	U U	28	ARG	NE-CZ-NH2	10.00	125.76	120.00
$\frac{2}{2}$	D D	<u> </u>	ARG	NE-CZ-NH1	10.03 10.87	125.74	120.30 120.30
$\frac{2}{2}$	U V	49	ARG	NH1-CZ-NH2	-10.84	107.47	119.40
1	W	$\frac{19}{122}$	ARG	NH1-CZ-NH2	-10.84	107.48	119.40
$\frac{1}{2}$	P	113	ARG	NE-CZ-NH1	-10.81	114.89	120.30
$\frac{2}{2}$	N	28	ARG	NE-CZ-NH2	10.01	125 70	120.00 120.30
$\frac{2}{2}$	Т	60	ARG	NE-CZ-NH1	-10.80	114 90	120.90 120.30
$\frac{2}{2}$	I	28	ARG	NE-CZ-NH2	10.00 10.78	125.69	120.00 120.30
$\frac{2}{2}$	1	49	ARG	NH1-CZ-NH2	-10.76	107.56	119.00
$\frac{2}{2}$	B	49	ARG	NH1-CZ-NH2	-10.75	107.50	119.40
1	S	$\frac{49}{199}$	ARG	NH1-CZ-NH2	-10.73	107.59	119.40
$\frac{1}{2}$	L L	113	ARG	NE ₋ CZ-NH1	-10.70	11/ 9/	120.30
$\frac{2}{2}$	N	110	ARG	NH1_CZ_NH2	-10.71	107.63	110.00
1	K	$\frac{49}{199}$	ARG	NH1-CZ-NH2	-10.70	107.05	119.40
1	G	122 122	ARG	NH1-CZ-NH2	-10.03	107.64	119.40
1	0	$\frac{122}{223}$	ARG	NE-CZ-NH1	-10.07	114.97	110.40 120.30
$\frac{1}{2}$	B	60	ARG	NE-CZ-NH2	-10.65	114.98	120.00 120.30
1	0	122	ARG	NH1-CZ-NH2	-10.00	107 72	119.00
2	B	49	ARG	NH1-CZ-NH2	-10.61	107.73	119.10
2	V V	91	ARG	NE-CZ-NH2	10.01	125.60	120.30
1	M	85	ARG	NE-CZ-NH2	10.00 10.60	125.00 125.60	120.30 120.30
1	I	266	LEU	CB-CG-CD1	-10.57	93.03	111 00
1	U	85	ARG	NE-CZ-NH2	10.54	125.57	120.30
2	F	49	ARG	NH1-CZ-NH2	-10.54	107.81	119.40
1	K	223	ARG	NE-CZ-NH1	-10.53	115.03	120.30
1	M	266	LEU	CB-CG-CD1	-10.51	93.13	111.00
1	C	122	ARG	NH1-CZ-NH2	-10.49	107.86	119.40
2	V	60	ARG	NE-CZ-NH2	-10.48	115.06	120.30
2	F	91	ARG	NE-CZ-NH2	10.47	125.54	120.30
2	N	9	THR	N-CA-CB	-10.46	90.43	110.30
2	N	60	ARG	NE-CZ-NH2	-10.45	115.07	120.30
2	R	91	ARG	NE-CZ-NH2	10.43	125.52	120.30
2	F	28	ARG	NE-CZ-NH2	10.41	125.50	120.30
2	В	28	ARG	NE-CZ-NH2	10.40	125.50	120.30
1	A	85	ARG	NE-CZ-NH2	10.39	125.50	120.30
1	U	266	LEU	CB-CG-CD1	-10.37	93.37	111.00

50	CW	
90		

	Chain	Res	Uus puge	Atoms	7	Observed $(^{o})$	Ideal(°)
1		85	ARC	NE CZ NH2	10.37	125.48	120 30
$\frac{1}{2}$	v I	00 0	THR	N-CA-CB	-10.37	90.67	120.30
$\frac{2}{2}$	V	9	THR	N-CA-CB	-10.23	90.86	110.30
1	A A	74	ARG	NE-CZ-NH1	10.20	125.39	120.30
2	B	9	THR	N-CA-CB	-10.17	90.97	110.30
1	U	74	ARG	NE-CZ-NH1	10.17	125.39	120.30
2	B	9	THR	N-CA-CB	-10.16	91.00	110.30
$\frac{2}{2}$	F	9	THR	N-CA-CB	-10.11	91.00	110.30
$\frac{-}{2}$	H	9	THR	CA-CB-CG2	-10.08	98.29	112.40
1	Q	266	LEU	CB-CG-CD1	-10.06	93.90	111.00
2	F	60	ARG	NE-CZ-NH1	10.02	125.31	120.30
1	S	122	ARG	NE-CZ-NH1	10.01	125.31	120.30
2	X	113	ARG	NE-CZ-NH1	-9.99	115.31	120.30
1	Q	87	ARG	NH1-CZ-NH2	9.98	130.38	119.40
2	D	113	ARG	NE-CZ-NH1	-9.98	115.31	120.30
2	J	60	ARG	NE-CZ-NH2	-9.95	115.32	120.30
1	K	122	ARG	NE-CZ-NH1	9.87	125.23	120.30
1	W	122	ARG	NE-CZ-NH1	9.84	125.22	120.30
1	G	223	ARG	NE-CZ-NH1	-9.82	115.39	120.30
1	0	122	ARG	NE-CZ-NH1	9.81	125.21	120.30
1	А	266	LEU	CB-CG-CD1	-9.81	94.32	111.00
2	J	60	ARG	NE-CZ-NH1	9.77	125.19	120.30
2	N	60	ARG	NE-CZ-NH1	9.77	125.18	120.30
2	Р	60	ARG	NE-CZ-NH1	-9.76	115.42	120.30
2	V	60	ARG	NE-CZ-NH1	9.76	125.18	120.30
2	D	9	THR	CA-CB-CG2	-9.64	98.91	112.40
1	С	122	ARG	NE-CZ-NH1	9.60	125.10	120.30
2	Х	9	THR	CA-CB-CG2	-9.54	99.04	112.40
2	Р	9	THR	CA-CB-CG2	-9.50	99.10	112.40
1	S	85	ARG	NE-CZ-NH1	9.48	125.04	120.30
1	G	122	ARG	NE-CZ-NH1	9.45	125.03	120.30
1	G	266	LEU	CB-CG-CD2	-9.39	95.03	111.00
2	Т	113	ARG	NE-CZ-NH1	-9.35	115.63	120.30
1	W	85	ARG	NE-CZ-NH1	9.25	124.92	120.30
2	L	60	ARG	NE-CZ-NH1	-9.20	115.70	120.30
2	F	407	LEU	$CB-CG-\overline{CD2}$	-9.18	95.40	111.00
1	Ι	87	ARG	NH1-CZ-NH2	9.17	129.49	119.40
1	K	85	ARG	NE-CZ-NH1	9.16	124.88	120.30
2	В	60	ARG	NE-CZ-NH1	9.13	124.87	120.30
2	D	60	ARG	NE-CZ-NH1	-9.11	115.75	120.30
1	0	85	ARG	NE-CZ-NH1	9.10	124.85	120.30
2	F	164	ARG	NE-CZ-NH1	-9.06	115.77	120.30

Contin $d f_{a}$

5	\cap	\mathbf{C}	W
U.	$\mathbf{\nabla}$	\sim	* *

	Chain	i previ	Type	Atoms	7	Observed $(^{o})$	Ideal(°)
1	M	07		NU1 CZ NU2	0.06	120.27	110 40
1	IVI	01	TUD ANG	$\frac{\text{NIII}-\text{OZ}-\text{NIIZ}}{\text{OA} \text{ CP} \text{ CO2}}$	9.00	129.37	119.40
		9	ARC	NF CZ NH2	-9.00	99.72	112.40 120.20
1	A	122	ANG	$\frac{\text{NE-OZ-NH2}}{\text{NE-OZ-NH2}}$	9.00	124.02	120.30
1	I F	122	ANG	$\frac{\text{NE-OZ-NH2}}{\text{NE-OZ-NH1}}$	9.04	124.02	120.30
1		220 199	ANG	NE-CZ-NIII	9.05	124.02	120.30
		122	ANG	$\frac{\text{NE-OZ-NH2}}{\text{NE-OZ-NH2}}$	9.03	124.01	120.30
1	E F	122	ARG	$\frac{\text{NE-CZ-NH2}}{\text{NE-CZ-NH2}}$	9.02	124.81	120.30
	Г	104	ANG	$\frac{\text{NE-OZ-NH2}}{\text{NE-OZ-NH1}}$	9.00	124.60	120.30
		80	ARG	NE-CZ-NHI	9.00	124.80	120.30
		122	ARG	$\frac{\text{NE-CZ-NH2}}{\text{NE-CZ-NH2}}$	8.98	124.79	120.30
	M	122	ARG	NE-CZ-NH2	8.91	124.70	120.30
1		223	ARG	NE-CZ-NHI	8.89	124.75	120.30
	U	87	ARG	NHI-CZ-NH2	8.75	129.03	119.40
	A	87	ARG	NHI-CZ-NH2	8.73	129.00	119.40
1	G	85	ARG	NE-CZ-NHI	8.72	124.66	120.30
1	M	74	ARG	NE-CZ-NH2	-8.70	115.95	120.30
2	T	9	THR	CA-CB-CG2	-8.69	100.23	112.40
1		74	ARG	NE-CZ-NH1	8.67	124.64	120.30
1	A	223	ARG	NE-CZ-NH1	8.54	124.57	120.30
1	U	223	ARG	NE-CZ-NH1	8.51	124.55	120.30
1	I	74	ARG	NE-CZ-NH2	-8.49	116.05	120.30
2	Х	225	GLU	OE1-CD-OE2	-8.41	113.21	123.30
2	Т	381	ARG	NE-CZ-NH2	8.35	124.47	120.30
2	F	225	GLU	OE1-CD-OE2	-8.34	113.29	123.30
2	L	113	ARG	NE-CZ-NH2	8.31	124.46	120.30
1	М	223	ARG	NE-CZ-NH1	8.31	124.46	120.30
2	Н	225	GLU	OE1-CD-OE2	-8.19	113.47	123.30
1	М	77	GLU	OE1-CD-OE2	-8.10	113.58	123.30
1	М	74	ARG	NE-CZ-NH1	8.07	124.33	120.30
2	N	225	GLU	OE1-CD-OE2	-8.02	113.67	123.30
1	Q	74	ARG	NE-CZ-NH1	7.99	124.29	120.30
2	Х	60	ARG	NE-CZ-NH1	-7.98	116.31	120.30
1	W	266	LEU	CB-CG-CD2	-7.95	97.49	111.00
2	L	225	GLU	OE1-CD-OE2	-7.94	113.77	123.30
2	Р	113	ARG	NE-CZ-NH2	7.94	124.27	120.30
1	А	74	ARG	NE-CZ-NH2	-7.92	116.34	120.30
2	Н	114	ARG	NE-CZ-NH2	7.91	124.25	120.30
1	С	266	LEU	CB-CG-CD2	-7.91	97.56	111.00
2	Т	113	ARG	NE-CZ-NH2	7.87	124.24	120.30
2	В	225	GLU	OE1-CD-OE2	-7.86	113.87	123.30
2	D	225	GLU	OE1-CD-OE2	-7.79	113.95	123.30
2	J	225	GLU	OE1-CD-OE2	-7.79	113.95	123.30

5	\cap	\mathbf{C}	W
U.	$\mathbf{\nabla}$	\sim	* *

Mol	Chain	Res	Type	Atoms	Z	Observed(^o)	Ideal(°)
2	R	40	GLU	OE1-CD-OE2	-7.76	113.99	123.30
2	V	225	GLU	OE1-CD-OE2	-7.74	114.01	123.30
1	S	248	GLU	OE1-CD-OE2	-7.74	114.02	123.30
2	R	225	GLU	OE1-CD-OE2	-7.73	114.02	123.30
2	Т	114	ARG	NE-CZ-NH2	7.72	124.16	120.30
2	L	114	ARG	NE-CZ-NH2	7.65	124.13	120.30
2	D	114	ARG	NE-CZ-NH2	7.65	124.12	120.30
2	F	60	ARG	NE-CZ-NH2	-7.62	116.49	120.30
1	Q	74	ARG	NE-CZ-NH2	-7.61	116.49	120.30
2	Т	225	GLU	OE1-CD-OE2	-7.60	114.18	123.30
2	Р	114	ARG	NE-CZ-NH2	7.59	124.10	120.30
1	K	248	GLU	OE1-CD-OE2	-7.59	114.19	123.30
2	Р	225	GLU	OE1-CD-OE2	-7.58	114.21	123.30
2	Х	114	ARG	NE-CZ-NH2	7.58	124.09	120.30
2	N	164	ARG	CD-NE-CZ	-7.55	113.03	123.60
1	Е	87	ARG	CG-CD-NE	-7.53	95.99	111.80
1	U	248	GLU	OE1-CD-OE2	-7.50	114.30	123.30
2	L	9	THR	N-CA-CB	-7.48	96.08	110.30
2	Н	40	GLU	OE1-CD-OE2	-7.46	114.34	123.30
1	А	77	GLU	OE1-CD-OE2	-7.46	114.35	123.30
2	R	60	ARG	NE-CZ-NH2	-7.43	116.58	120.30
2	Х	9	THR	N-CA-CB	-7.42	96.21	110.30
1	Q	77	GLU	OE1-CD-OE2	-7.39	114.43	123.30
2	F	402	LYS	CD-CE-NZ	7.39	128.69	111.70
2	D	9	THR	N-CA-CB	-7.38	96.28	110.30
2	Т	9	THR	N-CA-CB	-7.38	96.28	110.30
2	Х	113	ARG	NE-CZ-NH2	7.37	123.98	120.30
1	Е	248	GLU	OE1-CD-OE2	-7.36	114.47	123.30
1	Ι	248	GLU	OE1-CD-OE2	-7.36	114.47	123.30
1	0	248	GLU	OE1-CD-OE2	-7.36	114.47	123.30
2	D	40	GLU	OE1-CD-OE2	-7.36	114.47	123.30
1	G	77	GLU	OE1-CD-OE2	-7.36	114.47	123.30
1	М	87	ARG	NE-CZ-NH2	-7.36	116.62	120.30
2	J	164	ARG	CD-NE-CZ	-7.35	113.31	123.60
2	Р	9	THR	N-CA-CB	-7.35	96.34	110.30
1	U	74	ARG	NE-CZ-NH2	-7.35	116.63	120.30
2	N	402	LYS	CD-CE-NZ	7.35	128.59	111.70
1	0	87	ARG	NH1-CZ-NH2	$7.3\overline{4}$	127.48	119.40
2	R	164	ARG	CD-NE-CZ	-7.31	113.36	123.60
2	J	402	LYS	CD-CE-NZ	7.31	128.51	111.70
2	H	9	THR	N-CA-CB	-7.30	96.43	110.30
1	Ι	77	GLU	OE1-CD-OE2	-7.30	114.54	123.30

50	CW	
00	\cup v	

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	A	248	GLU	OE1-CD-OE2	-7.28	114.57	123.30
1	Е	77	GLU	OE1-CD-OE2	-7.27	114.58	123.30
1	U	266	LEU	CA-CB-CG	-7.27	98.58	115.30
2	Х	40	GLU	OE1-CD-OE2	-7.27	114.58	123.30
2	V	402	LYS	CD-CE-NZ	7.26	128.40	111.70
1	W	77	GLU	OE1-CD-OE2	-7.25	114.60	123.30
2	В	402	LYS	CD-CE-NZ	7.25	128.37	111.70
1	С	87	ARG	NH1-CZ-NH2	7.22	127.34	119.40
1	K	87	ARG	NH1-CZ-NH2	7.21	127.33	119.40
2	Х	23	SER	CB-CA-C	-7.17	96.47	110.10
2	В	40	GLU	OE1-CD-OE2	-7.17	114.70	123.30
1	0	266	LEU	CB-CG-CD2	-7.16	98.83	111.00
1	U	266	LEU	CB-CA-C	-7.16	96.60	110.20
1	W	87	ARG	NH1-CZ-NH2	7.15	127.26	119.40
1	G	87	ARG	NH1-CZ-NH2	7.14	127.25	119.40
1	Ι	87	ARG	NE-CZ-NH2	-7.13	116.74	120.30
2	В	164	ARG	CD-NE-CZ	-7.12	113.63	123.60
1	W	248	GLU	OE1-CD-OE2	-7.11	114.76	123.30
1	Ι	266	LEU	CA-CB-CG	-7.11	98.94	115.30
2	V	164	ARG	CD-NE-CZ	-7.11	113.65	123.60
2	V	40	GLU	OE1-CD-OE2	-7.10	114.78	123.30
2	В	381	ARG	NE-CZ-NH1	7.08	123.84	120.30
2	R	402	LYS	CD-CE-NZ	7.08	127.99	111.70
2	Х	381	ARG	NE-CZ-NH2	7.07	123.83	120.30
1	С	77	GLU	OE1-CD-OE2	-7.04	114.86	123.30
2	L	40	GLU	OE1-CD-OE2	-7.01	114.89	123.30
1	Q	266	LEU	CA-CB-CG	-7.00	99.19	115.30
1	М	266	LEU	CB-CA-C	-7.00	96.90	110.20
1	S	87	ARG	NH1-CZ-NH2	6.99	127.09	119.40
1	М	266	LEU	CA-CB-CG	-6.98	99.25	115.30
2	F	40	GLU	OE1-CD-OE2	-6.97	114.94	123.30
1	S	266	LEU	CB-CG-CD2	-6.97	99.15	111.00
2	Р	40	GLU	OE1-CD-OE2	-6.96	114.95	123.30
2	J	40	GLU	OE1-CD-OE2	-6.94	114.97	123.30
1	М	248	GLU	OE1-CD-OE2	-6.93	114.98	123.30
1	U	77	GLU	OE1-CD-OE2	-6.93	114.98	123.30
1	А	87	ARG	NE-CZ-NH2	-6.92	116.84	120.30
1	А	266	LEU	CA-CB-CG	-6.90	99.42	115.30
2	Т	40	GLU	OE1-CD-OE2	-6.90	115.02	123.30
1	U	87	ARG	NE-CZ-NH2	-6.90	116.85	120.30
1	K	266	LEU	CB-CG-CD2	-6.88	99.30	111.00
1	Q	266	LEU	CB-CA-C	-6.86	97.16	110.20

50	CW	
00	\cup v	

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Х	402	LYS	CD-CE-NZ	6.83	127.41	111.70
1	G	248	GLU	OE1-CD-OE2	-6.83	115.11	123.30
2	D	23	SER	CB-CA-C	-6.83	97.13	110.10
2	L	402	LYS	CD-CE-NZ	6.82	127.39	111.70
1	Ι	266	LEU	CB-CA-C	-6.82	97.25	110.20
1	Q	87	ARG	NE-CZ-NH2	-6.79	116.91	120.30
2	Р	402	LYS	CD-CE-NZ	6.78	127.30	111.70
2	Т	402	LYS	CD-CE-NZ	6.78	127.29	111.70
1	А	266	LEU	CB-CA-C	-6.75	97.37	110.20
2	D	113	ARG	NE-CZ-NH2	6.75	123.67	120.30
1	G	266	LEU	CA-CB-CG	-6.75	99.78	115.30
1	Q	248	GLU	OE1-CD-OE2	-6.74	115.21	123.30
2	N	40	GLU	OE1-CD-OE2	-6.72	115.23	123.30
2	V	381	ARG	NE-CZ-NH1	6.71	123.66	120.30
2	Ν	392	ARG	NE-CZ-NH1	6.70	123.65	120.30
2	Н	402	LYS	CD-CE-NZ	6.68	127.07	111.70
2	D	402	LYS	CD-CE-NZ	6.67	127.04	111.70
2	R	407	LEU	CB-CG-CD1	-6.63	99.74	111.00
1	М	232	TYR	CB-CG-CD1	6.62	124.97	121.00
1	Е	266	LEU	CB-CA-C	-6.59	97.68	110.20
1	G	232	TYR	CB-CG-CD1	6.59	124.95	121.00
1	S	74	ARG	NE-CZ-NH2	6.58	123.59	120.30
1	K	77	GLU	OE1-CD-OE2	-6.58	115.41	123.30
1	S	77	GLU	OE1-CD-OE2	-6.54	115.45	123.30
1	U	232	TYR	CB-CG-CD1	6.52	124.91	121.00
1	S	252	ARG	NE-CZ-NH1	-6.51	117.04	120.30
2	D	381	ARG	NE-CZ-NH2	6.51	123.56	120.30
1	С	248	GLU	OE1-CD-OE2	-6.48	115.52	123.30
2	J	381	ARG	NE-CZ-NH1	6.47	123.54	120.30
1	С	232	TYR	CB-CG-CD1	6.44	124.87	121.00
1	A	232	TYR	CB-CG-CD1	6.40	124.84	121.00
1	М	232	TYR	CD1-CG-CD2	-6.40	110.86	117.90
1	I	232	TYR	CB-CG-CD1	6.34	124.80	121.00
1	W	232	TYR	CB-CG-CD1	6.33	124.80	121.00
2	Т	23	SER	CB-CA-C	-6.32	98.09	110.10
2	N	280	ARG	NH1-CZ-NH2	-6.31	112.46	119.40
1	0	232	TYR	CB-CG-CD1	6.30	124.78	121.00
1	0	252	ARG	NE-CZ-NH1	-6.30	117.15	120.30
2	В	407	LEU	CB-CG-CD1	-6.29	100.31	111.00
2	N	381	ARG	NE-CZ-NH1	6.29	123.44	120.30
1	Q	232	TYR	CB-CG-CD1	6.29	124.77	121.00
1	U	232	TYR	CD1-CG-CD2	-6.28	110.99	117.90

50	CW	
90		

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
1	0	77	GLU	OE1-CD-OE2	-6.28	115.77	123.30
2	B	392	ARG	NE-CZ-NH1	6.27	123.44	120.30
1	K	232	TYR	CB-CG-CD1	6.26	124.76	121.00
1	Q	232	TYR	CD1-CG-CD2	-6.25	111.03	117.90
1	Ē	252	ARG	NH1-CZ-NH2	-6.22	112.55	119.40
2	Н	280	ARG	NE-CZ-NH2	-6.21	117.19	120.30
2	L	23	SER	CB-CA-C	-6.20	98.31	110.10
1	A	232	TYR	CD1-CG-CD2	-6.20	111.08	117.90
1	Ι	232	TYR	CD1-CG-CD2	-6.20	111.08	117.90
1	Q	232	TYR	CD1-CE1-CZ	6.18	125.37	119.80
1	M	223	ARG	CD-NE-CZ	6.18	132.25	123.60
1	Е	232	TYR	CB-CG-CD1	6.17	124.70	121.00
1	S	232	TYR	CB-CG-CD1	6.15	124.69	121.00
1	Е	232	TYR	CD1-CG-CD2	-6.13	111.15	117.90
1	М	232	TYR	CD1-CE1-CZ	6.11	125.30	119.80
2	R	392	ARG	NE-CZ-NH1	6.11	123.35	120.30
1	А	232	TYR	CD1-CE1-CZ	6.09	125.28	119.80
1	Ι	223	ARG	CD-NE-CZ	6.07	132.09	123.60
2	J	407	LEU	CB-CG-CD1	-6.06	100.70	111.00
2	J	392	ARG	NE-CZ-NH1	6.06	123.33	120.30
1	U	232	TYR	CD1-CE1-CZ	6.05	125.25	119.80
2	R	280	ARG	NH1-CZ-NH2	-6.05	112.75	119.40
2	V	23	SER	CA-C-N	-6.04	104.11	116.20
2	F	392	ARG	NE-CZ-NH1	6.04	123.32	120.30
2	J	280	ARG	NH1-CZ-NH2	-6.04	112.76	119.40
2	В	23	SER	CA-C-N	-6.02	104.17	116.20
1	Е	232	TYR	CD1-CE1-CZ	6.02	125.22	119.80
1	K	266	LEU	CA-CB-CG	-6.01	101.48	115.30
1	S	252	ARG	NH1-CZ-NH2	-6.00	112.80	119.40
1	G	232	TYR	CD1-CG-CD2	-6.00	111.30	117.90
1	Ι	232	TYR	CD1-CE1-CZ	5.98	125.18	119.80
2	Р	23	SER	CB-CA-C	-5.97	98.75	110.10
1	U	223	ARG	CD-NE-CZ	5.97	131.95	123.60
2	F	280	ARG	NH1-CZ-NH2	-5.96	112.85	119.40
1	0	232	TYR	CD1-CG-CD2	-5.95	111.36	117.90
2	N	407	LEU	CB-CG-CD1	-5.94	100.89	111.00
1	W	232	TYR	CD1-CG-CD2	-5.94	111.36	117.90
1	С	232	TYR	CD1-CG-CD2	-5.94	111.36	117.90
2	Р	280	ARG	NE-CZ-NH2	-5.94	117.33	120.30
2	L	381	ARG	NE-CZ-NH2	5.93	123.27	120.30
1	0	64	ASP	CB-CG-OD1	5.92	123.63	118.30
2	В	280	ARG	NH1-CZ-NH2	-5.91	112.90	119.40

50	CW	
90		

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Q	252	ARG	NH1-CZ-NH2	-5.91	112.90	119.40
1	G	74	ARG	CG-CD-NE	-5.90	99.40	111.80
1	0	266	LEU	CA-CB-CG	-5.90	101.72	115.30
1	М	252	ARG	NH1-CZ-NH2	-5.90	112.91	119.40
2	N	9	THR	N-CA-C	5.90	126.93	111.00
1	А	223	ARG	CD-NE-CZ	5.90	131.86	123.60
2	В	23	SER	C-N-CA	-5.89	109.92	122.30
2	V	23	SER	C-N-CA	-5.88	109.94	122.30
2	Т	280	ARG	NE-CZ-NH2	-5.87	117.36	120.30
2	V	280	ARG	NH1-CZ-NH2	-5.86	112.95	119.40
1	Ι	252	ARG	NH1-CZ-NH2	-5.86	112.95	119.40
2	J	23	SER	C-N-CA	-5.86	110.00	122.30
2	Т	280	ARG	NH1-CZ-NH2	-5.86	112.96	119.40
2	L	280	ARG	NE-CZ-NH2	-5.86	117.37	120.30
1	Κ	232	TYR	CD1-CG-CD2	-5.85	111.47	117.90
1	U	252	ARG	NH1-CZ-NH2	-5.83	112.99	119.40
2	Х	280	ARG	NH1-CZ-NH2	-5.83	112.99	119.40
1	С	232	TYR	CD1-CE1-CZ	5.82	125.04	119.80
2	J	23	SER	CA-C-N	-5.82	104.57	116.20
2	V	392	ARG	NE-CZ-NH1	5.82	123.21	120.30
2	Ν	23	SER	C-N-CA	-5.81	110.09	122.30
2	F	23	SER	C-N-CA	-5.80	110.13	122.30
2	V	407	LEU	CB-CG-CD1	-5.79	101.15	111.00
1	G	252	ARG	NE-CZ-NH1	-5.79	117.41	120.30
1	S	232	TYR	CD1-CG-CD2	-5.78	111.54	117.90
1	С	266	LEU	CA-CB-CG	-5.77	102.03	115.30
1	Q	223	ARG	NE-CZ-NH1	5.75	123.18	120.30
1	G	266	LEU	CB-CA-C	-5.75	99.28	110.20
1	Ε	87	ARG	NH1-CZ-NH2	5.74	125.71	119.40
2	L	280	ARG	NH1-CZ-NH2	-5.73	113.10	119.40
1	S	266	LEU	CA-CB-CG	-5.72	102.14	115.30
2	V	9	THR	N-CA-C	5.72	126.45	111.00
1	А	252	ARG	NH1-CZ-NH2	-5.72	113.11	119.40
2	D	280	ARG	NH1-CZ-NH2	-5.72	113.11	119.40
2	R	23	SER	C-N-CA	-5.71	110.30	122.30
2	Р	280	ARG	NH1-CZ-NH2	-5.70	113.14	119.40
1	G	232	TYR	CD1-CE1-CZ	5.68	124.91	119.80
1	0	232	TYR	CD1-CE1-CZ	5.68	124.91	119.80
2	J	113	ARG	NE-CZ-NH2	5.67	123.14	120.30
1	W	232	TYR	CD1-CE1-CZ	5.67	124.90	119.80
1	K	232	TYR	CD1-CE1-CZ	5.66	124.89	119.80
1	С	64	ASP	CB-CG-OD1	5.66	123.39	118.30

Mol	Chain	\mathbf{Res}	Tvpe	Atoms	Z	Observed(^o)	Ideal(°)
2	F	258	PHE	CB-CG-CD2	565	124 76	120.80
$\frac{2}{2}$	J	9	THR	N-CA-C	5.64	126.23	111.00
2	B	258	PHE	CB-CG-CD2	5.64	124.75	120.80
2	H	280	ARG	NH1-CZ-NH2	-5.64	113.20	119.40
1	W	266	LEU	CA-CB-CG	-5.64	102.33	115.30
1	K	114	ARG	NE-CZ-NH1	-5.60	117.50	120.30
2	N	23	SER	CA-C-N	-5.59	105.01	116.20
2	В	280	ARG	CD-NE-CZ	5.59	131.42	123.60
1	K	64	ASP	CB-CG-OD1	5.59	123.33	118.30
1	М	232	TYR	CZ-CE2-CD2	5.58	124.83	119.80
1	G	232	TYR	CZ-CE2-CD2	5.58	124.82	119.80
2	В	280	ARG	NE-CZ-NH2	-5.58	117.51	120.30
1	S	64	ASP	CB-CG-OD1	5.57	123.31	118.30
1	W	64	ASP	CB-CG-OD1	5.57	123.31	118.30
1	K	266	LEU	N-CA-CB	-5.56	99.28	110.40
1	W	252	ARG	NE-CZ-NH1	-5.53	117.53	120.30
1	М	232	TYR	CE1-CZ-CE2	-5.53	110.95	119.80
2	Х	280	ARG	NE-CZ-NH2	-5.53	117.53	120.30
2	F	23	SER	CA-C-N	-5.52	105.15	116.20
2	N	258	PHE	CB-CG-CD2	5.52	124.66	120.80
1	S	223	ARG	NE-CZ-NH2	5.52	123.06	120.30
2	R	258	PHE	CB-CG-CD2	5.52	124.66	120.80
2	N	280	ARG	CD-NE-CZ	5.51	131.32	123.60
2	V	113	ARG	NE-CZ-NH2	5.51	123.06	120.30
2	В	9	THR	N-CA-C	5.51	125.87	111.00
2	Н	23	SER	CB-CA-C	-5.51	99.64	110.10
2	V	280	ARG	CD-NE-CZ	5.51	131.31	123.60
2	D	280	ARG	NE-CZ-NH2	-5.50	117.55	120.30
1	С	252	ARG	NE-CZ-NH1	-5.50	117.55	120.30
1	Q	232	TYR	CE1-CZ-CE2	-5.50	111.00	119.80
1	S	232	TYR	CD1-CE1-CZ	5.49	124.75	119.80
2	В	9	THR	CA-CB-CG2	-5.49	104.71	112.40
1	U	232	TYR	CE1-CZ-CE2	-5.49	111.01	119.80
2	J	280	ARG	CD-NE-CZ	5.49	131.28	123.60
2	V	280	ARG	NE-CZ-NH2	-5.48	117.56	120.30
1	A	232	TYR	CE1-CZ-CE2	-5.48	111.03	119.80
1	K	252	ARG	NE-CZ-NH1	-5.48	117.56	120.30
1	C	114	ARG	NE-CZ-NH1	-5.47	$117.5\overline{7}$	120.30
1	Ē	223	ARG	CD-NE-CZ	5.47	131.25	123.60
2	V	258	PHE	CB-CG-CD2	5.46	124.62	120.80
2	P	381	ARG	NE-CZ-NH2	$5.4\overline{6}$	123.03	120.30
2	R	381	ARG	NE-CZ-NH1	5.45	123.03	120.30

50	CW	
90		

	Chain	i previ	Type	Atoms	7	Observed $(^{o})$	Ideal(°)
1	F	64		CB CC OD1	5.44	123-20	118 30
1	W	74	ABC	NE CZ NH2	5.44	123.20	120.30
$\frac{1}{2}$	F	258	PHE	$\frac{\text{RE-OZ-RH2}}{\text{CE1-CZ-CE2}}$	-5.44	120.02	120.00 120.00
$\frac{2}{2}$	r F	200	ARC	$\frac{\text{OD1-O2-OB2}}{\text{CD NF C7}}$	5 43	121.21	120.00 123.60
		260	LEU	N CA CB	5.43	00.53	123.00 110.40
1	C C	200	TVR	$\frac{\text{R-OA-OB}}{\text{CE1 CZ CE2}}$	-5.43		110.40
1	0	114	ARC	NF CZ NH1	-5.43	111.11	119.00
$\frac{1}{2}$	B B	280	ARG	$\frac{\text{NE-OZ-NIII}}{\text{CD NE CZ}}$	-0.40	117.09	120.50 123.60
	K K	200	TVR	CZ-CE2-CD2	5.42 5.42	191.19	110.80
1		$\frac{232}{232}$	TVR	CZ-CE2-CD2	5.42 5.42	124.68	119.80
1	II	202	TVR	CZ-CE2-CD2	5.42 5.42	124.00	119.80
$\frac{1}{2}$	U Н	<u> </u>	ARG	NE-CZ-NH2	5.41	124.00	120.30
	S S	-49 -939	TVR	CZ-CE2-CD2	5.41	123.00	110.50
1	0	202	TVR	CZ CE2 CD2	5 39	124.66	119.80
1	S	266	LEU	N-CA-CB	-5.39	99.62	110.00
$\frac{1}{2}$	P	$\frac{200}{164}$	ARG	CD-NE-CZ	5 39	131.15	123.60
1	0	$\frac{104}{232}$	TYR	CZ-CE2-CD2	5.39	124.65	119.80
1	C C	232	TYR	CE1-CZ-CE2	-5.39	111 18	119.80
1	I	232	TYR	CE1-CZ-CE2	-5.39	111.18	119.80
2	R	9	THR	N-CA-C	5.00	125 51	111.00
$\frac{2}{2}$	B	258	PHE	CE1-CZ-CE2	-5.37	110.34	120.00
$\frac{2}{2}$	H	230	SER	CA-C-N	-5.36	105.48	120.00 116.20
$\frac{-}{2}$	N	258	PHE	CE1-CZ-CE2	-5.36	110.36	120.00
1	S	114	ARG	NE-CZ-NH1	-5.36	117.62	120.30
1	I	232	TYR	CZ-CE2-CD2	5.36	124.62	119.80
1	Ē	232	TYR	CE1-CZ-CE2	-5.35	111.24	119.80
2	J	258	PHE	CB-CG-CD2	5.34	124.54	120.80
1	K	232	TYR	CE1-CZ-CE2	-5.34	111.26	119.80
1	0	232	TYR	CE1-CZ-CE2	-5.33	111.27	119.80
1	W	232	TYR	CZ-CE2-CD2	5.32	124.59	119.80
1	С	266	LEU	N-CA-CB	-5.31	99.77	110.40
1	K	252	ARG	NH1-CZ-NH2	-5.31	113.55	119.40
2	N	9	THR	CA-CB-CG2	-5.31	104.96	112.40
1	С	232	TYR	CZ-CE2-CD2	5.31	124.58	119.80
1	W	266	LEU	N-CA-CB	-5.30	99.80	110.40
1	С	252	ARG	NH1-CZ-NH2	-5.29	113.58	119.40
1	Q	223	ARG	CD-NE-CZ	5.29	131.01	123.60
1	Ο	74	ARG	NE-CZ-NH2	5.29	122.95	120.30
2	R	258	PHE	CE1-CZ-CE2	-5.29	110.47	120.00
2	D	258	PHE	CE1-CZ-CE2	-5.29	110.48	120.00
2	D	280	ARG	CD-NE-CZ	5.29	131.00	123.60
1	K	74	ARG	NE-CZ-NH2	5.29	122.94	120.30

50	CW	
90		

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
1	W	232	TYR	CE1-CZ-CE2	-5.28	111.35	119.80
2	Т	280	ARG	CD-NE-CZ	5.28	130.99	123.60
1	W	252	ARG	NH1-CZ-NH2	-5.28	113.59	119.40
1	Q	167	GLU	OE1-CD-OE2	5.27	129.62	123.30
1	S	232	TYR	CE1-CZ-CE2	-5.27	111.37	119.80
1	Q	232	TYR	CB-CG-CD2	5.27	124.16	121.00
2	V	258	PHE	CE1-CZ-CE2	-5.26	110.53	120.00
2	L	280	ARG	CD-NE-CZ	5.26	130.96	123.60
2	Х	258	PHE	CE1-CZ-CE2	-5.26	110.54	120.00
1	А	64	ASP	CB-CG-OD1	5.25	123.02	118.30
1	U	64	ASP	CB-CG-OD1	5.25	123.02	118.30
2	Х	280	ARG	CD-NE-CZ	5.24	130.94	123.60
2	D	164	ARG	CD-NE-CZ	5.23	130.93	123.60
1	Е	232	TYR	CZ-CE2-CD2	5.23	124.50	119.80
1	М	232	TYR	CB-CG-CD2	5.22	124.13	121.00
2	В	381	ARG	NH1-CZ-NH2	-5.22	113.66	119.40
1	W	114	ARG	NE-CZ-NH1	-5.22	117.69	120.30
2	F	9	THR	N-CA-C	5.21	125.08	111.00
2	J	258	PHE	CE1-CZ-CE2	-5.20	110.64	120.00
2	V	9	THR	CA-CB-CG2	-5.19	105.13	112.40
2	V	381	ARG	NH1-CZ-NH2	-5.18	113.71	119.40
1	Ε	232	TYR	CB-CG-CD2	5.17	124.11	121.00
2	Н	164	ARG	NH1-CZ-NH2	-5.17	113.71	119.40
2	Т	49	ARG	NE-CZ-NH2	5.15	122.88	120.30
2	Х	164	ARG	CD-NE-CZ	5.15	130.81	123.60
2	Т	258	PHE	CE1-CZ-CE2	-5.15	110.74	120.00
2	L	164	ARG	CD-NE-CZ	5.14	130.79	123.60
2	Р	280	ARG	CD-NE-CZ	5.13	130.78	123.60
2	Н	280	ARG	CD-NE-CZ	5.13	130.78	123.60
2	Η	258	PHE	CE1-CZ-CE2	-5.12	110.78	120.00
1	Ι	232	TYR	CB-CG-CD2	5.12	124.07	121.00
2	Ν	113	ARG	NE-CZ-NH2	5.12	122.86	120.30
1	G	64	ASP	CB-CG-OD1	5.11	122.90	118.30
2	D	258	PHE	CD1-CG-CD2	-5.11	111.66	118.30
1	М	64	ASP	CB-CG-OD1	5.10	122.89	118.30
2	L	258	PHE	CE1-CZ-CE2	-5.09	110.83	120.00
2	R	49	ARG	NE-CZ-NH2	5.09	122.84	120.30
1	E	74	ARG	NE-CZ-NH1	-5.09	117.76	120.30
2	L	164	ARG	CG-CD-NE	-5.09	101.12	111.80
1	U	$23\overline{2}$	TYR	$CB-CG-\overline{CD2}$	5.08	124.05	121.00
1	A	$23\overline{2}$	TYR	$CB-CG-\overline{CD2}$	$5.0\overline{8}$	$124.0\overline{5}$	121.00
2	J	280	ARG	NE-CZ-NH2	-5.08	117.76	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	F	49	ARG	NE-CZ-NH2	5.07	122.83	120.30
1	K	74	ARG	CG-CD-NE	-5.06	101.17	111.80
2	N	280	ARG	NE-CZ-NH2	-5.06	117.77	120.30
2	J	9	THR	CA-CB-CG2	-5.05	105.32	112.40
2	Т	164	ARG	CG-CD-NE	-5.05	101.19	111.80
2	В	258	PHE	CD1-CG-CD2	-5.04	111.75	118.30
2	F	9	THR	CA-CB-CG2	-5.03	105.36	112.40
1	Ι	64	ASP	CB-CG-OD1	5.03	122.83	118.30
1	0	252	ARG	NH1-CZ-NH2	-5.02	113.87	119.40
2	F	258	PHE	CD1-CG-CD2	-5.02	111.77	118.30
1	S	8	GLU	CA-CB-CG	-5.02	102.36	113.40
1	G	167	GLU	OE1-CD-OE2	5.01	129.32	123.30
2	Х	164	ARG	CG-CD-NE	-5.01	101.28	111.80
2	F	280	ARG	NE-CZ-NH2	-5.00	117.80	120.30
1	S	74	ARG	CG-CD-NE	-5.00	101.29	111.80
2	Х	258	PHE	CD1-CG-CD2	-5.00	111.80	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1852	0	1855	50	0
1	С	1799	0	1819	10	22
1	Е	1814	0	1834	16	2
1	G	1799	0	1816	57	0
1	Ι	1814	0	1834	32	0
1	K	1799	0	1819	63	3
1	М	1814	0	1834	40	0
1	0	1799	0	1819	20	14
1	Q	1814	0	1829	32	0
1	S	1799	0	1818	37	3
1	U	1814	0	1834	23	0
1	W	1799	0	1819	18	22
2	В	3002	0	2929	28	9

50CW

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	D	2983	0	2908	47	13
2	F	3002	0	2926	78	4
2	Н	2983	0	2908	54	2
2	J	3002	0	2929	102	3
2	L	2983	0	2908	152	0
2	Ν	3002	0	2929	26	13
2	Р	2983	0	2908	41	5
2	R	3002	0	2929	72	3
2	Т	2983	0	2906	113	0
2	V	3002	0	2929	27	10
2	Х	2983	0	2908	43	12
3	В	21	0	11	0	0
3	D	21	0	11	0	0
3	F	21	0	11	0	0
3	Н	21	0	11	0	0
3	J	21	0	11	0	0
3	L	21	0	11	0	0
3	Ν	21	0	11	0	0
3	Р	21	0	11	0	0
3	R	21	0	11	0	0
3	Т	21	0	11	0	0
3	V	21	0	11	0	0
3	X	21	0	11	0	0
All	All	57878	0	57079	663	70

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (663) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:69:GLY:HA3	1:A:188:VAL:CB	1.25	1.67
2:L:80:GLN:HE22	1:U:259:GLU:CG	1.03	1.59
1:G:228:GLN:NE2	2:R:118:THR:CB	1.69	1.53
2:L:80:GLN:NE2	1:U:259:GLU:HG2	1.26	1.47
1:G:262:ALA:HB2	2:T:80:GLN:NE2	1.30	1.47
1:G:262:ALA:CB	2:T:80:GLN:HE22	1.29	1.44
2:L:80:GLN:NE2	1:U:259:GLU:CG	1.74	1.43
2:B:118:THR:HG23	1:M:228:GLN:NE2	1.39	1.37
2:B:118:THR:CG2	1:M:228:GLN:NE2	1.94	1.29
1:A:69:GLY:CA	1:A:188:VAL:CB	2.10	1.29

A 4 1	A 4 a ma 9	Interatomic	Clash
Atom-1	Atom-2	$distance ({ m \AA})$	overlap (Å)
1:A:190:GLY:CA	1:A:219:GLY:HA3	1.61	1.28
2:L:80:GLN:OE1	1:U:259:GLU:N	1.66	1.25
1:G:228:GLN:OE1	2:R:118:THR:HG21	1.06	1.24
2:B:118:THR:HG21	1:M:228:GLN:CD	1.59	1.23
2:D:81:HIS:CE1	1:M:255:ALA:HA	1.74	1.22
1:G:228:GLN:CG	2:R:118:THR:CG2	2.17	1.21
1:G:228:GLN:CG	2:R:118:THR:HG22	1.72	1.19
1:K:114:ARG:HG2	2:L:306:GLY:N	1.62	1.14
1:S:65:PRO:O	2:T:189[A]:ARG:NH2	1.81	1.12
1:G:255:ALA:HB1	2:T:355:ARG:NH2	1.64	1.12
1:A:190:GLY:CA	1:A:219:GLY:CA	2.27	1.11
1:A:189:THR:CB	1:A:240:SER:OG	1.97	1.11
2:B:239:ASP:OD1	2:L:262:PRO:HG3	1.46	1.11
1:K:138:ILE:HG23	2:L:30:VAL:O	1.51	1.11
1:A:191:ALA:N	1:A:219:GLY:HA3	1.67	1.10
2:L:80:GLN:NE2	1:U:259:GLU:HG3	1.55	1.10
1:K:110:ASN:ND2	2:L:306:GLY:O	1.85	1.09
2:J:236:ARG:CD	2:T:261:ASP:OD1	2.03	1.06
1:I:255:ALA:HA	2:X:81:HIS:HE1	1.20	1.06
1:A:190:GLY:C	1:A:219:GLY:HA3	1.75	1.06
1:A:190:GLY:N	1:A:219:GLY:CA	2.18	1.05
1:S:64:ASP:OD2	2:T:185:ASN:ND2	1.87	1.05
1:I:255:ALA:HA	2:X:81:HIS:CE1	1.91	1.05
1:K:64:ASP:OD2	2:L:181:LYS:NZ	1.89	1.04
1:G:223:ARG:HH12	2:T:77:ARG:HD2	1.21	1.04
1:A:190:GLY:HA3	1:A:219:GLY:N	1.72	1.03
1:K:114:ARG:NE	2:L:303:ASP:O	1.89	1.03
1:G:259:GLU:OE2	2:T:355:ARG:HB3	1.56	1.03
2:L:356:MET:SD	1:U:259:GLU:OE2	2.19	1.01
1:A:259:GLU:HG3	2:P:80:GLN:HE22	1.25	1.01
2:D:81:HIS:HE1	1:M:255:ALA:HA	1.07	1.00
1:A:259:GLU:CG	2:P:80:GLN:HE22	1.73	1.00
2:J:162:ARG:HG3	2:L:397:VAL:HG21	1.41	1.00
1:G:228:GLN:CD	2:R:118:THR:CB	2.15	0.99
2:F:355:ARG:HB3	1:Q:259:GLU:OE2	1.63	0.99
2:L:80:GLN:OE1	1:U:258:GLY:C	2.01	0.98
1:G:259:GLU:HG2	2:T:356:MET:CE	1.93	0.98
2:F:355:ARG:NH2	1:Q:255:ALA:HB1	1.79	0.97
2:D:355:ARG:NH2	1:M:252:ARG:HE	1.60	0.97
2:B:118:THR:CG2	1:M:228:GLN:CD	2.29	0.97
2:J:135:THR:HG23	2:L:358:GLY:O	1.63	0.96

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:259:GLU:HG2	2:T:356:MET:HE1	1.47	0.96
1:K:65:PRO:O	2:L:189[A]:ARG:NH2	1.99	0.95
2:L:355:ARG:HH21	1:U:252:ARG:NE	1.63	0.95
1:K:168:ARG:CD	2:L:35:MET:HB3	1.96	0.95
2:D:260:ASP:O	2:R:236:ARG:HD2	1.67	0.95
2:F:355:ARG:CG	1:Q:259:GLU:OE2	2.13	0.95
1:A:189:THR:CB	1:A:240:SER:CB	2.44	0.95
2:F:355:ARG:HE	1:Q:259:GLU:CD	1.71	0.94
2:J:236:ARG:HD3	2:T:261:ASP:OD1	1.66	0.94
2:L:355:ARG:NH2	1:U:252:ARG:NE	2.16	0.93
1:K:168:ARG:NH2	2:L:35:MET:HG3	1.83	0.93
1:G:68:ASP:O	2:H:189[A]:ARG:NH2	2.02	0.93
1:A:69:GLY:H	1:A:188:VAL:HA	1.34	0.92
2:J:236:ARG:HD2	2:T:261:ASP:OD1	1.67	0.92
1:Q:68:ASP:O	2:R:189:ARG:NH2	2.03	0.92
1:K:65:PRO:O	2:L:189[B]:ARG:NH2	2.01	0.91
2:R:357:GLU:O	2:T:65:TYR:CE1	2.23	0.91
2:D:260:ASP:HB3	2:R:236:ARG:NE	1.86	0.91
1:K:168:ARG:CZ	2:L:35:MET:HG3	2.01	0.91
2:F:356:MET:CE	1:Q:259:GLU:HG2	2.01	0.90
1:K:168:ARG:NE	2:L:35:MET:CB	2.35	0.90
1:K:66:GLY:O	2:L:189[A]:ARG:CZ	2.20	0.89
2:D:81:HIS:HE1	1:M:255:ALA:CA	1.85	0.89
2:D:81:HIS:CE1	1:M:255:ALA:CA	2.55	0.89
2:F:355:ARG:CB	1:Q:259:GLU:OE2	2.21	0.89
1:K:114:ARG:HG3	2:L:304:GLU:O	1.72	0.88
2:J:64:ASN:HA	2:L:71:PRO:HB2	1.55	0.88
1:G:228:GLN:CG	2:R:118:THR:HG21	1.93	0.88
2:D:355:ARG:CZ	1:M:252:ARG:NE	2.37	0.88
1:G:255:ALA:HB1	2:T:355:ARG:HH22	1.39	0.87
2:L:355:ARG:NH2	1:U:252:ARG:CD	2.38	0.87
1:G:228:GLN:NE2	2:R:118:THR:CA	2.37	0.87
1:A:190:GLY:N	1:A:219:GLY:HA2	1.89	0.86
2:F:65:TYR:CE1	2:H:357:GLU:O	2.29	0.86
1:A:190:GLY:HA3	1:A:219:GLY:CA	2.01	0.86
2:D:355:ARG:NH2	1:M:252:ARG:NE	2.24	0.85
1:K:168:ARG:NE	2:L:35:MET:HB3	1.92	0.85
1:I:68:ASP:O	2:J:189:ARG:NH2	2.09	0.84
2:F:406:LEU:HD22	2:H:164:ARG:NH2	1.91	0.84
1:K:114:ARG:HG2	2:L:305:ASP:C	1.97	0.84
2:J:236:ARG:NH2	2:T:262:PRO:HD3	1.93	0.84

	1	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:223:ARG:NH1	2:T:77:ARG:HD2	1.83	0.84
1:I:228:GLN:NE2	2:V:118:THR:HG23	1.93	0.83
2:J:406:LEU:HD22	2:L:164:ARG:NH2	1.93	0.83
1:A:191:ALA:H	1:A:219:GLY:HA3	1.39	0.83
1:I:228:GLN:NE2	2:V:118:THR:CG2	2.43	0.81
1:G:259:GLU:OE2	2:T:355:ARG:CB	2.28	0.81
1:G:262:ALA:HB2	2:T:80:GLN:CD	1.98	0.81
2:R:357:GLU:O	2:T:65:TYR:HE1	1.62	0.81
1:S:64:ASP:CG	2:T:185:ASN:HD21	1.84	0.81
1:W:68:ASP:O	2:X:189[A]:ARG:NH2	2.13	0.80
1:A:259:GLU:HG3	2:P:80:GLN:NE2	1.96	0.80
1:A:190:GLY:CA	1:A:219:GLY:N	2.44	0.80
2:J:236:ARG:NH1	2:T:262:PRO:HD2	1.96	0.80
1:G:248:GLU:OE1	2:T:404:PHE:O	2.00	0.79
2:J:236:ARG:HB3	2:T:227:ARG:HH22	1.47	0.79
2:F:164:ARG:C	2:H:406:LEU:HD13	2.03	0.79
1:G:228:GLN:OE1	2:R:118:THR:CG2	1.81	0.78
1:G:68:ASP:O	2:H:189[A]:ARG:NH1	2.17	0.78
1:S:114:ARG:HG2	2:T:306:GLY:CA	2.13	0.78
2:L:80:GLN:CD	1:U:259:GLU:HG3	2.02	0.78
1:I:252:ARG:HE	2:X:355:ARG:NH2	1.80	0.78
2:J:162:ARG:CG	2:L:397:VAL:HG21	2.12	0.78
2:F:64:ASN:O	2:H:73:TYR:HB2	1.84	0.77
1:A:69:GLY:HA3	1:A:188:VAL:CA	2.13	0.77
2:B:118:THR:HG23	1:M:228:GLN:HE21	1.48	0.77
1:G:68:ASP:O	2:H:189[A]:ARG:CZ	2.33	0.77
2:J:138:ALA:HB1	2:L:354:CYS:O	1.84	0.77
1:A:191:ALA:H	1:A:219:GLY:CA	1.96	0.77
2:D:348:ASP:OD2	1:M:251:PRO:HG2	1.84	0.77
1:A:69:GLY:N	1:A:188:VAL:HA	2.00	0.77
1:A:190:GLY:H	1:A:219:GLY:CA	1.97	0.76
1:G:259:GLU:CD	2:T:355:ARG:HE	1.88	0.76
1:A:189:THR:CB	1:A:240:SER:HB2	2.16	0.76
1:I:255:ALA:CA	2:X:81:HIS:HE1	1.96	0.76
1:A:190:GLY:HA3	1:A:218:LEU:C	2.06	0.76
2:J:166:LEU:HD21	2:L:360:ILE:HG13	1.65	0.76
1:I:255:ALA:CA	2:X:81:HIS:CE1	2.69	0.76
1:E:138:ILE:HD13	2:F:35:MET:SD	2.26	0.76
2:B:118:THR:HG21	1:M:228:GLN:OE1	1.85	0.75
2:D:355:ARG:NE	1:M:252:ARG:CZ	2.49	0.75
1:A:190:GLY:HA3	1:A:219:GLY:HA3	1.61	0.75

A 4 1	A 4 9	Interatomic	Clash
Atom-1	Atom-2	${ m distance}~({ m \AA})$	overlap (Å)
2:F:355:ARG:NE	1:Q:259:GLU:OE2	2.19	0.75
2:F:65:TYR:HE1	2:H:357:GLU:O	1.68	0.75
1:K:114:ARG:CG	2:L:306:GLY:N	2.47	0.75
1:G:228:GLN:NE2	2:R:118:THR:HG22	1.17	0.75
1:G:228:GLN:OE1	2:R:118:THR:CB	2.28	0.75
2:H:143:ASP:OD1	1:Q:222:SER:OG	2.05	0.74
1:K:111:PRO:HA	2:L:305:ASP:O	1.87	0.74
1:K:141:GLU:HB3	2:L:29:TYR:CE2	2.22	0.74
2:F:356:MET:HE1	1:Q:259:GLU:HG2	1.70	0.74
2:B:239:ASP:OD1	2:L:262:PRO:CG	2.31	0.74
2:B:118:THR:HG23	1:M:228:GLN:HE22	1.50	0.74
1:C:68:ASP:O	2:D:189[A]:ARG:NH2	2.20	0.74
2:F:356:MET:HE3	1:Q:259:GLU:HG2	1.68	0.74
1:S:114:ARG:NH2	2:T:302:GLN:HG3	2.03	0.74
2:L:80:GLN:OE1	1:U:259:GLU:CA	2.36	0.73
1:W:161:ALA:CB	2:X:33:ALA:HA	2.19	0.73
2:J:236:ARG:HB3	2:T:227:ARG:NH2	2.03	0.73
2:R:401:ALA:N	2:T:165:LEU:HD21	2.03	0.73
2:D:355:ARG:HE	1:M:252:ARG:NH2	1.86	0.73
1:G:262:ALA:HB2	2:T:80:GLN:HE22	0.59	0.73
1:S:141:GLU:HG3	2:T:28:ARG:O	1.87	0.73
2:F:80:GLN:OE1	1:Q:262:ALA:HB2	1.89	0.73
2:F:355:ARG:CZ	1:Q:255:ALA:HB1	2.17	0.72
1:A:69:GLY:CA	1:A:188:VAL:CA	2.68	0.72
1:S:135:PRO:O	2:T:31:PRO:HB3	1.90	0.72
2:R:73:TYR:HB2	2:T:64:ASN:O	1.89	0.72
2:J:397:VAL:HG21	2:L:162:ARG:HG3	1.71	0.72
1:S:138:ILE:HD13	2:T:35:MET:HG3	1.72	0.72
2:R:401:ALA:HA	2:T:165:LEU:HD21	1.71	0.71
1:G:228:GLN:CD	2:R:118:THR:HG22	1.17	0.71
2:F:355:ARG:CD	1:Q:259:GLU:OE2	2.39	0.71
2:J:64:ASN:HA	2:L:71:PRO:CB	2.21	0.71
1:G:228:GLN:CD	2:R:118:THR:HG21	0.52	0.71
1:A:252:ARG:HD2	2:P:355:ARG:NH2	2.05	0.70
1:A:69:GLY:N	1:A:188:VAL:CA	2.54	0.70
2:J:135:THR:O	2:L:358:GLY:HA3	1.91	0.70
1:O:68:ASP:O	2:P:189[A]:ARG:NH2	2.24	0.70
1:G:259:GLU:HG2	2:T:356:MET:HE3	1.73	0.70
1:G:228:GLN:CD	2:R:118:THR:CG2	0.90	0.70
1:S:138:ILE:HD13	2:T:35:MET:CG	2.21	0.70
2:J:73:TYR:OH	2:L:139:LEU:HD11	1.92	0.70

A 4 1	A 4 a ma 9	Interatomic	Clash
Atom-1	Atom-2	$distance ({ m \AA})$	overlap (Å)
2:F:355:ARG:HG2	1:Q:259:GLU:OE2	1.91	0.69
1:G:223:ARG:HD3	2:T:77:ARG:HH22	1.57	0.69
2:F:355:ARG:NE	1:Q:259:GLU:CD	2.43	0.69
2:F:165:LEU:HD21	2:H:401:ALA:N	2.07	0.69
2:D:355:ARG:CZ	1:M:252:ARG:CZ	2.70	0.69
1:K:138:ILE:CG2	2:L:30:VAL:O	2.38	0.69
1:G:225:GLN:OE1	2:R:143:ASP:OD2	2.11	0.68
1:0:65:PRO:0	2:P:189[A]:ARG:NH2	2.26	0.68
1:A:191:ALA:N	1:A:219:GLY:CA	2.49	0.68
1:S:66:GLY:O	2:T:189[B]:ARG:HG2	1.92	0.68
1:C:68:ASP:O	2:D:189[A]:ARG:NH1	2.26	0.68
1:S:66:GLY:O	2:T:189[A]:ARG:HG2	1.94	0.68
2:F:407:LEU:HD12	2:F:407:LEU:N	2.00	0.68
1:S:68:ASP:O	2:T:189[A]:ARG:NH1	2.26	0.68
2:J:139:LEU:HD11	2:L:73:TYR:OH	1.94	0.68
2:R:401:ALA:CA	2:T:165:LEU:HD21	2.23	0.68
2:J:138:ALA:HB3	2:L:358:GLY:HA2	1.76	0.68
2:N:135:THR:HG23	2:P:358:GLY:O	1.95	0.67
2:D:260:ASP:O	2:R:236:ARG:CD	2.41	0.67
2:L:355:ARG:NH2	1:U:252:ARG:HD2	2.09	0.67
2:B:118:THR:CG2	1:M:228:GLN:HE22	2.02	0.67
2:V:406:LEU:HD22	2:X:164:ARG:NH2	2.09	0.67
2:J:236:ARG:NH2	2:T:260:ASP:O	2.27	0.67
1:S:113:LEU:CD1	2:T:292:ALA:HB2	2.24	0.67
2:J:166:LEU:HG	2:L:360:ILE:HD11	1.76	0.66
2:R:73:TYR:HD1	2:T:64:ASN:HB3	1.60	0.66
1:K:114:ARG:CG	2:L:305:ASP:C	2.63	0.66
2:H:406:LEU:O	2:H:407:LEU:HG	1.95	0.66
2:J:392:ARG:NH2	2:L:392:ARG:NH1	2.44	0.66
2:J:397:VAL:CG1	2:L:161:ALA:CB	2.73	0.66
1:A:184:SER:OG	1:A:218:LEU:HD12	1.96	0.66
1:G:262:ALA:CB	2:T:80:GLN:NE2	2.13	0.66
2:J:161:ALA:CB	2:L:397:VAL:CG1	2.74	0.66
1:0:114:ARG:HG2	2:P:306:GLY:N	2.11	0.66
1:I:252:ARG:NE	2:X:355:ARG:CZ	2.59	0.66
2:L:80:GLN:HE22	1:U:259:GLU:HG2	0.49	0.65
2:J:166:LEU:CD1	2:L:360:ILE:HD11	2.26	0.65
1:G:223:ARG:HH12	2:T:77:ARG:CD	2.04	0.65
2:T:406:LEU:O	2:T:407:LEU:HG	1.97	0.65
2:J:65:TYR:O	2:L:91:ARG:NH2	2.29	0.65
2:L:406:LEU:O	2:L:407:LEU:HG	1.97	0.65

A 4 1	A 4 9	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:O:65:PRO:O	2:P:189[B]:ARG:NH2	2.31	0.64
1:G:259:GLU:OE2	2:T:355:ARG:NE	2.28	0.64
1:I:228:GLN:CD	2:V:118:THR:HG21	2.18	0.64
2:D:260:ASP:O	2:R:236:ARG:NH1	2.31	0.64
1:K:161:ALA:HB2	2:L:33:ALA:HB2	1.79	0.64
1:0:68:ASP:0	2:P:189[A]:ARG:NH1	2.30	0.64
2:F:165:LEU:HD21	2:H:400:ALA:C	2.19	0.63
2:J:397:VAL:HG11	2:L:161:ALA:HB3	1.80	0.63
2:P:406:LEU:O	2:P:407:LEU:HG	1.98	0.63
2:X:406:LEU:O	2:X:407:LEU:HG	1.98	0.63
2:J:161:ALA:CB	2:L:397:VAL:HG12	2.28	0.63
1:S:138:ILE:HD13	2:T:35:MET:SD	2.38	0.63
1:I:252:ARG:NE	2:X:355:ARG:NH2	2.45	0.63
2:F:355:ARG:HH22	1:Q:255:ALA:HB1	1.59	0.63
1:G:222:SER:OG	2:R:143:ASP:OD1	2.15	0.63
1:K:114:ARG:HB2	2:L:306:GLY:HA3	1.81	0.63
1:I:251:PRO:HG2	2:X:348:ASP:OD2	1.98	0.63
1:A:190:GLY:H	1:A:219:GLY:N	1.97	0.63
1:G:224:ALA:CB	2:R:142:LEU:HA	2.29	0.63
2:J:138:ALA:HB3	2:L:358:GLY:CA	2.28	0.62
1:G:262:ALA:HB1	2:T:80:GLN:HE22	1.54	0.62
1:W:68:ASP:O	2:X:189[A]:ARG:CZ	2.47	0.62
1:G:228:GLN:HE21	2:R:118:THR:CG2	1.31	0.62
1:A:265:ARG:C	1:A:266:LEU:HG	2.17	0.62
1:A:190:GLY:N	1:A:219:GLY:HA3	1.98	0.62
1:K:66:GLY:O	2:L:189[B]:ARG:HG2	2.00	0.62
2:F:164:ARG:O	2:H:406:LEU:HD13	1.99	0.62
2:J:161:ALA:HB1	2:L:397:VAL:HG12	1.80	0.62
2:H:406:LEU:C	2:H:407:LEU:HG	2.20	0.62
2:J:392:ARG:CZ	2:L:392:ARG:CZ	2.77	0.62
1:W:161:ALA:HB3	2:X:33:ALA:HA	1.81	0.62
1:A:190:GLY:N	1:A:219:GLY:N	2.48	0.61
2:F:162:ARG:CG	2:H:397:VAL:HG21	2.30	0.61
2:D:355:ARG:NE	1:M:252:ARG:NH2	2.48	0.61
2:F:407:LEU:N	2:F:407:LEU:CD1	2.63	0.61
1:I:228:GLN:NE2	2:V:118:THR:HG21	2.15	0.61
2:D:406:LEU:O	2:D:407:LEU:HG	2.00	0.61
2:J:63:ALA:O	2:L:71:PRO:HB3	1.99	0.61
1:I:85:ARG:HA	2:J:305:ASP:OD2	1.99	0.61
1:0:68:ASP:0	2:P:189[A]:ARG:CZ	2.49	0.61
1:W:68:ASP:O	2:X:189[A]:ARG:NH1	2.33	0.61

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:J:397:VAL:CG1	2:L:161:ALA:HB3	2.30	0.61
1:K:168:ARG:CZ	2:L:35:MET:CG	2.77	0.61
2:J:71:PRO:HB2	2:L:64:ASN:HA	1.82	0.61
1:U:265:ARG:C	1:U:266:LEU:HG	2.17	0.61
2:N:113:ARG:HH11	2:N:113:ARG:HG3	1.66	0.61
2:J:166:LEU:CG	2:L:360:ILE:HD11	2.31	0.60
2:R:406:LEU:HD13	2:T:164:ARG:C	2.22	0.60
2:V:113:ARG:HG3	2:V:113:ARG:HH11	1.67	0.60
1:E:135:PRO:O	2:F:31:PRO:HB3	2.01	0.60
2:J:161:ALA:HB3	2:L:397:VAL:CG1	2.31	0.60
1:A:189:THR:CB	1:A:240:SER:H	2.13	0.60
2:J:166:LEU:HD21	2:L:360:ILE:CG1	2.31	0.60
2:J:139:LEU:HA	2:L:357:GLU:HA	1.84	0.60
2:N:162:ARG:HG3	2:P:397:VAL:HG21	1.83	0.60
1:K:114:ARG:HG2	2:L:306:GLY:H	1.61	0.60
1:K:168:ARG:CD	2:L:35:MET:CB	2.73	0.60
2:J:236:ARG:HH12	2:T:262:PRO:HD2	1.66	0.60
2:F:80:GLN:OE1	1:Q:262:ALA:CB	2.49	0.59
2:P:406:LEU:C	2:P:407:LEU:HG	2.22	0.59
1:A:184:SER:OG	1:A:218:LEU:CD1	2.50	0.59
2:J:138:ALA:CB	2:L:354:CYS:O	2.50	0.59
1:K:114:ARG:CG	2:L:304:GLU:O	2.49	0.59
2:J:64:ASN:CA	2:L:71:PRO:HB2	2.29	0.59
1:M:68:ASP:O	2:N:189:ARG:NH2	2.35	0.59
2:F:164:ARG:NH1	2:H:406:LEU:C	2.56	0.59
1:M:265:ARG:C	1:M:266:LEU:HG	2.18	0.59
1:I:265:ARG:C	1:I:266:LEU:HG	2.18	0.59
1:K:66:GLY:O	2:L:189[B]:ARG:NE	2.36	0.59
2:B:118:THR:HG21	1:M:228:GLN:NE2	1.81	0.59
2:F:135:THR:HG23	2:H:358:GLY:O	2.02	0.59
1:S:113:LEU:HD12	2:T:292:ALA:CB	2.32	0.59
1:G:255:ALA:HB1	2:T:355:ARG:CZ	2.31	0.59
2:F:162:ARG:HG3	2:H:397:VAL:HG21	1.84	0.59
2:L:406:LEU:C	2:L:407:LEU:HG	2.23	0.59
1:S:110:ASN:HB2	2:T:292:ALA:O	2.03	0.59
2:B:113:ARG:HH11	2:B:113:ARG:HG3	1.66	0.58
2:J:113:ARG:HH11	2:J:113:ARG:HG3	1.67	0.58
2:R:358:GLY:HA3	2:T:65:TYR:OH	2.03	0.58
2:R:113:ARG:HG3	2:R:113:ARG:HH11	1.68	0.58
2:J:397:VAL:CG1	2:L:161:ALA:HB1	2.34	0.58
2:R:400:ALA:C	2:T:165:LEU:HD21	2.24	0.58

		Interatomic	Clash
Atom-1	Atom-2	${ m distance}~({ m \AA})$	overlap (Å)
2:T:406:LEU:C	2:T:407:LEU:HG	2.23	0.58
1:S:113:LEU:HD12	2:T:292:ALA:HB3	1.84	0.58
1:K:168:ARG:NH1	2:L:35:MET:CE	2.66	0.58
1:O:161:ALA:CB	2:P:33:ALA:HA	2.34	0.58
1:S:114:ARG:HG2	2:T:306:GLY:N	2.18	0.58
2:F:397:VAL:CG1	2:H:161:ALA:HB3	2.33	0.57
1:K:114:ARG:HH21	2:L:303:ASP:C	2.07	0.57
2:X:406:LEU:C	2:X:407:LEU:HG	2.23	0.57
2:H:143:ASP:OD2	1:Q:225:GLN:CG	2.52	0.57
1:I:135:PRO:O	2:J:31:PRO:HA	2.03	0.57
2:L:80:GLN:CD	1:U:259:GLU:CG	2.57	0.57
1:S:66:GLY:HA3	2:T:188:PHE:CE1	2.40	0.57
1:U:68:ASP:O	2:V:189:ARG:NH2	2.31	0.57
2:J:94:LEU:HD22	2:L:96:HIS:HA	1.87	0.57
1:Q:265:ARG:C	1:Q:266:LEU:HG	2.23	0.57
2:F:397:VAL:HG11	2:H:161:ALA:HB3	1.87	0.57
1:I:67:MET:SD	2:J:31:PRO:HG3	2.44	0.57
1:A:68:ASP:O	2:B:189:ARG:NH2	2.32	0.57
1:O:138:ILE:HG23	2:P:30:VAL:O	2.05	0.57
2:R:357:GLU:O	2:T:65:TYR:CZ	2.58	0.57
1:E:141:GLU:HG3	2:F:28:ARG:O	2.05	0.56
2:J:360:ILE:HD11	2:L:166:LEU:HG	1.87	0.56
1:C:68:ASP:O	2:D:189[A]:ARG:CZ	2.52	0.56
2:D:260:ASP:O	2:R:236:ARG:CZ	2.53	0.56
2:J:162:ARG:HG3	2:L:397:VAL:CG2	2.26	0.56
1:C:161:ALA:CB	2:D:33:ALA:HA	2.34	0.56
2:R:73:TYR:HD1	2:T:64:ASN:CB	2.19	0.56
2:J:94:LEU:CD2	2:L:96:HIS:HA	2.36	0.56
2:J:236:ARG:CZ	2:T:262:PRO:HD3	2.35	0.56
2:L:355:ARG:HH21	1:U:252:ARG:CZ	2.16	0.56
1:I:228:GLN:HE22	2:V:118:THR:HG23	1.71	0.56
1:E:66:GLY:HA3	2:F:188:PHE:CE1	2.41	0.56
1:K:114:ARG:HB3	2:L:305:ASP:O	2.05	0.56
2:D:406:LEU:C	2:D:407:LEU:HG	2.25	0.56
2:F:64:ASN:HB3	2:H:73:TYR:HD1	1.70	0.56
1:G:225:GLN:HG3	2:R:143:ASP:OD2	2.06	0.56
2:D:80:GLN:OE1	1:M:258:GLY:O	2.25	0.55
2:J:166:LEU:HD11	2:L:360:ILE:HD11	1.87	0.55
2:N:161:ALA:HB3	2:P:397:VAL:CG1	2.37	0.55
1:A:190:GLY:H	1:A:219:GLY:HA2	1.61	0.55
2:B:407:LEU:HD12	2:B:407:LEU:N	2.19	0.55

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:J:236:ARG:NH1	2:T:262:PRO:CD	2.68	0.55
2:H:143:ASP:OD2	1:Q:225:GLN:HG3	2.07	0.55
1:K:168:ARG:HB3	2:L:32:GLU:OE2	2.07	0.55
2:R:407:LEU:CD1	2:R:407:LEU:N	2.68	0.55
2:F:165:LEU:HD21	2:H:401:ALA:HA	1.87	0.55
2:F:65:TYR:CZ	2:H:357:GLU:O	2.59	0.55
2:F:397:VAL:CG1	2:H:161:ALA:CB	2.84	0.55
2:F:65:TYR:HH	2:H:358:GLY:HA3	1.71	0.55
2:J:358:GLY:CA	2:L:138:ALA:HB3	2.35	0.55
2:J:161:ALA:HB1	2:L:397:VAL:CG1	2.37	0.55
2:J:96:HIS:HB2	2:L:94:LEU:HD21	1.88	0.55
1:K:66:GLY:O	2:L:189[A]:ARG:NH1	2.39	0.55
2:V:165:LEU:HD12	2:X:397:VAL:HG13	1.88	0.55
2:H:142:LEU:HA	1:Q:224:ALA:HB1	1.90	0.54
1:K:168:ARG:HD2	2:L:35:MET:HB3	1.85	0.54
2:N:407:LEU:N	2:N:407:LEU:HD12	2.20	0.54
2:R:407:LEU:HD12	2:R:407:LEU:N	2.16	0.54
2:F:165:LEU:HD21	2:H:401:ALA:CA	2.36	0.54
1:K:114:ARG:HB2	2:L:306:GLY:CA	2.37	0.54
1:W:138:ILE:HG23	2:X:30:VAL:O	2.08	0.54
1:E:65:PRO:O	2:F:189:ARG:NH1	2.40	0.54
1:G:223:ARG:HD3	2:T:77:ARG:NH2	2.20	0.54
1:K:168:ARG:NH1	2:L:35:MET:HE2	2.22	0.54
2:H:142:LEU:HA	1:Q:224:ALA:CB	2.38	0.54
2:J:94:LEU:HD22	2:L:96:HIS:CA	2.37	0.54
2:N:406:LEU:HD22	2:P:164:ARG:NH2	2.22	0.54
1:G:228:GLN:HE21	2:R:118:THR:HG23	0.86	0.54
2:V:64:ASN:O	2:X:73:TYR:HB2	2.08	0.54
1:K:114:ARG:CB	2:L:305:ASP:C	2.77	0.53
2:N:139:LEU:HD11	2:P:73:TYR:OH	2.09	0.53
1:G:161:ALA:CB	2:H:33:ALA:HA	2.39	0.53
1:S:113:LEU:CD1	2:T:292:ALA:CB	2.86	0.53
1:I:252:ARG:CZ	2:X:355:ARG:NE	2.71	0.53
2:J:236:ARG:CZ	2:T:260:ASP:O	2.57	0.53
2:J:236:ARG:HH22	2:T:262:PRO:HD3	1.70	0.53
1:K:114:ARG:HB3	2:L:305:ASP:C	2.29	0.53
1:K:161:ALA:HB3	2:L:33:ALA:HA	1.90	0.53
1:W:163:SER:O	2:X:36:ALA:HB2	2.08	0.53
2:B:64:ASN:O	2:D:73:TYR:HB2	2.09	0.53
2:D:80:GLN:OE1	1:M:258:GLY:C	2.46	0.53
1:S:114:ARG:HH21	2:T:302:GLN:HG3	1.72	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D:81:HIS:CE1	1:M:255:ALA:CB	2.92	0.53
1:A:255:ALA:O	2:P:80:GLN:OE1	2.26	0.52
2:J:65:TYR:O	2:L:94:LEU:HD11	2.08	0.52
2:R:406:LEU:CD1	2:T:165:LEU:HA	2.39	0.52
1:I:258:GLY:O	2:X:80:GLN:OE1	2.26	0.52
1:M:62:TYR:HA	2:N:307:GLN:OE1	2.09	0.52
2:R:406:LEU:HD12	2:T:165:LEU:HD23	1.90	0.52
2:J:71:PRO:HB2	2:L:64:ASN:O	2.10	0.52
2:R:406:LEU:O	2:R:407:LEU:HB2	2.10	0.52
2:J:71:PRO:CB	2:L:64:ASN:HA	2.39	0.52
2:F:165:LEU:HA	2:H:406:LEU:CD1	2.40	0.52
2:N:161:ALA:CB	2:P:397:VAL:CG1	2.88	0.52
1:I:252:ARG:NH2	2:X:355:ARG:HE	2.08	0.52
2:N:407:LEU:N	2:N:407:LEU:CD1	2.73	0.51
2:B:407:LEU:CD1	2:B:407:LEU:N	2.71	0.51
2:B:113:ARG:NH1	2:B:113:ARG:HG3	2.25	0.51
2:J:96:HIS:HB2	2:L:94:LEU:CD2	2.41	0.51
2:D:260:ASP:HB3	2:R:236:ARG:CD	2.41	0.51
2:V:165:LEU:CD1	2:X:397:VAL:HG13	2.41	0.51
1:G:227:ALA:CB	1:G:266:LEU:HD12	2.40	0.51
2:N:113:ARG:HG3	2:N:113:ARG:NH1	2.25	0.51
1:S:138:ILE:HG22	2:T:32:GLU:HB2	1.93	0.51
2:F:138:ALA:O	2:H:355:ARG:O	2.28	0.50
2:V:113:ARG:NH1	2:V:113:ARG:HG3	2.26	0.50
1:E:159:LEU:O	2:F:32:GLU:HG2	2.12	0.50
1:K:168:ARG:NE	2:L:35:MET:HB2	2.23	0.50
2:F:65:TYR:OH	2:H:357:GLU:O	2.29	0.50
2:J:407:LEU:N	2:J:407:LEU:CD1	2.72	0.50
1:A:252:ARG:CD	2:P:355:ARG:NH2	2.73	0.50
2:R:113:ARG:HG3	2:R:113:ARG:NH1	2.26	0.50
1:W:65:PRO:O	2:X:189[B]:ARG:NH2	2.45	0.50
1:E:85:ARG:HE	2:F:305:ASP:CG	2.14	0.50
2:J:113:ARG:HG3	2:J:113:ARG:NH1	2.26	0.50
2:R:94:LEU:HD13	2:T:67:GLY:HA3	1.94	0.50
1:0:111:PRO:HA	2:P:305:ASP:O	2.11	0.50
2:B:73:TYR:HB2	2:D:64:ASN:O	2.12	0.50
1:E:85:ARG:NH2	2:F:305:ASP:OD1	2.42	0.50
2:V:406:LEU:O	2:V:407:LEU:HB2	2.11	0.50
1:K:168:ARG:NE	2:L:35:MET:CG	2.74	0.50
1:O:161:ALA:HB3	2:P:33:ALA:HA	1.93	0.50
1:U:110:ASN:HB2	2:V:292:ALA:O	2.12	0.50

		Interatomic	Clash
Atom-1	Atom-2	$distance (m \AA)$	overlap (Å)
2:B:406:LEU:O	2:B:407:LEU:HB2	2.12	0.50
1:A:69:GLY:HA2	1:A:188:VAL:CB	2.32	0.49
2:J:406:LEU:O	2:J:407:LEU:HB2	2.11	0.49
2:J:165:LEU:HD21	2:L:400:ALA:C	2.32	0.49
1:G:225:GLN:CG	2:R:143:ASP:OD2	2.60	0.49
2:J:165:LEU:HD21	2:L:401:ALA:N	2.27	0.49
2:V:407:LEU:HD12	2:V:407:LEU:N	2.21	0.49
1:I:258:GLY:C	2:X:80:GLN:OE1	2.51	0.49
2:F:65:TYR:O	2:H:91:ARG:NH2	2.34	0.49
1:G:259:GLU:CG	2:T:356:MET:HE1	2.30	0.49
2:V:135:THR:HG23	2:X:358:GLY:O	2.12	0.49
1:E:138:ILE:HD13	2:F:35:MET:CG	2.43	0.49
2:J:65:TYR:CE1	2:L:359:ILE:HD11	2.48	0.49
2:N:406:LEU:O	2:N:407:LEU:HB2	2.12	0.49
2:J:236:ARG:CZ	2:T:262:PRO:CD	2.90	0.49
1:C:163:SER:O	2:D:36:ALA:HB2	2.13	0.49
2:R:357:GLU:O	2:T:65:TYR:OH	2.31	0.49
2:J:407:LEU:N	2:J:407:LEU:HD12	2.19	0.49
2:D:348:ASP:OD2	1:M:251:PRO:CG	2.59	0.49
2:J:161:ALA:HB3	2:L:397:VAL:HG11	1.93	0.49
1:K:66:GLY:O	2:L:189[A]:ARG:HG2	2.12	0.49
1:K:168:ARG:NE	2:L:35:MET:HG3	2.25	0.49
1:A:259:GLU:CG	2:P:80:GLN:NE2	2.56	0.49
1:G:259:GLU:OE2	2:T:355:ARG:CD	2.61	0.49
2:J:392:ARG:NH2	2:L:392:ARG:CZ	2.76	0.49
2:D:355:ARG:NH2	1:M:252:ARG:CZ	2.75	0.49
2:D:260:ASP:HB3	2:R:236:ARG:HE	1.72	0.48
2:J:64:ASN:O	2:L:71:PRO:HB2	2.13	0.48
1:M:161:ALA:CB	2:N:33:ALA:HA	2.43	0.48
1:I:85:ARG:HE	2:J:305:ASP:CG	2.17	0.48
2:F:162:ARG:HG3	2:H:397:VAL:HG11	1.96	0.48
1:W:168:ARG:NE	2:X:35:MET:HB3	2.29	0.48
1:K:66:GLY:O	2:L:189[B]:ARG:CG	2.61	0.48
2:F:404:PHE:O	1:Q:248:GLU:OE2	2.31	0.48
2:V:162:ARG:HG3	2:X:397:VAL:HG21	1.95	0.48
2:R:401:ALA:HA	2:T:165:LEU:CD2	2.42	0.48
2:R:397:VAL:HG21	2:T:162:ARG:CG	2.43	0.48
1:K:168:ARG:NH1	2:L:35:MET:HE3	2.28	0.48
2:D:77:ARG:NH1	1:M:223:ARG:HE	2.11	0.48
1:Q:161:ALA:CB	2:R:33:ALA:HA	2.44	0.48
2:R:358:GLY:CA	2:T:65:TYR:OH	2.62	0.48

		Interatomic	Clash
Atom-1	Atom-2	${ m distance}~({ m \AA})$	overlap (Å)
1:U:86:VAL:N	2:V:305:ASP:OD2	2.39	0.48
2:F:65:TYR:HH	2:H:358:GLY:CA	2.27	0.48
1:W:65:PRO:O	2:X:189[A]:ARG:NH2	2.46	0.48
1:I:66:GLY:C	2:J:188:PHE:HE1	2.17	0.48
2:V:407:LEU:CD1	2:V:407:LEU:N	2.72	0.48
2:V:397:VAL:HG21	2:X:162:ARG:HG3	1.96	0.47
2:F:406:LEU:O	2:F:407:LEU:HB2	2.14	0.47
2:H:142:LEU:CA	1:Q:224:ALA:CB	2.92	0.47
1:K:66:GLY:C	2:L:189[A]:ARG:CZ	2.81	0.47
2:R:161:ALA:HB3	2:T:397:VAL:HG11	1.96	0.47
1:K:114:ARG:CZ	2:L:303:ASP:O	2.59	0.47
2:J:166:LEU:HA	2:L:354:CYS:HB3	1.96	0.47
1:S:110:ASN:OD1	2:T:292:ALA:N	2.45	0.47
1:S:67:MET:SD	2:T:192:VAL:HG11	2.54	0.47
2:F:166:LEU:HD11	2:H:360:ILE:HD11	1.97	0.47
2:F:164:ARG:HB3	2:H:406:LEU:HB3	1.95	0.47
2:R:407:LEU:HD12	2:R:407:LEU:HA	1.67	0.47
2:F:356:MET:HE1	1:Q:259:GLU:CG	2.41	0.47
1:K:64:ASP:HB3	2:L:185:ASN:HD21	1.80	0.47
2:R:358:GLY:O	2:T:96:HIS:NE2	2.37	0.47
1:I:255:ALA:CB	2:X:81:HIS:CE1	2.97	0.47
2:J:360:ILE:HG13	2:L:166:LEU:HD21	1.96	0.46
1:E:135:PRO:O	2:F:31:PRO:CB	2.63	0.46
2:F:355:ARG:NH2	1:Q:255:ALA:CB	2.66	0.46
1:S:227:ALA:CB	1:S:266:LEU:HD12	2.45	0.46
1:M:161:ALA:HB3	2:N:33:ALA:HA	1.97	0.46
1:O:168:ARG:NE	2:P:35:MET:HB3	2.30	0.46
1:E:138:ILE:HG21	2:F:35:MET:HG3	1.98	0.46
2:N:161:ALA:HB3	2:P:397:VAL:HG11	1.98	0.46
1:K:62:TYR:HD1	2:L:307:GLN:OE1	1.98	0.46
2:P:21:GLY:HA3	2:P:22:PRO:HD3	1.69	0.46
2:F:65:TYR:OH	2:H:358:GLY:HA3	2.16	0.46
1:I:159:LEU:O	2:J:32:GLU:HG2	2.16	0.46
1:K:114:ARG:HG2	2:L:305:ASP:CA	2.45	0.46
1:O:114:ARG:HG3	2:P:304:GLU:O	2.15	0.46
1:S:227:ALA:HB2	1:S:266:LEU:HD12	1.98	0.46
1:C:266:LEU:HD23	1:C:266:LEU:HA	1.79	0.46
2:J:397:VAL:HG12	2:L:161:ALA:HB1	1.98	0.46
1:S:65:PRO:HD2	2:T:189[B]:ARG:HH22	1.81	0.46
2:J:139:LEU:HD12	2:L:357:GLU:OE1	2.15	0.45
1:K:114:ARG:CG	2:L:304:GLU:C	2.85	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:F:138:ALA:HB1	2:H:355:ARG:HA	1.99	0.45
1:O:266:LEU:HD23	1:O:266:LEU:HA	1.80	0.45
2:B:406:LEU:HD22	2:D:164:ARG:NH2	2.32	0.45
1:S:66:GLY:HA3	2:T:188:PHE:HE1	1.81	0.45
2:J:96:HIS:CA	2:L:94:LEU:HD22	2.47	0.45
2:R:406:LEU:HD13	2:T:164:ARG:O	2.16	0.45
2:R:397:VAL:HG13	2:T:165:LEU:HD12	1.98	0.45
2:F:113:ARG:HG3	2:F:113:ARG:HH11	1.82	0.45
1:G:228:GLN:NE2	2:R:118:THR:N	2.65	0.45
1:W:168:ARG:CD	2:X:35:MET:HB3	2.47	0.45
1:C:227:ALA:CB	1:C:266:LEU:HD12	2.47	0.45
1:E:110:ASN:OD1	2:F:292:ALA:N	2.44	0.45
1:E:135:PRO:O	2:F:31:PRO:HA	2.17	0.45
2:R:161:ALA:CB	2:T:397:VAL:CG1	2.95	0.45
1:A:191:ALA:N	1:A:219:GLY:O	2.51	0.44
2:N:407:LEU:HA	2:N:407:LEU:HD12	1.67	0.44
1:C:227:ALA:HB2	1:C:266:LEU:HD12	2.00	0.44
2:B:165:LEU:CD1	2:D:397:VAL:HG13	2.48	0.44
1:I:252:ARG:CZ	2:X:355:ARG:CZ	2.96	0.44
1:U:138:ILE:HD13	2:V:35:MET:SD	2.58	0.44
1:G:227:ALA:HB1	1:G:266:LEU:HD12	1.99	0.44
2:L:285:PHE:CD1	2:L:331:LYS:HD2	2.53	0.44
1:M:138:ILE:HG23	2:N:30:VAL:O	2.18	0.44
2:P:285:PHE:CD1	2:P:331:LYS:HD2	2.53	0.44
1:A:191:ALA:H	1:A:219:GLY:C	2.20	0.44
1:O:168:ARG:CD	2:P:35:MET:HB3	2.47	0.44
1:E:138:ILE:CD1	2:F:35:MET:SD	3.03	0.44
1:A:252:ARG:HD2	2:P:355:ARG:HH21	1.82	0.44
2:J:139:LEU:CD1	2:L:357:GLU:OE1	2.65	0.44
1:K:168:ARG:HE	2:L:35:MET:CB	2.25	0.44
2:J:141:GLY:CA	2:L:77:ARG:NH2	2.81	0.44
2:T:21:GLY:HA3	2:T:22:PRO:HD3	1.70	0.44
1:W:227:ALA:CB	1:W:266:LEU:HD12	2.47	0.44
2:V:65:TYR:O	2:X:91:ARG:NH2	2.49	0.44
2:V:91:ARG:NH1	2:X:65:TYR:O	2.48	0.44
2:F:96:HIS:NE2	2:H:358:GLY:O	2.41	0.44
2:B:236:ARG:CZ	2:L:260:ASP:O	2.66	0.44
2:R:397:VAL:HG11	2:T:162:ARG:HG3	1.99	0.44
2:J:141:GLY:HA2	2:L:77:ARG:NH2	2.33	0.43
1:M:64:ASP:OD2	2:N:308:THR:HB	2.18	0.43
2:R:161:ALA:HB1	2:T:397:VAL:CG1	2.48	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D:21:GLY:HA3	2:D:22:PRO:HD3	1.69	0.43
2:R:406:LEU:HD22	2:T:164:ARG:NH2	2.33	0.43
1:S:85:ARG:HH11	2:T:305:ASP:CG	2.21	0.43
1:W:111:PRO:HA	2:X:305:ASP:O	2.18	0.43
2:F:67:GLY:HA3	2:H:94:LEU:HD13	2.00	0.43
1:G:223:ARG:NH1	2:T:77:ARG:CD	2.66	0.43
1:G:225:GLN:CD	2:R:143:ASP:OD2	2.56	0.43
1:I:110:ASN:OD1	2:J:292:ALA:N	2.46	0.43
2:T:285:PHE:CD1	2:T:331:LYS:HD2	2.54	0.43
1:I:66:GLY:HA3	2:J:188:PHE:CE1	2.54	0.43
2:J:397:VAL:HG12	2:L:161:ALA:CB	2.46	0.43
2:N:64:ASN:O	2:P:73:TYR:HB2	2.18	0.43
1:A:189:THR:CA	1:A:240:SER:OG	2.65	0.43
2:L:113:ARG:NH2	2:L:140:LEU:O	2.49	0.43
2:B:113:ARG:CG	2:B:113:ARG:HH11	2.27	0.43
1:E:138:ILE:HG21	2:F:35:MET:CG	2.49	0.43
2:H:21:GLY:HA3	2:H:22:PRO:HD3	1.78	0.43
2:J:65:TYR:HE1	2:L:359:ILE:HD11	1.83	0.43
2:J:236:ARG:CZ	2:T:261:ASP:HA	2.48	0.43
1:K:168:ARG:HE	2:L:35:MET:HB2	1.82	0.43
1:U:65:PRO:O	2:V:189:ARG:NH1	2.52	0.43
2:D:113:ARG:NH2	2:D:140:LEU:O	2.48	0.42
2:D:230:ILE:HG21	2:D:238:PRO:HD3	2.01	0.42
1:K:227:ALA:CB	1:K:266:LEU:HD12	2.49	0.42
1:C:160:VAL:HA	2:D:32:GLU:HG2	2.01	0.42
2:J:165:LEU:HD11	2:L:397:VAL:HA	2.01	0.42
1:M:86:VAL:N	2:N:305:ASP:OD2	2.49	0.42
1:S:114:ARG:HG2	2:T:306:GLY:HA3	1.95	0.42
2:J:358:GLY:HA3	2:L:138:ALA:HB3	1.99	0.42
2:J:394:ASP:OD2	2:L:162:ARG:NH1	2.52	0.42
1:K:165:THR:HG23	2:L:36:ALA:CB	2.49	0.42
1:M:68:ASP:O	2:N:189:ARG:NH1	2.49	0.42
2:N:65:TYR:O	2:P:91:ARG:NH2	2.52	0.42
1:W:227:ALA:HB2	1:W:266:LEU:HD12	2.01	0.42
1:W:87:ARG:HE	1:W:87:ARG:HB3	1.43	0.42
1:W:160:VAL:HA	2:X:32:GLU:HG2	2.02	0.42
1:S:64:ASP:HB3	2:T:185:ASN:ND2	2.34	0.42
1:S:87:ARG:HB3	1:S:87:ARG:HE	1.40	0.42
2:J:236:ARG:NE	2:T:260:ASP:O	2.52	0.42
2:V:164:ARG:HH11	2:V:164:ARG:HD3	1.36	0.42
1:K:135:PRO:O	2:L:31:PRO:HB3	2.19	0.42

	h h h	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:O:168:ARG:NH2	2:P:35:MET:HG3	2.35	0.42
1:S:138:ILE:CD1	2:T:35:MET:SD	3.06	0.42
1:O:66:GLY:O	2:P:189[B]:ARG:HG2	2.20	0.42
1:A:65:PRO:O	2:B:189:ARG:NH1	2.52	0.42
1:O:227:ALA:CB	1:O:266:LEU:HD12	2.50	0.42
1:0:110:ASN:ND2	2:P:306:GLY:O	2.48	0.42
1:A:252:ARG:CD	2:P:355:ARG:HH21	2.32	0.42
2:H:285:PHE:CD1	2:H:331:LYS:HD2	2.55	0.42
2:F:164:ARG:HH12	2:H:407:LEU:N	2.18	0.42
1:K:266:LEU:HD23	1:K:266:LEU:HA	1.79	0.42
1:K:66:GLY:O	2:L:189[A]:ARG:CG	2.68	0.42
2:X:285:PHE:CD1	2:X:331:LYS:HD2	2.55	0.42
1:G:65:PRO:O	2:H:189[B]:ARG:NH2	2.53	0.42
1:I:80:LEU:HD21	2:J:307:GLN:NE2	2.34	0.42
1:K:141:GLU:OE1	2:L:29:TYR:CZ	2.73	0.42
1:K:114:ARG:CB	2:L:306:GLY:N	2.83	0.42
2:J:96:HIS:CB	2:L:94:LEU:HD21	2.49	0.42
2:X:196:ASP:N	2:X:196:ASP:OD1	2.53	0.42
2:B:165:LEU:HD12	2:D:397:VAL:HG13	2.02	0.41
1:S:135:PRO:O	2:T:31:PRO:CB	2.64	0.41
2:H:230:ILE:HG21	2:H:238:PRO:HD3	2.02	0.41
1:O:227:ALA:HB2	1:O:266:LEU:HD12	2.02	0.41
1:A:259:GLU:HG3	2:P:80:GLN:CD	2.40	0.41
2:B:123:GLU:HG3	2:B:184:ILE:HG12	2.02	0.41
1:M:63:SER:OG	2:N:308:THR:N	2.47	0.41
2:T:113:ARG:HA	2:T:113:ARG:HD3	1.91	0.41
2:N:123:GLU:HG3	2:N:184:ILE:HG12	2.03	0.41
1:0:64:ASP:OD2	2:P:181:LYS:NZ	2.29	0.41
2:T:230:ILE:HG21	2:T:238:PRO:HD3	2.03	0.41
2:B:397:VAL:HG13	2:D:165:LEU:HD12	2.02	0.41
2:D:285:PHE:CD1	2:D:331:LYS:HD2	2.56	0.41
2:D:355:ARG:HH21	1:M:252:ARG:HH21	1.68	0.41
2:F:164:ARG:HD3	2:F:164:ARG:HH11	1.54	0.41
2:R:123:GLU:HG3	2:R:184:ILE:HG12	2.03	0.41
2:H:123:GLU:HG3	2:H:184:ILE:CG1	2.51	0.41
2:N:164:ARG:HD3	2:N:164:ARG:HH11	1.37	0.41
2:F:355:ARG:CD	1:Q:259:GLU:CD	2.87	0.41
1:G:228:GLN:NE2	2:R:118:THR:CG2	0.55	0.41
1:G:62:TYR:HA	2:H:307:GLN:OE1	2.21	0.41
2:D:77:ARG:NH1	1:M:223:ARG:HH21	2.18	0.41
2:R:77:ARG:NE	2:T:139:LEU:O	2.53	0.41

A 4 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:T:113:ARG:NH2	2:T:140:LEU:O	2.49	0.41
2:R:397:VAL:O	2:T:165:LEU:HD11	2.20	0.41
2:B:123:GLU:HG3	2:B:184:ILE:CG1	2.51	0.41
1:I:141:GLU:OE1	2:J:18:HIS:NE2	2.49	0.41
2:J:64:ASN:C	2:L:71:PRO:HB2	2.40	0.41
1:Q:134:THR:HB	1:Q:137:LEU:HB3	2.03	0.41
1:G:228:GLN:HG3	2:R:118:THR:HG22	1.84	0.41
2:D:263:GLY:CA	2:R:263:GLY:HA3	2.51	0.41
2:T:123:GLU:HG3	2:T:184:ILE:CG1	2.51	0.41
2:F:123:GLU:HG3	2:F:184:ILE:HG12	2.02	0.41
2:J:94:LEU:HD11	2:L:65:TYR:O	2.21	0.41
1:K:161:ALA:HB2	2:L:33:ALA:CB	2.49	0.41
1:K:227:ALA:HB2	1:K:266:LEU:HD12	2.02	0.41
2:V:123:GLU:HG3	2:V:184:ILE:HG12	2.02	0.41
1:U:135:PRO:O	2:V:31:PRO:HB3	2.21	0.41
1:I:252:ARG:NH2	2:X:355:ARG:NE	2.69	0.41
2:H:123:GLU:HG3	2:H:184:ILE:HG12	2.03	0.41
2:P:113:ARG:NH2	2:P:140:LEU:O	2.50	0.41
1:W:134:THR:HB	1:W:137:LEU:HB3	2.03	0.41
2:X:230:ILE:HG21	2:X:238:PRO:HD3	2.03	0.40
2:D:260:ASP:O	2:R:236:ARG:NE	2.54	0.40
2:F:356:MET:CE	1:Q:259:GLU:CG	2.86	0.40
2:F:64:ASN:CB	2:H:73:TYR:HD1	2.33	0.40
1:Q:68:ASP:O	2:R:189:ARG:CZ	2.68	0.40
1:C:134:THR:HB	1:C:137:LEU:HB3	2.03	0.40
2:F:113:ARG:HG3	2:F:113:ARG:NH1	2.36	0.40
2:J:127:GLY:O	2:J:131:VAL:HG23	2.21	0.40
1:S:114:ARG:HG2	2:T:306:GLY:HA2	2.01	0.40
2:F:165:LEU:HD11	2:H:397:VAL:O	2.21	0.40
1:K:134:THR:HB	1:K:137:LEU:HB3	2.04	0.40
2:L:123:GLU:HG3	2:L:184:ILE:HG12	2.04	0.40
2:T:127:GLY:O	2:T:131:VAL:HG23	2.21	0.40
1:A:173:VAL:HG11	1:A:210:SER:HB3	2.04	0.40
1:E:173:VAL:HG11	1:E:210:SER:HB3	2.04	0.40
1:M:134:THR:HB	1:M:137:LEU:HB3	2.04	0.40
1:S:64:ASP:CB	2:T:185:ASN:ND2	2.85	0.40
1:S:110:ASN:CB	2:T:292:ALA:O	2.69	0.40
1:W:159:LEU:O	2:X:32:GLU:HB3	2.22	0.40

All (70) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic	Clash
	1100111 2	distance (Å)	overlap (Å)
1:C:228:GLN:NE2	2:D:118:THR:CG2[2_555]	0.66	1.54
1:W:228:GLN:NE2	2:X:118:THR:CG2[3_555]	0.68	1.52
1:0:228:GLN:NE2	2:P:118:THR:CG2[2_555]	0.69	1.51
2:B:77:ARG:CZ	1:C:223:ARG:NH2[2_555]	0.73	1.47
1:C:228:GLN:CD	2:D:118:THR:CG2[2_555]	0.76	1.44
2:N:77:ARG:NH1	1:O:223:ARG:NH2[2_555]	0.77	1.43
2:N:77:ARG:CZ	1:O:223:ARG:NH2[2_555]	0.81	1.39
2:B:77:ARG:NH1	1:C:223:ARG:NH1[2_555]	0.83	1.37
1:W:228:GLN:CD	2:X:118:THR:CG2[3_555]	0.95	1.25
2:V:77:ARG:NH1	1:W:223:ARG:NH1[3_555]	0.95	1.25
2:V:77:ARG:CZ	1:W:223:ARG:NH2[3_555]	0.97	1.23
2:B:77:ARG:NH1	1:C:223:ARG:CZ[2_555]	1.03	1.17
2:N:77:ARG:NH1	1:O:223:ARG:CZ[2_555]	1.06	1.14
2:B:77:ARG:NH2	1:C:223:ARG:NH2[2_555]	1.10	1.10
2:V:77:ARG:NH1	1:W:223:ARG:CZ[3_555]	1.11	1.09
1:W:228:GLN:NE2	2:X:118:THR:CB[3_555]	1.32	0.88
2:V:77:ARG:CZ	1:W:223:ARG:CZ[3_555]	1.38	0.82
2:B:77:ARG:CZ	1:C:223:ARG:CZ[2_555]	1.48	0.72
2:V:77:ARG:NE	1:W:223:ARG:NH2[3_555]	1.49	0.71
2:V:77:ARG:NH2	1:W:223:ARG:NH2[3_555]	1.49	0.71
1:C:228:GLN:NE2	2:D:118:THR:CB[2_555]	1.51	0.69
1:W:224:ALA:CB	2:X:141:GLY:O[3_555]	1.52	0.68
2:J:77:ARG:NH1	1:K:223:ARG:NH2[3_555]	1.57	0.63
2:N:77:ARG:NH2	1:O:223:ARG:NH2[2_555]	1.60	0.60
1:C:224:ALA:CB	$2:D:141:GLY:O[2_555]$	1.65	0.55
2:N:77:ARG:NH1	1:O:223:ARG:NH1[2_555]	1.66	0.54
2:B:77:ARG:NH1	1:C:223:ARG:NH2[2_555]	1.67	0.53
2:B:77:ARG:NE	1:C:223:ARG:NH2[2_555]	1.70	0.50
2:F:262:PRO:CG	2:N:239:ASP:OD1[11_554]	1.73	0.47
1:O:228:GLN:CD	2:P:118:THR:CG2[2_555]	1.73	0.47
1:C:228:GLN:OE1	2:D:118:THR:CG2[2_555]	1.77	0.43
1:W:228:GLN:CD	2:X:118:THR:CB[3_555]	1.80	0.40
2:R:355:ARG:NH2	$1:S:252:ARG:NH1[4_555]$	1.82	0.38
1:0:228:GLN:NE2	2:P:118:THR:CB[2_555]	1.84	0.36
2:N:404:PHE:O	$1:O:248:GLU:OE1[2_555]$	1.86	0.34
2:B:77:ARG:NH2	$1:C:223:ARG:CZ[2_555]$	1.90	0.30
1:C:228:GLN:CD	2:D:118:THR:CB[2_555]	1.90	0.30
2:V:77:ARG:NH1	1:W:223:ARG:NH2[3_555]	1.91	0.29
1:W:228:GLN:OE1	2:X:118:THR:CG2[3_555]	1.92	0.28
1:W:228:GLN:NE2	2:X:118:THR:CA[3_555]	1.95	0.25
2:F:261:ASP:OD1	2:N:236:ARG:CD[11_554]	1.95	0.25
2:F:262:PRO:CG	2:N:239:ASP:CG[11_554]	1.96	0.24

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:V:77:ARG:NH2	1:W:223:ARG:CZ[3_555]	1.99	0.21
1:W:228:GLN:OE1	2:X:118:THR:CB[3_555]	1.99	0.21
1:W:196:SER:OG	2:X:196:ASP:OD2[3_555]	2.00	0.20
1:C:228:GLN:CG	2:D:118:THR:CG2[2_555]	2.01	0.19
2:J:77:ARG:CZ	1:K:223:ARG:NH2[3_555]	2.01	0.19
1:E:259:GLU:OE2	2:H:356:MET:SD[4_555]	2.02	0.18
2:R:356:MET:SD	$1:S:259:GLU:OE2[4_555]$	2.03	0.17
2:J:77:ARG:NH2	1:K:223:ARG:NH2[3_555]	2.03	0.17
2:F:262:PRO:CG	2:N:239:ASP:OD2[11_554]	2.04	0.16
2:N:77:ARG:NE	1:O:223:ARG:NH2[2_555]	2.04	0.16
1:C:228:GLN:OE1	2:D:118:THR:CB[2_555]	2.04	0.16
2:V:77:ARG:NH1	1:W:223:ARG:NE[3_555]	2.05	0.15
1:W:228:GLN:CG	2:X:118:THR:CG2[3_555]	2.06	0.14
1:C:196:SER:OG	2:D:196:ASP:OD2[2_555]	2.07	0.13
1:C:222:SER:OG	2:D:143:ASP:OD1[2_555]	2.07	0.13
2:V:77:ARG:CZ	1:W:223:ARG:NH1[3_555]	2.08	0.12
2:R:81:HIS:NE2	$1:S:255:ALA:CB[4_555]$	2.10	0.10
2:N:355:ARG:NH2	$1:O:255:ALA:CB[2_555]$	2.10	0.10
1:0:224:ALA:CB	$2:P:141:GLY:O[2_555]$	2.11	0.09
1:W:224:ALA:CA	2:X:141:GLY:O[3_555]	2.11	0.09
1:C:228:GLN:NE2	$2:D:118:THR:CA[2_555]$	2.12	0.08
2:N:77:ARG:CZ	$1:O:223:ARG:CZ[2_555]$	2.12	0.08
1:C:225:GLN:OE1	2:D:143:ASP:OD2[2_555]	2.12	0.08
1:W:222:SER:OG	$2:X:143:ASP:OD1[3_555]$	2.13	0.07
2:B:77:ARG:CZ	$1:C:223:ARG:NH1[2_555]$	2.14	0.06
1:C:224:ALA:CA	2:D:141:GLY:O[2_555]	2.16	0.04
1:0:222:SER:OG	$2:P:1\overline{43:ASP:OD1[2_555]}$	2.17	0.03
1:E:259:GLU:OE2	$2:H:356:MET:CE[4_555]$	2.18	0.02

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	254/290~(88%)	246~(97%)	4 (2%)	4(2%)	9 44
1	С	244/290~(84%)	241~(99%)	2(1%)	1 (0%)	34 71
1	Ε	246/290~(85%)	242 (98%)	3~(1%)	1 (0%)	34 71
1	G	244/290~(84%)	241~(99%)	2(1%)	1 (0%)	34 71
1	Ι	246/290~(85%)	242 (98%)	3 (1%)	1 (0%)	34 71
1	К	244/290~(84%)	241 (99%)	2 (1%)	1 (0%)	34 71
1	М	246/290~(85%)	242 (98%)	3 (1%)	1 (0%)	34 71
1	Ο	244/290~(84%)	241 (99%)	2 (1%)	1 (0%)	34 71
1	Q	246/290~(85%)	242 (98%)	3 (1%)	1 (0%)	34 71
1	S	242/290~(83%)	239~(99%)	2 (1%)	1 (0%)	34 71
1	U	246/290~(85%)	242 (98%)	3 (1%)	1 (0%)	34 71
1	W	244/290~(84%)	241 (99%)	2 (1%)	1 (0%)	34 71
2	В	400/442 (90%)	392 (98%)	8 (2%)	0	100 100
2	D	398/442~(90%)	387 (97%)	11 (3%)	0	100 100
2	F	400/442 (90%)	392 (98%)	8 (2%)	0	100 100
2	Н	398/442~(90%)	387 (97%)	11 (3%)	0	100 100
2	J	400/442 (90%)	393 (98%)	7 (2%)	0	100 100
2	L	398/442~(90%)	387 (97%)	11 (3%)	0	100 100
2	Ν	400/442 (90%)	392 (98%)	8 (2%)	0	100 100
2	Р	398/442~(90%)	387 (97%)	11 (3%)	0	100 100
2	R	400/442~(90%)	393~(98%)	7 (2%)	0	100 100
2	Т	398/442~(90%)	387 (97%)	11 (3%)	0	100 100
2	V	400/442 (90%)	392 (98%)	8 (2%)	0	100 100
2	Х	398/442~(90%)	387 (97%)	11 (3%)	0	100 100
All	All	7734/8784 (88%)	7576 (98%)	143 (2%)	15~(0%)	47 79

All (15) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	185	THR
1	А	188	VAL
1	А	191	ALA
1	С	239	GLY
1	G	239	GLY
1	Κ	239	GLY

Mol	Chain	Res	Type
1	0	239	GLY
1	S	239	GLY
1	W	239	GLY
1	М	239	GLY
1	А	239	GLY
1	Е	239	GLY
1	Ι	239	GLY
1	Q	239	GLY
1	U	239	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	180/211~(85%)	177~(98%)	3~(2%)	60	78
1	С	179/211~(85%)	177~(99%)	2(1%)	73	85
1	Ε	180/211~(85%)	177~(98%)	3~(2%)	60	78
1	G	179/211~(85%)	177~(99%)	2(1%)	73	85
1	Ι	180/211~(85%)	177 (98%)	3 (2%)	60	78
1	К	179/211~(85%)	177 (99%)	2 (1%)	73	85
1	М	180/211~(85%)	176~(98%)	4 (2%)	52	71
1	Ο	179/211~(85%)	177 (99%)	2 (1%)	73	85
1	Q	180/211~(85%)	176~(98%)	4 (2%)	52	71
1	S	179/211~(85%)	177 (99%)	2 (1%)	73	85
1	U	180/211~(85%)	177 (98%)	3 (2%)	60	78
1	W	179/211~(85%)	177 (99%)	2 (1%)	73	85
2	В	298/331~(90%)	295~(99%)	3 (1%)	76	86
2	D	296/331~(89%)	295~(100%)	1 (0%)	92	95
2	F	298/331~(90%)	296~(99%)	2 (1%)	84	90
2	Н	296/331~(89%)	295 (100%)	1 (0%)	92	95
2	J	$29\overline{8/331} (90\%)$	295~(99%)	3 (1%)	76	86

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	L	296/331~(89%)	295~(100%)	1 (0%)	92	95
2	Ν	298/331~(90%)	295~(99%)	3 (1%)	76	86
2	Р	296/331~(89%)	295~(100%)	1 (0%)	92	95
2	R	298/331~(90%)	296~(99%)	2(1%)	84	90
2	Т	296/331~(89%)	295~(100%)	1 (0%)	92	95
2	V	298/331~(90%)	295~(99%)	3 (1%)	76	86
2	Х	296/331~(89%)	295~(100%)	1 (0%)	92	95
All	All	5718/6504 (88%)	5664 (99%)	54 (1%)	78	88

Continued from previous page...

All (54) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	140	ASP
1	А	181	TYR
1	А	184	SER
2	В	80	GLN
2	В	355	ARG
2	В	394	ASP
1	С	140	ASP
1	С	181	TYR
2	D	113	ARG
1	Е	140	ASP
1	Е	181	TYR
1	Е	184	SER
2	F	80	GLN
2	F	355	ARG
1	G	140	ASP
1	G	181	TYR
2	Н	113	ARG
1	Ι	140	ASP
1	Ι	181	TYR
1	Ι	184	SER
2	J	80	GLN
2	J	355	ARG
2	J	394	ASP
1	К	140	ASP
1	K	181	TYR
2	L	113	ARG
1	М	53	CYS
1	М	140	ASP

	J		
\mathbf{Mol}	Chain	\mathbf{Res}	Type
1	М	181	TYR
1	М	184	SER
2	N	80	GLN
2	N	355	ARG
2	N	394	ASP
1	0	140	ASP
1	0	181	TYR
2	Р	113	ARG
1	Q	53	CYS
1	Q	140	ASP
1	Q	181	TYR
1	Q	184	SER
2	R	80	GLN
2	R	355	ARG
1	S	140	ASP
1	S	181	TYR
2	Т	113	ARG
1	U	140	ASP
1	U	181	TYR
1	U	184	SER
2	V	80	GLN
2	V	355	ARG
2	V	394	ASP
1	W	140	ASP
1	W	181	TYR
2	Х	113	ARG

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (9) such sidechains are listed below:

Mol	Chain	Res	Type
2	D	81	HIS
1	Ι	228	GLN
2	L	81	HIS
1	М	228	GLN
2	Р	80	GLN
2	Р	81	HIS
2	Т	80	GLN
2	Т	81	HIS
2	Х	81	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

12 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Res Link		Bo	Bond lengths		B	ond ang	les
	Type		ites		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	P1T	Н	501	-	18,21,21	2.73	4 (22%)	23,30,30	1.37	3 (13%)
3	P1T	В	501	-	18,21,21	2.73	4 (22%)	23,30,30	1.38	3 (13%)
3	P1T	L	501	-	18,21,21	2.87	4 (22%)	23,30,30	1.44	3 (13%)
3	P1T	V	501	-	18,21,21	2.80	4 (22%)	23,30,30	1.40	3 (13%)
3	P1T	Р	501	-	18,21,21	2.76	4 (22%)	23,30,30	1.42	3 (13%)
3	P1T	J	501	-	18,21,21	2.80	4 (22%)	23,30,30	1.38	3 (13%)
3	P1T	Т	501	-	18,21,21	2.68	4 (22%)	23,30,30	1.46	3 (13%)
3	P1T	Х	501	-	18,21,21	2.72	4 (22%)	23,30,30	1.41	3 (13%)
3	P1T	R	501	-	18,21,21	2.77	4 (22%)	23,30,30	1.35	3 (13%)
3	P1T	F	501	-	18,21,21	2.73	4 (22%)	23,30,30	1.38	3 (13%)
3	P1T	D	501	-	18,21,21	2.73	4 (22%)	23,30,30	1.43	2 (8%)
3	P1T	N	501	-	18,21,21	2.76	4 (22%)	23,30,30	1.41	2 (8%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	P1T	Н	501	-	-	3/10/15/15	0/1/1/1
3	P1T	В	501	-	-	3/10/15/15	0/1/1/1
3	P1T	L	501	-	-	3/10/15/15	0/1/1/1
3	P1T	V	501	-	-	3/10/15/15	0/1/1/1
3	P1T	Р	501	-	-	3/10/15/15	0/1/1/1
3	P1T	J	501	-	-	3/10/15/15	0/1/1/1
3	P1T	Т	501	-	-	3/10/15/15	0/1/1/1
3	P1T	Х	501	-	-	3/10/15/15	0/1/1/1
3	P1T	R	501	-	-	3/10/15/15	0/1/1/1
3	P1T	F	501	-	-	3/10/15/15	0/1/1/1
3	P1T	D	501	-	-	3/10/15/15	0/1/1/1
3	P1T	N	501	-	-	3/10/15/15	0/1/1/1

Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

All (48) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
3	L	501	P1T	C3-C2	8.06	1.49	1.40
3	R	501	P1T	C3-C2	7.80	1.48	1.40
3	V	501	P1T	C3-C2	7.69	1.48	1.40
3	F	501	P1T	C3-C2	7.52	1.48	1.40
3	Р	501	P1T	C3-C2	7.50	1.48	1.40
3	J	501	P1T	C3-C2	7.50	1.48	1.40
3	Н	501	P1T	C3-C2	7.47	1.48	1.40
3	Ν	501	P1T	C3-C2	7.37	1.48	1.40
3	Х	501	P1T	C3-C2	7.33	1.48	1.40
3	В	501	P1T	C3-C2	7.23	1.48	1.40
3	D	501	P1T	C3-C2	7.19	1.48	1.40
3	Т	501	P1T	C3-C2	6.97	1.47	1.40
3	J	501	P1T	C5-C4	5.81	1.48	1.40
3	L	501	P1T	C5-C4	5.65	1.48	1.40
3	Ν	501	P1T	C5-C4	5.64	1.48	1.40
3	Т	501	P1T	C5-C4	5.62	1.48	1.40
3	V	501	P1T	C5-C4	5.62	1.48	1.40
3	Х	501	P1T	C5-C4	5.52	1.48	1.40
3	R	501	P1T	C5-C4	5.51	1.48	1.40
3	Р	501	P1T	C5-C4	5.51	1.48	1.40
3	Ν	501	P1T	C3-C4	5.46	1.48	1.40
3	D	501	P1T	C5-C4	5.43	1.48	1.40

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	В	501	P1T	C5-C4	5.42	1.48	1.40
3	J	501	P1T	C3-C4	5.38	1.48	1.40
3	D	501	P1T	C3-C4	5.37	1.48	1.40
3	F	501	P1T	C5-C4	5.36	1.48	1.40
3	В	501	P1T	C3-C4	5.32	1.48	1.40
3	Н	501	P1T	C5-C4	5.27	1.47	1.40
3	L	501	P1T	C3-C4	5.27	1.48	1.40
3	Х	501	P1T	C3-C4	5.26	1.48	1.40
3	V	501	P1T	C3-C4	5.24	1.48	1.40
3	Н	501	P1T	C3-C4	5.07	1.47	1.40
3	Т	501	P1T	C3-C4	5.04	1.47	1.40
3	R	501	P1T	C3-C4	5.04	1.47	1.40
3	F	501	P1T	C3-C4	5.02	1.47	1.40
3	Р	501	P1T	C3-C4	4.94	1.47	1.40
3	Р	501	P1T	C-CA	-4.57	1.45	1.52
3	Н	501	P1T	C-CA	-4.39	1.45	1.52
3	D	501	P1T	C-CA	-4.33	1.45	1.52
3	В	501	P1T	C-CA	-4.33	1.45	1.52
3	L	501	P1T	C-CA	-4.29	1.45	1.52
3	F	501	P1T	C-CA	-4.25	1.45	1.52
3	Т	501	P1T	C-CA	-4.23	1.45	1.52
3	V	501	P1T	C-CA	-4.20	1.45	1.52
3	J	501	P1T	C-CA	-4.10	1.45	1.52
3	Ν	501	P1T	C-CA	-4.06	1.45	1.52
3	Х	501	P1T	C-CA	-4.01	1.46	1.52
3	R	501	P1T	C-CA	-4.00	1.46	1.52

All (34) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	D	501	P1T	C4A-C4-C3	3.72	124.03	120.04
3	Ν	501	P1T	C4A-C4-C3	3.41	123.69	120.04
3	Х	501	P1T	C4A-C4-C3	3.36	123.64	120.04
3	V	501	P1T	C4A-C4-C3	3.33	123.61	120.04
3	Р	501	P1T	C4A-C4-C3	3.32	123.59	120.04
3	В	501	P1T	C4A-C4-C3	3.30	123.57	120.04
3	L	501	P1T	C4A-C4-C3	3.17	123.44	120.04
3	Т	501	P1T	C4A-C4-C3	3.14	123.41	120.04
3	R	501	P1T	C4A-C4-C3	3.12	123.38	120.04
3	F	501	P1T	C4A-C4-C3	3.10	123.36	120.04
3	J	501	P1T	C4A-C4-C3	3.07	123.33	120.04
3	Н	501	P1T	C4A-C4-C3	3.01	123.27	120.04

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Т	501	P1T	C6-N1-C2	2.74	124.24	119.17
3	В	501	P1T	C6-N1-C2	2.72	124.20	119.17
3	Х	501	P1T	C6-N1-C2	2.64	124.06	119.17
3	J	501	P1T	C6-N1-C2	2.63	124.04	119.17
3	Н	501	P1T	C6-N1-C2	2.63	124.04	119.17
3	L	501	P1T	C6-N1-C2	2.59	123.96	119.17
3	N	501	P1T	C6-N1-C2	2.58	123.94	119.17
3	D	501	P1T	C6-N1-C2	2.54	123.86	119.17
3	V	501	P1T	C6-N1-C2	2.50	123.81	119.17
3	R	501	P1T	C6-N1-C2	2.46	123.72	119.17
3	F	501	P1T	C6-N1-C2	2.44	123.69	119.17
3	Р	501	P1T	O3A-C3-C2	2.40	122.73	117.49
3	L	501	P1T	O3A-C3-C2	2.37	122.66	117.49
3	Р	501	P1T	C6-N1-C2	2.35	123.51	119.17
3	F	501	P1T	O3A-C3-C2	2.34	122.60	117.49
3	R	501	P1T	O3A-C3-C2	2.34	122.58	117.49
3	Н	501	P1T	O3A-C3-C2	2.26	122.42	117.49
3	V	501	P1T	O3A-C3-C2	2.21	122.32	117.49
3	J	501	P1T	O3A-C3-C2	2.13	122.13	117.49
3	X	501	P1T	C4-C4A-N	2.10	115.51	111.22
3	Т	501	P1T	O3A-C3-C2	2.08	122.02	117.49
3	В	501	P1T	O3A-C3-C2	2.00	121.85	117.49

There are no chirality outliers.

All (36) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	Н	501	P1T	C5-C4-C4A-N
3	В	501	P1T	C5-C4-C4A-N
3	L	501	P1T	C5-C4-C4A-N
3	V	501	P1T	C5-C4-C4A-N
3	Р	501	P1T	C5-C4-C4A-N
3	J	501	P1T	C5-C4-C4A-N
3	Т	501	P1T	C5-C4-C4A-N
3	Х	501	P1T	C5-C4-C4A-N
3	R	501	P1T	C5-C4-C4A-N
3	F	501	P1T	C5-C4-C4A-N
3	D	501	P1T	C5-C4-C4A-N
3	N	501	P1T	C5-C4-C4A-N
3	Н	501	P1T	C-CA-N-C4A
3	В	501	P1T	C-CA-N-C4A
3	L	501	P1T	C-CA-N-C4A

5O	CW
00	~ 11

Mol	Chain	Res	Type	Atoms
3	V	501	P1T	C-CA-N-C4A
3	Р	501	P1T	C-CA-N-C4A
3	J	501	P1T	C-CA-N-C4A
3	Т	501	P1T	C-CA-N-C4A
3	Х	501	P1T	C-CA-N-C4A
3	R	501	P1T	C-CA-N-C4A
3	F	501	P1T	C-CA-N-C4A
3	D	501	P1T	C-CA-N-C4A
3	Ν	501	P1T	C-CA-N-C4A
3	Н	501	P1T	C3-C4-C4A-N
3	В	501	P1T	C3-C4-C4A-N
3	L	501	P1T	C3-C4-C4A-N
3	V	501	P1T	C3-C4-C4A-N
3	J	501	P1T	C3-C4-C4A-N
3	Х	501	P1T	C3-C4-C4A-N
3	F	501	P1T	C3-C4-C4A-N
3	D	501	P1T	C3-C4-C4A-N
3	Р	501	P1T	C3-C4-C4A-N
3	Т	501	P1T	C3-C4-C4A-N
3	R	501	P1T	C3-C4-C4A-N
3	N	501	P1T	C3-C4-C4A-N

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	S	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	S	9:ALA	С	10:SER	Ν	3.34

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	$\# RSRZ {>}2$	$\mathbf{OWAB}(\mathrm{\AA}^2)$	$Q{<}0.9$
1	А	257/290~(88%)	-0.37	1 (0%) 92 87	$94,\ 142,\ 184,\ 206$	0
1	С	248/290~(85%)	-0.49	1 (0%) 92 87	58,86,106,117	0
1	Е	249/290~(85%)	0.08	12 (4%) 30 25	132,176,211,238	0
1	G	248/290~(85%)	-0.22	1 (0%) 92 87	111,138,159,173	0
1	Ι	249/290~(85%)	-0.25	5 (2%) 65 56	130, 169, 200, 211	0
1	К	248/290~(85%)	0.02	10 (4%) 38 30	149, 199, 236, 255	0
1	М	249/290~(85%)	-0.24	4 (1%) 72 62	112, 127, 142, 156	0
1	Ο	248/290~(85%)	-0.22	6 (2%) 59 49	122, 144, 161, 171	0
1	Q	249/290~(85%)	-0.17	2 (0%) 86 79	109,135,156,170	0
1	S	248/290~(85%)	0.16	11 (4%) 34 28	118, 148, 178, 188	0
1	U	249/290~(85%)	0.04	8 (3%) 47 37	146, 214, 264, 302	0
1	W	248/290~(85%)	-0.41	1 (0%) 92 87	88,117,145,162	0
2	В	399/442~(90%)	-0.58	0 100 100	53, 79, 101, 123	0
2	D	399/442~(90%)	-0.57	0 100 100	49,61,81,91	0
2	F	399/442~(90%)	-0.41	1 (0%) 94 90	98,113,137,149	0
2	Н	399/442~(90%)	-0.42	1 (0%) 94 90	97, 108, 119, 126	0
2	J	399/442~(90%)	-0.32	2 (0%) 91 85	125, 156, 188, 200	0
2	L	399/442~(90%)	-0.09	6 (1%) 73 64	126, 165, 198, 208	0
2	N	399/442~(90%)	-0.35	3 (0%) 86 79	109,118,137,149	0
2	Р	399/442~(90%)	-0.34	1 (0%) 94 90	110, 125, 140, 147	0
2	R	399/442~(90%)	-0.40	0 100 100	89, 101, 111, 123	0
2	Т	$3\overline{99/442}~(90\%)$	-0.34	0 100 100	89, 103, 118, 135	0
2	V	399/442~(90%)	-0.46	0 100 100	91, 123, 162, 181	0
2	X	$399/44\overline{2}\ (90\%)$	-0.48	0 100 100	$83, 97, \overline{121, 136}$	0

Continued from previous page...

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
All	All	7778/8784 (88%)	-0.31	76 (0%) 82 74	49, 122, 198, 302	0

All (76) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ	
1	S	218	LEU	7.6	
1	S	217	GLY	5.5	
1	Е	218	LEU	5.3	
1	Е	217	GLY	4.7	
1	Е	57	GLU	4.7	
1	K	209	VAL	4.4	
1	С	8	GLU	4.3	
1	S	9	ALA	4.3	
1	Е	8	GLU	4.3	
1	U	102	ARG	4.2	
1	U	197	GLN	4.0	
2	L	120	VAL	4.0	
1	0	8	GLU	3.9	
1	М	183	ALA	3.8	
2	L	144	CYS	3.8	
1	Е	220	VAL	3.5	
1	S	8	GLU	3.5	
1	K	210	SER	3.4	
1	K	8	GLU	3.4	
1	Е	219	GLY	3.4	
1	K	208	ALA	3.3	
1	U	221	ARG	3.2	
1	S	220	VAL	3.2	
1	S	219	GLY	3.1	
2	L	122	ALA	3.1	
1	S	196	SER	3.1	
1	Е	197	GLN	3.0	
2	L	119	ARG	3.0	
1	I	183	ALA	2.9	
2	L	143	ASP	2.9	
1	W	8	GLU	2.9	
2	Ν	52	GLN	2.8	
1	K	183	ALA	2.8	
1	Ι	218	LEU	2.8	
1	0	209	VAL	2.8	
1	U	8	GLU	2.7	
1	0	183	ALA	2.7	

Continued on next page...

Mol	Chain	Res	Type	RSRZ	
1	S	57	GLU	2.7	
1	0	208	ALA	2.7	
1	Ι	217	GLY	2.6	
1	U	155	ASP	2.6	
1	Ι	184	SER	2.5	
1	Q	221	ARG	2.5	
1	S	182	ALA	2.5	
1	Е	129	GLY	2.5	
2	Ν	240	ALA	2.4	
2	J	52	GLN	2.4	
1	U	215	GLY	2.4	
1	S	197	GLN	2.3	
2	J	174	GLN	2.3	
1	А	102	ARG	2.3	
1	U	220	VAL	2.3	
2	L	50	VAL	2.3	
1	Е	216	VAL	2.3	
2	Н	141	GLY	2.2	
1	S	21	ALA	2.2	
1	K	26	ALA	2.2	
1	K	257	THR	2.2	
1	Ι	182	ALA	2.2	
2	N	387	VAL	2.1	
1	K	213	PRO	2.1	
2	F	22	PRO	2.1	
1	K	175	ALA	2.1	
1	0	218	LEU	2.1	
1	М	178	GLY	2.1	
1	Е	180	VAL	2.1	
1	М	221	ARG	2.1	
1	K	131	GLY	2.1	
1	Е	182	ALA	2.1	
1	G	178	GLY	2.0	
2	Р	81	HIS	2.0	
1	U	130	LEU	2.0	
1	0	136	ASP	2.0	
1	М	8	GLU	2.0	
1	Е	221	ARG	2.0	
1	Q	178	GLY	2.0	

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	\mathbf{Res}	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
3	P1T	Р	501	21/21	0.76	0.45	175,175,175,175	0
3	P1T	D	501	21/21	0.79	0.45	175,175,175,175	0
3	P1T	L	501	21/21	0.81	0.32	175,175,175,175	0
3	P1T	Т	501	21/21	0.86	0.36	175,175,175,175	0
3	P1T	В	501	21/21	0.86	0.41	175,175,175,175	0
3	P1T	N	501	21/21	0.87	0.30	175,175,175,175	0
3	P1T	F	501	21/21	0.88	0.34	175,175,175,175	0
3	P1T	J	501	21/21	0.88	0.30	175,175,175,175	0
3	P1T	Х	501	21/21	0.88	0.36	175,175,175,175	0
3	P1T	V	501	21/21	0.90	0.30	175,175,175,175	0
3	P1T	R	501	21/21	0.91	0.32	175,175,175,175	0
3	P1T	Н	501	21/21	0.91	0.30	175,175,175,175	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

