

wwPDB EM Validation Summary Report (i)

Jul 3, 2024 - 10:02 am BST

PDB ID	:	70HP
EMDB ID	:	EMD-12904
Title	:	Nog1-TAP associated immature ribosomal particles from S. cerevisiae after
		rpL25 expression shut down, population A
Authors	:	Milkereit, P.; Poell, G.
Deposited on	:	2021-05-11
Resolution	:	3.90 Å(reported)
Based on initial model	:	6EM1

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length			Quality of	f chain		
1	1	3396		35%	11%	54%		
2	2	158			72%		23%	6%
3	6	232	17%	9% •		72%		
4	В	387	•		83%		•	14%
5	С	362	•		87%		•	12%
6	D	505	6%	31%		67%		
7	Е	176			78%		• 2	20%
8	F	244			91%			9%

Mol	Chain	Length	Quality of chain	
9	G	256	6 0% • 39%	
10	Н	191	<mark>6%</mark> 94%	• 5%
11	K	376	^{7%} 62% • 36%	
12	L	199	53% •• 46%	
13	М	138	91%	• 9%
14	Ν	204	••• 75% • 2.	3%
15	О	199	95%	
16	Р	184	5 2% • 47%	
17	Q	186	67% 33%	
18	S	172	91%	• 5%
19	V	137	91%	• 8%
20	W	236	89%	• 8%
21	Y	127	98%	••
22	b	647	58% • 39%	
23	е	130	91%	9%
24	f	107	99%	
25	h	120	92%	• 8%
26	i	100	7% . 26	%
27	j	88	80% .	19%
28	m	807	17% 82%	
29	n	605	5 1% • 48%	
30	О	220	5% 53% • 46%	
31	r	261	10% 27% • 72%	
32	t	322	10% 68% · 30%	
33	V	231	6% 52% 48%	

Continued from previous page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
34	у	245	91%	• 8%

2 Entry composition (i)

There are 35 unique types of molecules in this entry. The entry contains 143939 atoms, of which 63394 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 25S rRNA.

Mol	Chain	Residues				AltConf	Trace			
1	1	1567	Total 50411	C 14981	H 16855	N 6074	O 10934	Р 1567	0	0

• Molecule 2 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues			AltConf	Trace				
2	2	149	Total 4764	C 1415	Н 1601	N 556	O 1043	Р 149	0	0

• Molecule 3 is a RNA chain called ITS2.

Mol	Chain	Residues			AltConf	Trace				
3	6	65	Total 2061	C 614	Н 691	N 228	0 463	Р 65	0	0

• Molecule 4 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues			AltConf	Trace				
4	В	333	Total 5374	C 1680	Н 2728	N 490	0 470	S 6	0	0

• Molecule 5 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues			AltConf	Trace				
5	С	320	Total 5071	C 1565	Н 2597	N 469	0 437	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called ATP-dependent RNA helicase HAS1.

Mol	Chain	Residues			AltConf	Trace				
6	D	167	Total 2769	C 900	Н 1384	N 229	0 251	${ m S}{ m 5}$	0	0

• Molecule 7 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
7	Е	140	Total 2328	C 721	H 1212	N 202	0 192	S 1	0	0

• Molecule 8 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
8	F	222	Total 3647	C 1151	Н 1863	N 324	O 308	S 1	0	0

• Molecule 9 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
9	G	155	Total 2459	C 776	Н 1261	N 202	0 218	${S \over 2}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues			S			AltConf	Trace	
10	Н	181	Total 2955	C 917	Н 1513	N 262	O 259	${S \atop 4}$	0	0

• Molecule 11 is a protein called Proteasome-interacting protein CIC1.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
11	K	239	Total 3954	C 1250	Н 2026	N 321	0 354	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		Α	toms			AltConf	Trace
12	L	108	Total 1782	С 541	Н 918	N 180	0 143	0	0

• Molecule 13 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
13	М	126	Total 2064	C 634	Н 1080	N 187	0 161	${S \over 2}$	0	0

• Molecule 14 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
14	Ν	158	Total 2733	C 846	Н 1388	N 280	O 218	S 1	0	0

• Molecule 15 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
15	0	104	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
10	0	194	3171	987	1640	285	258	1	0	0

• Molecule 16 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		Α	AltConf	Trace			
16	Р	98	Total 1524	C 478	Н 767	N 135	0 144	0	0

• Molecule 17 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
17	Q	125	Total 2000	C 615	Н 1040	N 178	0 166	S 1	0	0

• Molecule 18 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
18	S	163	Total 2805	C 890	Н 1425	N 258	O 229	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
19	V	126	Total 1923	C 588	Н 987	N 176	0 165	${ m S} 7$	0	0

• Molecule 20 is a protein called Ribosome assembly factor MRT4.

Mol	Chain	Residues			Atom	5			AltConf	Trace
20	W	217	Total 3547	C 1116	Н 1787	N 304	O 336	$\frac{S}{4}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
21	Y	125	Total 2060	C 620	Н 1076	N 191	0 173	0	0

• Molecule 22 is a protein called Nucleolar GTP-binding protein 1.

Mol	Chain	Residues			Atom	s			AltConf	Trace
22	b	394	Total	С	Н	N	0	S	0	0
			6407	2037	3221	540	591	18		Ŭ

• Molecule 23 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues			Atom	.S			AltConf	Trace
23	е	118	Total 1990	C 611	Н 1029	N 195	0 154	S 1	0	0

• Molecule 24 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
24	f	106	Total 1731	C 540	Н 881	N 165	0 144	S 1	0	0

• Molecule 25 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
25	h	111	Total 1911	$\begin{array}{c} \mathrm{C} \\ 575 \end{array}$	Н 1006	N 173	O 156	S 1	0	0

• Molecule 26 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
26	i	74	Total 1236	C 367	Н 642	N 125	0 101	S 1	0	0

• Molecule 27 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues			AltConf	Trace				
27	j	71	Total 1137	C 344	Н 571	N 123	0 94	${f S}{5}$	0	0

• Molecule 28 is a protein called Ribosome biogenesis protein ERB1.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
28	m	142	Total 2415	C 775	Н 1208	N 212	O 217	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called Pescadillo homolog.

Mol	Chain	Residues			Atoms	s			AltConf	Trace
29	n	314	Total 5222	C 1697	Н 2642	N 428	O 447	S 8	0	0

• Molecule 30 is a protein called Ribosome biogenesis protein 15.

Mol	Chain	Residues			Atom	.S			AltConf	Trace
30	0	118	Total 2009	C 632	Н 1026	N 178	O 169	$\frac{S}{4}$	0	0

• Molecule 31 is a protein called Ribosome biogenesis protein NSA2.

Mol	Chain	Residues	Atoms					AltConf	Trace	
31	r	73	Total 1288	C 388	Н 660	N 133	0 106	S 1	0	0

• Molecule 32 is a protein called Ribosome biogenesis protein RLP7.

Mol	Chain	Residues	Atoms						AltConf	Trace
32	t	226	Total 3684	C 1144	Н 1895	N 320	O 322	S 3	0	0

• Molecule 33 is a protein called Nucleolar protein 16.

Mol	Chain	Residues	Atoms					AltConf	Trace	
33	v	121	Total 2108	C 645	Н 1077	N 201	0 182	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues	Atoms					AltConf	Trace	
34	У	225	Total 3398	C 1056	H 1697	N 295	0 343	${f S}{7}$	0	0

• Molecule 35 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms		Atoms		AltConf
35	j	1	Total 1	Zn 1	0		

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 25S rRNA

• Molecule 7: 60S ribosomal protein L6-A

Chain E:	78%	• 20	%
MET SER SER ALA GLN CYS LYS ALA ALA TYR TYR FRO SER GLU SER ASP	VAL ALA ALA ALA L18 K108 E109 L108 L108 L108 L108 CLU CYS CLU CYS CLU CYS CLU CYS CLU CYS CLU ALA	ASN ASN FLEU PRIC PRIC GLU GLU GLU GLU CJS F129 F176	
• Molecule 8: 60S r	ibosomal protein L7-A		
Chain F:	91%		9%
MET ALA ALA ALA ALA CIU CYC LEU TLEU TLEU TLEU PRO PRO BLU CLU LEU LYS	LYS SER LYS LYS CLN CLN CLN CLN LYS LYS L179 N234 N234		
• Molecule 9: 60S r	ibosomal protein L8-A		
Chain G:	60%	• 39%	
MET ALA PRO GLY CLYS VAL PRO PRO PRO PHE GLY ALA	SER THR THR SER SER SER ASN ASN PRO PRO PRO PRO PRO PRO PRO CTY CTY SER ASN CTY CTY CTY CTY CTY CTY CTY CTY CTY CTY	TLE GLY GLN GLN ALA CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	TRP PRO GLU TVR VAL ARG VAL GLN GLN ARG
GLN LYSS LYSS LISS TLEE REA RTC RTC RTC RTC RTC RTC RTC RTC RTC RTC	A108 6119 6119 178 858 178 858 610 610 614 8446 8446 8446 8446 8446 8446 8446	V203 V203 ALA ALA ALA ALA ALY CLY CLY CLY CLY CLY ALN ALN ALN LUZ ALY CLY CLY ALN LUZ ALY CLY CLY CLY CLY CLY CLY CLY CLY CLY C	ALA GLN ALA ALA ALA MET ASP ASP ASS ALA ASN
SER ASP SER ALA			
• Molecule 10: 60S	ribosomal protein L9-A		
Chain H:	94%		• 5%
M1 K2 Y3 G9 G9 E14 K39 K39 K39 K39 K39 K39 K39 K30 K30 K30 K30 K30 K30 K30 K30 K30 K20 K20 K20 K20 K20 K20 K20 K20 K20 K2	VAL VAL GLU GLV GLY ARS ASP GLY CLY CLY CLY CLY CLY CLY CLY CLY CLY C	T188 T188 ASP LEU	
• Molecule 11: Prot	teasome-interacting protein	CIC1	
Chain K:	62%	• 36%	
MET ALA ALA ALA LLYS SER ASN SER LLYS SER THR PRO VAL	PHR PHR SER LIVS CLV CLV CLV CLV CLV CLV CLV CLV CLV SER CLV SER SER SER SER SER SER SER SER SER SER	PRU GLN GLU ASP ASN ASN ASN GLU GLU GLY ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	LEU GLU ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
S105 A115 T116 T116 T122 T126 T126 T127 X128	1132 1132 1132 1133 1133 1133 1133 1133	8178 A182 6189 1193 M194 7204 8210	F217 F217 U253 R255 F256 F257 F260 F280 F280
L298 ASP ASP GLU GLU GLU CYS LYS LYS LYS ILE GLU GLU GLU	HLS ASP MET MET THR MET THR MET ASP ME CLV VAL CLV VAL CLV VAL ASN THR THR CLV VAL CLV CLV CLV CLV CLV CLV CLV CLV CLV CL	LEU MET GLU GLU PRO PRO GLY GLY GLY SER PHE SER SER	LTS TLE ASN ASN ALA ALA LYS LYS SER SER

• Molecule 12: 60S ribosomal protein L13-A

Chain	L:	53%	••	46%	
MET ALA ILE SER LYS	ASN LEU PRO LLE LEU LEU LYS	ASN HIS PHE ARG CLYS CLYS CLYS GLU GLU R49 R49	V63 R100 GLY GLY FR0 FR0 GLU ALA GLU	CLU CLU VAL VAL SER ALA ALA ALA ALA PHC PHC PHC CLU CLU	ALA ASP VAL GLU GLU ALA ALA ALA VAL
GLN ASP ASN GLY GLU	SER ALA PHE ARG THR LEU	ARG LEU ALA ALA ARG SER GLU LYS PHE ARG GLY TLE	GLU LYS ARG ARG GLU CLY GLU ALA GLU GLU GLU	LYS LYS LYS	
• Mole	ecule 13:	60S ribosomal pr	otein L14-A		
Chain	M:		91%		9%
MET SER THR ASP SER	ILE VAL LYS ALA SER ASN	V12 K25 K108 K137 ALA			
• Mole	ecule 14:	60S ribosomal pr	otein L15-A		
Chain	N:		75%	• 23%	_
MET G2 D17	R31	R67 R68 A58 A58 A58 A58 A58 A58 A58 A50 A50 A50 A50 A50 A50 A50 A50 A50 A50	ALA THR THR THR GLY PRO PRO ASN GLN VAL ASN VAL	LEU LYS TYR GLN R96 R108 L116 V115	E160 S171 S171 A171 A179 A174 A174 A17A A17A A17A
GLY ARG ARG LYS THR	TRP LYS ARG GLN ASN THR	L197 Y202 Arg Lys			
• Mole	ecule 15:	60S ribosomal pr	otein L16-A		
Chain	O:		95%		
MET SER V3	rs(T62 ALA ALA ASN VS6	R73 R74 E100 K170 ¥199			
• Mole	ecule 16:	60S ribosomal pr	otein L17-A		
Chain	P:	52%		47%	
MET ALA ARG TYR GLY	ALA THR SER THR N10	AIS SIG R23 V47 ASP ASP ASP ARC	ALA LLE PRO PHE ARG ARG ARG SER SER CLY ARG ARD ARG	THR GLN GLN GLY CLY CLY CLY CLY CLY CLY CLY ALA ALA ALA ALA	K105 G105 D108 A109 M120
K124 GLN ARG ARG ARG	THR TYR ARG ALA HIS GLY	ARG TILE ASN LYSS LYS E140 GLU GLU VAL	ALA LYS ALA ALA ALA ALA CLU CYS CLU VAL VAL VAL THR THR SER	ALC ALC ALN ALA ALA ALA ALA ALA ALA ALA ALA	
• Mole	ecule 17:	60S ribosomal pr	otein L18-A		
Chain	Q:	679	6	33%	_

NET ASP ILLE ASP HIS HIS ELN LYS CLN HIS ARG CLY HIS ARG SER ARG SER ARG SEL HIS ARG SEL HIS ARG SEL HIS ARG SER ARG CLY HIS HIS ARG CLN HIS ARD CLN HIS AND C CLN HIS AND CLN HIS AND CLN HIS AND C C C AND C C C C C C C C C C C C C C C C C C C	SER ARG GLU VAL ALA VAL ALA ARG CLY MET PRO CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	GLY ARG CLV BHE GLU ARG GLY ARG ARG ARG ARG ARG ARG
SER LYS GLY PHE LYS VAL		
• Molecule 18: 60S ribosomal prote	ein L20-A	
Chain S:	91%	• 5%
MET ALLA ALLA ALLA HILA PRO CLU CLU PRO P22 P22 P22 P22 P22 P22 P22 P22 P22 P2	7172	
• Molecule 19: 60S ribosomal prote	ein L23-A	
Chain V:	91%	• 8%
MET NAT GLY ALA ALA ALA ALA ALA CLA CLA CLA CLA CLA	K04 V137	
• Molecule 20: Ribosome assembly	factor MRT4	
Chain W:	89%	• 8%
NET PRO S4 K5 K6 K6 K6 K6 K6 M6 M6 V1 LVS LLVS LLVS LLV LLVS LLV LLV LLV LLV	A32 L34 A33 L34 A33 F36 A38 R38 P46 V48 V48 V48 V60 A61 A61	L65 166 M67 M76 K80 K80 K81 E83 E83 Y85 E83 Y85 K94 K94
L135 C66 C96 C98 C98 C110 C110 C110 C110 C110 C110 C113 C113	1136 1137 1137 1137 1141 1141 1141 1141 1142 1143 1143 1143 1143 1148 1148 1158 1158 1158 1158 1158 1158 1158 1168	K1165 F165 F165 K177 K174 C178 G178 G178 S184 P185 F185 F185 F185 F185 CV188 CV188 CV18 CV18 CV18
GLY GLU IASP ASP ASP ASP ASP ASP ASP ASS ASS COS COS COS COS COS COS COS COS COS C		
• Molecule 21: 60S ribosomal prote	ein L26-A	
Chain Y:	98%	
MET A2 GLU GLU		
• Molecule 22: Nucleolar GTP-bine	ding protein 1	
Chain b: 58%	• 39%	
M M M M M M M M M M M M M M	ALLE ALLE PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	153 654 655 757 761 164 164 768 766 768 768 768 768 768

• Molecule 29: Pescadillo homolog

LLEU LIFEU CGLY TITRE TITRE TITRE TITRE TITRE VAL VAL LLEU PRO CCLY VAL LLEU PRO CLY VAL LLEU VAL LLEU VAL LLEU VAL LLEU VAL

• Molecule 32: Ribosome biogenesis protein RLP7

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	75514	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	86.09	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.087	Depositor
Minimum map value	-0.018	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.016	Depositor
Map size (Å)	425.40002, 425.40002, 425.40002	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.0635, 1.0635, 1.0635	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	E	Bond angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.16	0/37522	0.75	58/58404~(0.1%)
2	2	0.16	0/3532	0.75	3/5494~(0.1%)
3	6	0.17	0/1527	0.84	5/2371~(0.2%)
4	В	0.24	0/2699	0.42	0/3626
5	С	0.23	0/2519	0.39	0/3409
6	D	0.26	0/1413	0.38	0/1896
7	Е	0.24	0/1132	0.41	0/1518
8	F	0.25	0/1821	0.39	0/2451
9	G	0.24	0/1218	0.40	0/1648
10	Н	0.23	0/1462	0.41	0/1969
11	Κ	0.24	0/1959	0.40	0/2642
12	L	0.24	0/877	0.40	0/1179
13	М	0.24	0/999	0.37	0/1344
14	Ν	0.23	0/1372	0.39	0/1836
15	0	0.24	0/1559	0.38	0/2091
16	Р	0.24	0/769	0.37	0/1039
17	Q	0.25	0/973	0.41	0/1316
18	S	0.24	0/1413	0.39	0/1893
19	V	0.25	0/950	0.43	0/1279
20	W	0.24	0/1790	0.41	0/2410
21	Y	0.24	0/995	0.41	0/1329
22	b	0.24	0/3242	0.39	0/4368
23	е	0.23	0/981	0.39	0/1312
24	f	0.25	0/868	0.41	0/1168
25	h	0.24	0/912	0.36	0/1210
26	i	0.24	0/599	0.37	0/793
27	j	0.24	0/578	0.40	0/767
28	m	0.23	$0/1\overline{242}$	0.37	$0/1\overline{678}$
29	n	0.25	0/2642	0.38	0/3569
30	0	0.24	0/1000	0.39	0/1328
31	r	0.22	0/638	0.34	0/837
32	t	0.25	0/1813	0.42	0/2439

Mol	Chain	Bond	lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
33	V	0.23	0/1043	0.37	0/1378	
34	У	0.23	0/1722	0.43	0/2343	
All	All	0.20	0/85781	0.62	66/124334~(0.1%)	

There are no bond length outliers.

The worst 5 of 66 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	1451	C	N3-C2-O2	-8.22	116.14	121.90
1	1	976	U	C2-N1-C1'	6.86	125.93	117.70
1	1	977	С	C2-N1-C1'	6.85	126.33	118.80
1	1	3080	G	OP1-P-OP2	-6.82	109.37	119.60
1	1	46	U	OP1-P-OP2	-6.81	109.38	119.60

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	В	329/387~(85%)	303 (92%)	25~(8%)	1 (0%)	41	75
5	С	312/362~(86%)	299 (96%)	13 (4%)	0	100	100
6	D	153/505~(30%)	140 (92%)	11 (7%)	2(1%)	12	48
7	Ε	136/176~(77%)	132 (97%)	4 (3%)	0	100	100
8	F	220/244~(90%)	212 (96%)	8 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles	
9	G	149/256~(58%)	138~(93%)	11 (7%)	0	100	100	
10	Н	177/191 (93%)	169~(96%)	8 (4%)	0	100	100	
11	К	231/376~(61%)	216 (94%)	15 (6%)	0	100	100	
12	L	106/199~(53%)	100 (94%)	5 (5%)	1 (1%)	17	54	_
13	М	124/138 (90%)	122 (98%)	2 (2%)	0	100	100	
14	Ν	152/204~(74%)	150 (99%)	2(1%)	0	100	100	
15	Ο	190/199~(96%)	184 (97%)	6 (3%)	0	100	100	
16	Р	92/184~(50%)	92 (100%)	0	0	100	100	
17	Q	123/186~(66%)	121 (98%)	2 (2%)	0	100	100	
18	S	159/172~(92%)	151 (95%)	8 (5%)	0	100	100	
19	V	124/137~(90%)	117 (94%)	7 (6%)	0	100	100	
20	W	211/236~(89%)	206 (98%)	5 (2%)	0	100	100	-
21	Y	123/127~(97%)	118 (96%)	5 (4%)	0	100	100	
22	b	380/647~(59%)	361 (95%)	17 (4%)	2(0%)	29	67	-
23	е	114/130 (88%)	113 (99%)	1 (1%)	0	100	100	
24	f	104/107~(97%)	99~(95%)	5 (5%)	0	100	100	
25	h	107/120~(89%)	102 (95%)	5 (5%)	0	100	100	
26	i	72/100~(72%)	68 (94%)	4 (6%)	0	100	100	
27	j	69/88~(78%)	67~(97%)	2(3%)	0	100	100	-
28	m	136/807~(17%)	126 (93%)	10 (7%)	0	100	100	
29	n	300/605~(50%)	289~(96%)	11 (4%)	0	100	100	-
30	О	114/220~(52%)	108 (95%)	6 (5%)	0	100	100	_
31	r	71/261~(27%)	70~(99%)	1 (1%)	0	100	100	-
32	t	220/322~(68%)	207 (94%)	12 (6%)	1 (0%)	29	67	-
33	V	113/231 (49%)	110 (97%)	3 (3%)	0	100	100	-
34	У	223/245~(91%)	214 (96%)	8 (4%)	1 (0%)	34	71	_
All	All	5134/8162 (63%)	4904 (96%)	222 (4%)	8 (0%)	50	79	

Continued from previous page...

5 of 8 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
12	L	63	VAL
32	t	151	LEU

Continued from previous page...

Mol	Chain	Res	Type
22	b	432	MET
4	В	342	LEU
22	b	6	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
4	В	280/323~(87%)	268~(96%)	12 (4%)	29	57
5	С	263/289~(91%)	259~(98%)	4 (2%)	65	80
6	D	154/440~(35%)	148 (96%)	6 (4%)	32	59
7	Ε	122/153~(80%)	119 (98%)	3(2%)	47	69
8	F	186/205~(91%)	185 (100%)	1 (0%)	88	93
9	G	125/208~(60%)	123 (98%)	2(2%)	62	79
10	Н	163/171~(95%)	161 (99%)	2 (1%)	71	83
11	K	220/346~(64%)	215 (98%)	5 (2%)	50	71
12	L	87/159~(55%)	84 (97%)	3 (3%)	37	62
13	М	99/109~(91%)	98 (99%)	1 (1%)	76	86
14	Ν	136/176~(77%)	131 (96%)	5 (4%)	34	60
15	Ο	158/162~(98%)	153 (97%)	5 (3%)	39	63
16	Р	80/146~(55%)	78 (98%)	2(2%)	47	69
17	Q	102/151~(68%)	102 (100%)	0	100	100
18	S	148/156~(95%)	142 (96%)	6 (4%)	30	58
19	V	98/105~(93%)	97~(99%)	1 (1%)	76	86
20	W	196/213~(92%)	189 (96%)	7 (4%)	35	61
21	Y	108/110~(98%)	107 (99%)	1 (1%)	78	87
22	b	352/573~(61%)	333 (95%)	19 (5%)	22	52
23	е	103/111 (93%)	103 (100%)	0	100	100
24	f	90/91~(99%)	90 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
25	h	96/105~(91%)	95~(99%)	1 (1%)	76	86
26	i	61/82~(74%)	60~(98%)	1 (2%)	62	79
27	j	59/71~(83%)	58~(98%)	1 (2%)	60	78
28	m	132/723~(18%)	129 (98%)	3(2%)	50	71
29	n	284/548~(52%)	279~(98%)	5(2%)	59	77
30	О	105/199~(53%)	103 (98%)	2(2%)	57	75
31	r	65/229~(28%)	63~(97%)	2(3%)	40	64
32	t	200/287~(70%)	193~(96%)	7 (4%)	36	62
33	v	109/205~(53%)	109 (100%)	0	100	100
34	У	193/211~(92%)	191 (99%)	2 (1%)	76	86
All	All	4574/7057~(65%)	4465 (98%)	109 (2%)	51	69

Continued from previous page...

5 of 109 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
19	V	64	LYS
22	b	130	ARG
31	r	55	TYR
20	W	57	ARG
21	Y	125	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 29 such side chains are listed below:

Mol	Chain	Res	Type
16	Р	101	ASN
34	у	33	ASN
18	S	89	ASN
30	0	199	ASN
17	Q	58	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	1529/3396~(45%)	319~(20%)	36~(2%)
2	2	146/158~(92%)	33~(22%)	1 (0%)
3	6	64/232~(27%)	23~(35%)	1 (1%)

Continued from previous page...

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
All	All	1739/3786~(45%)	375(21%)	38(2%)

5 of 375 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	2	U
1	1	3	U
1	1	14	U
1	1	15	С
1	1	20	А

5 of 38 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	3151	U
1	1	3395	G
1	1	3153	U
1	1	3269	U
3	6	1	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12904. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

Orthogonal projections (i) 6.1

6.1.1**Primary** map

Х

6.1.2Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

Z Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 179

Y Index: 178

Z Index: 155

6.3.2 Raw map

X Index: 179

Y Index: 178

Z Index: 156

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.016. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1238 nm^3 ; this corresponds to an approximate mass of 1118 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.256 ${\rm \AA}^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.256 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.90	-	-
Author-provided FSC curve	3.86	5.14	4.00
Unmasked-calculated*	4.63	8.33	4.97

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.63 differs from the reported value 3.9 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12904 and PDB model 70HP. Per-residue inclusion information can be found in section 3 on page 11.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.016 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.016).

9.4 Atom inclusion (i)

At the recommended contour level, 84% of all backbone atoms, 86% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.016) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} ext{-score}$
All	0.8650	0.2950
1	0.9550	0.2970
2	0.9530	0.3040
6	0.8670	0.2690
В	0.9480	0.2720
С	0.8470	0.3650
D	0.6360	0.2630
Е	0.9330	0.3670
F	0.8830	0.3480
G	0.7530	0.3040
Н	0.7450	0.3180
K	0.6570	0.2370
L	0.8480	0.3460
М	0.8950	0.3430
N	0.7670	0.3370
0	0.8540	0.3450
Р	0.7440	0.2780
Q	0.8090	0.3460
S	0.9040	0.3330
V	0.8370	0.2450
W	0.5570	0.2290
Y	0.8940	0.3590
b	0.6510	0.2010
е	0.6810	0.3790
f	0.8550	0.3950
h	0.7680	0.3300
i	0.7470	0.2640
j	0.8450	0.3540
m	0.6750	0.2650
n	0.7250	0.2600
0	0.6970	0.2510
r	0.5800	0.2560
t	0.6800	0.2640
V	0.7140	0.3140
У	0.9310	0.2180

