

Nov 30, 2021 – 05:37 pm GMT

PDB ID	:	70HT
EMDB ID	:	EMD-12908
Title	:	Nog1-TAP associated immature ribosomal particles from S. cerevisiae after
		rpL2 expression shut down, population A
Authors	:	Milkereit, P.; Poell, G.
Deposited on	:	2021-05-11
Resolution	:	4.70 Å(reported)
Based on initial model	:	3JCT

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	$0.0.0.{ m dev}97$
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.23.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures
	(#Entries)	(#Entries)
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	1	3396	• 31% • 56%	
2	2	158	5% 9% • 88%	
3	3	121	80%	14% 6%
4	В	387	87%	• 10%
5	С	362	64% ·	34%
6	D	297	• 86%	• 11%
7	Е	176	78%	• 20%
8	F	244	90%	• 9%

Mol	Chain	Length	Quality of chain	
9	Н	191	98%	•
10	J	174	94%	• •
11	М	138	98%	••
12	О	199	97%	••
13	Q	186	45% • 54%	
14	S	172	95%	5% •
15	Т	160	9% 69% •	28%
16	V	137	90%	• 9%
17	W	236	97%	•••
18	b	647	• 68% •	30%
19	е	130	22% 30% 70%	
20	f	107	99%	
21	m	486	30%	•• 11%
22	r	261	8%	• 12%
23	u	199	45% • 53%	
24	v	344	75% •	24%
25	W	203	8%	• 10%
26	х	515	93%	• 5%
27	У	245	91%	• 8%

2 Entry composition (i)

There are 29 unique types of molecules in this entry. The entry contains 135365 atoms, of which 59714 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 25S rRNA.

Mol	Chain	Residues				AltConf	Trace			
1	1	1485	Total 47732	C 14188	H 15960	N 5725	O 10374	Р 1485	0	0

• Molecule 2 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues			AltConf	Trace				
2	2	19	Total 605	C 180	Н 203	N 69	0 134	Р 19	0	0

• Molecule 3 is a RNA chain called 5S rRNA.

Mol	Chain	Residues			AltConf	Trace				
3	3	114	Total 3661	C 1086	H 1229	N 436	0 796	Р 114	0	0

• Molecule 4 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues	Atoms						AltConf	Trace
4	В	350	Total 5624	C 1763	Н 2849	N 516	O 489	${ m S} 7$	0	0

• Molecule 5 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues		Α	AltConf	Trace			
5	С	239	Total 3813	C 1178	Н 1961	N 348	O 326	0	0

• Molecule 6 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues			AltConf	Trace				
6	D	265	Total 4236	C 1352	Н 2098	N 377	O 407	${ m S} { m 2}$	0	0

• Molecule 7 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues			AltConf	Trace				
7	Е	141	Total 2338	С 724	Н 1217	N 203	O 193	S 1	0	0

• Molecule 8 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues			AltConf	Trace				
8	F	222	Total 3647	C 1151	Н 1863	N 324	O 308	S 1	0	0

• Molecule 9 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
9	Н	191	Total 3105	C 963	Н 1587	N 274	O 277	${S \over 4}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L11-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
10	J	169	Total 2738	C 847	Н 1385	N 253	0 249	${S \atop 4}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
11	М	137	Total 2214	C 678	Н 1155	N 200	0 179	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues			AltConf	Trace				
12	О	197	Total 3216	C 1003	Н 1661	N 289	O 262	S 1	0	0

• Molecule 13 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues		Α	toms			AltConf	Trace
13	Q	85	Total 1357	C 414	Н 705	N 123	0 115	0	0

• Molecule 14 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
1/	S	171	Total	С	Η	N	0	S	0	0
14	D	111	2913	925	1476	266	243	3	0	0

• Molecule 15 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues			AltConf	Trace				
15	Т	116	Total 1899	C 583	Н 976	N 176	0 161	${ m S} { m 3}$	0	0

• Molecule 16 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues			AltConf	Trace				
16	V	124	Total 1880	C 576	Н 963	N 171	O 163	S 7	0	0

• Molecule 17 is a protein called Ribosome assembly factor MRT4.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
17	W	234	Total 3806	C 1194	Н 1921	N 323	O 362	S 6	0	0

• Molecule 18 is a protein called Nucleolar GTP-binding protein 1.

Mol	Chain	Residues			Atom	S			AltConf	Trace
18	b	453	Total 7406	C 2340	Н 3727	N 635	O 686	S 18	0	0

• Molecule 19 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
19	е	39	Total 625	C 185	Н 331	N 59	O 50	0	0

• Molecule 20 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues	Atoms				AltConf	Trace		
20	f	106	Total 1731	C 540	H 881	N 165	0 144	S 1	0	0

• Molecule 21 is a protein called Nucleolar GTP-binding protein 2.

Mol	Chain	Residues	Atoms					AltConf	Trace	
21	m	433	Total 7069	C 2221	Н 3565	N 633	0 641	S 9	0	0

• Molecule 22 is a protein called Ribosome biogenesis protein NSA2.

Mol	Chain	Residues	Atoms					AltConf	Trace	
22	r	230	Total 3827	C 1177	Н 1967	N 352	0 324	${ m S} 7$	0	0

• Molecule 23 is a protein called Ribosome biogenesis protein RLP24.

Mol	Chain	Residues	Atoms					AltConf	Trace	
23	u	94	Total 1633	C 504	Н 833	N 164	O 123	S 9	0	0

• Molecule 24 is a protein called Ribosome biogenesis protein RPF2.

Mol	Chain	Residues	Atoms					AltConf	Trace	
24	v	263	Total 4323	C 1365	Н 2193	N 372	O 379	S 14	0	0

• Molecule 25 is a protein called Regulator of ribosome biosynthesis.

Mol	Chain	Residues	Atoms				AltConf	Trace		
25	W	182	Total 2960	C 911	H 1512	N 261	0 271	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called Ribosome assembly protein 4.

Mol	Chain	Residues	Atoms					AltConf	Trace	
26	x	488	Total 7606	C 2398	Н 3799	N 677	0 711	S 21	0	0

• Molecule 27 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues	Atoms					AltConf	Trace	
27	У	225	Total 3398	C 1056	H 1697	N 295	0 343	${f S}{7}$	0	0

• Molecule 28 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
28	b	1	Total Mg 1 1	0
28	m	1	Total Mg 1 1	0

• Molecule 29 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	s AltConf
29	u	1	Total Z 1	$\begin{bmatrix} 2n \\ 1 \end{bmatrix} = 0$

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 25S rRNA

• Molecule 3: 5S rRNA

Page 11

• Molecule 7: 60S ribosomal protein L6-A

N78 N78 K79 T80

Chain E:	78%	• 20%
MET MET ALA GLN CLYS CLYS ALA PRO LYS TRP PRO SER GLU ASP	VAL VAL AIT AIT F47 F47 E104 LIYS LIYS LIYS CLU CIV CLVS CLVS CLVS CLVS CLVS CLVS CLVS CLV	ALM ASM LYS L155 F176 F176
• Molecule 8: 60S r	ribosomal protein L7-A	
Chain F:	90%	• 9%
MET ALA ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU	LYS SER LYS LYS CLN GLN GLN GLN GLN GLN GLN GLN GLN GLN G	
• Molecule 9: 60S r	ribosomal protein L9-A	
Chain H:	98%	·
M1 E14 E12 E105 M139 M157 M157	E189	
• Molecule 10: 60S	ribosomal protein L11-A	
Chain J:	94%	
MET SER ALA ALA ALA P28 R29 R29 R29 R29 R29 R29 R94 R94	K112 K166 K174	
• Molecule 11: 60S	ribosomal protein L14-A	
Chain M:	98%	
MET 82 82 89 49 412 417 K24 K24 K24 K24		
• Molecule 12: 60S	ribosomal protein L16-A	
Chain O:	97%	
MET SER V3 F64 F64 N65 K91 K91	K117 176 1199	
• Molecule 13: 60S	ribosomal protein L18-A	
Chain Q:	45%	54%
MET GLY TLE ASP ASP HR HIS SER ASC SER SER SER CLY	HIS ALA ALA PALA PALA PALO CVR SER CVR PA2 P43 F44 F44 F44 F44 F44 F44 F44 F44 F44 F	PHE LEU LEU SER LIYS NIS RIS P60 A68 A68 A68 A69 A70
	WORLDWIDE PROTEIN DATA BANK	

V81 V82 V83 V84 G85 G85 G85 G85 G85 A91 A91 R92 R92	PHE CLU CLU CLU CLYS THE THR VIOI A102 A102 PHE A102 A103 A113 A103 A113 A103 A113 A	LYS ILYS ALA GLY GLY GLY GLU CYS CYS CYS CYS CILE LEU D125 0125 0125 0125 0125	V129 K130 K133 G134 G134 G135 F137 F139 F139 F139 F139 F139 F139 F139 F139 F139 F130
ARG ASN SER ARG ALA ALA ALA ARG HIS PHE GLY MET MET	PRO HIS CIY CIY CIY CIY CIY ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ARG ARG SER LYS GLY PHE LYS VAL	
• Molecule 14: 60	S ribosomal protein L20-A		
Chain S:	95%		5%•
MET A2 R12 K53 K53 G63	D82 883 883 883 883 813 D109 N109 N109 N131 V172		
• Molecule 15: 60	S ribosomal protein L21-A		
Chain T:	69%	• 28%	
MET CLY CLY SER LYS SER TTR SER ARC SER ARC SER TTR TTR	PMET PME GLM ARG ARG ARG LTY ARG LTY ARG LTY THR THR THR THR THR THR THR THR THR	N45 ALY SER LLY CLN CLN CLN CLN CLN F56 F56 K59 NT7 K78	M79 V80 G81 E86 E94 E94
GLN GLY VAL VAL 126 4126 4126 4126 8138 8138 8138 8138 8138 8138	A152		
• Molecule 16: 60	S ribosomal protein L23-A		
Chain V:	90%		9%
MET SER GLY GLY GLY GLY GLN THR THR THR THR THR THR THR THR THR THR	S14 L15 G16 G90 M132 V137		
• Molecule 17: Ri	bosome assembly factor MR	Т4	
Chain W:	97%		
M1 19 19 19 10 10 10 10 10 10 10 10 10 10	L133 N234 MET GLU		
• Molecule 18: Nu	cleolar GTP-binding protein	n 1	
Chain b:	68%	• 30%	
M1 K38 F57 V58 L122 L122	C249 E258 ← F271 F271 F271 F274 F294 F294 F294 F294 F294 F294 F294 F29	LEU LYS LYS LYS VAL D370 Q365 C365 C365 C365 C365 C365 C365 C365 C	A404 4 N415 N432 K462 F468 F468 N470
SER ASP ASP GLU GLU GLU TYR ASP GLU GLV GLU ALA	SER VAL ASP ASP IIIE LYS CIU CIU CIU CIU CIU CIU CIU CIU CIU CIU	ALA ALA ALA ARG ARG ARG LYS LYS LYS LYS ARG ALA ALA ALA ARA ARG	SER LYS LEU THR LYS SER PHE CLY LYS

• Molecule 22: Ribosome biogenesis protein NSA2

• Molecule 27: Eukaryotic translation initiation factor 6

Chain y:	91% .	8%
M1 R57 R96 H162	q225 ASP ALA GLN GLN FRO CLU SER ASP ASN ASN ASN ASN ASN ASN ASN THR TTR TTR TTR TTR SER SER	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	21053	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	86.45	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.099	Depositor
Minimum map value	-0.026	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.005	Depositor
Recommended contour level	0.018	Depositor
Map size (Å)	425.40002, 425.40002, 425.40002	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.0635, 1.0635, 1.0635	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.16	0/35525	0.76	57/55297~(0.1%)	
2	2	0.16	0/447	0.78	2/691~(0.3%)	
3	3	0.14	0/2715	0.74	5/4220~(0.1%)	
4	В	0.23	0/2833	0.43	0/3806	
5	С	0.23	0/1883	0.40	0/2544	
6	D	0.24	0/2184	0.40	0/2945	
7	Е	0.24	0/1137	0.40	0/1525	
8	F	0.24	0/1821	0.39	0/2451	
9	Н	0.24	0/1539	0.42	0/2073	
10	J	0.24	0/1374	0.42	0/1842	
11	М	0.23	0/1074	0.38	0/1446	
12	0	0.24	0/1585	0.38	0/2128	
13	Q	0.24	0/656	0.42	0/886	
14	S	0.24	0/1473	0.44	0/1980	
15	Т	0.24	0/936	0.41	0/1255	
16	V	0.25	0/931	0.43	0/1254	
17	W	0.24	0/1918	0.41	0/2586	
18	b	0.24	0/3748	0.41	0/5056	
19	е	0.24	0/294	0.40	0/393	
20	f	0.24	0/868	0.40	0/1168	
21	m	0.23	0/3577	0.41	0/4820	
22	r	0.23	0/1892	0.42	0/2528	
23	u	0.25	0/816	0.39	0/1078	
24	V	0.24	0/2172	0.39	0/2908	
25	W	0.23	0/1471	0.39	0/1980	
26	Х	0.23	0/3897	0.41	0/5282	
27	у	0.24	0/1722	0.43	0/2343	
All	All	0.20	0/80488	0.62	64/116485~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected

by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
9	Н	0	1
21	m	0	1
22	r	0	1
All	All	0	3

There are no bond length outliers.

All (64) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	2857	С	N1-C2-O2	8.68	124.11	118.90
1	1	2857	С	N3-C2-O2	-7.37	116.74	121.90
1	1	3278	С	C2-N1-C1'	7.32	126.86	118.80
1	1	3157	U	OP1-P-OP2	-7.03	109.05	119.60
1	1	2645	G	OP1-P-OP2	-6.83	109.35	119.60
1	1	2831	G	N1-C6-O6	-6.82	115.81	119.90
3	3	87	G	OP1-P-OP2	-6.81	109.38	119.60
1	1	547	G	OP1-P-OP2	-6.79	109.42	119.60
1	1	715	А	OP1-P-OP2	-6.79	109.42	119.60
1	1	673	U	OP1-P-OP2	-6.78	109.43	119.60
1	1	185	С	OP1-P-OP2	-6.78	109.43	119.60
1	1	370	U	OP1-P-OP2	-6.78	109.43	119.60
1	1	773	G	OP1-P-OP2	-6.78	109.43	119.60
1	1	692	A	OP1-P-OP2	-6.78	109.43	119.60
1	1	2386	A	OP1-P-OP2	-6.78	109.43	119.60
1	1	1400	G	OP1-P-OP2	-6.78	109.44	119.60
1	1	374	A	OP1-P-OP2	-6.77	109.44	119.60
1	1	194	U	OP1-P-OP2	-6.77	109.44	119.60
3	3	65	G	OP1-P-OP2	-6.77	109.44	119.60
3	3	1	G	OP1-P-OP2	-6.77	109.44	119.60
1	1	1200	А	OP1-P-OP2	-6.76	109.45	119.60
1	1	494	G	OP1-P-OP2	-6.76	109.46	119.60
1	1	2860	U	OP1-P-OP2	-6.76	109.46	119.60
1	1	1047	A	OP1-P-OP2	-6.76	109.46	119.60
1	1	1355	А	OP1-P-OP2	-6.76	109.46	119.60
1	1	388	G	OP1-P-OP2	-6.76	109.47	119.60
1	1	1082	U	OP1-P-OP2	-6.76	109.47	119.60
3	3	74	С	OP1-P-OP2	-6.75	109.47	119.60
1	1	1406	А	OP1-P-OP2	-6.75	109.47	119.60
1	1	2400	G	OP1-P-OP2	-6.75	109.47	119.60
1	1	2619	G	OP1-P-OP2	-6.75	109.47	119.60

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	2702	А	OP1-P-OP2	-6.75	109.47	119.60
1	1	750	G	OP1-P-OP2	-6.75	109.48	119.60
1	1	783	А	OP1-P-OP2	-6.75	109.48	119.60
3	3	94	С	OP1-P-OP2	-6.75	109.48	119.60
1	1	437	G	OP1-P-OP2	-6.75	109.48	119.60
1	1	1392	G	OP1-P-OP2	-6.75	109.48	119.60
1	1	2943	G	OP1-P-OP2	-6.75	109.48	119.60
1	1	337	G	OP1-P-OP2	-6.74	109.48	119.60
1	1	756	U	OP1-P-OP2	-6.74	109.48	119.60
1	1	2789	U	OP1-P-OP2	-6.74	109.48	119.60
1	1	2847	А	OP1-P-OP2	-6.74	109.49	119.60
1	1	3356	G	OP1-P-OP2	-6.74	109.49	119.60
1	1	942	U	OP1-P-OP2	-6.74	109.49	119.60
1	1	1306	G	OP1-P-OP2	-6.73	109.51	119.60
1	1	3079	U	OP1-P-OP2	-6.72	109.52	119.60
1	1	2984	С	OP1-P-OP2	-6.72	109.52	119.60
2	2	22	U	OP1-P-OP2	-6.71	109.53	119.60
2	2	9	А	OP1-P-OP2	-6.71	109.54	119.60
1	1	2601	A	OP1-P-OP2	-6.71	109.54	119.60
1	1	2948	С	OP1-P-OP2	-6.70	109.55	119.60
1	1	2764	С	C2-N1-C1'	6.65	126.11	118.80
1	1	2831	G	C5-C6-O6	6.13	132.28	128.60
1	1	2953	U	C2-N1-C1'	6.09	125.00	117.70
1	1	3155	U	C2-N1-C1'	6.02	124.93	117.70
1	1	2861	U	C2-N1-C1'	5.90	124.78	117.70
1	1	2857	С	N3-C4-N4	-5.80	113.94	118.00
1	1	1108	U	C2-N1-C1'	5.74	124.59	117.70
1	1	2764	С	N1-C2-O2	5.47	122.18	118.90
1	1	3278	С	C6-N1-C1'	-5.46	114.25	120.80
1	1	3278	С	N1-C2-O2	5.44	122.17	118.90
1	1	2996	U	C2-N1-C1'	5.44	124.23	117.70
1	1	1239	С	N3-C2-O2	-5.37	118.14	121.90
1	1	1124	U	C2-N1-C1'	5.31	124.08	117.70

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
9	Н	22	SER	Peptide
21	m	77	TRP	Peptide
22	r	4	ASN	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	В	344/387~(89%)	323 (94%)	21 (6%)	0	100	100
5	С	231/362~(64%)	209 (90%)	21 (9%)	1 (0%)	34	72
6	D	261/297~(88%)	249 (95%)	12 (5%)	0	100	100
7	Е	137/176~(78%)	135~(98%)	2 (2%)	0	100	100
8	F	220/244~(90%)	211 (96%)	9 (4%)	0	100	100
9	Н	189/191 (99%)	180 (95%)	9(5%)	0	100	100
10	J	167/174~(96%)	160 (96%)	7 (4%)	0	100	100
11	М	135/138~(98%)	131 (97%)	4 (3%)	0	100	100
12	Ο	195/199~(98%)	193 (99%)	2 (1%)	0	100	100
13	Q	77/186 (41%)	76 (99%)	1 (1%)	0	100	100
14	S	169/172~(98%)	159 (94%)	10 (6%)	0	100	100
15	Т	110/160 (69%)	106 (96%)	4 (4%)	0	100	100
16	V	122/137~(89%)	121 (99%)	1 (1%)	0	100	100
17	W	232/236~(98%)	224 (97%)	8 (3%)	0	100	100
18	b	449/647~(69%)	413 (92%)	36 (8%)	0	100	100
19	е	35/130~(27%)	35 (100%)	0	0	100	100
20	f	104/107~(97%)	98 (94%)	6 (6%)	0	100	100
21	m	427/486 (88%)	386 (90%)	39 (9%)	2 (0%)	29	68
22	r	224/261~(86%)	193 (86%)	29 (13%)	2 (1%)	17	56
23	u	90/199~(45%)	89 (99%)	1 (1%)	0	100	100
24	v	259/344~(75%)	255 (98%)	4 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	5
25	W	178/203~(88%)	171 (96%)	7~(4%)	0	100 100	
26	х	476/515~(92%)	449 (94%)	27~(6%)	0	100 100	
27	У	223/245~(91%)	215 (96%)	8 (4%)	0	100 100	
All	All	5054/6196~(82%)	4781 (95%)	268 (5%)	5~(0%)	54 85	

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
21	m	209	LYS
22	r	4	ASN
22	r	5	ASP
21	m	210	ARG
5	С	131	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
4	В	291/323~(90%)	279~(96%)	12~(4%)	30	56
5	С	197/289~(68%)	192~(98%)	5 (2%)	47	68
6	D	221/245~(90%)	212~(96%)	9~(4%)	30	56
7	Ε	122/153~(80%)	118 (97%)	4 (3%)	38	61
8	F	186/205~(91%)	184 (99%)	2(1%)	73	85
9	Н	171/171~(100%)	168~(98%)	3~(2%)	59	77
10	J	147/150~(98%)	141 (96%)	6 (4%)	30	56
11	М	108/109~(99%)	106~(98%)	2(2%)	57	75
12	Ο	160/162~(99%)	157~(98%)	3~(2%)	57	75
13	Q	70/151~(46%)	69~(99%)	1 (1%)	67	81
14	S	155/156~(99%)	147 (95%)	8 (5%)	23	50
15	Т	100/137~(73%)	95~(95%)	5 (5%)	24	51

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
16	V	96/105~(91%)	95~(99%)	1 (1%)	76	86
17	W	211/213~(99%)	205~(97%)	6 (3%)	43	65
18	b	408/573~(71%)	396~(97%)	12 (3%)	42	64
19	е	31/111~(28%)	31 (100%)	0	100	100
20	f	90/91~(99%)	90 (100%)	0	100	100
21	m	385/428~(90%)	368~(96%)	17 (4%)	28	54
22	r	203/229~(89%)	201~(99%)	2(1%)	76	86
23	u	82/180~(46%)	77~(94%)	5~(6%)	18	46
24	v	238/309~(77%)	234~(98%)	4 (2%)	60	78
25	W	161/179~(90%)	157 (98%)	4 (2%)	47	68
26	х	428/451~(95%)	417 (97%)	11 (3%)	46	67
27	У	193/211~(92%)	190 (98%)	3(2%)	62	79
All	All	4454/5331 (84%)	4329 (97%)	125 (3%)	46	65

All (125) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
4	В	10	ARG
4	В	14	LEU
4	В	46	PHE
4	В	97	ARG
4	В	108	GLU
4	В	139	GLN
4	В	146	ARG
4	В	167	ARG
4	В	300	ARG
4	В	318	LYS
4	В	332	ARG
4	В	385	LYS
5	С	138	ARG
5	С	220	ARG
5	С	300	ARG
5	С	308	LYS
5	С	314	LYS
6	D	16	PHE
6	D	23	ARG
6	D	40	HIS
6	D	44	TYR

Mol	Chain	Res	Type
6	D	178	ASN
6	D	206	GLN
6	D	259	LYS
6	D	265	TYR
6	D	273	ARG
7	Е	47	PHE
7	Е	104	GLU
7	Е	108	LYS
7	Е	155	LEU
8	F	60	ARG
8	F	183	ASP
9	Н	139	ASN
9	Н	157	ASN
9	Н	173	ARG
10	J	28	ASP
10	J	29	ARG
10	J	52	TYR
10	J	94	ARG
10	J	112	LEU
10	J	166	LYS
11	М	12	TRP
11	М	16	GLU
12	0	46	GLU
12	0	117	ARG
12	0	176	LYS
13	Q	46	LYS
14	S	12	ARG
14	S	52	LYS
14	S	63	GLN
14	S	82	ASP
14	S	106	LEU
14	S	109	ASP
14	S	131	LYS
14	S	169	SER
15	Т	79	MET
15	Т	127	GLN
15	Т	137	GLU
15	Т	139	ARG
15	Т	146	ASN
16	V	132	ASN
17	W	46	ASP
17	W	47	ASP

Mol	Chain	Res	Type
17	W	60	TRP
17	W	113	LYS
17	W	115	TYR
17	W	133	LEU
18	b	38	LYS
18	b	144	ARG
18	b	171	LEU
18	b	249	CYS
18	b	271	PHE
18	b	294	ARG
18	b	347	LYS
18	b	374	ARG
18	b	415	ASN
18	b	432	MET
18	b	462	LYS
18	b	468	PHE
21	m	10	ARG
21	m	34	LYS
21	m	77	TRP
21	m	99	THR
21	m	128	LYS
21	m	209	LYS
21	m	210	ARG
21	m	213	ASN
21	m	229	LEU
21	m	232	ARG
21	m	281	ARG
21	m	302	LEU
21	m	313	ARG
21	m	353	TRP
21	m	414	ARG
21	m	422	LYS
21	m	434	LYS
22	r	203	ASN
22	r	210	THR
23	u	7	HIS
23	u	43	ARG
23	u	63	LEU
23	u	95	ARG
23	u	111	ARG
24	V	20	GLU
24	V	62	ARG

Mol	Chain	Res	Type
24	V	90	MET
24	V	104	ARG
25	W	70	MET
25	W	99	LEU
25	W	157	GLN
25	W	159	LEU
26	Х	20	ARG
26	Х	116	GLN
26	Х	130	LYS
26	Х	179	MET
26	Х	194	TRP
26	Х	205	SER
26	х	289	GLN
26	X	322	TRP
26	х	351	GLU
26	X	362	LYS
26	X	381	TYR
27	У	57	ARG
27	У	96	ARG
27	у	162	HIS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (19) such sidechains are listed below:

Mol	Chain	Res	Type
4	В	139	GLN
7	Е	167	ASN
8	F	186	HIS
9	Н	157	ASN
10	J	95	ASN
10	J	109	HIS
11	М	126	GLN
12	0	42	ASN
15	Т	127	GLN
15	Т	131	GLN
17	W	223	ASN
18	b	272	HIS
18	b	415	ASN
20	f	42	GLN
21	m	455	ASN
22	r	13	GLN
24	v	61	ASN
24	V	64	ASN

Continued from previous page...

Mol	Chain	Res	Type
26	Х	44	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	1458/3396~(42%)	375~(25%)	58(3%)
2	2	17/158~(10%)	3~(17%)	0
3	3	109/121~(90%)	11 (10%)	1 (0%)
All	All	1584/3675~(43%)	389~(24%)	59(3%)

All (389) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	187	А
1	1	198	А
1	1	200	С
1	1	202	G
1	1	203	G
1	1	210	U
1	1	218	G
1	1	219	А
1	1	221	А
1	1	227	G
1	1	338	А
1	1	343	U
1	1	375	А
1	1	376	G
1	1	377	А
1	1	390	G
1	1	398	А
1	1	399	А
1	1	401	U
1	1	402	А
1	1	403	С
1	1	438	А
1	1	439	С
1	1	440	А
1	1	495	G
1	1	521	А
1	1	535	G
1	1	536	U

Mol	Chain	Res	Type
1	1	543	С
1	1	548	G
1	1	552	G
1	1	555	U
1	1	557	А
1	1	559	А
1	1	578	А
1	1	579	G
1	1	589	А
1	1	592	А
1	1	597	G
1	1	604	G
1	1	611	А
1	1	677	А
1	1	681	U
1	1	689	U
1	1	701	G
1	1	716	А
1	1	720	А
1	1	721	G
1	1	722	G
1	1	785	G
1	1	944	С
1	1	960	U
1	1	961	С
1	1	965	А
1	1	966	U
1	1	970	А
1	1	975	С
1	1	976	U
1	1	980	А
1	1	981	U
1	1	989	А
1	1	990	U
1	1	991	G
1	1	992	А
1	1	994	G
1	1	995	U
1	1	996	А
1	1	998	А
1	1	999	G
1	1	1000	С

Mol	Chain	Res	Type
1	1	1048	А
1	1	1049	С
1	1	1056	U
1	1	1058	U
1	1	1063	G
1	1	1064	А
1	1	1065	А
1	1	1066	G
1	1	1071	U
1	1	1072	G
1	1	1087	G
1	1	1093	А
1	1	1094	U
1	1	1095	U
1	1	1097	G
1	1	1098	A
1	1	1103	А
1	1	1104	G
1	1	1108	U
1	1	1111	U
1	1	1116	G
1	1	1117	G
1	1	1118	С
1	1	1123	U
1	1	1124	U
1	1	1128	U
1	1	1129	А
1	1	1130	А
1	1	1153	А
1	1	1155	С
1	1	1172	G
1	1	1180	А
1	1	1181	U
1	1	1189	С
1	1	1192	С
1	1	1193	A
1	1	1194	G
1	1	1196	С
1	1	1197	A
1	1	1198	C
1	1	1201	C
1	1	1202	А

Mol	Chain	Res	Type
1	1	1206	G
1	1	1207	G
1	1	1208	U
1	1	1209	G
1	1	1221	А
1	1	1222	G
1	1	1227	С
1	1	1234	G
1	1	1239	С
1	1	1241	U
1	1	1242	G
1	1	1243	G
1	1	1244	А
1	1	1245	А
1	1	1246	G
1	1	1248	С
1	1	1249	G
1	1	1251	А
1	1	1252	А
1	1	1258	U
1	1	1260	А
1	1	1262	G
1	1	1263	А
1	1	1264	G
1	1	1265	U
1	1	1270	А
1	1	1271	А
1	1	1272	С
1	1	1278	А
1	1	1287	А
1	1	1299	U
1	1	1303	A
1	1	1307	G
1	1	1308	А
1	1	1309	U
1	1	1313	G
1	1	1330	A
1	1	1348	U
1	1	1356	U
1	1	1357	G
1	1	1386	A
1	1	1417	G

Mol	Chain	Res	Type
1	1	1418	А
1	1	1419	А
1	1	2402	А
1	1	2411	U
1	1	2414	G
1	1	2418	G
1	1	2422	С
1	1	2606	G
1	1	2607	G
1	1	2613	U
1	1	2614	G
1	1	2615	G
1	1	2620	G
1	1	2621	G
1	1	2623	G
1	1	2625	С
1	1	2626	А
1	1	2628	А
1	1	2632	G
1	1	2639	G
1	1	2649	А
1	1	2650	U
1	1	2652	U
1	1	2654	С
1	1	2655	U
1	1	2656	А
1	1	2657	А
1	1	2658	G
1	1	2659	G
1	1	2668	U
1	1	2672	G
1	1	2674	А
1	1	2677	G
1	1	2683	U
1	1	2687	G
1	1	2688	U
1	1	2689	A
1	1	2690	G
1	1	2691	A
1	1	2693	С
1	1	2694	А
1	1	2695	A

Mol	Chain	Res	Type	
1	1	2698 G		
1	1	2699	G	
1	1	2703 A		
1	1	2704	А	
1	1	2713	U	
1	1	2714	G	
1	1	2715	А	
1	1	2716	U	
1	1	2724	U	
1	1	2725	U	
1	1	2726	С	
1	1	2727	А	
1	1	2728	G	
1	1	2729	U	
1	1	2730	G	
1	1	2731	U	
1	1	2732	G	
1	1	2734	А	
1	1	2752	U	
1	1	2754	G	
1	1	2758	А	
1	1	2759	U	
1	1	2760	С	
1	1	2762	А	
1	1	2763	U	
1	1	2764	С	
1	1	2765	С	
1	1	2766	U	
1	1	2768	U	
1	1	2795	U	
1	1	2797	С	
1	1	2798	С	
1	1	2800	G	
1	1	2801	А	
1	1	2802	А	
1	1	2803	А	
1	1	2807	U	
1	1	2808	А	
1	1	2809	С	
1	1	2810	С	
1	1	2815 G		
1	1	2818	U	

Mol	Chain	Res	Type
1	1	2819	А
1	1	2820	А
1	1	2821	С
1	1	2822	U
1	1	2823	G
1	1	2824	G
1	1	2825	С
1	1	2834	G
1	1	2841	G
1	1	2842	U
1	1	2843	U
1	1	2857	С
1	1	2861	U
1	1	2863	G
1	1	2867	С
1	1	2868	U
1	1	2869	U
1	1	2870	С
1	1	2872	А
1	1	2873	U
1	1	2875	U
1	1	2876	С
1	1	2877	G
1	1	2878	G
1	1	2879	С
1	1	2887	А
1	1	2889	С
1	1	2894	С
1	1	2898	G
1	1	2901	G
1	1	2918	G
1	1	2920	U
1	1	2921	U
1	1	2923	U
1	1	2925	С
1	1	$2\overline{926}$	A
1	1	2929	C
1	1	2930	А
1	1	2935	U
1	1	$2\overline{936}$	A
1	1	2940	A
1	1	2952	G

Mol	Chain	Res	Type
1	1	2953	U
1	1	2954	U
1	1	2955	U
1	1	2968	G
1	1	2970	С
1	1	2971	А
1	1	2972	G
1	1	2979	U
1	1	2988	С
1	1	2996	U
1	1	2997	G
1	1	3003	G
1	1	3012	А
1	1	3017	A
1	1	3021	А
1	1	3022	G
1	1	3023	U
1	1	3026	G
1	1	3028	G
1	1	3029	А
1	1	3031	G
1	1	3034	С
1	1	3047	U
1	1	3054	U
1	1	3055	U
1	1	3058	U
1	1	3071	U
1	1	3073	A
1	1	3080	G
1	1	3086	А
1	1	3092	С
1	1	3093	С
1	1	3099	С
1	1	3100	U
1	1	$3\overline{129}$	A
1	1	3130	A
1	1	3131 U	
1	1	3142 A	
1	1	3143	С
1	1	$3\overline{155}$	U
1	1	3158 G	
1	1	3163	А

Mol	Chain	Res	Type
1	1	3165 A	
1	1	3172	А
1	1	3173	G
1	1	3174	А
1	1	3176	G
1	1	3178	А
1	1	3179	U
1	1	3181	С
1	1	3187	А
1	1	3195	U
1	1	3196	U
1	1	3197	G
1	1	3217	С
1	1	3218	А
1	1	3219	G
1	1	3229	G
1	1	3243	А
1	1	3245	А
1	1	3247	G
1	1	3253	G
1	1	3259	U
1	1	3260	G
1	1	3266	G
1	1	3270	U
1	1	3271	G
1	1	3273	А
1	1	3276	G
1	1	3279	А
1	1	3280	U
1	1	3281	U
1	1	3287	U
1	1	3289	G
1	1	3294	А
1	1	3296	A
1	1	3304	U
1	1	3316	A
1	1	3317 U	
1	1	3319	U
1	1	3334	U
1	1	3340	G
1	1	3341	U
1	1	3342	А

Mol	Chain	Res	Type
1	1	3350	С
1	1	3359	А
1	1	3363	U
1	1	3368	U
1	1	3369	G
1	1	3374	U
1	1	3375	А
1	1	3376	А
1	1	3383	G
1	1	3389	U
1	1	3390	G
2	2	13	А
2	2	16	G
2	2	23	U
3	3	13	А
3	3	42	А
3	3	76	А
3	3	77	G
3	3	83	U
3	3	84	А
3	3	95	А
3	3	100	С
3	3	102	А
3	3	112	G
3	3	121	U

All (59) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	337	G
1	1	374	А
1	1	375	А
1	1	437	G
1	1	494	G
1	1	547	G
1	1	688	G
1	1	720	А
1	1	974	G
1	1	990	U
1	1	999	G
1	1	1047	А
1	1	1064	А

Mol	Chain	Res	Type
1	1	1093 A	
1	1	1097	G
1	1	1102	А
1	1	1103	А
1	1	1128	U
1	1	1129	А
1	1	1192	С
1	1	1200	А
1	1	1205	А
1	1	1238	С
1	1	1241	U
1	1	1243	G
1	1	1244	A
1	1	1259	А
1	1	1302	А
1	1	1306	G
1	1	1329	U
1	1	1355	А
1	1	1416	С
1	1	2624	G
1	1	2625	С
1	1	2651	G
1	1	2658	G
1	1	2667	А
1	1	2690	G
1	1	2702	А
1	1	2725	U
1	1	2728	G
1	1	2764	С
1	1	2817	А
1	1	2822	U
1	1	2840	С
1	1	2860	U
1	1	2868	U
1	1	2875	U
1	1	2967	A
1	1	3030	G
1	1	3070	А
1	1	3079	U
1	1	3157	U
1	1	3195	U
1	1	3228	С

Mol	Chain	Res	Type
1	1	3269	U
1	1	3316	А
1	1	3341	U
3	3	82	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 3 ligands modelled in this entry, 3 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12908. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

Z Index: 200 $\,$

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 171

Y Index: 193

Z Index: 142

6.3.2 Raw map

X Index: 172

Y Index: 203

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.018. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1261 nm^3 ; this corresponds to an approximate mass of 1139 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.213 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.213 \AA^{-1}

8.2 Resolution estimates (i)

$\mathbf{B}_{\mathrm{assolution ostimato}}(\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	4.70	-	-
Author-provided FSC curve	4.65	7.26	5.16
Unmasked-calculated*	7.78	12.61	8.40

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 7.78 differs from the reported value 4.7 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12908 and PDB model 7OHT. Per-residue inclusion information can be found in section 3 on page 9.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.018 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 94% of all backbone atoms, 88% of all non-hydrogen atoms, are inside the map.

