

Dec 1, 2021 – 01:04 am GMT

PDB ID	:	70HV
EMDB ID	:	EMD-12910
Title	:	Nog1-TAP associated immature ribosomal particles from S. cerevisiae after
		rpL2 expression shut down, population C
Authors	:	Milkereit, P.; Poell, G.
Deposited on	:	2021-05-11
Resolution	:	3.90 Å(reported)
Based on initial model	:	6ELZ

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	$0.0.0.{ m dev}97$
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.23.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Qı	uality of chain	
1	1	3396	• 50%	13%	37%
2	2	158	78%	, 0	20% •
3	6	232	18% 9% ·	72%	
4	А	291	34% 67%	•	32%
5	В	387	-	85%	• 12%
6	С	362	6%	98%	•••
7	D	505	11%	85%	• 13%
8	Е	176	—	89%	11%

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol 9 F 24490% • 9% 5% 10 \mathbf{G} 25670% 28% • 7% 11 Η 1915%• 95% 14% 12J 42718% 81% i Κ 1337666% 32% • Þ 14L 19958% 41% . 15М 13898% •• 7% Ν 204169% 91% • Ο 1991797% • • 8% Р 1818488% 11% • ÷ Q 1918669% 28% • 31% 20R 18947% 53% . . 21 \mathbf{S} 17295% 45% 22U 12178% 22% 14% V 2313788% • 9% 8% • • 24W 23697% 27% 25Х 14289% 11% Υ 127... 2697% 48% Ζ . . 2713695% 25% 28149 \mathbf{a} 48% 51% • 10% 29 \mathbf{b} 64764% 35% 22% 30 d 11388% 12% 6% 130• 5% 3193% е ... 32f 10797% 33 120 •• h 98%

Mol	Chain	Length	Quality of chain	
34	i	100	9%	• 17%
35	j	88	81%	• 17%
36	k	78	33%	• 19%
37	m	807	71%	28%
38	n	605	• 66% •	32%
39	0	220	60%	40%
40	р	460	55% .	44%
41	r	261	28% 72%	
42	t	322	86%	• 11%
43	u	199	- 56% •	42%
44	V	231	• 55% •	44%
45	W	841	7% 8% 92%	
46	У	245	6% 91%	• 8%

2 Entry composition (i)

There are 47 unique types of molecules in this entry. The entry contains 205079 atoms, of which 91259 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 25S rRNA.

Mol	Chain	Residues			AltConf	Trace				
1	1	2141	Total 68875	C 20469	Н 23027	N 8298	O 14940	Р 2141	0	0

• Molecule 2 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues			AltConf	Trace				
2	2	155	Total 4955	C 1472	Н 1664	N 577	O 1087	Р 155	0	0

• Molecule 3 is a RNA chain called ITS2.

Mol	Chain	Residues			AltConf	Trace				
3	6	65	Total 2061	C 614	Н 691	N 228	0 463	Р 65	0	0

• Molecule 4 is a protein called Ribosome biogenesis protein BRX1.

Mol	Chain	Residues			AltConf	Trace				
4	А	198	$\begin{array}{c} \text{Total} \\ 3250 \end{array}$	C 1043	Н 1627	N 284	O 290	S 6	0	0

• Molecule 5 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
5	В	341	Total 5483	C 1715	Н 2781	N 501	0 480	S 6	0	0

• Molecule 6 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues			AltConf	Trace				
6	С	359	Total 5584	C 1720	Н 2853	N 518	0 490	${ m S} { m 3}$	0	0

• Molecule 7 is a protein called ATP-dependent RNA helicase HAS1.

Mol	Chain	Residues			AltConf	Trace				
7	D	437	Total 7106	$\begin{array}{c} \mathrm{C} \\ 2247 \end{array}$	Н 3620	N 600	O 627	S 12	0	0

• Molecule 8 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues			AltConf	Trace				
8	Е	156	Total 2567	C 800	Н 1328	N 222	0 216	S 1	0	0

• Molecule 9 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
9	F	222	Total 3647	C 1151	Н 1863	N 324	O 308	S 1	0	0

• Molecule 10 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues			AltConf	Trace				
10	G	184	Total 2960	C 930	Н 1522	N 249	0 257	${ m S} { m 2}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues			AltConf	Trace				
11	Н	190	Total 3086	C 957	H 1576	N 273	0 276	${S \atop 4}$	0	0

• Molecule 12 is a protein called rRNA-processing protein EBP2.

Mol	Chain	Residues			AltConf	Trace				
12	J	79	Total 1318	C 420	Н 656	N 116	0 124	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called Proteasome-interacting protein CIC1.

Mol	Chain	Residues			AltConf	Trace				
13	K	257	Total 4230	C 1337	Н 2157	N 341	O 392	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
14	L	117	Total 1962	C 601	Н 1004	N 202	O 155	0	0

• Molecule 15 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
15	М	136	Total 2203	C 675	Н 1150	N 199	0 177	${ m S} { m 2}$	0	0

• Molecule 16 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
16	Ν	186	Total 3224	C 994	Н 1637	N 333	O 259	S 1	0	0

• Molecule 17 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
17	Ο	197	Total 3215	C 1003	Н 1660	N 289	O 262	S 1	0	0

• Molecule 18 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		A	toms			AltConf	Trace
18	Р	163	Total 2608	C 799	Н 1321	N 255	O 233	0	0

• Molecule 19 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
19	Q	134	Total 2151	C 659	Н 1116	N 196	0 179	S 1	0	0

• Molecule 20 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		Α	toms			AltConf	Trace
20	R	89	Total 1521	C 460	Н 796	N 147	0 118	0	0

• Molecule 21 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
21	S	170	Total 2903	C 922	H 1471	N 265	O 242	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Α	AltConf	Trace			
22	U	94	Total 1519	C 489	Н 767	N 123	O 140	0	0

• Molecule 23 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
23	V	124	Total 1897	C 584	Н 974	N 171	O 161	${f S}{7}$	0	0

• Molecule 24 is a protein called Ribosome assembly factor MRT4.

Mol	Chain	Residues				AltConf	Trace			
24	W	232	Total 3773	C 1184	Н 1903	N 321	O 360	${ m S}{ m 5}$	0	0

• Molecule 25 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
25	Х	127	Total 2076	C 645	Н 1075	N 175	O 179	$\frac{S}{2}$	0	0

• Molecule 26 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
26	Y	126	Total 2075	C 625	H 1082	N 192	0 176	0	0

• Molecule 27 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		A	toms			AltConf	Trace
27	Z	130	Total 2154	C 680	Н 1105	N 195	0 174	0	0

• Molecule 28 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	a	73	Total 1188	$\begin{array}{c} \mathrm{C} \\ 375 \end{array}$	Н 618	N 98	O 97	0	0

• Molecule 29 is a protein called Nucleolar GTP-binding protein 1.

Chain	Residues			AltConf	Trace				
b	421	Total	C	H 2466	N EQE	0	S 19	0	0
b		421	421 Total 6876	$\begin{array}{c c} 421 & Total & C \\ 6876 & 2180 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

• Molecule 30 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
30	d	100	Total 1687	C 521	Н 871	N 157	0 137	S 1	0	0

• Molecule 31 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues			AltConf	Trace				
31	е	124	Total 2071	C 635	Н 1070	N 202	0 163	S 1	0	0

• Molecule 32 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
32	f	106	Total 1731	C 540	Н 881	N 165	0 144	S 1	0	0

• Molecule 33 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
33	h	118	Total 2038	C 612	Н 1074	N 185	0 166	S 1	0	0

• Molecule 34 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
34	i	83	Total 1371	C 408	Н 713	N 135	0 113	${S \over 2}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues		_	Atom	IS			AltConf	Trace
35	j	73	Total 1169	C 353	Н 589	N 126	O 96	${ m S}{ m 5}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	k	63	Total 1123	C 340	Н 600	N 99	0 84	0	0

• Molecule 37 is a protein called Ribosome biogenesis protein ERB1.

Mol	Chain	Residues			AltConf	Trace				
37	m	583	Total 9518	C 3033	Н 4766	N 834	0 870	S 15	0	0

• Molecule 38 is a protein called Pescadillo homolog.

Mol	Chain	Residues			Atom	S			AltConf	Trace
38	n	<i>A</i> 11	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
00	11	411	6868	2179	3499	585	592	13		U

• Molecule 39 is a protein called Ribosome biogenesis protein 15.

Mol	Chain	Residues			Atom	S			AltConf	Trace
39	О	133	Total 2267	C 716	Н 1160	N 198	O 189	$\frac{S}{4}$	0	0

• Molecule 40 is a protein called Ribosome biogenesis protein YTM1.

Mol	Chain	Residues			AltConf	Trace				
40	р	257	Total	C	H	N	0	S	0	0
	-		3984	1247	1990	353	388	6		

• Molecule 41 is a protein called Ribosome biogenesis protein NSA2.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
41	r	73	Total 1288	C 388	Н 660	N 133	0 106	S 1	0	0

• Molecule 42 is a protein called Ribosome biogenesis protein RLP7.

Mol	Chain	Residues			Atom	5			AltConf	Trace
42	t	286	Total 4752	C 1455	Н 2455	N 426	O 413	${ m S} { m 3}$	0	0

• Molecule 43 is a protein called Ribosome biogenesis protein RLP24.

Mol	Chain	Residues			Atoms						
43	u	116	Total 1987	C 612	Н 1011	N 200	O 155	S 9	0	0	

• Molecule 44 is a protein called Nucleolar protein 16.

Mol	Chain	Residues	Atoms						AltConf	Trace
44	v	130	Total 2223	C 678	Н 1136	N 211	O 195	${ m S} { m 3}$	0	0

• Molecule 45 is a protein called 27S pre-rRNA (guanosine(2922)-2'-O)-methyltransferase.

Mol	Chain	Residues	Atoms					AltConf	Trace	
45	W	69	Total 1136	C 351	Н 577	N 105	O 100	${f S} {f 3}$	0	0

• Molecule 46 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues	Atoms						AltConf	Trace
46	У	225	Total 3398	C 1056	H 1697	N 295	O 343	S 7	0	0

• Molecule 47 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
47	j	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 25S rRNA

MET S2 A3 A3 A3 A6 A6 P7 P7 P7 B1 S12 E13 D14 E109 LIXS	THR LYS LYS CLU CLU CLV CLV CLU ALU ALU ALA ASN ALA ASN ALA ASN ACU CLU CLU CLU CLU	ASN E129 F176	
• Molecule 9: 60S riboso	mal protein L7-A		
Chain F:	90%		• 9%
MET ALA ALA ALA ALA CUU CUU CLU CLU CLU CLU CLU CLU CLU CLU	GLN GLN LYS LYS B46 B46 K82 K82 K82 K82 K82 K82 K82 K82 K82 K82		
• Molecule 10: 60S ribos	omal protein L8-A		
Chain G:	70%	• 28%	
MET PRO GLY GLY CLYS CLYS CLYS LLYS ALA PRO PRO CLYS SER THR CLYS CLYS CLYS	SER ASIN LYS THR ASIN ASIN PRO LEU THR HIS SER PRO ASIN ASIN ASIN	PHE GLY TLE GLY GLY GLN GLN GLN CLE LYS SER ASN SER SER SER SER	R54 R57 R57 R57 R57 R56 R56 R56
479 1884 1884 198 119 119 119 119 119 1136 1136 1136 1136	1150	ASD LYS ASD ALLA ALLA ALLA ALLA ALLA ASP ASP ASP SER ASP SER	ALA
• Molecule 11: 60S ribos	omal protein L9-A		
Chain H:	95%		5%•
M1 K2 E14 E14 C16 V16 R69 R100 R100 C100	N1 09 11 34 11 34 11 34 11 38 11 38 11 38 11 38 11 38 11 38 11 38 11 38 11 38	L161 Q162 Q163 T164 T164 T189 E189 LEU	
• Molecule 12: rRNA-pro	ocessing protein EB	P2	
Chain J: 18%		81%	
MET ALA ALA ALA LYS GLY GLV CLY CLY CLV CLV CLV CLU CLU CLU CLU	LYS ALA GLU CLYS LYS CLU GLU CLYS LYS LYS LYS CLYS SER GLN	GLU LEU LYS LYS CLU CLU CLU PRO CLU PRO CLU YR THR THR THR THR TLEU ASN ASN	LEU GLU LIYS CLU LIYS CLU LIYS LIYS ALA ALA ALA VAL
LIYS CLU VAL VAL ALA ALA ALA ALA ALA ALA ALA ALA	LYS GLU GLU LYS LYS LYS LYS CLU LYS CLU CLU CLN GLU	GLN ASP ASP ALA THR GLU GLU MET SER MET SER GLU GLU	ALA ASP ASP ASP ASP ALU CLU CLU CLU CLU CLU CLU CLU CLU CLU
GLU GLU GLU GLU GLU GLU GLU CLEU CLEU CLEU CLEU CLEU CLEU CLEU CL	SELV SELV ASP ASP SER ASP ASV ASP ASP ASP ASP	CLU ASP VAL VAL VAL ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLUU GLUU ASP PRO LEU ASP ASP ASP CLUU GLU
PHE ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	K199 K202 K202 E205 R207 V208 Q209 C210 F211	K2114 K214 H215 F217 Q216 F217 Q218 H220 V223 V223 Y224 F226 F226	1227 1229 1229 1230 6LU 6LU 6LU 6LU 7236 11.E 1.1.S 1.1.S 1.3.36 12.36 12.38 13.38 13.38 12.38 13.38 14.58 14.58 1
K248 8250 5250 1251 1251 1252 4253 4255 4255 7255 7255 7255 7255 7255 1255 1251 1251	R.202 L.204 K.205 V.265 P.267 F.208 R.209 R.270 P.271 L.272 D.273	Y274 F275 F275 A276 E277 M278 M279 V279 V279 CUV H15 A5P GUV H15 A5P CUV H15 A5P CUV H15 A5P CUV H15 A5P CUV H15 A5P A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5	LYS CLY LYS LEU LEU LUS CLU GLU CYS ALA ARG GLU ARG ARG ARG
GLM GLM GLM CLEU CLYS PHE FLYS CLYS GLY CLM CLM ALA ALA CLW CLW CLW CLW	ARG ARG LEU LEU LEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	LYS LYS LYS LYS LYS ARG LYS ARG ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	VAL GUU GUU GUU CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL

WORLDWIDE PROTEIN DATA BANK

• Molecule 13: Proteasome-interacting protein CIC1

• Molecule 23: 60S ribosomal protein L23-A

• Molecule 33: 60S ribosomal protein L35-A Chain h: 98% . . • Molecule 34: 60S ribosomal protein L36-A Chain i: 82% 17% MET THR VAL LYS CLYS GLY GLY CLEU CLEU CLEU CLYS CLYS CLYS VAL LYS VAL • Molecule 35: 60S ribosomal protein L37-A Chain j: 81% 17% MET GLY CLYS CLYS GLY PRO PRO PRO SER PHE CLY CLYS CLY CLYS ASN • Molecule 36: 60S ribosomal protein L38 33% Chain k: 79% 19% ALA L78 • Molecule 37: Ribosome biogenesis protein ERB1 29% Chain m: 71% 28% METTARASIN METTARASIN METTARASIN METTARASIN METARASIN METARASINI METARASIN M ASP PRO ASN TYR SER LYS TYR ALA GLN THR ILE GLY GLY ASN ILE PRO LEU LEU SER ALA ASP SER ASP CLU ALA LYS GLY SER

• Molecule 40: Ribosome biogenesis protein YTM1

• ••• • • • ••• • • •
RET RET RET RET RET RET RET RET RET RET
ASP ASP A159 A159 A159 A150 A1.4 A1.4 A1.4 A1.4 A1.4 A1.4 A1.4 A1.4
• Molecule 43: Ribosome biogenesis protein RLP24
Chain u: 56% · 42%
AL I 110 K 27 K 27 K 24 K 48 K
VAL VAL SER GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU
• Molecule 44: Nucleolar protein 16
Chain v: 55% • 44%
MET MET V4 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4
PR0 GLY GLY GLY GLY ALA ARG CLY ARG CLN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
ALA LYS
• Molecule 45: 27S pre-rRNA (guanosine(2922)-2'-O)-methyltransferase
7% Chain w: 8% 92%
MET NEW CLYN CLYN CLYN CLYN CLYN CLYN CLYN CLYN
CYS CYS SER SER SER SER CYS CYS CYS CYS SER CUS SER CUS CYS CYS CYS CYS CYS CYS CYS CYS CYS CY
ALA ALA ASIA ASIA ASIA ASIA ASIA ASIA AS
ALU ALLA THR PRO PRO PRO PRO PRO PRO PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
LARG ARG GLIN CILI CILI CILI CILI CILI CILI CILI C
ARG ARG ASPR ASPR ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	19178	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	86.45	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.118	Depositor
Minimum map value	-0.038	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.007	Depositor
Recommended contour level	0.021	Depositor
Map size (Å)	425.40002, 425.40002, 425.40002	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.0635, 1.0635, 1.0635	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.15	0/51295	0.74	47/79910~(0.1%)	
2	2	0.15	0/3676	0.74	3/5721~(0.1%)	
3	6	0.17	0/1527	0.79	3/2371~(0.1%)	
4	А	0.24	0/1663	0.40	0/2248	
5	В	0.24	0/2756	0.41	0/3702	
6	С	0.23	0/2782	0.41	0/3766	
7	D	0.24	0/3552	0.39	0/4789	
8	Е	0.24	0/1260	0.40	0/1694	
9	F	0.25	0/1821	0.40	0/2451	
10	G	0.25	0/1463	0.39	0/1978	
11	Н	0.23	0/1531	0.42	0/2062	
12	J	0.24	0/675	0.39	0/908	
13	K	0.24	0/2107	0.40	0/2845	
14	L	0.23	0/976	0.38	0/1311	
15	М	0.24	0/1068	0.39	0/1438	
16	N	0.23	0/1619	0.39	0/2166	
17	0	0.24	0/1585	0.38	0/2128	
18	Р	0.23	0/1306	0.40	0/1752	
19	Q	0.24	0/1050	0.40	0/1419	
20	R	0.23	0/733	0.36	0/980	
21	S	0.24	0/1468	0.41	0/1973	
22	U	0.25	0/767	0.41	0/1038	
23	V	0.25	0/937	0.43	0/1259	
24	W	0.24	0/1902	0.42	0/2564	
25	Х	0.24	0/1016	0.39	0/1369	
26	Y	0.24	0/1004	0.40	0/1341	
27	Ζ	0.25	0/1073	0.41	0/1436	
28	a	0.24	0/580	0.40	0/784	
29	b	0.24	0/3474	0.39	0/4683	
30	d	0.24	0/829	0.40	0/1112	
31	е	0.23	0/1022	0.40	0/1367	
32	f	0.24	0/868	0.41	0/1168	

Mal	Chain	Bond	lengths	Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	h	0.24	0/973	0.38	0/1294	
34	i	0.23	0/665	0.37	0/884	
35	j	0.24	0/592	0.40	0/785	
36	k	0.24	0/525	0.39	0/694	
37	m	0.23	0/4874	0.41	0/6600	
38	n	0.24	0/3441	0.37	0/4625	
39	0	0.24	0/1129	0.38	0/1502	
40	р	0.23	0/2027	0.43	0/2744	
41	r	0.23	0/638	0.36	0/837	
42	t	0.23	0/2323	0.39	0/3113	
43	u	0.24	0/996	0.39	0/1324	
44	V	0.23	0/1100	0.36	0/1456	
45	W	0.22	0/565	0.32	0/748	
46	У	0.23	0/1722	0.43	0/2343	
All	All	0.20	0/120955	0.60	53/174682~(0.0%)	

There are no bond length outliers.

All (53) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	1254	С	N3-C2-O2	-7.36	116.75	121.90
1	1	1718	G	OP1-P-OP2	-6.89	109.27	119.60
1	1	1	G	OP1-P-OP2	-6.82	109.37	119.60
1	1	2419	А	OP1-P-OP2	-6.81	109.38	119.60
1	1	1560	G	OP1-P-OP2	-6.80	109.40	119.60
1	1	494	G	OP1-P-OP2	-6.79	109.41	119.60
1	1	2824	G	OP1-P-OP2	-6.78	109.43	119.60
1	1	1201	С	OP1-P-OP2	-6.78	109.44	119.60
1	1	2984	С	OP1-P-OP2	-6.78	109.44	119.60
1	1	1098	А	OP1-P-OP2	-6.77	109.45	119.60
2	2	1	А	OP1-P-OP2	-6.77	109.44	119.60
1	1	2887	А	OP1-P-OP2	-6.76	109.45	119.60
1	1	1780	G	OP1-P-OP2	-6.76	109.46	119.60
1	1	3352	U	OP1-P-OP2	-6.76	109.46	119.60
1	1	1059	G	OP1-P-OP2	-6.76	109.46	119.60
1	1	1865	А	OP1-P-OP2	-6.76	109.46	119.60
1	1	2343	С	OP1-P-OP2	-6.76	109.46	119.60
1	1	3079	U	OP1-P-OP2	-6.76	109.46	119.60
3	6	227	С	OP1-P-OP2	-6.76	109.47	119.60
1	1	1765	U	OP1-P-OP2	-6.75	109.47	119.60
1	1	1485	G	OP1-P-OP2	-6.75	109.48	119.60
1	1	1730	G	OP1-P-OP2	-6.75	109.48	119.60

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	2607	G	OP1-P-OP2	-6.74	109.49	119.60
1	1	2847	А	OP1-P-OP2	-6.74	109.49	119.60
2	2	114	G	OP1-P-OP2	-6.74	109.49	119.60
1	1	962	А	OP1-P-OP2	-6.74	109.49	119.60
1	1	2394	G	OP1-P-OP2	-6.74	109.50	119.60
1	1	2595	A	OP1-P-OP2	-6.74	109.50	119.60
1	1	1306	G	OP1-P-OP2	-6.73	109.50	119.60
1	1	310	U	OP1-P-OP2	-6.73	109.51	119.60
1	1	769	G	OP1-P-OP2	-6.73	109.51	119.60
1	1	3355	U	OP1-P-OP2	-6.73	109.51	119.60
1	1	851	С	OP1-P-OP2	-6.72	109.51	119.60
1	1	926	А	OP1-P-OP2	-6.72	109.52	119.60
1	1	2931	С	OP1-P-OP2	-6.71	109.53	119.60
1	1	836	A	OP1-P-OP2	-6.71	109.54	119.60
1	1	1854	С	OP1-P-OP2	-6.71	109.54	119.60
1	1	1795	U	OP1-P-OP2	-6.70	109.55	119.60
1	1	960	U	C2-N1-C1'	6.67	125.70	117.70
1	1	1456	А	OP1-P-OP2	-6.66	109.60	119.60
3	6	1	С	OP1-P-OP2	-6.65	109.63	119.60
1	1	1560	G	O4'-C1'-N9	6.45	113.36	108.20
1	1	2829	U	C2-N1-C1'	6.19	125.13	117.70
1	1	1570	U	C2-N1-C1'	5.98	124.87	117.70
3	6	56	U	C2-N1-C1'	5.94	124.83	117.70
2	2	156	U	C2-N1-C1'	5.65	124.48	117.70
1	1	3155	U	C2-N1-C1'	5.55	124.36	117.70
1	1	3306	U	C2-N1-C1'	5.54	124.35	117.70
1	1	1107	С	N3-C2-O2	-5.40	118.12	121.90
1	1	1254	С	N1-C2-O2	5.37	122.12	118.90
1	1	3058	U	C2-N1-C1'	5.29	124.05	117.70
1	1	3163	А	N1-C6-N6	-5.27	115.44	118.60
1	1	1745	С	N3-C2-O2	-5.16	118.28	121.90

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	Percentiles	
4	А	192/291~(66%)	185~(96%)	7 (4%)	0	100	100	
5	В	337/387~(87%)	326~(97%)	10 (3%)	1 (0%)	41	75	
6	С	357/362~(99%)	344 (96%)	13 (4%)	0	100	100	
7	D	433/505~(86%)	419 (97%)	14 (3%)	0	100	100	
8	Е	152/176~(86%)	145~(95%)	7 (5%)	0	100	100	
9	F	220/244~(90%)	212 (96%)	8 (4%)	0	100	100	
10	G	180/256~(70%)	172 (96%)	8 (4%)	0	100	100	
11	Н	188/191 (98%)	182 (97%)	6 (3%)	0	100	100	
12	J	75/427~(18%)	75 (100%)	0	0	100	100	
13	K	253/376~(67%)	245 (97%)	8 (3%)	0	100	100	
14	L	115/199~(58%)	106 (92%)	9 (8%)	0	100	100	
15	М	134/138~(97%)	133 (99%)	1 (1%)	0	100	100	
16	Ν	182/204~(89%)	176 (97%)	6 (3%)	0	100	100	
17	Ο	195/199~(98%)	191 (98%)	4 (2%)	0	100	100	
18	Р	157/184~(85%)	152 (97%)	5 (3%)	0	100	100	
19	Q	132/186~(71%)	129 (98%)	3 (2%)	0	100	100	
20	R	85/189~(45%)	85 (100%)	0	0	100	100	
21	S	168/172~(98%)	159 (95%)	9 (5%)	0	100	100	
22	U	90/121~(74%)	87 (97%)	3 (3%)	0	100	100	
23	V	120/137~(88%)	116 (97%)	4 (3%)	0	100	100	
24	W	230/236~(98%)	226 (98%)	4 (2%)	0	100	100	
25	Х	123/142~(87%)	119 (97%)	4 (3%)	0	100	100	
26	Y	124/127~(98%)	123 (99%)	1 (1%)	0	100	100	
27	Z	126/136~(93%)	122 (97%)	4 (3%)	0	100	100	
28	a	69/149~(46%)	68 (99%)	1 (1%)	0	100	100	

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
29	b	413/647~(64%)	401 (97%)	12 (3%)	0	100	100
30	d	96/113~(85%)	96 (100%)	0	0	100	100
31	е	122/130~(94%)	120~(98%)	2(2%)	0	100	100
32	f	104/107~(97%)	100 (96%)	4 (4%)	0	100	100
33	h	116/120~(97%)	109 (94%)	7 (6%)	0	100	100
34	i	81/100 (81%)	74 (91%)	7(9%)	0	100	100
35	j	71/88~(81%)	70 (99%)	1 (1%)	0	100	100
36	k	53/78~(68%)	53 (100%)	0	0	100	100
37	m	571/807 (71%)	558 (98%)	13 (2%)	0	100	100
38	n	403/605~(67%)	394 (98%)	9 (2%)	0	100	100
39	О	131/220~(60%)	126 (96%)	5 (4%)	0	100	100
40	р	243/460~(53%)	234 (96%)	9 (4%)	0	100	100
41	r	71/261~(27%)	66~(93%)	5 (7%)	0	100	100
42	t	280/322~(87%)	265~(95%)	15 (5%)	0	100	100
43	u	114/199~(57%)	110 (96%)	4 (4%)	0	100	100
44	V	124/231~(54%)	120 (97%)	4 (3%)	0	100	100
45	W	61/841~(7%)	61 (100%)	0	0	100	100
46	У	223/245~(91%)	217 (97%)	6 (3%)	0	100	100
All	All	7714/11308~(68%)	7471 (97%)	242 (3%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
5	В	188	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
4	А	185/263~(70%)	182 (98%)	3(2%)	62	79
5	В	284/323~(88%)	274 (96%)	10 (4%)	36	62
6	С	286/289~(99%)	280 (98%)	6(2%)	53	73
7	D	381/440 (87%)	374 (98%)	7 (2%)	59	77
8	Ε	134/153~(88%)	134 (100%)	0	100	100
9	F	186/205~(91%)	183 (98%)	3 (2%)	62	79
10	G	150/208~(72%)	145 (97%)	5 (3%)	38	63
11	Н	170/171~(99%)	161 (95%)	9(5%)	22	52
12	J	73/383~(19%)	72 (99%)	1 (1%)	67	81
13	K	238/346~(69%)	231 (97%)	7(3%)	42	65
14	L	96/159~(60%)	95~(99%)	1 (1%)	76	86
15	М	107/109~(98%)	106 (99%)	1 (1%)	78	87
16	N	161/176~(92%)	161 (100%)	0	100	100
17	О	160/162~(99%)	156 (98%)	4 (2%)	47	69
18	Р	131/146~(90%)	130 (99%)	1 (1%)	81	89
19	Q	110/151~(73%)	105 (96%)	5 (4%)	27	56
20	R	76/154~(49%)	75~(99%)	1 (1%)	69	82
21	S	155/156~(99%)	149 (96%)	6 (4%)	32	59
22	U	83/107 (78%)	83 (100%)	0	100	100
23	V	96/105~(91%)	93~(97%)	3 (3%)	40	64
24	W	209/213~(98%)	205~(98%)	4 (2%)	57	75
25	Х	107/118~(91%)	107 (100%)	0	100	100
26	Y	109/110~(99%)	106 (97%)	3 (3%)	43	66
27	Z	110/116~(95%)	109 (99%)	1 (1%)	78	87
28	a	60/119~(50%)	59~(98%)	1 (2%)	60	78
29	b	377/573~(66%)	367 (97%)	10 (3%)	44	67
30	d	88/97~(91%)	87 (99%)	1 (1%)	73	84
31	е	107/111~(96%)	104 (97%)	3 (3%)	43	66
32	f	90/91~(99%)	88 (98%)	2 (2%)	52	71
33	h	104/105~(99%)	103 (99%)	1 (1%)	76	86
34	i	69/82~(84%)	68 (99%)	1 (1%)	67	81
35	j	60/71~(84%)	58 (97%)	2 (3%)	38	63

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
36	k	59/69~(86%)	58~(98%)	1 (2%)	60	78
37	m	529/723~(73%)	521 (98%)	8 (2%)	65	80
38	n	371/548~(68%)	361~(97%)	10 (3%)	44	67
39	О	118/199~(59%)	117 (99%)	1 (1%)	81	89
40	р	229/413~(55%)	226 (99%)	3 (1%)	69	82
41	r	65/229~(28%)	64 (98%)	1 (2%)	65	80
42	t	256/287~(89%)	248 (97%)	8 (3%)	40	64
43	u	101/180~(56%)	97~(96%)	4 (4%)	31	58
44	v	116/205~(57%)	114 (98%)	2(2%)	60	78
45	W	58/745~(8%)	57 (98%)	1 (2%)	60	78
46	У	193/211 (92%)	190 (98%)	3 (2%)	62	79
All	All	6847/9821 (70%)	6703 (98%)	144 (2%)	56	73

All (144) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
4	А	137	LEU
4	А	146	SER
4	А	225	LEU
5	В	28	ARG
5	В	37	ARG
5	В	70	ARG
5	В	136	LYS
5	В	174	LYS
5	В	187	SER
5	В	266	ARG
5	В	297	SER
5	В	332	ARG
5	В	375	GLU
6	С	93	MET
6	С	120	TYR
6	С	150	LEU
6	С	177	ASP
6	С	182	LEU
6	С	312	VAL
7	D	81	ASP
7	D	96	PHE
7	D	112	ARG

Mol	Chain	Res	Type
7	D	113	ASN
7	D	166	ASN
7	D	319	LEU
7	D	337	ASN
9	F	46	GLU
9	F	82	LYS
9	F	179	LEU
10	G	79	GLN
10	G	84	ARG
10	G	100	GLU
10	G	136	LEU
10	G	228	GLU
11	Η	1	MET
11	Н	16	VAL
11	Н	47	LYS
11	Н	69	ARG
11	Н	70	THR
11	Н	157	ASN
11	Н	161	LEU
11	Н	162	GLN
11	Н	180	TYR
12	J	249	GLN
13	Κ	48	THR
13	K	80	LEU
13	Κ	108	LYS
13	Κ	141	PHE
13	K	253	TRP
13	Κ	261	ASP
13	K	285	ARG
14	L	21	ARG
15	М	105	GLN
17	0	47	PHE
17	0	74	ARG
17	0	94	ARG
17	0	125	ARG
18	P	97	ASN
19	Q	38	ARG
19	Q	41	ASP
19	Q	92	ARG
19	Q	105	ARG
19	Q	147	ARG
20	R	21	LYS

Mol	Chain	Res	Type
21	S	12	ARG
21	S	103	VAL
21	S	117	ARG
21	S	155	ARG
21	S	171	PHE
21	S	172	TYR
23	V	25	CYS
23	V	93	LEU
23	V	122	CYS
24	W	49	ARG
24	W	96	CYS
24	W	113	LYS
24	W	139	GLU
26	Y	51	ARG
26	Y	74	TYR
26	Y	87	LYS
27	Ζ	17	ARG
28	a	117	ARG
29	b	48	ARG
29	b	129	LYS
29	b	170	LEU
29	b	175	TYR
29	b	180	LYS
29	b	277	LEU
29	b	301	GLU
29	b	306	LEU
29	b	427	TRP
29	b	428	LYS
30	d	61	LYS
31	е	33	ARG
31	е	98	HIS
31	е	120	THR
32	f	60	ARG
32	f	106	ASN
33	h	38	ARG
34	i	29	LYS
35	j	45	ARG
35	j	67	LEU
36	k	43	PHE
37	m	139	GLU
37	m	243	LEU
37	m	322	MET

Mol	Chain	Res	Type
37	m	382	GLU
37	m	387	ARG
37	m	428	ARG
37	m	768	LYS
37	m	800	ASN
38	n	13	ARG
38	n	77	LEU
38	n	86	PHE
38	n	196	GLU
38	n	199	TRP
38	n	203	PHE
38	n	229	LEU
38	n	409	HIS
38	n	417	LEU
38	n	551	GLU
39	0	102	PHE
40	р	229	ASN
40	p	331	SER
40	р	409	SER
41	r	4	ASN
42	t	158	LYS
42	t	160	PHE
42	t	187	LEU
42	t	264	CYS
42	t	271	PHE
42	t	275	ARG
42	t	291	GLN
42	t	303	ASN
43	u	27	LYS
43	u	40	PHE
43	u	43	ARG
43	u	81	TYR
44	v	157	GLU
44	V	180	ARG
45	W	671	LEU
46	у	51	THR
46	y	100	ARG
46	у	215	LEU

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (29) such side chains are listed below:

Mol	Chain	Res	Type
4	А	148	HIS
5	В	293	ASN
6	С	114	ASN
7	D	413	ASN
9	F	186	HIS
10	G	59	GLN
10	G	95	ASN
11	Н	139	ASN
12	J	228	ASN
13	К	84	ASN
13	K	143	GLN
18	Р	96	GLN
18	Р	118	GLN
21	S	122	HIS
22	U	87	ASN
23	V	98	ASN
26	Y	4	GLN
27	Ζ	40	HIS
29	b	177	ASN
30	d	57	GLN
31	е	35	GLN
31	е	52	GLN
31	е	98	HIS
35	j	76	ASN
37	m	307	GLN
38	n	11	ASN
42	t	269	GLN
46	У	33	ASN
46	У	170	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	2115/3396~(62%)	372~(17%)	42 (1%)
2	2	153/158~(96%)	27~(17%)	2(1%)
3	6	64/232~(27%)	20~(31%)	4(6%)
All	All	2332/3786~(61%)	419~(17%)	48~(2%)

All (419) RNA backbone outliers are listed below:

Mol	Chain	Res	Type	
1	1	2	U	
Continued on next page				

Mol	Chain	Res	Type
1	1	7	С
1	1	14	U
1	1	16	A
1	1	26	A
1	1	40	А
1	1	41	G
1	1	42	С
1	1	49	A
1	1	59	G
1	1	60	А
1	1	65	A
1	1	66	А
1	1	73	С
1	1	76	G
1	1	92	G
1	1	94	G
1	1	108	А
1	1	110	G
1	1	111	С
1	1	116	А
1	1	117	U
1	1	122	А
1	1	134	U
1	1	135	С
1	1	136	G
1	1	156	G
1	1	165	А
1	1	166	С
1	1	170	G
1	1	190	U
1	1	191	U
1	1	200	С
1	1	207	U
1	1	210	U
1	1	218	G
1	1	219	A
1	1	220	G
1	1	231	G
1	1	240	U
1	1	241	G
1	1	249	U
1	1	250	U

Mol	Chain	Res	Type
1	1	251	G
1	1	252	U
1	1	265	А
1	1	268	А
1	1	269	G
1	1	283	G
1	1	284	А
1	1	285	А
1	1	295	А
1	1	298	U
1	1	305	U
1	1	311	С
1	1	315	С
1	1	323	A
1	1	324	А
1	1	329	U
1	1	339	С
1	1	351	А
1	1	352	А
1	1	368	G
1	1	370	U
1	1	375	А
1	1	376	G
1	1	398	А
1	1	401	U
1	1	402	А
1	1	403	С
1	1	404	G
1	1	421	G
1	1	422	А
1	1	440	А
1	1	495	G
1	1	517	G
1	1	521	A
1	1	523	A
1	1	533	A
1	1	535	G
1	1	544	С
1	1	546	С
1	1	547	G
1	1	548	G
1	1	550	А

Mol	Chain	Res	Type
1	1	552	G
1	1	557	А
1	1	559	А
1	1	578	А
1	1	579	G
1	1	592	А
1	1	597	G
1	1	604	G
1	1	609	G
1	1	611	А
1	1	620	U
1	1	621	А
1	1	636	С
1	1	637	С
1	1	638	С
1	1	645	А
1	1	648	С
1	1	650	С
1	1	660	А
1	1	677	А
1	1	681	U
1	1	691	А
1	1	705	А
1	1	706	А
1	1	710	А
1	1	715	А
1	1	721	G
1	1	722	G
1	1	735	А
1	1	742	G
1	1	743	C
1	1	757	С
1	1	760	G
1	1	761	A
1	1	770	G
1	1	776	U
1	1	779	G
1	1	781	G
1	1	784	A
1	1	785	G
1	1	787	G
1	1	801	А

Mol	Chain	Res	Type
1	1	930	U
1	1	933	А
1	1	936	А
1	1	937	G
1	1	944	С
1	1	958	С
1	1	959	С
1	1	963	G
1	1	965	А
1	1	971	G
1	1	976	U
1	1	978	G
1	1	979	U
1	1	980	А
1	1	981	U
1	1	982	С
1	1	1103	А
1	1	1104	G
1	1	1105	А
1	1	1111	U
1	1	1112	А
1	1	1116	G
1	1	1123	U
1	1	1127	G
1	1	1129	А
1	1	1130	А
1	1	1135	А
1	1	1138	U
1	1	1144	U
1	1	1153	A
1	1	1155	C
1	1	1159	A
1	1	1174	G
1	1	1180	A
1	1	1181	U
1	1	1189	С
1	1	1192	С
1	1	1204	A
1	1	1218	U
1	1	1220	U
1	1	1221	A
1	1	1222	G

Mol	Chain	Res	Type
1	1	1228	С
1	1	1242	G
1	1	1245	А
1	1	1246	G
1	1	1251	А
1	1	1252	А
1	1	1253	U
1	1	1254	С
1	1	1258	U
1	1	1263	А
1	1	1265	U
1	1	1278	А
1	1	1279	С
1	1	1284	С
1	1	1286	А
1	1	1287	А
1	1	1308	А
1	1	1330	А
1	1	1348	U
1	1	1349	G
1	1	1350	А
1	1	1351	U
1	1	1352	А
1	1	1353	U
1	1	1354	G
1	1	1355	А
1	1	1356	U
1	1	1357	G
1	1	1386	А
1	1	1392	G
1	1	1397	С
1	1	1399	А
1	1	1400	G
1	1	1406	A
1	1	1408	G
1	1	1417	G
1	1	1419	A
1	1	1434	G
1	1	1436	U
1	1	1437	С
1	1	1457	U
1	1	1470	U

Mol	Chain	Res	Type
1	1	1496	С
1	1	1507	G
1	1	1508	С
1	1	1536	G
1	1	1549	U
1	1	1561	G
1	1	1562	С
1	1	1566	A
1	1	1567	U
1	1	1568	U
1	1	1569	U
1	1	1571	А
1	1	1572	U
1	1	1573	G
1	1	1574	С
1	1	1575	A
1	1	1580	А
1	1	1581	С
1	1	1582	С
1	1	1589	А
1	1	1593	А
1	1	1602	А
1	1	1603	А
1	1	1605	А
1	1	1608	С
1	1	1619	А
1	1	1620	U
1	1	1628	С
1	1	1631	С
1	1	1633	С
1	1	1639	С
1	1	1642	А
1	1	1643	А
1	1	1647	A
1	1	1656	А
1	1	1685	С
1	1	1705	U
1	1	1713	G
1	1	1724	U
1	1	1725	С
1	1	1728	G
1	1	1741	А

Mol	Chain	Res	Type
1	1	1742	U
1	1	1750	А
1	1	1751	G
1	1	1766	G
1	1	1770	G
1	1	1775	G
1	1	1791	С
1	1	1792	С
1	1	1796	G
1	1	1797	А
1	1	1808	G
1	1	1813	А
1	1	1814	А
1	1	1815	U
1	1	1816	А
1	1	1817	G
1	1	1821	U
1	1	1857	С
1	1	1862	U
1	1	1867	А
1	1	1869	С
1	1	1879	А
1	1	1880	U
1	1	1884	А
1	1	1886	А
1	1	2363	А
1	1	2366	С
1	1	2371	G
1	1	2372	А
1	1	2373	А
1	1	2374	С
1	1	2376	G
1	1	2391	G
1	1	$2\overline{434}$	U
1	1	2825	C
1	1	2836	С
1	1	2837	A
1	1	2857	C
1	1	2858	U
1	1	2888	U
1	1	2889	С
1	1	2898	G

Mol	Chain	Res	Type
1	1	2935	U
1	1	2936	А
1	1	2987	А
1	1	2996	U
1	1	2997	G
1	1	3006	А
1	1	3012	А
1	1	3017	А
1	1	3019	U
1	1	3021	А
1	1	3022	G
1	1	3032	А
1	1	3056	U
1	1	3057	U
1	1	3059	G
1	1	3080	G
1	1	3086	А
1	1	3092	С
1	1	3099	С
1	1	3101	G
1	1	3129	А
1	1	3130	А
1	1	3131	U
1	1	3142	А
1	1	3143	С
1	1	3153	U
1	1	3155	U
1	1	3156	U
1	1	3157	U
1	1	3158	G
1	1	3162	С
1	1	3165	А
1	1	3170	A
1	1	3171	U
1	1	3173	G
1	1	3174	A
1	1	3176	G
1	1	3179	U
1	1	3181	С
1	1	3187	A
1	1	3195	U
1	1	3207	U

Mol	Chain	Res	Type
1	1	3217	С
1	1	3218	А
1	1	3219	G
1	1	3229	G
1	1	3238	G
1	1	3245	А
1	1	3247	G
1	1	3252	G
1	1	3259	U
1	1	3260	G
1	1	3270	U
1	1	3273	А
1	1	3276	G
1	1	3281	U
1	1	3288	G
1	1	3289	G
1	1	3304	U
1	1	3316	А
1	1	3317	U
1	1	3319	U
1	1	3320	А
1	1	3334	U
1	1	3335	А
1	1	3341	U
1	1	3344	А
1	1	3349	С
1	1	3353	G
1	1	3356	G
1	1	3357	U
1	1	3369	G
1	1	3375	A
1	1	3378	С
1	1	3382	U
1	1	3390	G
1	1	3396	U
2	2	13	А
2	2	15	G
2	2	16	G
2	2	34	U
2	2	35	С
2	2	39	G
2	2	40	А

Mol	Chain	Res	Type
2	2	51	G
2	2	52	А
2	2	59	А
2	2	63	G
2	2	72	А
2	2	80	А
2	2	81	U
2	2	82	U
2	2	84	С
2	2	86	U
2	2	87	G
2	2	89	A
2	2	90	U
2	2	95	G
2	2	104	A
2	2	106	С
2	2	107	G
2	2	124	G
2	2	125	U
2	2	128	U
3	6	2	С
3	6	4	U
3	6	5	С
3	6	6	U
3	6	7	С
3	6	8	А
3	6	14	U
3	6	15	С
3	6	16	U
3	6	17	G
3	6	26	U
3	6	34	А
3	6	40	U
3	6	42	G
3	6	43	A
3	6	54	A
3	6	56	U
3	6	59	С
3	6	229	U
3	6	230	A

All (48) RNA pucker outliers are listed below:

\mathbf{Mol}	Chain	\mathbf{Res}	Type
1	1	13	А
1	1	58	G
1	1	75	G
1	1	116	А
1	1	165	А
1	1	239	G
1	1	294	U
1	1	304	G
1	1	494	G
1	1	649	А
1	1	709	А
1	1	720	А
1	1	734	С
1	1	769	G
1	1	1128	U
1	1	1129	А
1	1	1227	С
1	1	1241	U
1	1	1283	С
1	1	1307	G
1	1	1329	U
1	1	1355	A
1	1	1405	U
1	1	1456	A
1	1	1560	G
1	1	1574	С
1	1	1581	С
1	1	1712	G
1	1	1765	U
1	1	1807	G
1	1	1861	G
1	1	2857	С
1	1	2887	A
1	1	2986	U
1	1	2995	A
1	1	3079	U
1	1	3157	U
1	1	3228	С
1	1	3269	U
1	1	3352	U
1	1	3355	U
1	1	3389	U
2	2	14	С
	I		

Continued from previous page...

Mol	Chain	Res	Type
2	2	123	G
3	6	1	С
3	6	15	С
3	6	16	U
3	6	33	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12910. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 167

Y Index: 150

Z Index: 151

6.3.2 Raw map

X Index: 172

Y Index: 151

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.021. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1465 $\rm nm^3;$ this corresponds to an approximate mass of 1324 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.256 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.256 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	3.90	-	-	
Author-provided FSC curve	3.91	4.73	4.00	
Unmasked-calculated*	5.26	9.25	6.58	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 5.26 differs from the reported value 3.9 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12910 and PDB model 7OHV. Per-residue inclusion information can be found in section 3 on page 12.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.021 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 92% of all backbone atoms, 83% of all non-hydrogen atoms, are inside the map.

