

wwPDB X-ray Structure Validation Summary Report (i)

Dec 6, 2023 - 07:33 am GMT

PDB ID	:	80JH
Title	:	Crystal structure of human CRBN-DDB1 in complex with compound 4
Authors	:	Cabry, M.P.; Le Bihan, YV.; van Montfort, R.L.M.
Deposited on		
Resolution	:	2.72 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	NOT EXECUTED
Xtriage (Phenix)	:	1.13
EDS	:	NOT EXECUTED
buster-report	:	NOT EXECUTED
Percentile statistics	:	NOT EXECUTED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.72 Å.

There are no overall percentile quality scores available for this entry.

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length	Quality of chain	
1	А	1148	87%	10% ••
2	В	407	81%	11% 8%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	EDO	А	1201	-	-	Х	-

80JH

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 11415 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

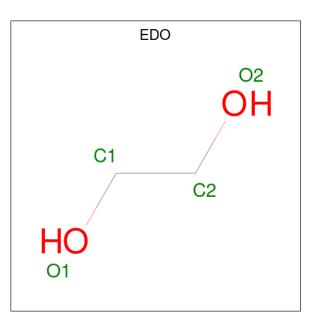
• Molecule 1 is a protein called DNA damage-binding protein 1.

Mol	Chain	Residues		Atoms			ZeroOcc	AltConf	Trace	
1	А	1112	Total 8170	C 5190	N 1370	O 1563	S 47	0	7	3

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	1141	TRP	-	expression tag	UNP Q16531
А	1142	SER	-	expression tag	UNP Q16531
A	1143	HIS	-	expression tag	UNP Q16531
А	1144	PRO	-	expression tag	UNP Q16531
А	1145	GLN	-	expression tag	UNP Q16531
A	1146	PHE	-	expression tag	UNP Q16531
А	1147	GLU	-	expression tag	UNP Q16531
А	1148	LYS	-	expression tag	UNP Q16531

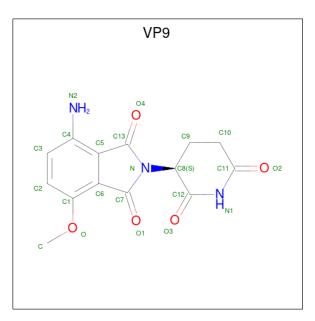
• Molecule 2 is a protein called Protein cereblon.


Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	В	375	Total 2837	C 1825	N 471	O 518	S 23	0	4	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	36	GLY	-	expression tag	UNP Q96SW2
В	37	PRO	-	expression tag	UNP Q96SW2
В	38	HIS	-	expression tag	UNP Q96SW2
В	39	MET	-	expression tag	UNP Q96SW2

• Molecule 3 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 4 & 4 \end{array}$	0	1
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

• Molecule 4 is ZINC ION (three-letter code: ZN) (formula: Zn).

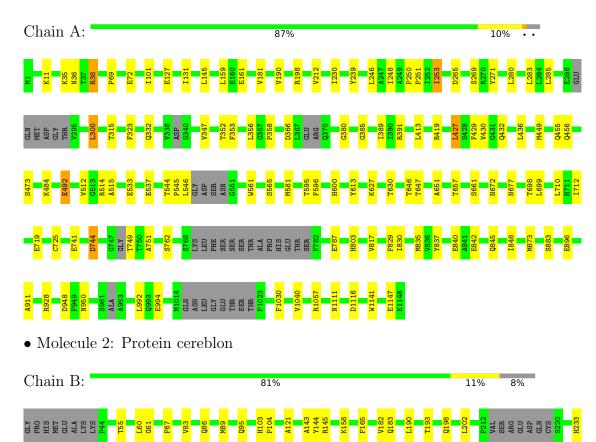
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	1	Total Zn 1 1	0	0

• Molecule 5 is 4-azanyl-2-[(3 {S})-2,6-bis(oxidanylidene)piperidin-3-yl]-7-methoxy-isoindole -1,3-dione (three-letter code: VP9) (formula: $C_{14}H_{13}N_3O_5$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
5	В	1	Total	С	Ν	0	0	0
0	D	T	22	14	3	5	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	282	Total O 282 282	0	0
6	В	63	Total O 63 63	0	0



LEU

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.

• Molecule 1: DNA damage-binding protein 1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	72.02Å 128.59Å 198.45Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	49.61 - 2.72	Depositor
% Data completeness	99.9 (49.61-2.72)	Depositor
(in resolution range)	55.5 (45.01-2.12)	-
R _{merge}	0.29	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.35 (at 2.73 \text{\AA})$	Xtriage
Refinement program	BUSTER 2.10.4 (21-NOV-2022)	Depositor
R, R_{free}	0.209 , 0.254	Depositor
Wilson B-factor $(Å^2)$	56.5	Xtriage
Anisotropy	0.121	Xtriage
L-test for twinning ²	$< L >=0.50, < L^2>=0.34$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
Total number of atoms	11415	wwPDB-VP
Average B, all atoms $(Å^2)$	64.0	wwPDB-VP

EDS was not executed - this section is therefore incomplete.

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.72% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, EDO, VP9

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.36	0/8318	0.57	0/11286
2	В	0.33	0/2909	0.51	0/3966
All	All	0.36	0/11227	0.55	0/15252

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	8170	0	7473	69	0
2	В	2837	0	2557	23	0
3	А	28	0	42	6	0
3	В	12	0	18	1	0
4	В	1	0	0	0	0
5	В	22	0	0	0	0
6	А	282	0	0	0	0
6	В	63	0	0	0	0
All	All	11415	0	10090	92	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:546:LEU:HD22	1:A:595:THR:HG23	1.33	1.09
1:A:161:GLU:HA	3:A:1207:EDO:H12	1.59	0.84
1:A:1057:ARG:NH1	1:A:1111:ASN:H	1.77	0.83
1:A:69:PRO:HG2	1:A:72:GLU:HG3	1.67	0.77
1:A:596:PHE:HB3	1:A:661:SER:HB2	1.72	0.72

The worst 5 of 92 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	1101/1148~(96%)	1058~(96%)	42 (4%)	1 (0%)	51	77
2	В	373/407~(92%)	356~(95%)	17~(5%)	0	100	100
All	All	1474/1555~(95%)	1414 (96%)	59~(4%)	1 (0%)	51	77

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	36	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	778/1007~(77%)	750~(96%)	28 (4%)	35 62
2	В	264/369~(72%)	255~(97%)	9(3%)	37 65
All	All	1042/1376~(76%)	1005~(96%)	37 (4%)	35 62

5 of 37 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	В	55	THR
2	В	313	ASP
2	В	86	GLN
2	В	190	LEU
1	А	413	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 8 such sidechains are listed below:

Mol	Chain	Res	Type
2	В	397	HIS
2	В	198	GLN
1	А	578	HIS
1	А	462	ASN
1	А	664	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

Mogul was not executed - this section is therefore empty.

5.5 Carbohydrates (i)

Mogul was not executed - this section is therefore empty.

5.6 Ligand geometry (i)

Mogul was not executed - this section is therefore empty.

5.7 Other polymers (i)

Mogul was not executed - this section is therefore empty.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

