

wwPDB EM Validation Summary Report (i)

Feb 2, 2022 – 12:59 pm GMT

PDB ID : 70LD EMDB ID : EMD-12977 Title Thermophilic eukaryotic 80S ribosome at pe/E (TI)-POST state : Authors Kisonaite, M.; Wild, K.; Sinning, I. : Deposited on 2021-05-19 : 3.00 Å(reported) Resolution : Based on initial model 4V88:

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.dev97
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.26

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	1	3337	77%	18% •
2	2	1796	75%	23% •
3	3	120	90%	9% •
4	4	156	85%	13% •
5	5	75	8% 40% 59%	
6	А	316	98%	
7	В	302	10% 42% • 57%	
8	С	845	95%	•••

Mol	Chain	Length	Quality of chain
9	LA	254	98% •
10	LB	392	98%
11	LC	365	99%
12	LD	304	98%
13	LE	200	97%
14	LF	249	99%
15	LG	262	89% • 11%
16	LH	229	83% 17%
17	LI	219	99%
18	LJ	173	96%
19	LK	165	91% · 5%
20	LL	213	98% •
21	LM	142	99%
22	LN	203	100%
23	LO	204	100%
24	LP	187	93% • 7%
25	LQ	213	86% 14%
26	LR	192	95%
27	LS	174	99%
28	LT	160	99%
29	LU	127	78% 21%
30	LV	139	97%
31	LW	205	64% 35%
32	LX	156	78% 22%
33	LY	138	96%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
34	LZ	135	98%	•
35	La	149	99%	·
36	Lb	65	95%	• •
37	Lc	108	88%	12%
38	Ld	120	93%	7%
39	Le	131	95%	5%
40	Lf	109	98%	•
41	Lg	119	94%	6%
42	Lh	126	• 97%	•
43	Li	110	92%	8%
44	Lj	95	93%	7%
45	Lk	94	80% • 1	9%
46	Ll	51	98%	•
47	Lm	127	41% 59%	
48	Ln	25	100%	
48	Lr	25	96%	·
49	Lo	106	98%	•
50	Lp	92	99%	·
51	Lq	147	96%	·
52	Ls	312	• 60% • 39%	
53	SA	285	73% 27%	
54	SB	255	87%	12%
55	SC	263	82%	18%
56	SD	254	84%	16%
57	SE	264	98%	••

Continued from previous page...

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
58	SF	212	93%	• 6%
59	SG	239	96%	
60	SH	203	97%	••
61	SI	202	99%	
62	SJ	190	94%	• 6%
63	SK	159	• 55% • 44%	
64	SL	161	• 92%	• 7%
65	SM	144	82%	18%
66	SN	151	99%	
67	SO	150	5% 89%	• 10%
68	SP	153	84%	16%
69	SQ	143	• 96%	• •
70	SR	143	90%	10%
71	\mathbf{SS}	156	88%	12%
72	ST	153	93%	7%
73	SU	116	5% 	11%
74	SV	98	88%	12%
75	SW	130	98%	
76	SX	145	98%	•
77	SY	136	87%	11%
78	SZ	99	• 70% 30%	
79	Sa	119	87%	13%
80	Sb	82	99%	•
81	Sc	68	• 88%	12%
82	Sd	56	93%	7%

Continued from previous page...

Mol	Chain	Length	Quality of chain					
83	Se	62	69%	31%				
84	Sf	154	48%	52%				

2 Entry composition (i)

There are 87 unique types of molecules in this entry. The entry contains 214209 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 26S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	1	3192	Total 68264	C 30474	N 12339	O 22259	Р 3192	0	0

• Molecule 2 is a RNA chain called 18S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	2	1765	Total 37645	C 16822	N 6706	O 12352	Р 1765	0	0

• Molecule 3 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	3	119	Total 2535	C 1132	N 453	0 831	Р 119	0	0

• Molecule 4 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	4	156	Total 3319	C 1484	N 589	O 1090	Р 156	0	0

• Molecule 5 is a RNA chain called pe/E tRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	5	75	Total 1589	C 710	N 279	O 525	Р 75	0	0

• Molecule 6 is a protein called Putative guanine nucleotide-binding protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	А	312	Total 2438	C 1534	N 424	0 468	S 12	0	0

• Molecule 7 is a protein called HABP4_PAI-RBP1 domain-containing protein.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
7	В	120	Total	С	Ν	Ο	0	0
1	D	123	982	584	198	200	0	0

• Molecule 8 is a protein called Elongation factor 2.

Mol	Chain	Residues		Α	toms			AltConf	Trace
8	С	813	Total 6335	C 4024	N 1092	0 1192	S 27	0	0

• Molecule 9 is a protein called 60S ribosomal protein L2-like protein.

Mol	Chain	Residues		Ate	AltConf	Trace			
9	LA	248	Total 1891	C 1182	N 378	O 328	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L3-like protein.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
10	LB	387	Total 3088	C 1964	N 576	O 535	S 13	0	0

• Molecule 11 is a protein called 60S ribosomal protein L4-like protein.

Mol	Chain	Residues		At		AltConf	Trace		
11	LC	363	Total 2758	C 1741	N 527	0 481	S 9	0	0

• Molecule 12 is a protein called 60S ribosomal protein 15-like protein.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
12	LD	300	Total 2440	C 1545	N 431	0 461	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	LE	194	Total 1518	C 974	N 274	O 267	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called 60S ribosomal protein l7-like protein.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
14	LF	247	Total 2017	C 1294	N 376	0 344	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	LG	234	Total 1891	C 1212	N 349	O 325	${f S}{5}$	0	0

• Molecule 16 is a protein called 60S ribosomal protein l9-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	LH	191	Total 1505	C 955	N 269	0 275	S 6	0	0

• Molecule 17 is a protein called 60S ribosomal protein L10-like protein.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
17	LI	217	Total 1760	C 1109	N 343	O 299	S 9	0	0

• Molecule 18 is a protein called Putative ribosomal protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	LJ	167	Total 1367	C 854	N 268	O 239	${ m S}{ m 6}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L12-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	LK	156	Total 1174	C 737	N 214	0 221	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	LL	209	Total 1666	C 1037	N 340	0 287	${S \over 2}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L14-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	LM	141	Total 1125	С 714	N 216	0 194	S 1	0	0

• Molecule 22 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		Ate	AltConf	Trace			
22	LN	202	Total 1703	C 1062	N 360	0 277	$\frac{S}{4}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L16-like protein.

Mol	Chain	Residues		Ate	AltConf	Trace			
23	LO	203	Total 1610	C 1034	N 305	O 266	${ m S}{ m 5}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein l17-like protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
24	LP	174	Total 1378	C 856	N 278	0 241	${ m S} { m 3}$	0	0

• Molecule 25 is a protein called Ribosomal protein L18-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	LQ	183	Total 1481	C 935	N 306	0 238	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called Ribosomal protein L19.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	LR	184	Total 1506	C 928	N 324	0 249	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called 60S ribosomal protein L20.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	LS	173	Total 1425	C 917	N 266	O 238	${S \atop 4}$	0	0

• Molecule 28 is a protein called 60S ribosomal protein l21-like protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
28	LT	158	Total 1266	C 803	N 246	O 215	${ m S} { m 2}$	0	0

• Molecule 29 is a protein called 60S ribosomal protein L22-like protein.

Mol	Chain	Residues		Atoms					Trace
29	LU	100	Total 810	C 526	N 140	0 143	S 1	0	0

• Molecule 30 is a protein called 60S ribosomal protein l23-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	LV	137	Total 1012	С 644	N 189	0 172	${f S}{7}$	0	0

• Molecule 31 is a protein called 60S ribosomal protein L24-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	LW	133	Total 1075	C 667	N 221	0 185	${ m S} { m 2}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L25-like protein.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
32	LX	121	Total 967	C 621	N 176	O 170	0	0

• Molecule 33 is a protein called 60S ribosomal protein L26-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	LY	133	Total 1056	C 658	N 213	0 183	${ m S} { m 2}$	0	0

• Molecule 34 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	LZ	135	Total 1111	С 713	N 207	0 187	${S \atop 4}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L28-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	La	148	Total 1180	C 745	N 239	O 194	${ m S} { m 2}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
36	Lb	63	Total 515	C 314	N 113	0 88	0	0

• Molecule 37 is a protein called 60S ribosomal protein l30-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	Lc	95	Total 708	C 450	N 122	0 131	$\frac{S}{5}$	0	0

• Molecule 38 is a protein called Putative 60S ribosomal protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	Ld	112	Total 907	C 573	N 178	0 155	S 1	0	0

• Molecule 39 is a protein called 60S ribosomal protein L32-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	Le	124	Total 1001	C 629	N 205	0 161	S 6	0	0

• Molecule 40 is a protein called 60S ribosomal protein l33-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	Lf	107	Total 853	C 540	N 170	0 142	S 1	0	0

• Molecule 41 is a protein called Ribosomal protein l34-like protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
41	Lg	112	Total 891	C 554	N 181	0 152	${S \atop 4}$	0	0

• Molecule 42 is a protein called Dolichyl-diphosphooligosaccharide--protein glycotransferase.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
42	Lh	122	Total 1003	$\begin{array}{c} \mathrm{C} \\ 637 \end{array}$	N 198	O 168	0	0

• Molecule 43 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	Li	101	Total 826	C 509	N 181	0 135	S 1	0	0

• Molecule 44 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	Lj	88	Total 698	C 427	N 154	0 112	${f S}{5}$	0	0

• Molecule 45 is a protein called 60S ribosomal protein L38-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
45	Lk	76	Total 632	C 400	N 121	O 109	${S \over 2}$	0	0

• Molecule 46 is a protein called Ribosomal protein eL39.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
46	Ll	50	Total 435	C 275	N 97	O 63	0	0

• Molecule 47 is a protein called Ubiquitin.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
47	Lm	52	Total	С	N	Ō	S	0	0
41		52	418	261	86	65	6	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Lm	2	MET	-	initiating methionine	UNP G0S8G4

• Molecule 48 is a protein called 60S ribosomal protein L41-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace			
18	In	25	Total	С	Ν	0	S	0	0	
40		20	233	142	63	27	1	0		
18	Ir	24	Total	С	Ν	0	S	0	0	
40			224	136	61	26	1		0	

• Molecule 49 is a protein called 60S ribosomal protein L44-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	Lo	104	Total 822	C 520	N 161	0 136	${ m S}{ m 5}$	0	0

• Molecule 50 is a protein called 60S ribosomal protein L43-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
50	Lp	91	Total 697	C 430	N 138	0 123	${f S}{f 6}$	0	0

• Molecule 51 is a protein called Putative 60S ribosomal protein.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
51	Lq	141	Total 1083	C 678	N 215	O 190	0	0

• Molecule 52 is a protein called 60S acidic ribosomal protein P0.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	Ls	189	Total 1449	C 927	N 250	O 265	S 7	0	0

• Molecule 53 is a protein called 40S ribosomal protein S0.

Mol	Chain	Residues		At	AltConf	Trace			
53	SA	208	Total 1641	C 1051	N 289	O 295	S 6	0	0

• Molecule 54 is a protein called 40S ribosomal protein S1.

Mol	Chain	Residues		Ate	AltConf	Trace			
54	SB	224	Total 1810	C 1150	N 338	0 317	${S \atop 5}$	0	0

 $\bullet\,$ Molecule 55 is a protein called 40S ribosomal protein S2-like protein.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
55	SC	216	Total 1672	C 1074	N 294	O 301	${ m S} { m 3}$	0	0

• Molecule 56 is a protein called 40S ribosomal protein S3-like protein.

Mol	Chain	Residues		Ate	AltConf	Trace			
56	SD	214	Total 1683	C 1063	N 307	O 305	S 8	0	0

• Molecule 57 is a protein called 40S ribosomal protein S4.

Mol	Chain	Residues		Ate	AltConf	Trace			
57	SE	261	Total 2072	C 1314	N 389	O 362	${ m S} 7$	0	0

• Molecule 58 is a protein called 40S ribosomal protein s5-like protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
58	SF	199	Total 1557	C 971	N 294	0 285	${ m S} 7$	0	0

• Molecule 59 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		At	AltConf	Trace			
59	SG	232	Total 1875	C 1171	N 376	0 323	$\frac{S}{5}$	0	0

• Molecule 60 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
60	сu	109	Total	С	Ν	Ο	0	0
00	511	190	1584	997	303	284	0	0

• Molecule 61 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		Atoms					Trace
61	SI	201	Total 1621	C 1009	N 330	0 281	S 1	0	0

• Molecule 62 is a protein called 40S ribosomal protein s9-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
62	SJ	179	Total 1466	C 933	N 290	0 241	${ m S} { m 2}$	0	0

• Molecule 63 is a protein called 40S ribosomal protein s10-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
63	SK	89	Total 742	C 487	N 124	O 129	${S \over 2}$	0	0

• Molecule 64 is a protein called 40S ribosomal protein S11-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
64	SL	149	Total 1214	C 775	N 235	0 199	${f S}{5}$	0	0

• Molecule 65 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	SM	118	Total 923	C 577	N 167	0 171	S 8	0	0

• Molecule 66 is a protein called 40S ribosomal protein S13-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
66	SN	150	Total 1182	C 756	N 220	O 205	S 1	0	0

• Molecule 67 is a protein called 40S ribosomal protein S14-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	SO	135	Total 1005	C 615	N 199	0 186	${ m S}{ m 5}$	0	0

• Molecule 68 is a protein called 40S ribosomal protein s15-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
68	SP	128	Total 1036	C 659	N 197	0 177	${ m S} { m 3}$	0	0

• Molecule 69 is a protein called 40S ribosomal protein S16-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
69	SQ	138	Total 1081	C 693	N 202	0 184	${ m S} { m 2}$	0	0

• Molecule 70 is a protein called 40S ribosomal protein S17-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	SR	128	Total 1045	$\begin{array}{c} \mathrm{C} \\ 657 \end{array}$	N 190	O 195	${ m S} { m 3}$	0	0

• Molecule 71 is a protein called Putative ribosomal protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
71	SS	137	Total 1118	C 699	N 222	0 196	S 1	0	0

• Molecule 72 is a protein called 40S ribosomal protein S19-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
72	ST	142	Total 1117	C 694	N 221	O 201	S 1	0	0

• Molecule 73 is a protein called 40S ribosomal protein S20-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
73	SU	103	Total 819	C 517	N 150	0 148	S 4	0	0

• Molecule 74 is a protein called 40S ribosomal protein S21-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
74	SV	86	Total 664	C 408	N 124	0 128	$\frac{S}{4}$	0	0

• Molecule 75 is a protein called 40S ribosomal protein S22-like protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
75	SW	129	Total 1037	C 659	N 195	0 178	${f S}{5}$	0	0

• Molecule 76 is a protein called 40S ribosomal protein s23-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
76	SX	142	Total 1099	C 694	N 215	0 188	${ m S} { m 2}$	0	0

• Molecule 77 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues	Atoms					AltConf	Trace
77	SY	121	Total 977	C 614	N 192	O 169	${ m S} { m 2}$	0	0

• Molecule 78 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues	Atoms					AltConf	Trace
78	SZ	69	Total 546	$\begin{array}{c} \mathrm{C} \\ 345 \end{array}$	N 101	O 98	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 79 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues	Atoms				AltConf	Trace	
79	Sa	104	Total 839	C 518	N 177	0 137	${f S}7$	0	0

• Molecule 80 is a protein called Ribosomal protein s27-like protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
80	Sb	81	Total 611	C 386	N 111	O 107	S 7	0	0

• Molecule 81 is a protein called 40S ribosomal protein S28-like protein.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
81	Sc	60	Total	С	Ν	Ο	S	0	0
01	50	00	473	292	93	87	1	0	0

• Molecule 82 is a protein called Ribosomal protein uS14.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
82	Sd	52	Total 419	C 261	N 84	0 70	S A	0	0
82	Sd	52	419	261	84	70	4	0	

• Molecule 83 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues	Atoms				AltConf	Trace
83	Se	43	Total 347	C 217	N 73	O 57	0	0

• Molecule 84 is a protein called 40S ribosomal protein S27a-like protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
84	Sf	74	Total 613	C 388	N 117	0 102	S 6	0	0

• Molecule 85 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
85	1	2	Total Mg 2 2	0
85	С	1	Total Mg 1 1	0

• Molecule 86 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $C_{10}H_{15}N_5O_{11}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ate	oms			AltConf
86	С	1	Total	C	N	0	Р	0
			28	10	\mathbf{b}	11	2	

• Molecule 87 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
87	Lg	1	Total Zn 1 1	0
87	Lj	1	Total Zn 1 1	0
87	Lm	1	Total Zn 1 1	0
87	Lo	1	Total Zn 1 1	0
87	Lp	1	Total Zn 1 1	0
87	Sa	1	Total Zn 1 1	0
87	Sb	1	Total Zn 1 1	0
87	Sd	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 26S rRNA

• Molecule 11: 60S ribosomal protein L4-like protein

Chain LC: 99%

• Molecule 12: 60S ribosomal protein l5-like protein

Chain LD:	98%	••
MET ALA 139 139 139 139 139 139 0302 ASP 0302 ASP		
• Molecule 13: 60S riboso	mal protein L6	
Chain LE:	97%	
NET SER ALA ALA PRO TT T7 F200		
• Molecule 14: 60S riboso	mal protein l7-like protein	
Chain LF:	99%	
MET S SE N249		
• Molecule 15: 60S riboso	mal protein L8	
Chain LG:	89%	• 11%
MET PRO PRO LYS SER GLY UXL LYS ALA ALA ALA PRO PRO GLY ALA ALA ALA	ALA ALA LYS LYS LYS A24 A24 A24 A24 A24 A24 CYS LYS LYS LYS VAL	
• Molecule 16: 60S riboso	mal protein l9-like protein	
Chain LH:	83%	17%
M1 N15 GLY THR PHE PHE ARG ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ARG GLY ARG GLU LIYS LIYS ARG CLY THR THR THR THR THR THR CLY CLU CLU CLU CLU CLU CLY CLU CLY CLU CLU	ASP
• Molecule 17: 60S riboso	mal protein L10-like protein	
Chain LI:	99%	

B

• Molecule 18: Putative ribosomal protein

Chain LJ: 96% ··

• Molecule 19: 60S ribosomal protein L12-like protein

Chain LK: 91% • 5%
MET PRO PRO PRO PRO PRO PDI 723 A24 A24 A24 B161 D144 C135 B26 B26 B26 B161 D144 C135 C355 C355 C355 C355 C355 C355 C355
\bullet Molecule 20: 60S ribosomal protein L13
Chain LL: 98% ·
MET AZIO ASN LYS LYS
\bullet Molecule 21: 60S ribosomal protein L14-like protein
Chain LM: 99% ·
AS A142
• Molecule 22: Ribosomal protein L15
Chain LN: 100%
MET A2 03 A2 03
\bullet Molecule 23: 60S ribosomal protein L16-like protein
Chain LO: 100%
MET 22
\bullet Molecule 24: 60S ribosomal protein l 17-like protein
Chain LP: 93% · 7%

BANK

• Molecule 25: Ribosomal protein L18-like protein

Chain LQ:	86%	14%
MET LEU VAL VAL CYS ALA ALA PHE CYS PHE PHC PHC ALA ALA ARG ALA ARG CLY	ASN ALLEU GLU GLU GLU ALA ALA ALA ALA ALA SER SER SER SER V213	
• Molecule 26: Ribosomal	protein L19	
Chain LR:	95%	
MET V2 F60 EL18 EL18 GLU GLU GLU CLU SER LYS LYS		
• Molecule 27: 60S riboso	mal protein L20	
Chain LS:	99%	
MET G S174 S174		
• Molecule 28: 60S riboso	mal protein l21-like protein	
Chain LT:	99%	
MET GLY 1160		
• Molecule 29: 60S riboso	mal protein L22-like protein	
Chain LU:	78%	• 21%
MET ALA PALA ALA ALA ALA ALA CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	N116 TIE VAL ASN ASN ASN ASN GLU GLU GLU ASP ASP	
• Molecule 30: 60S riboso	mal protein l23-like protein	
Chain LV:	97%	<mark>.</mark> .
MET ALA K1 A K1 A M 7 M 34 M 39 M 39		
• Molecule 31: 60S riboso	mal protein L24-like protein	
10%		

DB

MI CIG LYS CIG LYS ANL ANL ANL AND AND AND AND AND AND AND AND AND AND	GLU ARG ARG GLY ARG ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALU VAL	CLN LYS THR SER MET MET K011 E100 C111 A1112 K1113 K113 K13 K
R145 A151 A151 A167 K167 K167 K167 A169 A169 A172 A175 A175 A177	ALA LYS LYS GLY GLN PRO CLN CLN CLN CLY CLY CLY ALA ALA ALA ALA PRO	VAL LYS VAL ALA ALA LYS SER ARG ARG
• Molecule 32: 60S ribosomal	protein L25-like protein	
Chain LX:	78%	22%
MET ALA ALA ALS ALS ALS ALS ALS CLY CLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ALA ALA ALA ALA ALA ALA ALA ALA ALA CLY CLY CLY CLNS CLY CLNS CLY VAL VAL VAL	
• Molecule 33: 60S ribosomal	protein L26-like protein	
Chain LY:	96%	· ·
M1 C133 L175 L175 A12 A1A A1A A1A		
• Molecule 34: 60S ribosomal	protein L27	
Chain LZ:	98%	.
M1 191 101 102 135		
• Molecule 35: 60S ribosomal	protein L28-like protein	
Chain La:	99%	
AET 1449		
• Molecule 36: 60S ribosomal	protein L29	
Chain Lb:	95%	
MET 42 42 164 ALA		
• Molecule 37: 60S ribosomal	protein l30-like protein	
Chain Lc:	88%	12%
MET ALA ALA ALA LLYS LLYS LLYS LLYS SER ALA ALA ALA ALA ALA GLN GLN GLN		
• Molecule 38: Putative 60S r	ibosomal protein	

Chain Ld:	93%	7%
MET SER SER THR GLN LVS K10 S13		
• Molecule 39	: 60S ribosomal protein L32-like protein	
Chain Le:	95%	5%
MET V2 LYS LYS VAL THR GLU VAL		
• Molecule 40	: 60S ribosomal protein l33-like protein	
Chain Lf:	98%	·
MET P2 S108 ILE		
• Molecule 41	: Ribosomal protein l34-like protein	
Chain Lg:	94%	6%
MET ALA P3 K114 LYS ALA SER LYS SER LYS LYS		
• Molecule 42	: Dolichyl-diphosphooligosaccharideprotein glycotransfera	ise
Chain Lh:	97%	·
MET SER SER SER SER SER SER SER SER SER SER		
• Molecule 43	: 60S ribosomal protein L36	
Chain Li:	92% 8	3%
MET SER GLU ASP ALA THR PRO LYS A 9	A 109	
• Molecule 44	: Ribosomal protein L37	
Chain Lj:	93%	7%
MET T2 ALA ALA SER THR SER SER		

• Molecule 45: 60S ribosomal protein L38-like protein

	Chain Lk:	80%	• 19%
 Molecule 46: Ribosomal protein eL39 Chain Ll:	MET P2 S22 LYS LYS LEU LEU THR TLE ALA ALA	PRO PRO PRO ALM ALM AZ3 SER SER SER ALA	
Chain Ll: 98%	• Molecule 46:	Ribosomal protein eL39	
 Molecule 47: Ubiquitin Chain Lm: 41% 59% Molecule 48: 60S ribosomal protein L41-A Chain Ln: 100% There are no outlier residues recorded for this chain. Molecule 48: 60S ribosomal protein L41-A Chain Lr: 96% . Molecule 49: 60S ribosomal protein L41-like protein Chain Lo: 99% . Molecule 50: 60S ribosomal protein L43-like protein Chain Lp: 99% . 	Chain Ll:	98%	.
 Molecule 47: Ubiquitin Chain Lm: 41% 59% Chain Lm: 41% 59% Molecule 48: 60S ribosomal protein L41-A Chain Ln: 100% There are no outlier residues recorded for this chain. Molecule 48: 60S ribosomal protein L41-A Chain Lr: 96% . Molecule 49: 60S ribosomal protein L41-like protein Chain Lo: 98% . Molecule 50: 60S ribosomal protein L43-like protein Chain Lp: 99% . 	MET P2 L51		
Chain Lm: 41% 59%	• Molecule 47:	Ubiquitin	
 A Molecule 48: 60S ribosomal protein L41-A Chain Ln: 100% There are no outlier residues recorded for this chain. Molecule 48: 60S ribosomal protein L41-A Chain Lr: 96% . A A A A A A A A A A A A A A A A A A A	Chain Lm:	41%	59%
 Molecule 48: 60S ribosomal protein L41-A Chain Ln: 100% There are no outlier residues recorded for this chain. Molecule 48: 60S ribosomal protein L41-A 12% Chain Lr: 96% Molecule 49: 60S ribosomal protein L44-like protein Chain Lo: 98% Molecule 50: 60S ribosomal protein L43-like protein Chain Lp: 99% 	MET ILE PHE VAL LYS LYS CLY CLY THR THR THR	TLE LEU CLU CLU VAL CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	LEO ALA ALA ALA ALA CLY CLY CLY CLY CLY ALA ASP ASP ASP ASP ASP ASP ASP ASP
 Molecule 48: 60S ribosomal protein L41-A Chain Ln: 100% There are no outlier residues recorded for this chain. Molecule 48: 60S ribosomal protein L41-A Chain Lr: 96% . Molecule 49: 60S ribosomal protein L44-like protein Chain Lo: 98% . Molecule 50: 60S ribosomal protein L43-like protein Chain Lp: 99% . 	GLN LYS GLU SER THR THR HIS LEU VAL LEU VAL LEU	LEU GLY ICLY K128 K128	
Chain Ln: 100% There are no outlier residues recorded for this chain. • Molecule 48: 60S ribosomal protein L41-A Chain Lr: 96% • Molecule 49: 60S ribosomal protein L44-like protein Chain Lo: 98% • Molecule 50: 60S ribosomal protein L43-like protein Chain Lp: 99%	• Molecule 48:	60S ribosomal protein L41-A	
There are no outlier residues recorded for this chain. • Molecule 48: 60S ribosomal protein L41-A Chain Lr: 96% . • Molecule 49: 60S ribosomal protein L44-like protein Chain Lo: 98% . • Molecule 50: 60S ribosomal protein L43-like protein Chain Lp: 99% .	Chain Ln:	100%	
 Molecule 48: 60S ribosomal protein L41-A Chain Lr: 96% . Molecule 49: 60S ribosomal protein L44-like protein Chain Lo: 98% . Molecule 50: 60S ribosomal protein L43-like protein Chain Lp: 99% . 	There are no ou	utlier residues recorded for this chain.	
Chain Lr: 96% ·	• Molecule 48:	60S ribosomal protein L41-A	
 Molecule 49: 60S ribosomal protein L44-like protein Chain Lo:	Chain Lr:	%96%	· ·
 Molecule 49: 60S ribosomal protein L44-like protein Chain Lo: 98% . Molecule 50: 60S ribosomal protein L43-like protein Chain Lp: 99% . 	M1 R6 R23 S24 LYS		
Chain Lo: 98% .	• Molecule 49:	60S ribosomal protein L44-like protein	
• Molecule 50: 60S ribosomal protein L43-like protein Chain Lp: • • • • • • • • • • • • • • • • • • •	Chain Lo:	98%	.
• Molecule 50: 60S ribosomal protein L43-like protein Chain Lp: • • • • • • • • • • • • • • • • • • •	MET V2 V105		
Chain Lp:	• Molecule 50:	60S ribosomal protein L43-like protein	
MET 22 24 22 24 24 24 24 24 24 24 24 24 24	Chain Lp:	99%	
	MET S2 A92		

• Molecule 51: Putative 60S ribosomal protein
Chain Lq: 96% .
MET 32 ALA ALA GLN GLN GLN
• Molecule 52: 60S acidic ribosomal protein P0
Chain Ls: 60% · 39%
MET GLY GLY GLY GLY GLY GLY GLY MIOS FF FF FF FF FF FF FF FF FF FF FF FF FF
SER ILEU ASN ASN ASN ALE ASN VAL ILVS SER VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA
CLUYS CLUYS CLUY CLUY CLUY CLUY CLUY CLUY CLUY CLUY
\bullet Molecule 53: 40S ribosomal protein S0
Chain SA: 73% 27%
MET MLA MLA MLA MLA MLA MLA MLA MLA MLA MLA
CLY SER CLU CLU CLU CLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A
• Molecule 54: 40S ribosomal protein S1
7% Chain SB: 87% • 12%
NET ALLA ALLA ALLA ALLA ALLA CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS
LYS VAL ARG ARG ARG GLU VAL LEU VAL VAL
\bullet Molecule 55: 40S ribosomal protein S2-like protein
Chain SC: 82% 18%
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
\bullet Molecule 56: 40S ribosomal protein S3-like protein
Chain SD: 84% 16%
VORLDWIDE PROTEIN DATA BANK

• Molecule 63: 40S ribosomal protein s10-like protein

Chain SK:		55%	·	44%		
MET L2 L3 M30 V85 L90	LVS GLN GLN GLN ARG HIS HIS PLC PRO PRO PRO	GLY MET LEU GLV GLU SER ARG ARG ARG PHE	GLY GLY ARG GLY ARG GLY ASP ASP ASP CLY	ASP ARG GLY GLY ARG ARG ARG ALA ALA ALA	GLU GLY CLYS GLU GLY GLY ALA ALA SER ASN PHE	
ALA PRO GLN GLN ARG GLY GLY CLY GLY ARG	GLY ARG GLY ASP ALA PRO SER SER					
• Molecule 64	: 40S riboson	nal protein S1	1-like protei	n		
Chain SL:		9	2%		• 7%	
MET ALA THR E4 87 C152 LYS SFR SFR	VAL LYS LYS PHE GLN LYS CLN LYS PHE PHE					
• Molecule 65	5: 40S riboson	nal protein S1	2			
Chain SM:	16%	82%			18%	
MET SER ASP ASP CUN GLU THR THR THR PRO	GLN VAL VAL GLU VAL VAL VAL SER ALA ALA ALA GLU GLV	LYS GLY GLN MET S25 V26 L27 D28	G42 G46 R57 L64	Y73	E109 E108 E108 E109 V115	S119
G1 27 E1 28 T1 34 F1 40 Q1 41 Q1 42 GLU	ALA					
• Molecule 66	5: 40S riboson	nal protein S1	l3-like protei	n		
Chain SN:			99%		·	
MET G2 A151						
• Molecule 67	7: 40S riboson	nal protein S1	4-like protei	n		
Chain SO:		89	9%		• 10%	
MET PRO PRO LYS LYS LYS THR THR ARG PRO ALA	GLN GLU ASN ILE SELE SELE E22 G23		H93 194 L150			
• Molecule 68	8: 40S riboson	nal protein s1	5-like proteir	1		
Chain SP:		84%			16%	
MET ALA ASP ASP THR GLU ASN ALA GLU	ALA ALA ALA GLU LEU LYS LYS R18 R18	125 725 090 E114 H145	SER SER ARG PHE ILE PRO LVS			
• Molecule 69	: 40S riboson	nal protein S1	6-like protei	n		
			PROTEIN DATA BA	3 NK		

Chain SQ:	96%	• •
MET ALA S3 E42 E42 E42 D96 R137 F138 F138	R140 TYR ARG	
• Molecule 70: 40S	ribosomal protein S17-like protein	
Chain SR:	90%	10%
MET GLY RJ RJ RJ P103 0103 0103 0103 0103 0103 0129 0129 0129 0129 0120 VRU	ARG GLU ARG GLY ARG TYR GLY ARG ARG ARG ARG ARG	
• Molecule 71: Puta	ative ribosomal protein	
Chain SS:	88%	12%
MET SER LEU VAL SER GLV GLV T9 N12 C24	G145 ARG VAL VAL SER LYS GLY GLY	
• Molecule 72: 40S	ribosomal protein S19-like protein	
Chain ST:	93%	7%
MET PRO C3 C3 A107 A107 A107 A107 C14 C14 C14 C14	SER GLU GLU GLU GLU GLU	
• Molecule 73: 40S	ribosomal protein S20-like protein	
Chain SU:	88%	• 11%
MET SER TYR GLN GLN GLN GLU CLV GLU GLU ALA	K33 K45 D46 099 0107	
• Molecule 74: 40S	ribosomal protein S21-like protein	
Chain SV:	88%	12%
M1 086 CYS CYS CYS CYS CYS AB6 ALA LEU LEU LEU	110	
• Molecule 75: 40S	ribosomal protein S22-like protein	
Chain SW:	98%	
MET V2 194 130 V130		

• Molecule 76:	40S ribosomal protein s23-like protein	
Chain SX:	98%	·
MET SER G3 R144 SER		
• Molecule 77:	40S ribosomal protein S24	
Chain SY:	87%	• 11%
MET ALA ASP ASP THR D5 D5 K102 K102 V103	E104 K115 A125 A125 A12 LYS ALA ALA LYS GLU GLU	
• Molecule 78:	40S ribosomal protein S25	
Chain SZ:	70%	30%
MET ALA ALA ALA ALA ALA ALA SER CLN SER CLN SLA	dLIN LLYS LLYS LLYS LLYS SER SER SER SER LLYS LLYS LLYS ASP ASP ASP ASP ASP ASP ASP ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 79:	40S ribosomal protein S26	
Chain Sa:	87%	• 13%
MET V2 K12 R102 ASP ASP GLY	LYS LYS LILE VAL PRO GLN GLN ALA ALA ALA ALA	
• Molecule 80:	Ribosomal protein s27-like protein	
Chain Sb:	99%	
MET V2 R81 K82 K82		
• Molecule 81:	40S ribosomal protein S28-like protein	
Chain Sc:	88%	12%
MET ASP SER SER SER LTS LTS LTS A6 663	ARG LEU ARG	
• Molecule 82:	Ribosomal protein uS14	
Chain Sd:	93%	7%

• Molecule 83: 40S ribosomal protein S30

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	35338	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	32.51	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 QUANTUM $(4k \ge 4k)$	Depositor
Maximum map value	15.757	Depositor
Minimum map value	-8.328	Depositor
Average map value	0.026	Depositor
Map value standard deviation	0.575	Depositor
Recommended contour level	1.3	Depositor
Map size (Å)	534.60004, 534.60004, 534.60004	wwPDB
Map dimensions	486, 486, 486	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.1, 1.1, 1.1	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: DDE, ZN, MG, GDP, B8N

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.40	0/76390	0.84	34/119106~(0.0%)
2	2	0.31	0/42072	0.86	29/65562~(0.0%)
3	3	0.35	0/2833	0.81	0/4413
4	4	0.37	0/3710	0.83	5/5778~(0.1%)
5	5	0.37	0/1773	1.23	4/2759~(0.1%)
6	А	0.26	0/2495	0.59	0/3390
7	В	0.26	0/991	0.57	0/1319
8	С	0.27	0/6434	0.59	2/8716~(0.0%)
9	LA	0.32	0/1930	0.62	0/2597
10	LB	0.29	0/3156	0.57	0/4238
11	LC	0.28	0/2815	0.54	0/3795
12	LD	0.28	0/2487	0.54	1/3341~(0.0%)
13	LE	0.27	0/1547	0.53	0/2081
14	LF	0.29	0/2055	0.53	0/2758
15	LG	0.27	0/1920	0.56	0/2568
16	LH	0.30	0/1525	0.55	0/2050
17	LI	0.30	0/1797	0.60	1/2413~(0.0%)
18	LJ	0.29	0/1389	0.67	1/1856~(0.1%)
19	LK	0.27	0/1188	0.71	1/1597~(0.1%)
20	LL	0.28	0/1695	0.60	0/2276
21	LM	0.26	0/1144	0.53	0/1539
22	LN	0.30	0/1740	0.58	0/2332
23	LO	0.30	0/1644	0.52	0/2205
24	LP	0.28	0/1400	0.57	0/1884
25	LQ	0.29	0/1507	0.61	0/2017
26	LR	0.27	0/1525	0.59	0/2028
27	LS	0.33	0/1460	0.54	0/1965
28	LT	0.29	0/1292	0.55	0/1738
29	LU	0.27	0/823	0.56	1/1101~(0.1%)
30	LV	0.31	0/1030	0.59	0/1384
31	LW	0.28	0/1088	0.60	0/1443
32	LX	0.26	0/983	0.52	0/1325

	Hal Chain Bond lengths		Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	LY	0.27	0/1070	0.57	0/1432
34	LZ	0.28	0/1134	0.62	2/1519~(0.1%)
35	La	0.29	0/1212	0.58	0/1627
36	Lb	0.26	0/525	0.52	0/694
37	Lc	0.29	0/717	0.52	0/964
38	Ld	0.31	0/921	0.57	0/1233
39	Le	0.28	0/1019	0.54	0/1358
40	Lf	0.31	0/874	0.60	0/1176
41	Lg	0.29	0/904	0.61	0/1210
42	Lh	0.25	0/1014	0.55	0/1349
43	Li	0.28	0/833	0.67	0/1100
44	Lj	0.29	0/712	0.62	0/944
45	Lk	0.28	0/640	0.63	0/850
46	Ll	0.28	0/445	0.66	0/593
47	Lm	0.27	0/424	0.59	0/561
48	Ln	0.32	0/234	0.76	0/300
48	Lr	0.25	0/225	0.73	0/289
49	Lo	0.28	0/835	0.52	0/1105
50	Lp	0.31	0/705	0.62	0/940
51	Lq	0.27	0/1101	0.56	0/1482
52	Ls	0.27	0/1477	0.57	1/1995~(0.1%)
53	SA	0.27	0/1683	0.55	0/2299
54	SB	0.26	0/1838	0.65	1/2472~(0.0%)
55	SC	0.27	0/1703	0.56	0/2303
56	SD	0.27	0/1706	0.62	0/2291
57	SE	0.27	0/2112	0.61	0/2842
58	SF	0.26	0/1578	0.60	0/2130
59	SG	0.26	0/1906	0.65	1/2547~(0.0%)
60	SH	0.26	0/1609	0.63	1/2171~(0.0%)
61	SI	0.27	0/1654	0.64	0/2213
62	SJ	0.27	0/1489	0.62	0/1993
63	SK	0.30	0/764	0.61	0/1038
64	SL	0.27	0/1241	0.64	0/1666
65	SM	0.25	0/934	0.62	0/1255
66	SN	0.27	0/1205	0.55	0/1627
67	SO	0.27	0/1017	0.68	0/1365
68	SP	0.26	0/1055	0.61	0/1411
69	SQ	0.26	0/1098	0.65	1/1472~(0.1%)
70	SR	0.27	0/1060	0.60	0/1424
71	SS	0.25	0/1133	0.60	0/1520
72	ST	0.25	0/1137	0.60	0/1533
73	SU	0.27	0/828	0.61	0/1112
74	SV	0.27	0/671	0.60	0/900

Mal	Chain	Bond	lengths	E	Bond angles
10101	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
75	SW	0.30	0/1055	0.66	1/1416~(0.1%)
76	SX	0.27	0/1116	0.56	0/1489
77	SY	0.31	0/991	0.74	0/1324
78	SZ	0.23	0/550	0.59	0/736
79	Sa	0.28	0/852	0.66	0/1136
80	Sb	0.25	0/623	0.64	0/843
81	Sc	0.24	0/476	0.69	0/639
82	Sd	0.32	0/427	0.66	0/570
83	Se	0.31	0/351	0.62	0/463
84	Sf	0.25	0/623	0.60	0/824
All	All	0.33	0/229344	0.76	87/335319~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
10	LB	0	1

There are no bond length outliers.

The worst 5 of 87 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	2	450	C	C2-N1-C1'	8.80	128.49	118.80
17	LI	111	LEU	CA-CB-CG	8.12	133.99	115.30
1	1	1584	U	C2-N1-C1'	7.90	127.18	117.70
54	SB	35	PRO	CA-N-CD	-7.76	100.64	111.50
2	2	450	С	N1-C2-O2	7.72	123.53	118.90

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
10	LB	257	HIS	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
6	А	310/316~(98%)	298 (96%)	12 (4%)	0	100	100
7	В	121/302~(40%)	110 (91%)	9 (7%)	2(2%)	9	39
8	С	808/845~(96%)	756 (94%)	47 (6%)	5 (1%)	25	64
9	LA	246/254~(97%)	222 (90%)	24 (10%)	0	100	100
10	LB	385/392~(98%)	363 (94%)	22 (6%)	0	100	100
11	LC	361/365~(99%)	331 (92%)	30 (8%)	0	100	100
12	LD	298/304~(98%)	289~(97%)	8 (3%)	1 (0%)	41	76
13	LE	192/200~(96%)	172 (90%)	20 (10%)	0	100	100
14	LF	245/249~(98%)	232 (95%)	13 (5%)	0	100	100
15	LG	232/262~(88%)	218 (94%)	14 (6%)	0	100	100
16	LH	189/229~(82%)	183 (97%)	6 (3%)	0	100	100
17	LI	215/219~(98%)	201 (94%)	13 (6%)	1 (0%)	29	68
18	LJ	165/173~(95%)	154 (93%)	11 (7%)	0	100	100
19	LK	154/165~(93%)	129 (84%)	21 (14%)	4(3%)	5	27
20	LL	207/213~(97%)	193~(93%)	14 (7%)	0	100	100
21	LM	139/142~(98%)	134 (96%)	5 (4%)	0	100	100
22	LN	200/203~(98%)	188 (94%)	12 (6%)	0	100	100
23	LO	201/204~(98%)	193~(96%)	8 (4%)	0	100	100
24	LP	170/187~(91%)	163 (96%)	7 (4%)	0	100	100
25	LQ	181/213~(85%)	174 (96%)	7 (4%)	0	100	100
26	LR	182/192~(95%)	180 (99%)	2 (1%)	0	100	100
27	LS	171/174~(98%)	160 (94%)	11 (6%)	0	100	100
28	LT	156/160~(98%)	152 (97%)	4 (3%)	0	100	100
29	LU	98/127~(77%)	$90 \ (92\%)$	8 (8%)	0	100	100
30	LV	$\overline{135/139~(97\%)}$	129 (96%)	6 (4%)	0	100	100

\mathbf{Mol}	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
31	LW	131/205~(64%)	123 (94%)	8 (6%)	0	100	100
32	LX	119/156~(76%)	116 (98%)	3 (2%)	0	100	100
33	LY	131/138~(95%)	128 (98%)	3 (2%)	0	100	100
34	LZ	133/135~(98%)	127 (96%)	5 (4%)	1 (1%)	19	57
35	La	146/149~(98%)	136 (93%)	10 (7%)	0	100	100
36	Lb	61/65~(94%)	60 (98%)	1 (2%)	0	100	100
37	Lc	93/108~(86%)	90 (97%)	3 (3%)	0	100	100
38	Ld	110/120~(92%)	105 (96%)	5 (4%)	0	100	100
39	Le	122/131~(93%)	118 (97%)	4 (3%)	0	100	100
40	Lf	105/109~(96%)	99 (94%)	6 (6%)	0	100	100
41	Lg	110/119~(92%)	104 (94%)	6 (6%)	0	100	100
42	Lh	120/126~(95%)	115 (96%)	5 (4%)	0	100	100
43	Li	99/110~(90%)	96 (97%)	3 (3%)	0	100	100
44	Lj	86/95~(90%)	79 (92%)	7 (8%)	0	100	100
45	Lk	74/94~(79%)	69~(93%)	5 (7%)	0	100	100
46	Ll	48/51~(94%)	42 (88%)	6 (12%)	0	100	100
47	Lm	50/127~(39%)	48 (96%)	2 (4%)	0	100	100
48	Ln	23/25~(92%)	23 (100%)	0	0	100	100
48	Lr	22/25~(88%)	22 (100%)	0	0	100	100
49	Lo	102/106~(96%)	98 (96%)	4 (4%)	0	100	100
50	Lp	89/92~(97%)	83 (93%)	6 (7%)	0	100	100
51	Lq	139/147~(95%)	130 (94%)	9 (6%)	0	100	100
52	Ls	187/312~(60%)	180 (96%)	6 (3%)	1 (0%)	29	68
53	SA	206/285~(72%)	188 (91%)	17 (8%)	1 (0%)	29	68
54	SB	220/255~(86%)	196 (89%)	24 (11%)	0	100	100
55	\mathbf{SC}	214/263~(81%)	201 (94%)	13 (6%)	0	100	100
56	SD	210/254~(83%)	196 (93%)	13 (6%)	1 (0%)	29	68
57	SE	259/264~(98%)	243 (94%)	16 (6%)	0	100	100
58	SF	197/212~(93%)	178 (90%)	18 (9%)	1 (0%)	29	68
59	SG	230/239~(96%)	221 (96%)	7 (3%)	2 (1%)	17	55
60	SH	196/203~(97%)	185 (94%)	11 (6%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
61	SI	199/202~(98%)	189~(95%)	10 (5%)	0	100	100
62	SJ	177/190~(93%)	169~(96%)	8 (4%)	0	100	100
63	SK	87/159~(55%)	81~(93%)	5 (6%)	1 (1%)	14	50
64	SL	147/161~(91%)	138 (94%)	9 (6%)	0	100	100
65	SM	116/144~(81%)	101 (87%)	15 (13%)	0	100	100
66	SN	148/151~(98%)	141 (95%)	7 (5%)	0	100	100
67	SO	133/150~(89%)	118 (89%)	14 (10%)	1 (1%)	19	57
68	SP	126/153~(82%)	114 (90%)	12 (10%)	0	100	100
69	SQ	136/143~(95%)	124 (91%)	12 (9%)	0	100	100
70	SR	126/143~(88%)	119 (94%)	7 (6%)	0	100	100
71	SS	135/156~(86%)	125~(93%)	10 (7%)	0	100	100
72	ST	140/153~(92%)	130 (93%)	10 (7%)	0	100	100
73	SU	101/116~(87%)	89~(88%)	12 (12%)	0	100	100
74	SV	84/98~(86%)	82~(98%)	2 (2%)	0	100	100
75	SW	127/130~(98%)	118 (93%)	9 (7%)	0	100	100
76	SX	140/145~(97%)	127 (91%)	13 (9%)	0	100	100
77	SY	119/136~(88%)	112 (94%)	6 (5%)	1 (1%)	19	57
78	SZ	67/99~(68%)	64 (96%)	3 (4%)	0	100	100
79	Sa	102/119~(86%)	98~(96%)	4 (4%)	0	100	100
80	Sb	79/82~(96%)	72~(91%)	7 (9%)	0	100	100
81	Sc	58/68~(85%)	55~(95%)	3(5%)	0	100	100
82	Sd	50/56~(89%)	45 (90%)	5 (10%)	0	100	100
83	Se	41/62~(66%)	38~(93%)	3 (7%)	0	100	100
84	Sf	72/154~(47%)	61 (85%)	11 (15%)	0	100	100
All	All	$12\overline{503/14119}\ (89\%)$	11723 (94%)	757 (6%)	23 (0%)	50	82

Continued from previous page...

5 of 23 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
8	С	487	VAL
7	В	104	ARG
8	С	374	CYS
52	Ls	103	ASN
58	SF	31	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
6	А	271/274~(99%)	270 (100%)	1 (0%)	91	97
7	В	93/224~(42%)	92~(99%)	1 (1%)	73	90
8	\mathbf{C}	693/719~(96%)	693 (100%)	0	100	100
9	LA	192/198~(97%)	192 (100%)	0	100	100
10	LB	327/331~(99%)	327 (100%)	0	100	100
11	LC	284/285~(100%)	283 (100%)	1 (0%)	91	97
12	LD	250/253~(99%)	250 (100%)	0	100	100
13	LE	162/166~(98%)	162 (100%)	0	100	100
14	m LF	213/215~(99%)	213 (100%)	0	100	100
15	LG	202/222 (91%)	200 (99%)	2 (1%)	76	91
16	LH	168/200~(84%)	168 (100%)	0	100	100
17	LI	182/183~(100%)	182 (100%)	0	100	100
18	LJ	145/150~(97%)	145 (100%)	0	100	100
19	LK	127/136~(93%)	126 (99%)	1 (1%)	81	93
20	LL	172/176~(98%)	172 (100%)	0	100	100
21	LM	116/117~(99%)	116 (100%)	0	100	100
22	LN	179/180~(99%)	179 (100%)	0	100	100
23	LO	162/163~(99%)	162 (100%)	0	100	100
24	LP	140/152~(92%)	139 (99%)	1 (1%)	84	94
25	LQ	155/178~(87%)	155 (100%)	0	100	100
26	LR	153/160~(96%)	152 (99%)	1 (1%)	84	94
27	LS	$\overline{153/154}\ (99\%)$	153 (100%)	0	100	100
28	LT	$\overline{134/135}~(99\%)$	134 (100%)	0	100	100
29	LU	88/108 (82%)	88 (100%)	0	100	100
30	LV	101/102~(99%)	99~(98%)	2 (2%)	55	83
31	LW	107/163~(66%)	106 (99%)	1 (1%)	78	92

α \cdot \cdot \cdot	r	•	
Continued	from	previous	page
	5	1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
32	LX	108/129~(84%)	108 (100%)	0	100	100
33	LY	116/119~(98%)	116 (100%)	0	100	100
34	LZ	121/121~(100%)	121 (100%)	0	100	100
35	La	121/122~(99%)	121 (100%)	0	100	100
36	Lb	54/55~(98%)	53 (98%)	1 (2%)	57	84
37	Lc	77/88~(88%)	77 (100%)	0	100	100
38	Ld	96/105~(91%)	96 (100%)	0	100	100
39	Le	107/114 (94%)	107 (100%)	0	100	100
40	Lf	88/90~(98%)	88 (100%)	0	100	100
41	Lg	97/102~(95%)	97 (100%)	0	100	100
42	Lh	109/112~(97%)	109 (100%)	0	100	100
43	Li	85/93~(91%)	85 (100%)	0	100	100
44	Lj	72/78~(92%)	72 (100%)	0	100	100
45	Lk	73/88~(83%)	72 (99%)	1 (1%)	67	88
46	Ll	45/46~(98%)	45 (100%)	0	100	100
47	Lm	47/114 (41%)	47 (100%)	0	100	100
48	Ln	23/23~(100%)	23 (100%)	0	100	100
48	Lr	22/23~(96%)	22 (100%)	0	100	100
49	Lo	88/90~(98%)	88 (100%)	0	100	100
50	Lp	73/74~(99%)	73 (100%)	0	100	100
51	Lq	109/112~(97%)	109 (100%)	0	100	100
52	Ls	155/255~(61%)	155 (100%)	0	100	100
53	SA	178/225~(79%)	178 (100%)	0	100	100
54	SB	197/223~(88%)	196 (100%)	1 (0%)	88	96
55	\mathbf{SC}	181/206~(88%)	180 (99%)	1 (1%)	86	95
56	SD	182/206~(88%)	182 (100%)	0	100	100
57	SE	$\overline{219/221}~(99\%)$	217 (99%)	2 (1%)	78	92
58	SF	167/178~(94%)	166 (99%)	1 (1%)	86	95
59	SG	$\overline{198/204}~(97\%)$	198 (100%)	0	100	100
60	SH	172/177~(97%)	171 (99%)	1 (1%)	86	95
61	SI	$\overline{163/164}~(99\%)$	162 (99%)	1 (1%)	86	95

Mol	Chain	Analysed	Rotameric	Outliers	iers Percentil		-
62	SJ	154/162~(95%)	153~(99%)	1 (1%)	86	95	
63	SK	77/126~(61%)	77~(100%)	0	100	100	
64	SL	132/143~(92%)	131~(99%)	1 (1%)	81	93	
65	\mathbf{SM}	101/121~(84%)	101 (100%)	0	100	100	
66	SN	129/130~(99%)	129 (100%)	0	100	100	
67	SO	103/117~(88%)	103 (100%)	0	100	100	
68	SP	111/132~(84%)	111 (100%)	0	100	100	
69	SQ	111/115~(96%)	110 (99%)	1 (1%)	78	92	
70	SR	119/131 (91%)	119 (100%)	0	100	100	
71	SS	120/135~(89%)	120 (100%)	0	100	100	
72	ST	114/124~(92%)	114 (100%)	0	100	100	
73	SU	93/103 (90%)	92 (99%)	1 (1%)	73	90	
74	SV	69/80~(86%)	69 (100%)	0	100	100	
75	SW	112/113~(99%)	112 (100%)	0	100	100	
76	SX	113/116~(97%)	113 (100%)	0	100	100	
77	SY	104/115~(90%)	102 (98%)	2(2%)	57	84	
78	SZ	60/80~(75%)	60 (100%)	0	100	100	
79	Sa	91/103 (88%)	90 (99%)	1 (1%)	73	90	
80	Sb	70/71~(99%)	70 (100%)	0	100	100	
81	Sc	53/61~(87%)	53 (100%)	0	100	100	_
82	Sd	43/46~(94%)	43 (100%)	0	100	100	
83	Se	37/51 (72%)	37 (100%)	0	100	100	-
84	Sf	67/139~(48%)	67 (100%)	0	100	100	
All	All	10695/11815 (90%)	10668 (100%)	27 (0%)	92	97	-

Continued from previous page...

5 of 27 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
55	SC	105	ARG
58	SF	200	LYS
77	SY	102	LYS
57	SE	133	ARG
60	SH	113	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 33 such sidechains are listed below:

Mol	Chain	Res	Type
76	SX	63	GLN
77	SY	37	ASN
84	Sf	123	ASN
54	SB	183	GLN
53	SA	72	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	3189/3337~(95%)	589~(18%)	75~(2%)
2	2	1760/1796~(97%)	390 (22%)	65~(3%)
3	3	118/120~(98%)	10 (8%)	1 (0%)
4	4	155/156~(99%)	23~(14%)	1 (0%)
5	5	74/75~(98%)	44 (59%)	9(12%)
All	All	5296/5484~(96%)	1056~(19%)	151 (2%)

5 of 1056 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	1	21	А
1	1	23	G
1	1	27	А
1	1	41	А
1	1	44	А

5 of 151 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
2	2	1055	А
5	5	9	А
2	2	1094	U
2	2	1378	U
5	5	73	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

2 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul

statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Chain	Ros	Dog	Dog	Dec	Dec	Dec	Dec	Dec	Dec	Tink	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
IVIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2						
2	B8N	2	1188	2	17,29,30	2.13	4 (23%)	21,42,45	0.80	1 (4%)						
8	DDE	С	701	8	14,20,21	1.04	1 (7%)	14,28,30	1.01	1 (7%)						

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	B8N	2	1188	2	-	1/12/34/35	0/2/2/2
8	DDE	С	701	8	-	8/20/21/23	0/1/1/1

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
2	2	1188	B8N	O4-C4	7.18	1.42	1.24
2	2	1188	B8N	C4-N3	-3.31	1.33	1.38
8	С	701	DDE	CD2-NE2	2.40	1.39	1.36
2	2	1188	B8N	C5-C1'	2.19	1.54	1.52
2	2	1188	B8N	O4'-C1'	-2.18	1.41	1.44

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	С	701	DDE	CBW-CBI-NAD	2.12	117.98	115.28
2	2	1188	B8N	O4'-C1'-C2'	2.11	108.09	104.66

There are no chirality outliers.

5 of 9 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
8	С	701	DDE	CA-CB-CG-ND1
8	С	701	DDE	NAD-CBI-CBW-NCB
2	2	1188	B8N	N3-C31-C32-C33

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	Atoms
8	С	701	DDE	OAG-CBI-CBW-NCB
8	С	701	DDE	CBI-CBW-NCB-CAC

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 12 ligands modelled in this entry, 11 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Type	Chain	Dog	Tink	Bo	ond leng	ths	В	ond ang	les
	Unam	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
86	GDP	С	901	85	24,30,30	1.18	2 (8%)	$31,\!47,\!47$	1.96	8 (25%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
86	GDP	С	901	85	-	5/12/32/32	0/3/3/3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
86	С	901	GDP	C5-C6	4.23	1.48	1.41
86	С	901	GDP	C5-C4	2.37	1.47	1.40

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
86	С	901	GDP	C2-N3-C4	5.03	121.10	115.36
86	С	901	GDP	C2-N1-C6	3.96	122.23	115.93
86	С	901	GDP	C5-C6-N1	-3.90	118.10	123.43
86	С	901	GDP	C4-C5-C6	-3.75	117.22	120.80
86	С	901	GDP	N3-C2-N1	-3.28	122.85	127.22

The worst 5 of 8 bond angle outliers are listed below:

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
86	С	901	GDP	C5'-O5'-PA-O1A
86	С	901	GDP	C5'-O5'-PA-O2A
86	С	901	GDP	O4'-C4'-C5'-O5'
86	С	901	GDP	C3'-C4'-C5'-O5'
86	С	901	GDP	C5'-O5'-PA-O3A

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	1	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	1	1937:C	O3'	1938:G	Р	5.81

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12977. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

Central slices (i) 6.2

6.2.1Primary map

X Index: 243

Y Index: 243

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 254

Y Index: 267

Z Index: 258

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 1.3. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2327 $\rm nm^3;$ this corresponds to an approximate mass of 2102 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.333 ${\rm \AA}^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.333 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	3.00	-	-	
Author-provided FSC curve	3.04	3.45	3.07	
Unmasked-calculated*	-	-	-	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12977 and PDB model 7OLD. Per-residue inclusion information can be found in section 3 on page 21.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 1.3 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 97% of all backbone atoms, 93% of all non-hydrogen atoms, are inside the map.

