

wwPDB EM Validation Summary Report (i)

Jan 21, 2024 - 08:03 am GMT

PDB ID	:	80M2
EMDB ID	:	EMD-16966
Title	:	Small subunit of yeast mitochondrial ribosome in complex with
		METTL17/Rsm22.
Authors	:	Itoh, Y.; Chicherin, I.; Kamenski, P.; Amunts, A.
Deposited on	:	2023-03-31
Resolution	:	2.57 Å(reported)
Based on initial model	:	5MRC

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.57 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	344	29%	13%
2	В	394	19%	13%
3	С	398	28%	20%
4	D	486	9%	30%
5	Е	307	5% 95%	•
6	F	131	5%	
7	G	247	82%	18%
8	Н	154	100%	

Continued on next page...

Mol	Chain	Length	Quality of chain	
9	Ι	278	8%	17%
10	J	203	80%	20%
11	K	217	<u>6%</u> 70%	30%
12	L	153	80%	20%
13	М	143	83%	17%
14	Ν	115	98%	
15	О	286	78%	22%
16	Р	121	99%	
17	Q	237	26%	
18	R	138	7%	27%
19	S	91	5% 87%	13%
20	Т	177	6% 52% 48%	
21	U	264	90%	10%
22	V	318	90%	10%
23	W	450	89%	11%
24	Х	110	89%	11%
25	Y	319	85%	15%
26	Ζ	95	97%	•
27	1	111	5% 28% 72%	
28	2	130	78%	22%
29	3	266	5% 96%	·
30	4	321	94%	6%
31	5	339	19% 86%	14%
32	6	345	92%	8%
33	8	500	93%	7%

Continued from previous page...

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain		
34	r	1647	80%	10%	10%
35	с	628	8%	23%	

2 Entry composition (i)

There are 41 unique types of molecules in this entry. The entry contains 172798 atoms, of which 77593 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 37S ribosomal protein MRP51, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
1	А	300	Total 4908	C 1552	Н 2481	N 427	0 441	S 7	1	0

• Molecule 2 is a protein called 37S ribosomal protein MRP4, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
2	В	342	Total 5436	C 1709	Н 2722	N 467	O 535	${ m S} { m 3}$	0	0

• Molecule 3 is a protein called Ribosomal protein VAR1, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
3	C	310	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
Э	U	519	5319	1661	2663	469	493	33	0	0

• Molecule 4 is a protein called 37S ribosomal protein NAM9, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
4	D	341	Total 5729	C 1842	Н 2896	N 499	O 487	${f S}{5}$	0	0

• Molecule 5 is a protein called 37S ribosomal protein S5, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
5	Е	294	Total 4708	C 1494	Н 2360	N 418	0 428	S 8	0	0

• Molecule 6 is a protein called 37S ribosomal protein MRP17, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
6	F	131	Total 2184	C 671	Н 1129	N 189	0 191	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 7 is a protein called 37S ribosomal protein S7, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
7	G	203	Total 3272	C 1019	Н 1660	N 289	O 299	${f S}{5}$	0	0

• Molecule 8 is a protein called 37S ribosomal protein S8, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
8	Н	154	Total 2509	С 774	Н 1286	N 219	0 221	S 9	1	0

• Molecule 9 is a protein called 37S ribosomal protein S9, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
9	Ι	231	Total 3783	C 1181	Н 1925	N 334	0 338	${ m S}{ m 5}$	1	0

• Molecule 10 is a protein called 37S ribosomal protein S10, mitochondrial.

Mol	Chain	Residues			S			AltConf	Trace	
10	J	162	Total 2655	$\begin{array}{c} \mathrm{C} \\ 853 \end{array}$	Н 1334	N 227	O 237	$\frac{S}{4}$	0	0

• Molecule 11 is a protein called 37S ribosomal protein S18, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
11	K	151	Total 2475	С 775	Н 1266	N 213	0 215	${f S}{6}$	1	0

• Molecule 12 is a protein called 37S ribosomal protein S12, mitochondrial.

Mol	Chain	Residues			ıs			AltConf	Trace	
12	L	123	Total 1932	C 579	Н 993	N 192	0 164	${S \over 4}$	0	0

• Molecule 13 is a protein called 37S ribosomal protein SWS2, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
13	М	119	Total 1937	C 591	Н 1002	N 178	O 160	S 6	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
М	41	LEU	PHE	variant	UNP P53937

• Molecule 14 is a protein called 37S ribosomal protein MRP2, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
14	Ν	113	Total 1917	C 596	Н 986	N 179	0 152	$\frac{S}{4}$	0	0

• Molecule 15 is a protein called 37S ribosomal protein S28, mitochondrial.

Mol	Chain	Residues			Atom	5			AltConf	Trace
15	О	223	Total 3668	C 1134	Н 1853	N 334	O 339	S 8	0	0

• Molecule 16 is a protein called 37S ribosomal protein S16, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
16	Р	120	Total 1963	C 604	Н 1011	N 178	0 168	${S \over 2}$	0	0

• Molecule 17 is a protein called 37S ribosomal protein S17, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
17	Q	235	Total 3944	C 1208	Н 2014	N 356	0 361	${ m S}{ m 5}$	1	0

• Molecule 18 is a protein called 37S ribosomal protein RSM18, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
18	R	101	Total 1671	C 507	Н 853	N 162	0 145	$\frac{S}{4}$	0	0

• Molecule 19 is a protein called 37S ribosomal protein S19, mitochondrial.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
19	S	79	Total 1277	C 404	Н 648	N 114	O 109	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 37S ribosomal protein MRP21, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
20	Т	92	Total 1569	C 483	Н 800	N 150	0 131	${ m S}{ m 5}$	1	0

• Molecule 21 is a protein called 37S ribosomal protein S25, mitochondrial.

Mol	Chain	Residues			Atom	s			AltConf	Trace
21	U	237	Total 3868	C 1228	Н 1929	N 339	O 365	${ m S} 7$	0	0

• Molecule 22 is a protein called 37S ribosomal protein PET123, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
22	V	286	Total 4692	C 1450	Н 2398	N 406	0 434	$\frac{S}{4}$	0	0

• Molecule 23 is a protein called 37S ribosomal protein S23, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
23	W	402	$\begin{array}{c} \text{Total} \\ 6555 \end{array}$	C 2078	Н 3329	N 542	O 598	S 8	0	0

• Molecule 24 is a protein called Mitochondrial 37S ribosomal protein S27.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
24	Х	98	Total 1619	C 503	H 832	N 142	O 139	$\frac{S}{3}$	0	0

• Molecule 25 is a protein called 37S ribosomal protein S24, mitochondrial.

Mol	Chain	Residues			Atom	5			AltConf	Trace
25	Y	272	Total 4514	C 1436	Н 2241	N 408	O 425	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called 37S ribosomal protein MRP10, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
26	Z	92	Total 1487	C 459	Н 758	N 137	0 127	S 6	0	0

• Molecule 27 is a protein called Mitochondrial mRNA-processing protein COX24.

Mol	Chain	Residues		ŀ	Atom	S			AltConf	Trace
27	1	31	Total 613	C 170	Н 334	N 68	O 39	${ m S} { m 2}$	0	0

• Molecule 28 is a protein called Protein FYV4, mitochondrial.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
28	2	102	Total 1724	С 544	Н 866	N 161	0 152	S 1	0	0

• Molecule 29 is a protein called 37S ribosomal protein S26, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
29	3	257	Total 4103	C 1326	Н 2040	N 349	O 383	${ m S}{ m 5}$	0	0

• Molecule 30 is a protein called 37S ribosomal protein MRP1, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace	
30	4	303	Total 4859	C 1538	Н 2423	N 422	O 466	S 10	0	0

• Molecule 31 is a protein called 37S ribosomal protein MRP13, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace	
31	5	291	Total 4770	C 1524	Н 2409	N 404	0 429	${S \atop 4}$	0	0

• Molecule 32 is a protein called 37S ribosomal protein S35, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace	
32	6	319	Total 5208	C 1646	Н 2615	N 467	0 474	S 6	0	0

• Molecule 33 is a protein called 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace	
33	8	467	Total 7371	C 2341	Н 3681	N 621	0 708	S 20	0	0

• Molecule 34 is a RNA chain called 15S mitochondrial rRNA.

Mol	Chain	Residues			Ato	ms			AltConf	Trace
34	r	1486	Total 47424	C 14203	H 15836	N 5575	O 10322	Р 1488	2	0

• Molecule 35 is a protein called Probable S-adenosyl-L-methionine-dependent RNA methyltransferase RSM22, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
35	С	483	Total 7907	C 2479	Н 3983	N 713	O 719	S 13	0	0

• Molecule 36 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
36	В	1	Total Mg 1 1	0
36	K	1	Total Mg 1 1	0
36	W	1	Total Mg 1 1	0
36	r	87	TotalMg8787	0

• Molecule 37 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
37	D	1	Total K 1 1	0
37	М	1	Total K 1 1	0
37	r	33	Total K 33 33	0

• Molecule 38 is DODECYL-BETA-D-MALTOSIDE (three-letter code: LMT) (formula: $\rm C_{24}H_{46}O_{11}).$

Mol	Chain	Residues	Atoms				AltConf
38	0	1	Total	C 19	H 25	0	0
			30	12	ZO	T	

• Molecule 39 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Atoms					AltConf
20	W	1	Total	С	Η	Ν	Ο	Р	0
- 39	vv	1	43	10	12	5	13	3	0

• Molecule 40 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
40	с	1	Total Fe S 8 4 4	0

• Molecule 41 is water.

Mol	Chain	Residues	Atoms	AltConf
41	А	42	$\begin{array}{cc} \text{Total} & \text{O} \\ 42 & 42 \end{array}$	0
41	В	95	Total O 95 95	0
41	С	12	Total O 12 12	0
41	D	77	Total O 77 77	0
41	Е	65	Total O 65 65	0
41	F	5	Total O 5 5	0
41	G	17	Total O 17 17	0
41	Н	49	Total O 49 49	0
41	Ι	39	Total O 39 39	0
41	J	26	TotalO2626	0
41	K	10	Total O 10 10	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
41	т	27	Total O	0
41	Ľ	21	27 27	0
41	М	10	Total O	0
	111	10	10 10	0
41	Ν	42	Total O	0
			42 42	Ŭ
41	0	39	Total O	0
	_		39 39	
41	Р	43	Total O	0
			43 43	
41	Q	18	Total O	0
			18 18 Tutul O	
41	R	7	Iotal O	0
			Total O	
41	S	9		0
			Total O	
41	Т	24	24 24	0
			Total O	
41	U	55	55 55	0
			Total O	
41	V	18	18 18	0
			Total O	
41	W	50	$50 ext{ }50$	0
4.1	37		Total O	0
41	Х	6	6 6	0
41	V	00	Total O	0
41	Y	28	28 28	0
41	7	11	Total O	0
41		11	11 11	0
41	1	0	Total O	0
41	T	9	9 9	0
41	2	12	Total O	0
		12	12 12	0
41	3	9	Total O	0
			9 9	
41	4	2	Total O	0
	_	_	2 2	
41	5	1	Total O	0
	-			_
41	6	53	Total O	0
	, , , , , , , , , , , , , , , , , , ,		53 - 53	

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
41	8	11	Total O 11 11	0
41	r	2070	Total O 2070 2070	0
41	с	23	TotalO2323	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 37S ribosomal protein MRP51, mitochondrial

E61 Y62 L63 P64 E65 E65 S67 S67 L68 A69 P70	P71 672 874 874 V76 V76 V76 CL78 GL78 GL78 GL78 GL78 GL78 GL78 GL78 G	6172 4174 A174 A175 A175 0245 K247 K247
• Molecule 8: 375	S ribosomal protein S8. mitochondrial	
	r in it, it is a	
Chain H:	100%	
There are no outl	lier residues recorded for this chain.	
• Molecule 9: 375	S ribosomal protein S9, mitochondrial	l
Chain I:	83%	17%
MET PHE SPHE SER LEU LEU LEU ARG ARG ARG ARA ALA	ALA PRO PRO ALA MET PRO PRO MET THR PRE THR THR THR CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	A76 977 978 179 8135 8135 8135 8135 8135 8135 8135 8135
GLY LYS LYS LYS ALA ALA ALA MET PRO THR TRP VAL	ARG	
• Molecule 10: 37	7S ribosomal protein S10, mitochondr	ial
Chain J:	80%	20%
MET LEU LEU ARG ARG ARG ALA LEU ARG SER SER ARG ARG	THRA THR GLN S16 S16 S16 S91 F92 F93 F93 F93 F93 F93 F93 F93 F93 F93 F93	SER LEU SER ASN ASN ASN ASN CLEU LEU ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
LYS		
• Molecule 11: 37	7S ribosomal protein S18, mitochondr	ial
Chain K:	70%	30%
MET LEU LEU LEU CLEU PRO PRO CYS CYS THR THR	CLIN CHE VAL ARG PRO TRP ARG ARG ARG ARG ARG CLY TRP ARG CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	GLN GLN ASP TILE TTR ASN TTR ASP SER ASP SER ASP SER ASP SER ASP SER SER TTR TTR TTR TTR ASP SER SER SER SER
ASN SER SER SER SER SER VAL VAL V67 F69 F69 F69	F100 H101 K102 K104 C105 L106 L106 L217	
• Molecule 12: 37	7S ribosomal protein S12, mitochondr	ial
Chain L:	80%	20%
MET LEU SER ARG PHE PHE SER ASN THR TRP TRP TRP TRP TRP	LEN LA ARG GLN ALA ALA ALA ALA ALA ALA MET MET MET MET SIS LYS SIS LYS SER SIS	
• Molecule 13: 37	7S ribosomal protein SWS2, mitochon	ndrial
Chain M:	83%	17%

PROTEIN DATA BANK

MET MET V2 CLY CLY THR THR THR THR THR CLY CLN CLN CLN CLN	ARIA PRO TRP FRO SER CYS CYS CYS CYS CYS CYS LVS LVS	
• Molecule 14: 37S ri	bosomal protein MRP2, mitochondrial	
Chain N:	98%	
MET 62 1114 TRP		
• Molecule 15: 37S ri	bosomal protein S28, mitochondrial	
Chain O:	78% 22%	6
MET SER TLE VAL CLY CLY ACA ASN ASN ASN LEU LEU LEU LEU CLEU CLEU CLEU CLEU CLE	Creation of the control of the contr	D260
ASN ASN CLYS CLYS ARC CLU CLYS CLU CLYS CLYS CLYS ARC ARC ALA ARC ARLA		
• Molecule 16: 37S ri	bosomal protein S16, mitochondrial	
Chain P:	99%	
MET T2 B121		
• Molecule 17: 37S ri	bosomal protein S17, mitochondrial	
Chain Q:	99%	
MET A2 H199 E115 U118 E116 K121 K121 T122 D127	L125 A134 A134 A134 A134 A135 A135 A139 A139 A139 A140 A141 A144 A144 A144 A144 A144 A144	E159 E192 E192 E195 E195 D197 L198 D201 E203 E203 E203 E203 E206 H207 C208 C208 E210 E
D211 P212 P212 L213 T214 L215 K216 K216 K216 K217 N219 T219 Q233 Q233	P 235 S 2366 GLIN	
• Molecule 18: 37S ri	bosomal protein RSM18, mitochondrial	
Chain R:	73% 27%	
MET GLN CLN CLN CLN CLN CLN CLN CLN CLN CLN C	ALA I.V.N I.V.N I.V.N I.V.S I.V.	
• Molecule 19: 37S ri	bosomal protein S19, mitochondrial	
Chain S:	87%	13%
	PROTEIN DATA BANK	

Chain Y:	85%	15%
MET LYS VAL PRO PRO GLY GLY CLEU CLYS VAL ASN VAL ASN VAL ASN VAL CLEU TRP ASN CLY TRP ASN TRP ASN TRP TRP ASN TRP TRP ASN TRP TRP TRP TRP TRP TRP TRP TRP TRP TRP	SER ARG CYS CYS CYS ASN ASN ASP ASN ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	D4 9 EE 5 C5 9 C5 9 C5 9 C5 9 C5 9 C5 9 C5 9 C5
N102 D103 R110 R110 C121 C121 C122 C121 N122 C121 N122 N122	Y292 K307 K307 K308 F309 F309 1311 V312 0314 C315 C315 C316 S317 T318 LBU	
• Molecule 26: 37S ribosomal pro	tein MRP10, mitochondrial	
Chain Z:	97%	.
MET SER GLY GLY G25 G25 A27 A27 A27 A27 A27 A27 A27 A27 A27 A27		
• Molecule 27: Mitochondrial mR	NA-processing protein COX24	
Chain 1: 28%	72%	
MET LIEU ARG ARG ALA ALA ALA ARG FRP CIT THR THR THR THR THR CIT SER SER SER SER	TYR PHE ARG THR THR THR THR THR THR MET MET MET MET MET MET MET MET THR MET THR THR THR THR THR THR THR THR THR TH	MET MET MET THR THR THR THR TALA TLA TLE
THR CLY VAL VAL VAL VAL PRO CLU PRO CLU PRO CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	S1 06 GLN GLN ARG	
• Molecule 28: Protein FYV4, mi	tochondrial	
Chain 2:	78%	22%
MET TILE PRO SER SER SER HIS PILE PRO PRO FIE VIA ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ARC SPHE SPHE SPHE ST29 Q130 Q130	
• Molecule 29: 37S ribosomal pro	tein S26, mitochondrial	
Chain 3:	96%	
MET LEU VAL LEU LYS LYS ARG GLY GLY N95 C102 H103 G104 C102 H103 G104 A100 S107 N106 N106 N106	LYS LYS LYS	
• Molecule 30: 37S ribosomal pro	tein MRP1, mitochondrial	
Chain 4:	94%	6%
MET LEU LEU ARG ARG GLY ARG ALA ARG TLS TLS T15 S14 S15 S14 B54 S58 S58 S58 S58 S58 S58 S58 S58 S58 S58	961 1101 1101 1101 1177 1101 1177 1177 11	1191 E192 E227 E227 K228 R228 R230 R230 R233 R233 R233 R233 R233 R233

• Molecule 31: 37S ribosomal protein MRP13, mitochondrial

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	283744	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	32	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2800	Depositor
Magnification	165000	Depositor
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.871	Depositor
Minimum map value	-0.106	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.015	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	398.40192, 398.40192, 398.40192	wwPDB
Map dimensions	672, 672, 672	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.59286, 0.59286, 0.59286	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SAC, ATP, SF4, MG, LMT, K

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.24	0/2483	0.46	0/3345	
2	В	0.24	0/2764	0.45	0/3746	
3	С	0.24	0/2690	0.40	0/3616	
4	D	0.25	0/2913	0.46	0/3923	
5	Е	0.25	0/2403	0.48	0/3237	
6	F	0.24	0/1068	0.48	0/1430	
7	G	0.23	0/1641	0.45	0/2216	
8	Н	0.24	0/1237	0.47	0/1667	
9	Ι	0.24	0/1895	0.46	0/2552	
10	J	0.25	0/1355	0.48	0/1834	
11	Κ	0.24	0/1232	0.46	0/1642	
12	L	0.25	0/954	0.55	0/1281	
13	М	0.24	0/949	0.50	0/1267	
14	Ν	0.26	0/948	0.51	0/1267	
15	0	0.24	0/1837	0.48	0/2457	
16	Р	0.25	0/968	0.55	0/1307	
17	Q	0.24	0/1953	0.49	0/2609	
18	R	0.24	0/830	0.53	0/1106	
19	S	0.26	0/645	0.50	0/872	
20	Т	0.25	0/784	0.50	0/1035	
21	U	0.24	0/1982	0.46	0/2679	
22	V	0.24	0/2325	0.43	0/3112	
23	W	0.24	0/3292	0.42	0/4449	
24	Х	0.25	0/801	0.47	0/1070	
25	Y	0.23	0/2329	0.47	0/3142	
26	Z	0.23	0/745	0.46	0/1004	
27	1	0.23	0/279	0.62	0/355	
28	2	0.24	0/877	0.44	0/1173	
29	3	0.25	0/2114	0.44	0/2872	
30	4	0.24	0/2485	0.46	0/3354	
31	5	0.24	0/2417	0.43	0/3275	
32	6	0.25	0/2655	0.47	0/3583	

Mal	Chain	Bond lengths		Bond angles	
Moi Chain		RMSZ	# Z > 5	RMSZ	# Z > 5
33	8	0.24	0/3766	0.45	0/5099
34	r	0.24	0/35387	0.68	0/55053
35	с	0.24	0/4000	0.48	0/5380
All	All	0.24	0/97003	0.56	0/138009

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	299/344~(87%)	285~(95%)	14 (5%)	0	100	100
2	В	338/394~(86%)	329~(97%)	9 (3%)	0	100	100
3	С	309/398~(78%)	301 (97%)	8 (3%)	0	100	100
4	D	337/486~(69%)	333~(99%)	4 (1%)	0	100	100
5	Ε	292/307~(95%)	283~(97%)	9 (3%)	0	100	100
6	F	129/131~(98%)	127~(98%)	2 (2%)	0	100	100
7	G	199/247~(81%)	196 (98%)	3 (2%)	0	100	100
8	Н	153/154~(99%)	151 (99%)	2 (1%)	0	100	100
9	Ι	230/278~(83%)	226 (98%)	4 (2%)	0	100	100
10	J	158/203~(78%)	154 (98%)	4 (2%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
11	Κ	150/217~(69%)	146 (97%)	4 (3%)	0	100	100
12	L	121/153~(79%)	119 (98%)	2 (2%)	0	100	100
13	М	117/143~(82%)	115 (98%)	2 (2%)	0	100	100
14	N	111/115 (96%)	111 (100%)	0	0	100	100
15	Ο	219/286~(77%)	217 (99%)	2 (1%)	0	100	100
16	Р	118/121 (98%)	115 (98%)	3 (2%)	0	100	100
17	Q	234/237~(99%)	232 (99%)	2 (1%)	0	100	100
18	R	99/138~(72%)	98 (99%)	1 (1%)	0	100	100
19	S	77/91~(85%)	74 (96%)	3 (4%)	0	100	100
20	Т	91/177~(51%)	90 (99%)	1 (1%)	0	100	100
21	U	235/264~(89%)	230 (98%)	5 (2%)	0	100	100
22	V	282/318~(89%)	279 (99%)	3 (1%)	0	100	100
23	W	400/450~(89%)	390 (98%)	10 (2%)	0	100	100
24	Х	96/110~(87%)	96 (100%)	0	0	100	100
25	Y	270/319~(85%)	266 (98%)	4 (2%)	0	100	100
26	Z	90/95~(95%)	86 (96%)	4 (4%)	0	100	100
27	1	29/111~(26%)	29 (100%)	0	0	100	100
28	2	100/130~(77%)	98 (98%)	2 (2%)	0	100	100
29	3	255/266~(96%)	246 (96%)	9 (4%)	0	100	100
30	4	301/321~(94%)	288 (96%)	13 (4%)	0	100	100
31	5	289/339~(85%)	282 (98%)	7 (2%)	0	100	100
32	6	317/345~(92%)	310 (98%)	7 (2%)	0	100	100
33	8	465/500~(93%)	450 (97%)	15 (3%)	0	100	100
35	с	475/628 (76%)	465 (98%)	10 (2%)	0	100	100
All	All	7385/8816~(84%)	7217 (98%)	168 (2%)	0	100	100

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	А	270/309~(87%)	270~(100%)	0	100 100	
2	В	307/350~(88%)	307~(100%)	0	100	100
3	С	312/385~(81%)	312 (100%)	0	100	100
4	D	306/437~(70%)	304 (99%)	2 (1%)	84	93
5	Е	253/266~(95%)	252 (100%)	1 (0%)	91	97
6	F	120/120~(100%)	120 (100%)	0	100	100
7	G	174/211 (82%)	173 (99%)	1 (1%)	86	94
8	Н	141/140 (101%)	141 (100%)	0	100	100
9	Ι	205/245~(84%)	204 (100%)	1 (0%)	88	96
10	J	146/183~(80%)	146 (100%)	0	100	100
11	К	131/192~(68%)	131 (100%)	0	100	100
12	L	102/131~(78%)	102 (100%)	0	100	100
13	М	100/121~(83%)	100 (100%)	0	100	100
14	Ν	101/103~(98%)	101 (100%)	0	100	100
15	Ο	192/250~(77%)	192 (100%)	0	100	100
16	Р	105/106~(99%)	105 (100%)	0	100	100
17	Q	$217/218\ (100\%)$	215 (99%)	2 (1%)	78	90
18	R	89/121 (74%)	89 (100%)	0	100	100
19	S	68/78~(87%)	68 (100%)	0	100	100
20	Т	82/159~(52%)	82 (100%)	0	100	100
21	U	212/236~(90%)	212 (100%)	0	100	100
22	V	260/287~(91%)	260 (100%)	0	100	100
23	W	369/409~(90%)	368 (100%)	1 (0%)	92	97
24	Х	85/92~(92%)	85 (100%)	0	100	100
25	Y	249/289~(86%)	248 (100%)	1 (0%)	91	97
26	Z	83/85~(98%)	83 (100%)	0	100	100
27	1	30/98~(31%)	30 (100%)	0	100	100
28	2	93/117~(80%)	93 (100%)	0	100	100
29	3	232/240~(97%)	231 (100%)	1 (0%)	91	97
30	4	267/281~(95%)	267 (100%)	0	100	100

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
31	5	259/303~(86%)	259~(100%)	0	100 100
32	6	289/312~(93%)	289 (100%)	0	100 100
33	8	413/444~(93%)	412 (100%)	1 (0%)	93 98
35	с	433/564~(77%)	430 (99%)	3~(1%)	84 93
All	All	6695/7882~(85%)	6681 (100%)	14 (0%)	93 98

Continued from previous page...

5 of 14 residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
23	W	141	HIS
25	Y	292	TYR
35	с	572	ILE
35	с	214	ASN
35	с	482	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 16 such side chains are listed below:

Mol	Chain	Res	Type
32	6	169	GLN
31	5	143	GLN
13	М	49	GLN
30	4	69	HIS
13	М	48	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
34	r	1473/1647~(89%)	165~(11%)	0

5 of 165 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
34	r	13	U
34	r	16	G
34	r	29	G
34	r	39	А
34	r	46	А

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

1 non-standard protein/DNA/RNA residue is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	B	ond leng	gths	E	Bond ang	gles
	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
8	SAC	H	2	8	7,8,9	0.22	0	8,9,11	0.55	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	SAC	Н	2	8	-	0/7/8/10	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 128 ligands modelled in this entry, 125 are monoatomic - leaving 3 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Bog Link Bond lengths				В	ond ang	les
	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
39	ATP	W	501	36	26,33,33	0.76	0	31,52,52	0.67	0
38	LMT	0	301	-	12,12,36	0.15	0	11,11,47	0.19	0
40	SF4	с	701	35	0,12,12	-	-	-		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
39	ATP	W	501	36	-	0/18/38/38	0/3/3/3
38	LMT	0	301	-	-	0/10/10/61	-
40	SF4	с	701	35	-	-	0/6/5/5

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-16966. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 336

Y Index: 336

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 369

Y Index: 345

Z Index: 329

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 661 nm^3 ; this corresponds to an approximate mass of 597 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.389 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-16966 and PDB model 80M2. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.05).

9.4 Atom inclusion (i)

At the recommended contour level, 84% of all backbone atoms, 84% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.05) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8400	0.6020
1	0.8100	0.6080
2	0.9120	0.6400
3	0.8750	0.6140
4	0.7200	0.5230
5	0.6470	0.4900
6	0.8900	0.6260
8	0.6220	0.5810
А	0.6220	0.5210
В	0.7440	0.5920
С	0.5890	0.4970
D	0.8220	0.6110
E	0.8970	0.6540
F	0.8870	0.6260
G	0.6720	0.5370
Н	0.9690	0.7000
Ι	0.8810	0.6300
J	0.8760	0.6350
K	0.8290	0.5890
L	0.9730	0.6820
М	0.9290	0.6520
N	0.9590	0.6720
0	0.8860	0.6450
Р	0.9240	0.6630
Q	0.6720	0.5270
R	0.8730	0.6140
S	0.8790	0.6130
T	0.8390	0.5920
U	0.9210	0.6540
V	0.7520	0.5690
W	0.9200	0.6590
X	0.8830	0.5970
Y	0.7710	0.5910
Z	0.7630	0.5590
С	0.7770	0.5280
r	0.9290	0.6220

0.0 <.00

1.0

