

wwPDB EM Validation Summary Report (i)

Jan 21, 2024 - 07:51 am GMT

PDB ID : 80M4 EMDB ID EMD-16968 : Title Small subunit of yeast mitochondrial ribosome. : Authors Itoh, Y.; Chicherin, I.; Kamenski, P.; Amunts, A. : Deposited on 2023-03-31 : 2.32 Å(reported) Resolution : Based on initial model 5MRC ·

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.32 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	344	28%	10%	13%
2	В	394	84%	•	13%
3	С	398	19%		6% 7%
4	D	486	8% 67% •	30%	
5	Е	307	93%		
6	F	131	96%		•
7	G	247	76%	6%	18%

Continued on next page...

Mol	Chain	Length	Quality of chain	
8	Н	155	97%	•
9	Ι	278	6% 80%	17%
10	J	203	75% •	20%
11	К	217	5% 68%	30%
12	L	153	79%	20%
13	М	143	81%	• 17%
14	Ν	115	96%	•••
15	О	286	73% 5%	22%
16	Р	121	97%	•••
17	Q	237	92%	8% •
18	R	138	70% •	27%
19	S	91	82%	• 13%
20	Т	177	5% 47% 5% 48%	
21	U	264	87%	• 10%
22	V	318	88%	• 10%
23	W	450	87%	• 11%
24	Х	110	87%	• 11%
25	Y	319	<u>6%</u> 83%	• 15%
26	Ζ	95	95%	••
27	1	111	28% 72%	
28	2	130		22%
29	3	266	5% 91%	5% •
30	4	321	87%	7% 6%
31	5	339	78% 79	% 14%
32	6	345	91%	• 8%

Continued from previous page...

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain			
33	8	500	89%		• 7%	
34	r	1647	80%	10%	10%	

2 Entry composition (i)

There are 39 unique types of molecules in this entry. The entry contains 166964 atoms, of which 74046 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 37S ribosomal protein MRP51, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
1	А	300	Total 4908	C 1552	Н 2481	N 427	0 441	S 7	1	0

• Molecule 2 is a protein called 37S ribosomal protein MRP4, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
2	В	342	Total 5436	C 1709	Н 2722	N 467	O 535	${ m S} { m 3}$	0	0

• Molecule 3 is a protein called Ribosomal protein VAR1, mitochondrial.

Mol	Chain	Residues			Atom	s			AltConf	Trace
3	C	379	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
5	U	512	6181	1930	3091	553	574	33	0	0

• Molecule 4 is a protein called 37S ribosomal protein NAM9, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
4	D	341	Total 5729	C 1842	Н 2896	N 499	0 487	${f S}{5}$	0	0

• Molecule 5 is a protein called 37S ribosomal protein S5, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
5	Е	294	Total 4708	C 1494	Н 2360	N 418	0 428	S 8	0	0

• Molecule 6 is a protein called 37S ribosomal protein MRP17, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
6	F	131	Total 2184	C 671	Н 1129	N 189	0 191	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 7 is a protein called 37S ribosomal protein S7, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
7	G	203	Total 3272	C 1019	Н 1660	N 289	O 299	${f S}{5}$	0	0

• Molecule 8 is a protein called 37S ribosomal protein S8, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
8	Н	155	Total 2509	С 774	Н 1286	N 219	0 221	S 9	1	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Н	1	ACE	-	acetylation	UNP Q03799

• Molecule 9 is a protein called 37S ribosomal protein S9, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
9	Ι	231	Total 3783	C 1181	Н 1925	N 334	O 338	${f S}{5}$	1	0

• Molecule 10 is a protein called 37S ribosomal protein S10, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
10	J	162	Total 2655	C 853	Н 1334	N 227	0 237	$\frac{S}{4}$	0	0

• Molecule 11 is a protein called 37S ribosomal protein S18, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
11	K	151	Total 2475	С 775	Н 1266	N 213	0 215	S 6	1	0

• Molecule 12 is a protein called 37S ribosomal protein S12, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
12	L	123	Total 1932	C 579	Н 993	N 192	0 164	$\frac{S}{4}$	0	0

• Molecule 13 is a protein called 37S ribosomal protein SWS2, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
13	М	119	Total 1937	C 591	Н 1002	N 178	O 160	S 6	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue Modelled		Actual	Comment	Reference
М	41	LEU	PHE	variant	UNP P53937

• Molecule 14 is a protein called 37S ribosomal protein MRP2, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
14	Ν	113	Total 1917	C 596	Н 986	N 179	0 152	$\frac{S}{4}$	0	0

• Molecule 15 is a protein called 37S ribosomal protein S28, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
15	О	223	Total 3668	C 1134	Н 1853	N 334	O 339	S 8	0	0

• Molecule 16 is a protein called 37S ribosomal protein S16, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
16	Р	120	Total 1963	C 604	Н 1011	N 178	0 168	${ m S} { m 2}$	0	0

• Molecule 17 is a protein called 37S ribosomal protein S17, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
17	Q	235	Total 3944	C 1208	Н 2014	N 356	0 361	${S \atop 5}$	1	0

• Molecule 18 is a protein called 37S ribosomal protein RSM18, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
18	R	101	Total 1671	C 507	Н 853	N 162	0 145	$\frac{S}{4}$	0	0

• Molecule 19 is a protein called 37S ribosomal protein S19, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
19	S	79	Total 1277	C 404	Н 648	N 114	O 109	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 37S ribosomal protein MRP21, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
20	Т	92	Total 1569	C 483	Н 800	N 150	0 131	${ m S}{ m 5}$	1	0

• Molecule 21 is a protein called 37S ribosomal protein S25, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
21	U	237	Total 3868	C 1228	Н 1929	N 339	O 365	${f S}{7}$	0	0

• Molecule 22 is a protein called 37S ribosomal protein PET123, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
22	V	286	Total 4692	C 1450	Н 2398	N 406	0 434	${S \over 4}$	0	0

• Molecule 23 is a protein called 37S ribosomal protein S23, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
23	W	402	Total 6555	C 2078	Н 3329	N 542	O 598	S 8	0	0

• Molecule 24 is a protein called Mitochondrial 37S ribosomal protein S27.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
24	Х	98	Total 1619	C 503	Н 832	N 142	0 139	${ m S} { m 3}$	0	0

• Molecule 25 is a protein called 37S ribosomal protein S24, mitochondrial.

Mol	Chain	Residues			Atom	s			AltConf	Trace
25	Y	272	Total 4514	C 1436	Н 2241	N 408	0 425	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called 37S ribosomal protein MRP10, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
26	Z	92	Total 1487	C 459	Н 758	N 137	0 127	S 6	0	0

• Molecule 27 is a protein called Mitochondrial mRNA-processing protein COX24.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
27	1	31	Total 613	C 170	Н 334	N 68	O 39	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 28 is a protein called Protein FYV4, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
28	2	102	Total 1724	С 544	Н 866	N 161	O 152	S 1	0	0

• Molecule 29 is a protein called 37S ribosomal protein S26, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
29	3	257	Total 4103	C 1326	Н 2040	N 349	O 383	${f S}{5}$	0	0

• Molecule 30 is a protein called 37S ribosomal protein MRP1, mitochondrial.

Mol	Chain	Residues			Atom	s			AltConf	Trace
30	4	303	Total 4859	C 1538	Н 2423	N 422	O 466	S 10	0	0

• Molecule 31 is a protein called 37S ribosomal protein MRP13, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
31	5	291	Total 4770	C 1524	Н 2409	N 404	0 429	$\frac{S}{4}$	0	0

• Molecule 32 is a protein called 37S ribosomal protein S35, mitochondrial.

Mol	Chain	Residues			Atom	5			AltConf	Trace
32	6	319	Total 5208	C 1646	Н 2615	N 467	0 474	S 6	0	0

• Molecule 33 is a protein called 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial.

Mol	Chain	Residues			Atom	s			AltConf	Trace
33	8	467	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
00	0	401	7371	2341	3681	621	708	20	0	0

• Molecule 34 is a RNA chain called 15S mitochondrial rRNA.

Mol	Chain	Residues			Ato	ms			AltConf	Trace
34	r	1487	Total 47450	C 14212	H 15844	N 5580	O 10326	Р 1488	1	0

• Molecule 35 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
35	В	1	Total Mg 1 1	0
35	K	1	Total Mg 1 1	0
35	W	1	Total Mg 1 1	0
35	r	86	Total Mg 86 86	0

• Molecule 36 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
36	D	1	Total K 1 1	0
36	М	1	Total K 1 1	0
36	r	35	Total K 35 35	0

• Molecule 37 is DODECYL-BETA-D-MALTOSIDE (three-letter code: LMT) (formula: $\rm C_{24}H_{46}O_{11}).$

Mol	Chain	Residues	Atoms				AltConf
37	О	1	Total	C 10	H	0	0
			38	12	25	1	

• Molecule 38 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		A	Aton	ıs			AltConf
20	W	1	Total	С	Η	Ν	0	Р	0
- 30	vv	1	43	10	12	5	13	3	0

• Molecule 39 is water.

Mol	Chain	Residues	Atoms	AltConf
39	А	58	$\begin{array}{cc} \text{Total} & \text{O} \\ 58 & 58 \end{array}$	0
39	В	148	Total O 148 148	0
39	С	19	Total O 19 19	0
39	D	112	Total O 112 112	0
39	Ε	144	Total O 144 144	0
39	F	18	Total O 18 18	0
39	G	24	TotalO2424	0
39	Н	83	Total O 83 83	0
39	Ι	58	Total O 58 58	0
39	J	42	$\begin{array}{ccc} \text{Total} & \text{O} \\ 42 & 42 \end{array}$	0
39	K	11	Total O 11 11	0
39	L	38	Total O 38 38	0
39	М	12	Total O 12 12	0
39	Ν	39	Total O 39 39	0
39	Ο	55	$\begin{array}{cc} \text{Total} & \text{O} \\ 55 & 55 \end{array}$	0
39	Р	70	$\begin{array}{c c} Total & O \\ \hline 70 & 70 \\ \hline \end{array}$	0
39	Q	20	$\begin{array}{c c} Total & O \\ \hline 20 & 20 \\ \hline \end{array}$	0
39	R	15	Total O 15 15	0
39	S	8	Total O 8 8	0
39	Т	44	$\begin{array}{ccc} \text{Total} & \text{O} \\ 44 & 44 \end{array}$	0
39	U	87	Total O 87 87	0
39	V	34	Total O 34 34	0

Continued on next page...

Mol	Chain	Residues	Atoms	AltConf
39	W	93	Total O 93 93	0
39	Х	9	Total O 9 9	0
39	Y	46	Total O 46 46	0
39	Ζ	25	Total O 25 25	0
39	1	14	Total O 14 14	0
39	2	22	Total O 22 22	0
39	3	31	Total O 31 31	0
39	4	3	Total O 3 3	0
39	5	3	Total O 3 3	0
39	6	69	Total O 69 69	0
39	8	41	Total O 41 41	0
39	r	2711	Total O 2711 2711	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 37S ribosomal protein MRP51, mitochondrial

MI30	1122 1128 1128 12206 12209 12209 12201 12001 120000 1200000000	1236 1237 1238 1238 1256 1256 1256	TLE TLE ASN ASN ASN N289 N289 N291 N291 N293 N293	N295 1306 116 1322 1332 1335
SER ASN ASN ASN ASN ASN T342 T342 T342 T345 T345 T345 T345 T345 T345 T347	N349 C350 C350 C350 V355 N355 N355 N356 N364 N365 N366 N366 N366	1371 N376 N376 1383 N384 K385 N386 N386 N386		
• Molecule 4: 37S r	ibosomal protein NAM	19, mitochondrial		
Chain D:	67%		30%	
MET P2 L83 R84 G85 G85 C85 A171 L172 L172	K194 E195 E198 K200 K200 L201 E202 N203 F204 E205 K206 M207	S208 D209 S210 N211 P213 K214 K214 C215 F217 F217 G218	F220 F221 F221 R222 Q223 ASN LEU LEU CUU	GLN GLN TYR ASN ALA ALA LEU LEU CYS GLN GLN GLN
GLU GLY TLE CLY TLE CLEU LEU ASN VAL CLU CLU CLU CLU	ULL SER ASN ASN ASN ASN CLU CLU CLU CLU CLU CLU CLU CLY CLY CLY CLY	PRO GLU ILE GLN GLN ASP SER GLU LEU LEU LEU SER ASN	ALA TYR GLN GLU GLU PHE PHE LYS SER CLY GLU TLE ARG	GLU
11.E SFER SFER CYS CYS CYS CYS PRO ALN CUU CUU CUU CUU LEU LIEU ALA ALA ALA	MET MET MET MET MET ASN ASN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	LYFS SERR ALLA ALLA LEU ALRU ALRU SERR ALR ALLA ALLA ALLA SERR SER	VAL LIYS LIYS LEU THR THR ASN THR ASN THR ASP HIS PHE	ARG
MET SER ASP ASP SER ASP ASP GLY CLY CLY F370 F372 D373 D373	K375 W376 A377 K3378 M379 H3796 F396 F396 F396 F396 F396 F396 F396	Y410 8432 8433 8433 8433 8433 1448 1488 1488	K486	
• Molecule 5: 37S r	ibosomal protein S5, n	nitochondrial		
Chain E:	93%			
MET PHE LYS LYS ARG ARG SER SER SER SER TRR TYR TVR TU LEU LEU LEU	L21 L21 133 1112 P1112 P1112 G117 G117 G117 K119	V172 A201 V203 R203 R203 R203 S307		
• Molecule 6: 37S r	ibosomal protein MRF	P17, mitochondrial		
Chain F:	96%	6	·	
M1 P17 R40 R40 D72 D72 V99	Y128 q129 S130 T131			
• Molecule 7: 37S r	ibosomal protein S7, n	nitochondrial		
Chain G:	76%	6	18%	
MET LEU LEU HIS CYS CYS ARG ARG ARG LEU VAL LEU VAL CEU ARG PRO	LEDU TTRP GLN SERR SERR CUY ALL ARC ARC CUN SER SER SER SER SER	THR THR PRO ALA SER CLU PRO CLU PRO CLU FRO CLU CLU FRO CLU CLU CLU PRO CLU CLU PRO CLU CLU PRO C PRO C	D44 E45 W46 A49 A49 N51 E52 L53 R54	E55 E56 A59 K60
E61 Ye2 Fe64 F665 F665 F665 F665 F665 F665 F665 F6	973 874 875 1776 1776 1778 1778 1778 1778 1778 1778	K87 E159 L163 N164 F168 F168 N170 C172 C172 C172	A174 K175 A176 A176 V178 V204 V204 R207 R207	1.246 K247

R L D W I D E PDB FEIN DATA BANK

• Molecule 8: 37S ribosomal protein S8, mitochondrial

<mark>7170</mark> 8171

Chain H:	97%	•
ACE1 186 199 1118 1118 V154 K155		
• Molecule 9: 3	37S ribosomal protein S9, mitochondrial	
Chain I:	80%	• 17%
MET PHE SER SER ARG LEU SER LEU PHE ARG ARG	ALA LEU ALA ALA ALA ALA ARG MET ARG ALA ARG ALA CLN CLN CLN CLN CLN ARG ALU ARG ALU ARG ACU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	q77 q78 179 K139 K135 S137 M138 M138 L139 M141 N142 N142 N143 N143
K191 L200 T211 R261 R261 R261 R263 R263 R263	ULY LYSS LYS LYS ARG ARG THR PRO THR THR THR VAL	
• Molecule 10:	37S ribosomal protein S10, mitochondrial	
Chain J:	75% .	20%
MET LEU ARG ASN THR THR TLE ALA ALA SER SER PHE	ILE ARG THR GLN S16 A43 D51 D51 H95 H95 H95 H95 H95 H95 H95 H95 H95 H95	LEU SER ASP ASP ASP CUU LEU CUU CUU ASP ASP ASP ASP ASP ALA
GLN 1180 1200 1200 1200 1200 1200 1200 1200 1200		
• Molecule 11:	37S ribosomal protein S18, mitochondrial	
Chain K:	68% ·	30%
MET LEU LLEU GLN PRO PRO VAL LYS GLY CYS ARG	TRP GLN GLN VAL VAL VAL VAL VAL VAL TILE TILE TILE TILE ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ASN TLE TYR PRO SER SER SER SER VAL LEU THR THR SER SER SER
ASN GLY SER SER SER CLU VAL YGT KG8 K70	E36 H101 H101 K103 C105 C105 C105 C105 C105 C105 C105 C105	
• Molecule 12:	37S ribosomal protein S12, mitochondrial	
Chain L:	79%	20%
MET LEU SER ARG PHE MET SER TASN THR TRP CYS	THR PRO LEVU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 13:	37S ribosomal protein SWS2, mitochondrial	
Chain M:	81%	• 17%
MET V2 T66 R92 V99 R120 R120 GLY	11.E HIR PHE SER SIR CIN ALA ALA ALA CIN FRD SER CSR CSR CSR CSR CSR CSR CSR CSR CSR CS	
	WORLDWIDE PROTEIN DATA BANK	

• Molecule 14: 37S r	ibosomal protein MRP2, mit	ochondrial		
Chain N:	96%			
MET 62 739 786 786 786 786 7114 1114				
\bullet Molecule 15: 37S r	ibosomal protein S28, mitoch	nondrial		
Chain O:	73%	5%	22%	
MET SER SER VAL GLY GLY ARG ARG ARA ARG ARA ARG ARG ARG ARG SER	CFEU CYS PRUC FFEU FFE MET CFEU CTYS CFEU FFE FFE FFEU FFEU FFEU FFEU FFEU F	L83 L87 195 L102	E114 L115 S116 G117 ASN ASN THR CLU VAL	v123 G124 E126
E148 N151 A156 A156 A156 T171 T171 V183 V183	M201 D260 D260 D260 D260 D260 D260 D260 D260	ARG LYS GLN CLN LYS ARG ALA ALA THR PHE		
• Molecule 16: 37S r	ibosomal protein S16, mitoch	nondrial		
Chain P:	97%		••	
MET 12 871 119 1120 1120 E121				
\bullet Molecule 17: 37S r	ibosomal protein S17, mitoch	nondrial		
Chain Q:	92%		8% •	
MET A2 133 133 133 133 133 133 177 177 177 177	L118 M119 E120 E120 T122 T122 1128 1128 A134 A134 A134 A134 A134 A134 A135 S135 S137 S138 S137 S138 S138 S138 S138 S138 S138 S138 S138	1.40 1.44 1.445 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145	q149 4 R150 4 1151 4 G152 4 Q154 4 Q155 4 F156 4	S157 4 Q158 4 D197 4 K199 4 C200 2 D201 4 D201 4
L204 K205 D206 H207 G208 V209 C208 V209 E210 P211 P211 C211	K216 K217 K217 L224 C236 Q234 P235 GLN GLN			
• Molecule 18: 37S r	ibosomal protein RSM18, mi	to chondrial		
Chain R:	70%	·	27%	
MET PRO CLN PRO LLE LLE CLY CLY CLY SER SER SER SER CLY SER SER CLY SER SER SER SER SER SER SER SER SER SER	ALA LEU TTR PHE PHE CLY CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU MET ARG CLU MET CLU	GLN 138 042 042 043 043 043 043 043 043 043 043 043 043	N78 R79 N80 D81 M138	
• Molecule 19: 37S r	ibosomal protein S19, mitoch	nondrial		
Chain S:	82%		13%	

• Molecule 25:	37S ribosomal protein S24, mitochondrial	
Chain Y:	83% •	15%
MET LYS VAL PRO PRO LLEU CLEU CLEU LLEU LLEU VAL SER SER	ARG GLY ASN TER ASN THR THR CAN VAL CAN VAL CAN VAL CAN ASN ASN ASN ASN ASN ASN ASN ASN ASN A	E55 K58 G59 E35 R102 D103
1104 K105 R110 K119 G120 G121 N122	V123	
• Molecule 26:	37S ribosomal protein MRP10, mitochondrial	
Chain Z:	95%	
MET SER GLY K4 L10 L10 Q25 E26	KEO V55 RTO NT1 NT2 V73 Q74 D95	
• Molecule 27:	Mitochondrial mRNA-processing protein $COX24$	
Chain 1:	28% 72%	
MET LEU GLY GLY ARG ALA LEU ARG PRO GLY TRP LEU	CLY CLY THR THR THR VAL VAL LYS CLYS SER PRO CLY SER THR PRO CLN THR THR THR THR THR THR THR THR THR THR	MET MET MET MET MET THR ALA ALA ALA ALA ALA THR THR ILE
THR CLY CLY VAL VAL SER PLU PLU CLU CLY CLY SER	ASN VAL VAL MET VAL MET ARI CAN K106 S108 S108 ARG CLN ARG	
• Molecule 28:	Protein FYV4, mitochondrial	
Chain 2:	75% .	22%
MET TILE PRAO SER SER ARG SER SER HITS PHE	LIEU LIEU ARG SER SER SER ALLA ALLA ALLA ALLA ALLA ALLA ALLA AL	
• Molecule 29:	37S ribosomal protein S26, mitochondrial	
Chain 3:	91%	5% •
MET LEU VAL PHE LYS ARG GLY GLY F34	V37 L68 L68 196 R92 R100 A100 A100 H103 H103 H103 A100 K110 A109 A109 A109 A109 A109 A109 A109 A	D228 1264
• Molecule 30:	37S ribosomal protein MRP1, mitochondrial	
Chain 4:	87%	7% 6%

• Molecule 34: 15S mitochondrial rRNA

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	778978	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	32	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2800	Depositor
Magnification	165000	Depositor
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	1.124	Depositor
Minimum map value	-0.125	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.016	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	398.3976, 398.3976, 398.3976	wwPDB
Map dimensions	720, 720, 720	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.55333, 0.55333, 0.55333	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: K, ATP, LMT, ACE, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mal Chain		lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.24	0/2483	0.46	0/3345
2	В	0.24	0/2764	0.45	0/3746
3	С	0.24	0/3133	0.41	0/4215
4	D	0.25	0/2913	0.46	0/3923
5	Е	0.25	0/2403	0.47	0/3237
6	F	0.24	0/1068	0.48	0/1430
7	G	0.23	0/1641	0.45	0/2216
8	Н	0.24	0/1244	0.46	0/1677
9	Ι	0.24	0/1895	0.46	0/2552
10	J	0.24	0/1355	0.46	0/1834
11	Κ	0.25	0/1232	0.47	0/1642
12	L	0.24	0/954	0.55	0/1281
13	М	0.24	0/949	0.50	0/1267
14	Ν	0.26	0/948	0.52	0/1267
15	0	0.24	0/1837	0.48	0/2457
16	Р	0.25	0/968	0.55	0/1307
17	Q	0.24	0/1953	0.48	0/2609
18	R	0.24	0/830	0.52	0/1106
19	S	0.26	0/645	0.50	0/872
20	Т	0.25	0/784	0.50	0/1035
21	U	0.24	0/1982	0.46	0/2679
22	V	0.24	0/2325	0.43	0/3112
23	W	0.24	0/3292	0.42	0/4449
24	Х	0.25	0/801	0.46	0/1070
25	Y	0.23	0/2329	0.46	0/3142
26	Z	0.23	0/745	0.45	0/1004
27	1	0.23	0/279	0.62	0/355
28	2	0.24	0/877	0.45	0/1173
29	3	0.25	0/2114	0.44	0/2872
30	4	0.24	0/2485	0.46	0/3354
31	5	0.24	$0/2\overline{417}$	0.43	$0/3\overline{275}$
32	6	0.25	0/2655	0.47	0/3583

Mal	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
33	8	0.24	0/3766	0.45	0/5099
34	r	0.23	0/35392	0.68	0/55064
All	All	0.24	0/93458	0.56	0/133249

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2427	2481	2480	24	0
2	В	2714	2722	2721	12	0
3	С	3090	3091	3085	19	0
4	D	2833	2896	2895	11	0
5	Е	2348	2360	2359	5	0
6	F	1055	1129	1129	3	0
7	G	1612	1660	1658	16	0
8	Н	1223	1286	1288	2	0
9	Ι	1858	1925	1925	6	0
10	J	1321	1334	1332	6	0
11	Κ	1209	1266	1266	2	0
12	L	939	993	992	2	0
13	М	935	1002	1000	2	0
14	Ν	931	986	985	2	0
15	0	1815	1853	1851	8	0
16	Р	952	1011	1010	2	0
17	Q	1930	2014	2014	12	0
18	R	818	853	852	2	0
19	S	629	648	647	2	0
20	Т	769	800	800	5	0
21	U	1939	1929	1929	8	0
22	V	2294	2398	2396	5	0
23	W	3226	3329	3327	5	0

Continued on next page...

Conti	nueu jron	i previous	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
24	Х	787	832	832	1	0
25	Y	2273	2241	2240	8	0
26	Z	729	758	757	2	0
27	1	279	334	333	0	0
28	2	858	866	865	3	0
29	3	2063	2040	2039	7	0
30	4	2436	2423	2422	12	0
31	5	2361	2409	2408	14	0
32	6	2593	2615	2613	4	0
33	8	3690	3681	3680	14	0
34	r	31606	15844	15848	0	0
35	В	1	0	0	0	0
35	K	1	0	0	0	0
35	W	1	0	0	0	0
35	r	86	0	0	0	0
36	D	1	0	0	0	0
36	М	1	0	0	0	0
36	r	35	0	0	0	0
37	0	13	25	25	2	0
38	W	31	12	12	0	0
39	1	14	0	0	0	0
39	2	22	0	0	0	0
39	3	31	0	0	1	0
39	4	3	0	0	0	0
39	5	3	0	0	0	0
39	6	69	0	0	0	0
39	8	41	0	0	1	0
39	А	58	0	0	2	0
39	В	148	0	0	1	0
39	С	19	0	0	1	0
39	D	112	0	0	1	0
39	Е	144	0	0	2	0
39	F	18	0	0	1	0
39	G	24	0	0	1	0
39	Н	83	0	0	0	0
39	Ι	58	0	0	1	0
39	J	42	0	0	2	0
39	K	11	0	0	0	0
39	L	38	0	0	1	0
39	М	12	0	0	0	0
39	N	39	0	0	0	0
39	0	55	0	0	0	0

Continued from previous page...

Continued on next page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
39	Р	70	0	0	0	0
39	Q	20	0	0	0	0
39	R	15	0	0	0	0
39	S	8	0	0	0	0
39	Т	44	0	0	0	0
39	U	87	0	0	2	0
39	V	34	0	0	0	0
39	W	93	0	0	0	0
39	Х	9	0	0	0	0
39	Y	46	0	0	1	0
39	Ζ	25	0	0	0	0
39	r	2711	0	0	0	0
All	All	92918	74046	74015	193	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

The worst 5 of 193 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
9:I:200:LEU:HD11	9:I:211:ILE:HD11	1.77	0.67
1:A:289:GLY:O	39:A:401:HOH:O	2.13	0.66
10:J:133:MET:O	39:J:301:HOH:O	2.13	0.66
3:C:255:ASN:OD1	3:C:256:ILE:N	2.30	0.64
16:P:71:ARG:HG2	32:6:314:VAL:HG21	1.80	0.64

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	299/344~(87%)	286 (96%)	13~(4%)	0	100	100
2	В	338/394~(86%)	329~(97%)	9~(3%)	0	100	100
3	С	362/398~(91%)	353~(98%)	9~(2%)	0	100	100
4	D	337/486~(69%)	334 (99%)	3~(1%)	0	100	100
5	Ε	292/307~(95%)	285 (98%)	7(2%)	0	100	100
6	F	129/131 (98%)	127 (98%)	2(2%)	0	100	100
7	G	199/247~(81%)	196 (98%)	3 (2%)	0	100	100
8	Н	154/155~(99%)	152 (99%)	2 (1%)	0	100	100
9	Ι	230/278~(83%)	226 (98%)	4 (2%)	0	100	100
10	J	158/203~(78%)	152 (96%)	6 (4%)	0	100	100
11	К	150/217~(69%)	148 (99%)	2 (1%)	0	100	100
12	L	121/153~(79%)	120 (99%)	1 (1%)	0	100	100
13	М	117/143~(82%)	115 (98%)	2 (2%)	0	100	100
14	Ν	111/115 (96%)	111 (100%)	0	0	100	100
15	О	219/286~(77%)	217 (99%)	2 (1%)	0	100	100
16	Р	118/121 (98%)	115 (98%)	3 (2%)	0	100	100
17	Q	234/237~(99%)	232 (99%)	2 (1%)	0	100	100
18	R	99/138~(72%)	98 (99%)	1 (1%)	0	100	100
19	S	77/91~(85%)	74 (96%)	3 (4%)	0	100	100
20	Т	91/177~(51%)	90 (99%)	1 (1%)	0	100	100
21	U	235/264~(89%)	230 (98%)	5 (2%)	0	100	100
22	V	282/318~(89%)	278 (99%)	4 (1%)	0	100	100
23	W	400/450~(89%)	390 (98%)	10 (2%)	0	100	100
24	Х	96/110~(87%)	96 (100%)	0	0	100	100
25	Y	270/319~(85%)	267 (99%)	3 (1%)	0	100	100
26	Z	90/95~(95%)	87 (97%)	3 (3%)	0	100	100
27	1	29/111~(26%)	29 (100%)	0	0	100	100
28	2	100/130~(77%)	98 (98%)	2 (2%)	0	100	100
29	3	255/266~(96%)	246 (96%)	9 (4%)	0	100	100
30	4	301/321~(94%)	289 (96%)	12 (4%)	0	100	100
31	5	289/339~(85%)	281 (97%)	8 (3%)	0	100	100
32	6	317/345~(92%)	310 (98%)	7 (2%)	0	100	100

Continued on next page...

Conti	nued from			
Mol	Chain	Analysed	Favoured	

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
33	8	465/500~(93%)	451 (97%)	14 (3%)	0	100	100
All	All	6964/8189~(85%)	6812 (98%)	152 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	270/309~(87%)	270 (100%)	0	100	100
2	В	307/350~(88%)	307~(100%)	0	100	100
3	С	361/385~(94%)	361 (100%)	0	100	100
4	D	306/437~(70%)	304 (99%)	2 (1%)	84	92
5	Е	253/266~(95%)	252 (100%)	1 (0%)	91	96
6	F	120/120~(100%)	120 (100%)	0	100	100
7	G	174/211~(82%)	173 (99%)	1 (1%)	86	93
8	Н	142/141~(101%)	142 (100%)	0	100	100
9	Ι	205/245~(84%)	204 (100%)	1 (0%)	88	95
10	J	146/183~(80%)	146 (100%)	0	100	100
11	Κ	131/192~(68%)	131 (100%)	0	100	100
12	L	102/131~(78%)	102 (100%)	0	100	100
13	М	100/121~(83%)	100 (100%)	0	100	100
14	Ν	101/103~(98%)	100~(99%)	1 (1%)	76	87
15	Ο	192/250~(77%)	192~(100%)	0	100	100
16	Р	105/106~(99%)	105 (100%)	0	100	100
17	Q	217/218~(100%)	215~(99%)	2(1%)	78	89
18	R	89/121~(74%)	89~(100%)	0	100	100
19	S	$6\overline{8}/78~(87\%)$	68~(100%)	0	100	100
20	Т	82/159~(52%)	82 (100%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
21	U	212/236~(90%)	212 (100%)	0	100	100
22	V	260/287~(91%)	260 (100%)	0	100	100
23	W	369/409~(90%)	368 (100%)	1 (0%)	92	96
24	Х	85/92~(92%)	85 (100%)	0	100	100
25	Y	249/289~(86%)	248 (100%)	1 (0%)	91	96
26	Z	83/85~(98%)	83 (100%)	0	100	100
27	1	30/98~(31%)	30 (100%)	0	100	100
28	2	93/117~(80%)	93 (100%)	0	100	100
29	3	232/240~(97%)	231 (100%)	1 (0%)	91	96
30	4	267/281~(95%)	266 (100%)	1 (0%)	91	96
31	5	259/303~(86%)	259 (100%)	0	100	100
32	6	289/312~(93%)	289 (100%)	0	100	100
33	8	413/444 (93%)	412 (100%)	1 (0%)	93	97
All	All	6312/7319~(86%)	6299 (100%)	13 (0%)	93	97

Continued from previous page...

 $5~{\rm of}~13$ residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
17	Q	39[B]	HIS
23	W	141	HIS
33	8	472	ARG
29	3	95	ASN
30	4	253	TYR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 11 such sidechains are listed below:

Mol	Chain	Res	Type
30	4	69	HIS
31	5	143	GLN
33	8	128	ASN
32	6	169	GLN
23	W	449	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers	
34	r	1476/1647~(89%)	167~(11%)	0	

5 of 167 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
34	r	13	U
34	r	16	G
34	r	29	G
34	r	39	А
34	r	46	А

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 128 ligands modelled in this entry, 126 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mal Tuna Chain Dag I		Tink	Bond lengths			Bond angles			
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
37	LMT	0	301	-	12,12,36	0.15	0	11,11,47	0.20	0
38	ATP	W	501	35	26,33,33	0.75	0	31,52,52	0.67	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
37	LMT	0	301	-	-	0/10/10/61	-
38	ATP	W	501	35	-	0/18/38/38	0/3/3/3

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
37	0	301	LMT	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-16968. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 360

Y Index: 360

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 396

Y Index: 369

Z Index: 358

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 643 nm^3 ; this corresponds to an approximate mass of 581 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.431 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-16968 and PDB model 80M4. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.05).

9.4 Atom inclusion (i)

At the recommended contour level, 87% of all backbone atoms, 86% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.05) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8650	0.6540
1	0.8440	0.6710
2	0.9240	0.6840
3	0.8870	0.6630
4	0.7350	0.5700
5	0.7020	0.5420
6	0.9040	0.6740
8	0.6950	0.6370
А	0.6350	0.5690
В	0.7950	0.6580
C	0.7170	0.5860
D	0.8290	0.6520
Ε	0.9350	0.7060
F	0.9010	0.6680
G	0.7440	0.6060
Н	0.9790	0.7530
Ι	0.9000	0.6840
J	0.9080	0.7040
К	0.8560	0.6370
L	0.9780	0.7230
М	0.9440	0.6990
N	0.9670	0.7300
О	0.8990	0.6970
Р	0.9440	0.7150
Q	0.6910	0.5710
R	0.8940	0.6750
S	0.8920	0.6660
Т	0.8470	0.6420
U	0.9310	0.7010
V	0.7770	0.6240
W	0.9300	0.6990
Х	0.9020	0.6650
Y	0.8400	0.6450
Z	0.7920	0.6070
r	0.9330	0.6610

0.0 <0.0

1.0

