

wwPDB EM Validation Summary Report (i)

Apr 17, 2024 – 10:24 am BST

PDB ID 70TC : EMDB ID EMD-13058 : Title : Cryo-EM structure of an Escherichia coli 70S ribosome in complex with elongation factor G and the antibiotic Argyrin B Wieland, M.; Koller, T.O.; Wilson, D.N. Authors : Deposited on 2021-06-10 Resolution 2.90 Å(reported) : Based on initial models 7K00, 4V9P :

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	a	1533	82%	18%
2	b	226	98%	•
3	с	206	100%	
4	d	205	100%	
5	е	157	99%	•
6	f	106	99%	•
7	g	156	43%	·
8	h	129	100%	

Mol	Chain	Length	Quality of chain
9	i	127	6%
10	j	99	9% 99% ·
11	k	117	100%
12	1	123	99%
13	m	115	97% •
14	n	101	99%
15	О	88	99%
16	р	82	99%
17	q	80	100%
18	r	67	100%
19	S	92	9% 90% • 9%
20	t	86	100%
21	u	70	100%
22	А	2903	84% 15%
23	В	120	88% 12%
24	С	271	100%
25	D	209	100%
26	Е	201	100%
27	F	177	99%
28	G	176	100%
29	J	142	100%
30	K	123	100%
31	L	144	100%
32	М	136	99% .
33	Ν	120	100%

Mol	Chain	Length	Quality of chain	
34	Ο	116	100%	
35	Р	114	99%	•
36	Q	117	100%	_
37	R	103	98%	•
38	S	110	100%	
39	Т	93	100%	
40	U	102	92% 89	%
41	V	94	100%	_
42	W	84	10%	_
43	X	77	100%	_
44	Y	63	<mark>6%</mark> 98%	•
45	Z	58	5%	
46	5	67	48%	.
47	0	56	100%	_
48	1	50	100%	_
49	2	46	100%	_
50	- 3	64	100%	_
51	4	38	100%	_
52	W	704	14%	

2 Entry composition (i)

There are 59 unique types of molecules in this entry. The entry contains 147132 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	a	1533	Total 32907	C 14683	N 6036	O 10655	Р 1533	0	0

• Molecule 2 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	b	226	Total 1769	C 1119	N 317	O 325	S 8	0	0

• Molecule 3 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		Ate	AltConf	Trace			
3	С	206	Total 1624	C 1028	N 305	0 288	${ m S} { m 3}$	0	0

• Molecule 4 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	d	205	Total 1642	C 1026	N 315	O 297	$\frac{S}{4}$	0	0

• Molecule 5 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	е	155	Total 1144	C 711	N 216	0 211	S 6	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
e	151	GLU	ALA	conflict	UNP A0A140N6Z9

• Molecule 6 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	f	106	Total 862	$\begin{array}{c} \mathrm{C} \\ 545 \end{array}$	N 156	0 154	${ m S} 7$	0	0

• Molecule 7 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	g	156	Total	C 773	N 238	0 221	S 4	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
g	157	LEU	-	expression tag	UNP A0A140N6W8

• Molecule 8 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	h	129	Total 978	C 616	N 173	0 183	S 6	0	0

• Molecule 9 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	i	127	Total 1021	C 634	N 206	0 178	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	j	99	Total 806	C 504	N 156	0 145	S 1	1	0

• Molecule 11 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	k	117	Total 876	C 540	N 174	O 159	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	1	123	Total 957	C 591	N 196	O 165	${ m S}{ m 5}$	0	0

• Molecule 13 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues	Atoms					AltConf	Trace
13	m	115	Total 891	C 552	N 179	0 157	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues	Atoms					AltConf	Trace
14	n	100	Total 804	C 499	N 164	0 138	${ m S} { m 3}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
n	1	MET	-	initiating methionine	UNP A0A140N7K8

• Molecule 15 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues	Atoms					AltConf	Trace
15	О	88	Total 713	C 439	N 144	0 129	S 1	0	0

• Molecule 16 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	р	82	Total 649	C 406	N 128	0 114	S 1	0	0

• Molecule 17 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	q	80	Total 648	C 411	N 121	0 113	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	r	67	Total 555	C 351	N 106	O 97	S 1	0	0

• Molecule 19 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms		AltConf	Trace	
19	s	84	Total 668	C 427	N 127	0 112	${S \over 2}$	0	0

• Molecule 20 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	t	86	Total 669	C 414	N 138	0 114	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
21	u	70	Total 589	C 366	N 125	O 97	S 1	0	0

• Molecule 22 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
22	А	2903	Total 62334	C 27815	N 11467	O 20149	Р 2903	0	0

• Molecule 23 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A	toms			AltConf	Trace
23	В	120	Total 2570	C 1144	N 468	0 838	Р 120	0	0

• Molecule 24 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	С	271	Total 2090	C 1292	N 425	O 366	${f S}7$	1	0

• Molecule 25 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	D	209	Total 1565	C 979	N 288	O 294	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	Е	201	Total 1552	C 974	N 283	O 290	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	F	177	Total 1410	C 899	N 249	0 256	S 6	0	0

• Molecule 28 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	G	176	Total 1323	C 832	N 243	0 246	${S \over 2}$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	J	142	Total 1139	C 720	N 215	O 200	$\frac{S}{4}$	1	0

• Molecule 30 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	K	123	Total 946	C 593	N 181	0 166	S 6	0	0

• Molecule 31 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	L	144	Total 1064	C 660	N 211	0 191	${S \over 2}$	1	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
L	77	ILE	VAL	conflict	UNP A0A140N711

• Molecule 32 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	М	136	Total 1075	C 686	N 205	0 178	S 6	0	0

• Molecule 33 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	N	120	Total 960	C 593	N 196	0 166	${ m S}{ m 5}$	0	0

• Molecule 34 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
34	О	116	Total 892	C 552	N 178	0 162	0	0

• Molecule 35 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	Р	114	Total 916	С 574	N 179	0 162	S 1	0	0

• Molecule 36 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
36	Q	117	Total 947	C 604	N 192	O 151	0	0

• Molecule 37 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	R	103	Total 816	C 516	N 153	0 145	${ m S} { m 2}$	0	0

• Molecule 38 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	S	110	Total 857	C 532	N 166	O 156	${ m S} { m 3}$	0	0

• Molecule 39 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	AltConf	Trace			
39	Т	93	Total 738	C 466	N 139	0 131	${ m S} { m 2}$	0	0

• Molecule 40 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
40	U	94	Total 721	C 454	N 136	O 131	0	0

• Molecule 41 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
41	V	94	Total 752	C 479	N 137	0 133	${ m S} { m 3}$	0	0

• Molecule 42 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	W	84	Total 634	C 391	N 129	0 113	S 1	0	0

• Molecule 43 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	Х	77	Total 624	C 388	N 129	O 105	${ m S} { m 2}$	0	0

• Molecule 44 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
44	Y	62	Total 501	C 308	N 98	0 94	S 1	0	0

• Molecule 45 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
45	Ζ	58	Total 448	C 281	N 87	O 78	${ m S} { m 2}$	0	0

• Molecule 46 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
46	5	67	Total 529	C 328	N 100	O 95	S 6	0	0

• Molecule 47 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
47	0	56	Total 444	C 269	N 94	O 80	S 1	0	0

• Molecule 48 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
48	1	50	Total 409	C 263	N 75	0 71	0	0

• Molecule 49 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
49	2	46	Total 377	C 228	N 90	O 57	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 50 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
50	3	64	Total 512	C 220	N 107	O	S 2	1	0
			012	529	107	14	\mathcal{L}		

• Molecule 51 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
51	4	38	Total 302	C 185	N 65	O 48	${S \atop 4}$	0	0

• Molecule 52 is a protein called Elongation factor G.

Mol	Chain	Residues	Atoms					AltConf	Trace
52	W	675	Total 5196	C 3277	N 899	O 997	S 23	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
W	1	SER	-	expression tag	UNP A0A140N7C7
W	237	THR	TYR	variant	UNP A0A140N7C7
W	258	ASP	ASN	variant	UNP A0A140N7C7

• Molecule 53 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
53	a	61	TotalMg6161	0
53	n	1	Total Mg 1 1	0
53	А	219	Total Mg 219 219	0
53	В	4	Total Mg 4 4	0
53	С	2	Total Mg 2 2	0
53	D	1	Total Mg 1 1	0
53	N	1	Total Mg 1 1	0
53	Q	1	Total Mg 1 1	0
53	0	1	Total Mg 1 1	0
53	W	1	Total Mg 1 1	0

• Molecule 54 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
54	Λ	1	Total	С	Ν	Ο	Р	0
- 54	A	T	31	10	5	13	3	0

• Molecule 55 is 1,4-DIAMINOBUTANE (three-letter code: PUT) (formula: $C_4H_{12}N_2$).

Mol	Chain	Residues	Atoms	AltConf
55	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 6 & 4 & 2 \end{array}$	0
55	А	1	TotalCN642	0
55	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 6 & 4 & 2 \end{array}$	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
55	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 6 & 4 & 2 \end{array}$	0
55	А	1	TotalCN642	0
55	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 6 & 4 & 2 \end{array}$	0
55	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 6 & 4 & 2 \end{array}$	0
55	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 6 & 4 & 2 \end{array}$	0

Mol	Chain	Residues	Atoms	AltConf
56	А	1	Total C N 10 7 3	0
56	А	1	Total C N 10 7 3	0

• Molecule 57 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
57	5	1	Total Zn 1 1	0
57	4	1	Total Zn 1 1	0

• Molecule 58 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $C_{10}H_{15}N_5O_{11}P_2$).

Mol	Chain	Residues	Atoms				AltConf	
58	117	1	Total	С	Ν	Ο	Р	0
- 58	W	1	28	10	5	11	2	0

• Molecule 59 is Argyrin B (three-letter code: 117) (formula: $C_{41}H_{46}N_{10}O_8S$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf
59	W	1	Total 60	C 41	N 10	0 8	S 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S ribosomal RNA

Chain b:

98%

V4 R7 B44 A75 A75 A75 A75 A75 A75 D116 Q120 Q120 Q120 Q122 Q122 Q122 C125 C125 C125 C125 C125 C125 C125 C	E133 4 R137 4 C155 4 P159 4 A216 4 A216 4 A219 4 C224 4 C225 4 C228 4 C28 C28 C28 C28 C28 C28 C28 C28 C28 C28	
• Molecule 3: 30S ribosomal protein S3	3	
Chain c:	100%	
There are no outlier residues recorded	for this chain.	
• Molecule 4: 30S ribosomal protein S4	1	
Chain d:	100%	
A2 R44 Q164 R184 W206		
• Molecule 5: 30S ribosomal protein SS	5	
Chain e:	99%	
CILX CILX CILX CILX		
• Molecule 6: 30S ribosomal protein S6	3	
Chain f:	99% .	
M1 D13 A28 A28 M2 C7 A105 A105 K106		
• Molecule 7: 30S ribosomal protein S7	7	
43% Chain g:	99% .	
P2 R5 I7 G8 K11 G8 G19 G19 S41 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	Kuss Ssr7 Ess Luss Eed Kr70 Kr70 Kr75 Kr75 Kr75 Kr75 Kr75 Kr75 Kr75 Kr75	-
R96 A107 A107 A108 A109 B113 S115 L118 A121 A121 E123 E123 E123 E123 E123 E123 C126 A128 A134 A134	K136 E139 E139 E146 K149 A150 F151 A155 W155 W155 W155 U155	
• Molecule 8: 30S ribosomal protein S8	3	
Chain h:	100%	
22 1554 1130		

• Molecule 9: 30S rib	posomal protein S9
Chain i:	100%
M4 E53 E59 E59 E89 E89 S93 C94 C95 C05	
• Molecule 10: 30S r	ibosomal protein S10
Chain j:	99% .
4 85 823 831 132 132 132 133 133 133 133 133 133 1	
• Molecule 11: 30S r	ibosomal protein S11
Chain k:	100%
R13 K14 D18 D72 R106 V129	
• Molecule 12: 30S r	ibosomal protein S12
Chain l:	99% .
A2 D2189 A124	
• Molecule 13: 30S r	ibosomal protein S13
Chain m:	97%
A2 R3 I4 A5 A5 H12 K13 A15 V16 A15 A18 A18 A18 A18	T20 S21 S21 S21 S21 S21 S21 S21 A40 E41 P42 A40 E41 P42 V43 E41 E41 E41 E41 E41 E42 E43 E44 E45 E45 E46 E47 E46 E41 E47 E46 E47 E47 E47 E48 E49 E50 E50 E50 E62 B53 E49 E50 E50 F12 P112 P114
• Molecule 14: 30S r	ibosomal protein S14
Chain n:	99%
MET A2 E26 E26 B33 W101	
• Molecule 15: 30S r	ibosomal protein S15
Chain o:	99%

• Molecule 16: 30S ribosomal protein S16	
Chain p: 99%	·
M1 A81 A82 A82	
• Molecule 17: 30S ribosomal protein S17	
Chain q:	
K4 NS1 E52 A22 V33 V33	
• Molecule 18: 30S ribosomal protein S18	
Chain r:	
K8 FIO H74 ★ ◆ ◆	
• Molecule 19: 30S ribosomal protein S19	
Chain s: 90% .	9%
\mathbf{H}	
15 15 15 15 15 15 15 15 15 15 15 15 15 1	
 Molecule 20: 30S ribosomal protein S20 	
 Molecule 20: 30S ribosomal protein S20 Chain t: 100% 	
 Molecule 20: 30S ribosomal protein S20 Chain t: 100% There are no outlier residues recorded for this chain. 	
 Molecule 20: 30S ribosomal protein S20 Chain t: 100% There are no outlier residues recorded for this chain. Molecule 21: 30S ribosomal protein S21 	
 Molecule 20: 30S ribosomal protein S20 Chain t: 100% There are no outlier residues recorded for this chain. Molecule 21: 30S ribosomal protein S21 21% Chain u: 100% 	
 Molecule 20: 30S ribosomal protein S20 Chain t: 100% There are no outlier residues recorded for this chain. Molecule 21: 30S ribosomal protein S21 21% Chain u: 100% 	
 Molecule 20: 30S ribosomal protein S20 Chain t: 100% There are no outlier residues recorded for this chain. Molecule 21: 30S ribosomal protein S21 21% Chain u: 100% 21% Molecule 22: 23S ribosomal RNA 	
 Molecule 20: 30S ribosomal protein S20 Chain t: 100% There are no outlier residues recorded for this chain. Molecule 21: 30S ribosomal protein S21 Chain u: 100% A B B B B B B B B B B B B B B B B B B B	%

A10 A10 A10 G46 G51 G46 G51 G55 G51 G55 G51 G55 G51 G46 G51 G46 G55 G46 G55 G46 G55 G46 G51 G55 G51 G41 G101 U102 U120 U126 G144 A116 A116 A116 A116 A116 A116 A116 G126 A126 A126 A126 G126 A126 G126 A126 G126 A126 G215 G223 G230 G230 G230 G230
A233 G242 G242 G242 G242 G245 G265 G265 G265 G265 G265 G265 G295 G380 G380 G380 G380 G385 G380 G490 G491 G491 G491 G491 G491 G491 G491 G491
G506 A507 A503 A504 A505 A603 A603 A603 A604 A603 A604 A605
A733 A734 U1745 U745 U745 U745 U745 T74 T74 T74 T74 T74 T74 T74 T74 T75 T755 T7
 A8.96 A8.96 C8.97 C8.97 C8.97 A9.10 C905 C905 C905 C914 C914 C914 C955 C951 C955 C956 C1012 C1013 C1014 C1015 C1013 C1014 C1046 C1046
A1084 A1085 A1085 A1085 A1085 U1097 A1085 A1085 A1085 A1085 A1085 A1085 A1085 A1085 A1085 A1130 A1133 A1141 A1142 A1141 A1175 A1283 G1286 A1283 A1283 A1283 A1284 A1285 A1285 G1286 U1334 U1345 A1285 G1365<
1378 1379 1415 1415 1415 1445 1445 1445 1445 144
334 334 335 345 335 345 355 345 355 355 356 355 357 355 358 355 357 355 358 355 358 355 358 355 358 356 358 357 358 357 358 357 358 358 358 358 358 358 358 358 358 358 358 358
C1 90 C1 90 11 91 11 91 12 91 11 91 13 91 11 91 14 91
22101 22103 22103 22104 22105 22104 22105 22105 22105 22111 22106 22112 22124 22133 22133 22133 22133 22133 22134 22133 22134 22135 22144 22145 22145 22145 22155 22
72159 72162 72162 72163 72164 72165 72165 72165 72165 72165 72165 72165 72165 72173 72165 72173 72173 72173 72173 72173 72173 72173 72173 72173 72173 72173 72173 72173 72173 72174 72175 72176 72178 72178 72182 72183 72184 72185 72285 72285 72285 72285 72285 72285 72305 72305 72305 72305 72305 </td
02325 02325 102335 102335 102346 02345 02345 02345 02345 02345 02345 02345 02345 02385 02385 02441 02424 02445 02445 02445 02445 02445 02445 02445 02445 02445 02445 02445 02445 02445 02445 02445 02445 02445 02445 02445 0248 0248 0248 0248 0248 0248 0248 0248 0248 0248 0248 0248 0248 </td
C2498 C2408 C2502 C2503 C2504 C2504 <
C2716 A2726 A2726 C2729 C2729 C2729 C2733 C2733 C2733 C2733 C2734 A2765 A2775 A2765 A2775 A2765 A2775 A2765 A2775 A2765 A2775

• Molecule 23: 5S ribosomal RNA

Chain B:	88%	12%
U1 01 013 016 016 016 035 035 035 035 035 035 035 035 035 035	067 1999 109 109 1120	
• Molecule 24: 50S ribe	osomal protein L2	
Chain C:	100%	
There are no outlier real	sidues recorded for this chain.	
• Molecule 25: 50S rib	osomal protein L3	
Chain D:	100%	
₩ 200 •		
• Molecule 26: 50S ribe	osomal protein L4	
Chain E:	100%	
M1 Q9 K123 A201		
• Molecule 27: 50S rib	osomal protein L5	
Chain F:	99%	·
A2 E32 A45 D51 D56 A58 A58	F95 F95 F106 F106 F106 F113 F115 F115 F115 F115 F115 F115 F115	D142
• Molecule 28: 50S ribe	osomal protein L6	
Chain G:	100%	
S2 A46 R95 D114 C14 K177		
• Molecule 29: 50S rib	osomal protein L13	
Chain J:	100%	
There are no outlier real	sidues recorded for this chain.	
• Molecule 30: 50S ribe	osomal protein L14	

Chain K:	100%	
There are no	outlier residues recorded for this chain.	
• Molecule 31	1: 50S ribosomal protein L15	
Chain L:	100%	
M1 181 E144		
• Molecule 32	2: 50S ribosomal protein L16	
Chain M:	99% .	
M1 40481 M136		
• Molecule 33	3: 50S ribosomal protein L17	
Chain N:	100%	
There are no	outlier residues recorded for this chain.	
• Molecule 34	4: 50S ribosomal protein L18	
Chain O:	100%	
D2 E84 K85 D93 G96	LTT LTT	
• Molecule 35	5: 50S ribosomal protein L19	
Chain P:	99% .	
82 E34 G35 R39 N115		
• Molecule 36	5: 50S ribosomal protein L20	
Chain Q:	100%	
There are no	outlier residues recorded for this chain.	
• Molecule 37	7: 50S ribosomal protein L21	
Chain R:	98% .	

ATA BANK ww

• Molecule 38: 50S ribosomal protein L22	
Chain S:	_
• • •	
\bullet Molecule 39: 50S ribosomal protein L23	
Chain T:	
\bullet Molecule 40: 50S ribosomal protein L24	
Chain U: 92% 8%	, o
A2 PRO VAL FRO PRO FRO FRO 103 103	
\bullet Molecule 41: 50S ribosomal protein L25	
Chain V:	_
W 494 H 494 H 495 H	
• Molecule 42: 50S ribosomal protein L27	
Chain W: 100%	
A2 A6 B3 B3 B3 B3 C C C C C C C C C C C C C C	
• Molecule 43: 50S ribosomal protein L28	
Chain X:	_
There are no outlier residues recorded for this chain.	
\bullet Molecule 44: 50S ribosomal protein L29	
Chain Y: 98%	•
WORLDWIDE PROTEIN DATA BANK	

• Molecule 45: 50S r	ibosomal protein L30	
Chain Z:	100%	
•• •		
E59 E59		
• Molecule 46: 50S r	ribosomal protein L31	
	48%	
Chain 5:	99%	•
11 11 11 11 11 11 11 11 11 11 11 11 11	11 12 13 14 15 15 16 17 18	62 63 64
		ХКЦ
• Molecule 47: 50S r	ibosomal protein L32	
Chain 0:	100%	
••		
A2 A56 K57		
• Molecule 48: 50S 1	ribosomal protein L33	
• Molecule 48: 50S 1 Chain 1:	ibosomal protein L33	
• Molecule 48: 50S 1 Chain 1: There are no outlier	residues recorded for this chain.	
 Molecule 48: 50S 1 Chain 1: There are no outlier Molecule 49: 50S 1 	ribosomal protein L33 100% residues recorded for this chain. ribosomal protein L34	
 Molecule 48: 50S 1 Chain 1: There are no outlier Molecule 49: 50S 1 Chain 2: 	ribosomal protein L33 100% residues recorded for this chain. ribosomal protein L34	
 Molecule 48: 50S 1 Chain 1: There are no outlier Molecule 49: 50S 1 Chain 2: 	100% residues recorded for this chain. Tibosomal protein L34 100% residues recorded for this chain	
 Molecule 48: 50S r Chain 1: There are no outlier Molecule 49: 50S r Chain 2: There are no outlier Molecule 50: 50S r 	100% residues recorded for this chain. Tibosomal protein L34 100% residues recorded for this chain.	
 Molecule 48: 50S 1 Chain 1: There are no outlier Molecule 49: 50S 1 Chain 2: There are no outlier Molecule 50: 50S 1 	^{100%} residues recorded for this chain. Tibosomal protein L34 ^{100%} residues recorded for this chain. Tibosomal protein L35	
 Molecule 48: 50S r Chain 1: There are no outlier Molecule 49: 50S r Chain 2: There are no outlier Molecule 50: 50S r Chain 3: 	^{100%} residues recorded for this chain. Tibosomal protein L34 ^{100%} residues recorded for this chain. Tibosomal protein L35	
 Molecule 48: 50S r Chain 1: There are no outlier Molecule 49: 50S r Chain 2: There are no outlier Molecule 50: 50S r Chain 3: There are no outlier 	100% residues recorded for this chain. Tibosomal protein L34 100% residues recorded for this chain. Tibosomal protein L35 100% residues recorded for this chain.	
 Molecule 48: 50S r Chain 1: There are no outlier Molecule 49: 50S r Chain 2: There are no outlier Molecule 50: 50S r Chain 3: There are no outlier Molecule 51: 50S r 	100% residues recorded for this chain. Tibosomal protein L34 100% residues recorded for this chain. Tibosomal protein L35 100% residues recorded for this chain. Tibosomal protein L36	
 Molecule 48: 50S r Chain 1: There are no outlier Molecule 49: 50S r Chain 2: There are no outlier Molecule 50: 50S r Chain 3: There are no outlier Molecule 51: 50S r Chain 4: 	100% residues recorded for this chain. Tibosomal protein L34 100% residues recorded for this chain. Tibosomal protein L35 100% residues recorded for this chain. Tibosomal protein L36	
 Molecule 48: 50S r Chain 1: There are no outlier Molecule 49: 50S r Chain 2: There are no outlier Molecule 50: 50S r Chain 3: There are no outlier Molecule 51: 50S r Chain 4: There are no outlier 	100% residues recorded for this chain. Tibosomal protein L34 100% residues recorded for this chain. Tibosomal protein L35 100% residues recorded for this chain. Tibosomal protein L36	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	153360	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	28	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	3500	Depositor
Magnification	Not provided	
Image detector	FEI FALCON II (4k x 4k)	Depositor
Maximum map value	0.614	Depositor
Minimum map value	-0.390	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.016	Depositor
Recommended contour level	0.026	Depositor
Map size (Å)	390.24, 390.24, 390.24	wwPDB
Map dimensions	360, 360, 360	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.084, 1.084, 1.084	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: G7M, H2U, OMG, D2T, UR3, 3TD, OMU, SPD, 2MA, 6MZ, MG, GDP, PUT, MA6, 2MG, 117, OMC, ATP, PSU, ZN, 1MG, 4OC, 4D4, 5MU, 5MC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	a	0.36	0/36594	0.75	4/57083~(0.0%)	
2	b	0.29	0/1800	0.65	3/2425~(0.1%)	
3	с	0.27	0/1651	0.59	0/2225	
4	d	0.28	0/1664	0.61	0/2227	
5	е	0.28	0/1157	0.58	0/1557	
6	f	0.32	0/881	0.68	0/1189	
7	g	0.26	0/1254	0.62	0/1683	
8	h	0.29	0/988	0.59	0/1326	
9	i	0.31	0/1033	0.68	0/1375	
10	j	0.30	0/816	0.72	0/1103	
11	k	0.29	0/892	0.66	0/1205	
12	1	0.31	0/960	0.64	0/1286	
13	m	0.32	0/900	0.81	3/1204~(0.2%)	
14	n	0.29	0/816	0.68	0/1088	
15	0	0.26	0/721	0.57	0/964	
16	р	0.30	0/659	0.64	0/884	
17	q	0.31	0/657	0.65	0/881	
18	r	0.29	0/564	0.57	0/756	
19	s	0.32	0/685	0.66	0/922	
20	t	0.27	0/675	0.51	0/895	
21	u	0.28	0/597	0.64	0/792	
22	А	0.37	0/69239	0.74	7/108014~(0.0%)	
23	В	0.32	1/2873~(0.0%)	0.74	0/4478	
24	С	0.32	0/2129	0.60	0/2863	
25	D	0.30	0/1586	0.56	0/2134	
26	Е	0.27	0/1571	0.55	0/2113	
27	F	0.34	0/1434	0.78	1/1926~(0.1%)	
28	G	0.29	0/1343	0.57	0/1816	
29	J	0.29	0/1163	0.52	0/1566	
30	Κ	0.30	0/955	0.59	0/1279	
31	L	0.29	0/1073	0.63	0/1427	

Mal	Chain	Bo	ond lengths	Bond angles	
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
32	М	0.28	0/1081	0.58	0/1443
33	Ν	0.27	0/973	0.58	0/1301
34	0	0.30	0/902	0.65	0/1209
35	Р	0.31	0/928	0.65	1/1242~(0.1%)
36	Q	0.30	0/960	0.56	0/1278
37	R	0.29	0/829	0.59	0/1107
38	S	0.27	0/864	0.56	0/1156
39	Т	0.27	0/744	0.60	0/994
40	U	0.29	0/725	0.61	0/961
41	V	0.28	0/765	0.56	0/1025
42	W	0.29	0/642	0.57	0/848
43	Х	0.29	0/634	0.65	0/848
44	Y	0.25	0/502	0.64	0/667
45	Ζ	0.27	0/452	0.57	0/605
46	5	0.27	0/539	0.65	0/721
47	0	0.27	0/450	0.60	0/599
48	1	0.27	0/416	0.55	0/554
49	2	0.27	0/380	0.67	0/498
50	3	0.26	0/521	0.57	0/687
51	4	0.28	0/303	0.58	0/397
52	W	0.30	0/5293	0.63	0/7166
All	All	0.34	1/158233~(0.0%)	0.71	19/235992~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
37	R	0	1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
23	В	1	U	OP3-P	-10.64	1.48	1.61

The worst 5 of 19 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	b	129	LEU	CA-CB-CG	8.95	135.88	115.30
2	b	21	ARG	CB-CG-CD	-8.77	88.79	111.60
13	m	112	PRO	CA-N-CD	-7.81	100.56	111.50

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	b	21	ARG	CG-CD-NE	-7.32	96.42	111.80
22	А	790	U	C2-N1-C1'	6.73	125.78	117.70

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
37	R	51	VAL	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	b	224/226~(99%)	210 (94%)	14 (6%)	0	100	100
3	с	204/206~(99%)	199~(98%)	5 (2%)	0	100	100
4	d	203/205~(99%)	201 (99%)	2 (1%)	0	100	100
5	е	153/157~(98%)	144 (94%)	9 (6%)	0	100	100
6	f	104/106~(98%)	102 (98%)	2 (2%)	0	100	100
7	g	154/156~(99%)	149 (97%)	5(3%)	0	100	100
8	h	127/129~(98%)	125~(98%)	2 (2%)	0	100	100
9	i	125/127~(98%)	115 (92%)	10 (8%)	0	100	100
10	j	98/99~(99%)	92 (94%)	6 (6%)	0	100	100
11	k	115/117~(98%)	107 (93%)	8 (7%)	0	100	100
12	1	120/123~(98%)	116 (97%)	4 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
13	m	113/115~(98%)	103 (91%)	10 (9%)	0	100	100
14	n	98/101~(97%)	93~(95%)	5 (5%)	0	100	100
15	О	86/88~(98%)	82 (95%)	4 (5%)	0	100	100
16	р	80/82~(98%)	75 (94%)	5~(6%)	0	100	100
17	q	78/80~(98%)	75 (96%)	3 (4%)	0	100	100
18	r	65/67~(97%)	62 (95%)	3~(5%)	0	100	100
19	s	82/92~(89%)	82 (100%)	0	0	100	100
20	t	84/86~(98%)	83~(99%)	1 (1%)	0	100	100
21	u	68/70~(97%)	67 (98%)	1 (2%)	0	100	100
24	С	270/271~(100%)	260 (96%)	10 (4%)	0	100	100
25	D	207/209~(99%)	198 (96%)	9 (4%)	0	100	100
26	Ε	199/201~(99%)	194 (98%)	5(2%)	0	100	100
27	F	175/177~(99%)	166 (95%)	9~(5%)	0	100	100
28	G	174/176~(99%)	168 (97%)	6 (3%)	0	100	100
29	J	141/142~(99%)	140 (99%)	1 (1%)	0	100	100
30	K	121/123~(98%)	117 (97%)	4 (3%)	0	100	100
31	L	143/144~(99%)	140 (98%)	3(2%)	0	100	100
32	М	133/136~(98%)	130 (98%)	3~(2%)	0	100	100
33	Ν	118/120 (98%)	115 (98%)	3(2%)	0	100	100
34	Ο	114/116~(98%)	113 (99%)	1 (1%)	0	100	100
35	Р	112/114~(98%)	107~(96%)	5(4%)	0	100	100
36	Q	115/117~(98%)	115 (100%)	0	0	100	100
37	R	101/103~(98%)	98~(97%)	2(2%)	1 (1%)	15	45
38	S	108/110~(98%)	105~(97%)	3~(3%)	0	100	100
39	Т	91/93~(98%)	90 (99%)	1 (1%)	0	100	100
40	U	90/102~(88%)	86 (96%)	4 (4%)	0	100	100
41	V	92/94~(98%)	89~(97%)	3~(3%)	0	100	100
42	W	82/84~(98%)	81 (99%)	1 (1%)	0	100	100
43	Х	75/77~(97%)	74 (99%)	1 (1%)	0	100	100
44	Y	$\overline{60/63}\;(95\%)$	60 (100%)	0	0	100	100
45	Ζ	56/58~(97%)	53 (95%)	3(5%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
46	5	65/67~(97%)	61~(94%)	4 (6%)	0	100	100
47	0	54/56~(96%)	52 (96%)	2(4%)	0	100	100
48	1	48/50~(96%)	48 (100%)	0	0	100	100
49	2	44/46~(96%)	44 (100%)	0	0	100	100
50	3	63/64~(98%)	58~(92%)	5(8%)	0	100	100
51	4	36/38~(95%)	36~(100%)	0	0	100	100
52	w	671/704~(95%)	634 (94%)	33~(5%)	4 (1%)	25	58
All	All	6139/6287~(98%)	5914 (96%)	220 (4%)	5~(0%)	54	82

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
52	W	540	ILE
52	W	166	PRO
52	W	81	PRO
52	W	492	GLU
37	R	52	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	b	188/188~(100%)	185~(98%)	3(2%)	62	86
3	с	170/170~(100%)	170 (100%)	0	100	100
4	d	172/172~(100%)	171 (99%)	1 (1%)	86	96
5	е	118/119~(99%)	118 (100%)	0	100	100
6	f	92/92~(100%)	91~(99%)	1 (1%)	73	92
7	g	129/129~(100%)	128 (99%)	1 (1%)	81	94
8	h	104/104~(100%)	104 (100%)	0	100	100
9	i	105/105~(100%)	105 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
10	j	88/87~(101%)	87~(99%)	1 (1%)	73	92
11	k	90/90~(100%)	90 (100%)	0	100	100
12	1	102/102~(100%)	102 (100%)	0	100	100
13	m	93/93~(100%)	92~(99%)	1 (1%)	73	92
14	n	83/84~(99%)	83 (100%)	0	100	100
15	0	76/76~(100%)	75~(99%)	1 (1%)	69	90
16	р	65/65~(100%)	64~(98%)	1 (2%)	65	87
17	q	74/74~(100%)	74 (100%)	0	100	100
18	r	58/58~(100%)	58~(100%)	0	100	100
19	\mathbf{S}	72/79~(91%)	71 (99%)	1 (1%)	67	89
20	\mathbf{t}	65/65~(100%)	65 (100%)	0	100	100
21	u	60/60~(100%)	60 (100%)	0	100	100
24	С	217/216~(100%)	217 (100%)	0	100	100
25	D	164/164~(100%)	164 (100%)	0	100	100
26	Ε	165/165~(100%)	165 (100%)	0	100	100
27	F	148/148 (100%)	147 (99%)	1 (1%)	84	95
28	G	137/137~(100%)	137~(100%)	0	100	100
29	J	117/116~(101%)	117~(100%)	0	100	100
30	Κ	104/104~(100%)	104 (100%)	0	100	100
31	L	104/103~(101%)	104 (100%)	0	100	100
32	М	108/108~(100%)	108 (100%)	0	100	100
33	Ν	100/100~(100%)	100 (100%)	0	100	100
34	Ο	86/86~(100%)	86 (100%)	0	100	100
35	Р	99/99~(100%)	99 (100%)	0	100	100
36	Q	89/89~(100%)	89 (100%)	0	100	100
37	R	84/84~(100%)	84 (100%)	0	100	100
38	S	93/93~(100%)	93 (100%)	0	100	100
39	Т	$\overline{80/80}\ (100\%)$	80 (100%)	0	100	100
40	U	76/83~(92%)	76 (100%)	0	100	100
41	V	78/78~(100%)	78 (100%)	0	100	100
42	W	62/62~(100%)	62 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
43	Х	67/67~(100%)	67~(100%)	0	100	100
44	Y	54/55~(98%)	54 (100%)	0	100	100
45	Z	48/48~(100%)	48 (100%)	0	100	100
46	5	60/60~(100%)	59~(98%)	1 (2%)	60	86
47	0	47/47~(100%)	47 (100%)	0	100	100
48	1	45/45~(100%)	45 (100%)	0	100	100
49	2	38/38~(100%)	38 (100%)	0	100	100
50	3	52/51~(102%)	52 (100%)	0	100	100
51	4	34/34~(100%)	34 (100%)	0	100	100
52	W	549/578~(95%)	546 (100%)	3~(0%)	88	96
All	All	5109/5150~(99%)	5093 (100%)	16 (0%)	92	98

5 of 16 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
52	W	370	LYS
52	W	37	ASN
15	0	88	ARG
46	5	8	LYS
13	m	62	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 19 such side chains are listed below:

Mol	Chain	Res	Type
40	U	99	ASN
52	W	496	GLN
52	W	505	HIS
52	W	220	GLN
24	С	115	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	a	1529/1533~(99%)	262~(17%)	0
22	А	2897/2903~(99%)	427~(14%)	6 (0%)
23	В	119/120~(99%)	13 (10%)	0

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
All	All	4545/4556~(99%)	702~(15%)	6 (0%)

5 of 702 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	а	2	А
1	a	4	U
1	a	5	U
1	a	6	G
1	a	7	А

5 of 6 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
22	А	1847	А
22	А	2602	А
22	А	2756	U
22	А	888	С
22	А	784	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

36 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	ths	Bond angles		
INIOI	туре	Unain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
22	G7M	А	2069	22	20,26,27	2.41	7 (35%)	17,39,42	1.13	1 (5%)
1	2MG	a	1516	1	18,26,27	2.46	3 (16%)	16,38,41	1.31	3 (18%)
22	PSU	А	2605	22	18,21,22	2.69	6 (33%)	22,30,33	1.84	5 (22%)
1	UR3	a	1498	1	19,22,23	2.89	7 (36%)	26,32,35	1.30	2 (7%)
1	5MC	a	1407	1	18,22,23	3.17	7 (38%)	26,32,35	2.32	7 (26%)
22	PSU	А	2457	22	18,21,22	2.68	<mark>6 (33%)</mark>	22,30,33	1.87	5 (22%)
22	2MA	А	2503	53,22	17,25,26	2.47	5 (29%)	17,37,40	1.31	2 (11%)

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	ths	B	ond ang	les
	Type	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
22	2MG	А	2445	22	$18,\!26,\!27$	2.41	<mark>3 (16%)</mark>	16,38,41	1.36	3 (18%)
12	D2T	1	89	12	$7,\!9,\!10$	1.34	1 (14%)	$6,\!11,\!13$	1.48	0
1	PSU	a	516	1	18,21,22	2.72	7 (38%)	22,30,33	1.83	6 (27%)
22	3TD	А	1915	22	18,22,23	4.09	7 (38%)	22,32,35	1.86	3 (13%)
1	MA6	a	1519	1	18,26,27	1.16	2 (11%)	19,38,41	3.20	2 (10%)
22	PSU	А	746	53,22	18,21,22	2.70	<mark>6 (33%)</mark>	22,30,33	1.73	5 (22%)
22	PSU	А	1917	22	18,21,22	2.73	<mark>6 (33%)</mark>	22,30,33	1.89	5 (22%)
1	MA6	a	1518	1	18,26,27	1.16	2 (11%)	19,38,41	3.09	2 (10%)
22	6MZ	А	2030	22	18,25,26	2.48	2 (11%)	16,36,39	2.40	4 (25%)
1	5MC	a	967	1	18,22,23	3.25	7 (38%)	26,32,35	2.33	7 (26%)
22	OMC	А	2498	53,22	19,22,23	2.93	<mark>6 (31%)</mark>	26,31,34	2.00	5 (19%)
22	OMG	А	2251	53,22	18,26,27	1.16	2 (11%)	19,38,41	0.85	1 (5%)
1	G7M	a	527	1	20,26,27	2.42	7 (35%)	17,39,42	1.10	1 (5%)
22	5MC	А	1962	22	18,22,23	<mark>3.15</mark>	7 (38%)	26,32,35	2.41	6 (23%)
22	PSU	А	2580	22	18,21,22	2.66	7 (38%)	22,30,33	1.96	6 (27%)
22	H2U	А	2449	22	18,21,22	2.11	4 (22%)	21,30,33	2.11	4 (19%)
22	2MG	А	1835	22	18,26,27	2.42	3 (16%)	16,38,41	1.25	3 (18%)
1	2MG	a	966	1	18,26,27	2.53	3 (16%)	16,38,41	1.30	2 (12%)
22	PSU	А	2604	22	18,21,22	2.68	<mark>6 (33%)</mark>	22,30,33	1.90	5 (22%)
1	40C	a	1402	1	20,23,24	<mark>3.12</mark>	8 (40%)	26,32,35	0.94	1 (3%)
22	PSU	А	2504	22	18,21,22	2.70	<mark>6 (33%)</mark>	22,30,33	1.87	5 (22%)
22	PSU	А	1911	22	18,21,22	2.76	<mark>6 (33%)</mark>	22,30,33	1.84	5 (22%)
22	5MU	А	747	22	19,22,23	2.29	<mark>6 (31%)</mark>	28,32,35	2.28	8 (28%)
22	PSU	А	955	22	18,21,22	2.68	<mark>6 (33%)</mark>	22,30,33	1.92	5 (22%)
22	OMU	А	2552	22	19,22,23	2.04	6 (31%)	26,31,34	1.73	5 (19%)
22	5MU	А	1939	22	19,22,23	<mark>2.29</mark>	6 (31%)	28,32,35	2.24	8 (28%)
22	1MG	А	745	22	18,26,27	2.78	6 (33%)	19,39,42	1.43	4 (21%)
22	6MZ	А	1618	22	18,25,26	2.51	3 (16%)	16,36,39	2.04	3 (18%)
32	4D4	М	81	32	9,11,12	2.11	2 (22%)	8,13,15	2.09	4 (50%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
22	G7M	А	2069	22	-	2/3/25/26	0/3/3/3
1	2MG	a	1516	1	-	0/5/27/28	0/3/3/3
22	PSU	А	2605	22	-	2/7/25/26	0/2/2/2
1	UR3	a	1498	1	-	0/7/25/26	0/2/2/2
1	5MC	a	1407	1	-	0/7/25/26	0/2/2/2
22	PSU	А	2457	22	-	0/7/25/26	0/2/2/2
22	2MA	А	2503	$53,\!22$	-	2/3/25/26	0/3/3/3
22	2MG	А	2445	22	-	2/5/27/28	0/3/3/3
12	D2T	1	89	12	-	1/7/12/14	-
1	PSU	a	516	1	-	0/7/25/26	0/2/2/2
22	3TD	А	1915	22	-	2/7/25/26	0/2/2/2
1	MA6	a	1519	1	-	2/7/29/30	0/3/3/3
22	PSU	А	746	53,22	-	1/7/25/26	0/2/2/2
22	PSU	А	1917	22	-	0/7/25/26	0/2/2/2
1	MA6	a	1518	1	-	0/7/29/30	0/3/3/3
22	6MZ	А	2030	22	-	2/5/27/28	0/3/3/3
1	5MC	a	967	1	-	0/7/25/26	0/2/2/2
22	OMC	А	2498	53,22	-	2/9/27/28	0/2/2/2
22	OMG	А	2251	53,22	-	3/5/27/28	0/3/3/3
1	G7M	a	527	1	-	2/3/25/26	0/3/3/3
22	5MC	А	1962	22	-	1/7/25/26	0/2/2/2
22	PSU	А	2580	22	-	0/7/25/26	0/2/2/2
22	H2U	А	2449	22	-	0/7/38/39	0/2/2/2
22	$2 \mathrm{MG}$	А	1835	22	-	2/5/27/28	0/3/3/3
1	2MG	a	966	1	-	0/5/27/28	0/3/3/3
22	PSU	А	2604	22	-	0/7/25/26	0/2/2/2
1	4OC	a	1402	1	-	1/9/29/30	0/2/2/2
22	PSU	А	2504	22	-	0/7/25/26	0/2/2/2
22	PSU	А	1911	22	-	1/7/25/26	0/2/2/2
22	$5 \mathrm{MU}$	А	747	22	-	2/7/25/26	0/2/2/2
22	PSU	А	955	22	-	0/7/25/26	0/2/2/2
22	OMU	A	2552	22	-	2/9/27/28	0/2/2/2
22	5MU	А	1939	22	-	0/7/25/26	0/2/2/2
22	1MG	A	745	22	-	0/3/25/26	0/3/3/3
22	6MZ	A	1618	22	-	3/5/27/28	0/3/3/3
32	4D4	М	81	32	-	5/11/12/14	-

The worst 5 of 184 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
22	А	1915	3TD	C6-C5	12.20	1.49	1.35
22	А	1618	6MZ	C6-N6	9.58	1.50	1.35
22	А	2030	6MZ	C6-N6	9.34	1.50	1.35
1	a	967	5MC	O2-C2	9.02	1.40	1.23
22	А	2498	OMC	O2-C2	8.92	1.40	1.23

The worst 5 of 143 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	a	1519	MA6	N1-C6-N6	-12.29	104.12	117.06
1	а	1518	MA6	N1-C6-N6	-12.01	104.41	117.06
22	А	1962	5MC	C6-N1-C2	-7.99	109.81	120.87
1	a	967	5MC	C6-N1-C2	-7.84	110.02	120.87
1	a	1407	5MC	C6-N1-C2	-7.78	110.09	120.87

There are no chirality outliers.

5 of 40 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
1	а	527	G7M	O4'-C4'-C5'-O5'
1	a	527	G7M	C3'-C4'-C5'-O5'
32	М	81	4D4	NE-CD-CG-CB
22	А	747	5MU	C3'-C4'-C5'-O5'
22	А	747	5MU	O4'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 307 ligands modelled in this entry, 294 are monoatomic - leaving 13 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	Bond angles		
	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
55	PUT	А	3008	-	$5,\!5,\!5$	0.17	0	4,4,4	0.17	0
56	SPD	А	3010	-	9,9,9	0.31	0	8,8,8	0.88	0
55	PUT	А	3002	-	$5,\!5,\!5$	0.15	0	4,4,4	0.15	0
55	PUT	А	3005	-	$5,\!5,\!5$	0.12	0	4,4,4	0.16	0
55	PUT	А	3144	-	$5,\!5,\!5$	0.13	0	4,4,4	0.15	0
55	PUT	А	3003	-	$5,\!5,\!5$	0.10	0	4,4,4	0.17	0
55	PUT	А	3007	-	$5,\!5,\!5$	0.11	0	4,4,4	0.16	0
55	PUT	А	3004	-	$5,\!5,\!5$	0.09	0	4,4,4	0.18	0
56	SPD	А	3009	-	9,9,9	0.33	0	8,8,8	0.91	0
58	GDP	W	802	-	24,30,30	2.48	7 (29%)	30,47,47	1.71	9 (30%)
59	1I7	W	803	-	$58,\!65,\!65$	2.63	22 (37%)	69,92,92	1.42	9 (13%)
55	PUT	А	3006	-	$5,\!5,\!5$	0.14	0	4,4,4	0.16	0
54	ATP	А	3001	-	26,33,33	0.60	0	31,52,52	0.73	2 (6%)

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
55	PUT	А	3008	-	-	1/3/3/3	-
56	SPD	А	3010	-	-	2/7/7/7	-
55	PUT	А	3002	-	-	0/3/3/3	-
55	PUT	А	3005	-	-	0/3/3/3	-
55	PUT	А	3144	-	-	0/3/3/3	-
55	PUT	А	3003	-	-	0/3/3/3	-
55	PUT	А	3007	-	-	1/3/3/3	-
55	PUT	А	3004	-	-	1/3/3/3	-
56	SPD	А	3009	-	-	0/7/7/7	-
58	GDP	W	802	-	-	1/12/32/32	0/3/3/3
59	1I7	W	803	-	-	12/58/69/69	0/5/6/6
55	PUT	А	3006	-	-	1/3/3/3	-
54	ATP	А	3001	-	-	2/18/38/38	0/3/3/3

The worst 5 of 29 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
58	W	802	GDP	O6-C6	8.28	1.40	1.23

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
59	W	803	1I7	C51-N18	7.19	1.49	1.36
59	W	803	1I7	C27-N10	6.72	1.48	1.34
59	W	803	1I7	C46-N15	6.64	1.48	1.34
59	W	803	1I7	C56-N17	6.61	1.48	1.34

The worst 5 of 20 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
59	W	803	1I7	C60-C57-N18	-3.89	117.10	126.07
59	W	803	1I7	C44-C50-S01	3.77	116.42	111.79
58	W	802	GDP	C5-C6-N1	3.45	120.04	113.95
58	W	802	GDP	C3'-C2'-C1'	3.45	106.17	100.98
59	W	803	1I7	C52-O03-C34	-3.27	113.18	117.75

There are no chirality outliers.

5 of 21 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
59	W	803	1I7	C26-C34-O03-C52
59	W	803	1I7	C49-C48-N17-C56
59	W	803	1I7	C56-C55-N19-C58
59	W	803	1I7	C56-C55-N19-C59
59	W	803	1I7	N18-C57-C58-N19

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
22	А	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	A	1618:6MZ	O3'	1619:G	Р	4.10

Map visualisation (i) 6

This section contains visualisations of the EMDB entry EMD-13058. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 180

Y Index: 180

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 179

Y Index: 187

Z Index: 187

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.026. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1206 nm^3 ; this corresponds to an approximate mass of 1089 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.345 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13058 and PDB model 70TC. Per-residue inclusion information can be found in section 3 on page 17.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.026 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.026).

9.4 Atom inclusion (i)

At the recommended contour level, 92% of all backbone atoms, 89% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.026) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8880	0.5040
0	0.8790	0.5420
1	0.8050	0.4840
2	0.9350	0.5890
3	0.9180	0.5670
4	0.8870	0.5380
5	0.4260	0.2120
А	0.9300	0.5330
В	0.9260	0.4250
С	0.9450	0.5780
D	0.9040	0.5610
E	0.8320	0.5020
F	0.5880	0.2800
G	0.8090	0.4730
J	0.9320	0.5780
Κ	0.8940	0.5630
L	0.8640	0.5080
Μ	0.8730	0.5210
Ν	0.8940	0.5420
О	0.7490	0.3620
Р	0.8480	0.5100
Q	0.9480	0.5930
R	0.9170	0.5610
S	0.9010	0.5600
Т	0.7840	0.4580
U	0.8170	0.4600
V	0.8140	0.4830
W	0.7880	0.5020
Х	0.8650	0.5310
Y	0.7300	0.4010
Z	0.8490	0.5380
a	0.9460	0.5250
b	0.6710	0.3800
С	0.8140	0.4470
d	0.8280	0.4670

Chain	Atom inclusion	Q-score
е	0.8590	0.4970
f	0.7420	0.3890
g	0.4920	0.2280
h	0.8580	0.5250
i	0.7850	0.4000
j	0.7350	0.3630
k	0.8150	0.4140
1	0.9090	0.5340
m	0.6270	0.2860
n	0.8220	0.4360
О	0.8810	0.5020
р	0.8820	0.5060
q	0.8560	0.4920
r	0.8200	0.4580
s	0.7670	0.3880
t	0.8930	0.5310
u	0.6010	0.3710
W	0.6170	0.3470

