

Full wwPDB X-ray Structure Validation Report (i)

Aug 28, 2023 – 10:46 PM EDT

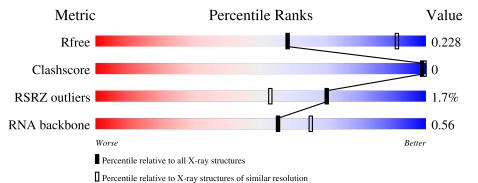
PDB ID	:	30XM
Title	:	crystal structure of glycine riboswitch, Tl-Acetate soaked
Authors	:	Huang, L.; Serganov, A.; Patel, D.J.
Deposited on		
Resolution	:	2.95 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	3104 (3.00-2.92)
Clashscore	141614	3462 (3.00-2.92)
RSRZ outliers	127900	2986 (3.00-2.92)
RNA backbone	3102	1065 (3.22-2.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	88	78%	17%	5%
2	В	88	80%	17%	•

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mo	l Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	TL	А	207	-	-	-	Х

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	TL	В	209	-	-	-	Х
5	MG	А	106	-	-	-	Х
5	MG	В	122	-	-	-	Х

Continued from previous page...

30XM

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 3890 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

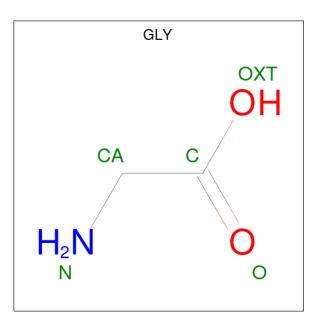
• Molecule 1 is a RNA chain called domain II of glycine riboswitch.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	А	88	Total 1906	C 847	N 361	O 608	Р 90	0	0	0

There are 7 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	1	GDP	-	insertion	GB CP001485.1
А	2	G	-	insertion	GB CP001485.1
A	50	G	С	conflict	GB CP001485.1
А	52	А	U	conflict	GB CP001485.1
А	54	С	U	conflict	GB CP001485.1
А	87	U	-	insertion	GB CP001485.1
А	88	CCC	-	insertion	GB CP001485.1

• Molecule 2 is a RNA chain called domain II of glycine riboswitch.


Mol	Chain	Residues		Atoms			ZeroOcc	AltConf	Trace	
2	В	88	Total 1901	C 847	N 361	O 604	Р 89	0	0	0

There are 7 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	1	G	-	insertion	GB CP001485.1
В	2	G	-	insertion	GB CP001485.1
В	50	G	С	conflict	GB CP001485.1
В	52	А	U	conflict	GB CP001485.1
В	54	С	U	conflict	GB CP001485.1
В	87	U	-	insertion	GB CP001485.1
В	88	CCC	-	insertion	GB CP001485.1

• Molecule 3 is GLYCINE (three-letter code: GLY) (formula: $C_2H_5NO_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 5 & 2 & 1 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 5 & 2 & 1 & 2 \end{array}$	0	0

• Molecule 4 is THALLIUM (I) ION (three-letter code: TL) (formula: Tl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	5	Total Tl 5 5	0	0
4	В	5	Total Tl 5 5	0	0

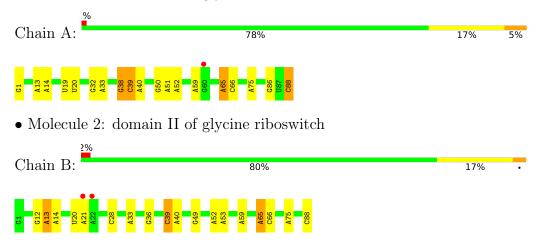
• Molecule 5 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	16	Total Mg 16 16	0	0
5	В	11	Total Mg 11 11	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	27	TotalO2727	0	0

Continued from previous page...


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	В	9	Total O 9 9	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: domain II of glycine riboswitch

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 32 2 1	Depositor
Cell constants	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Depositor
a, b, c, α , β , γ	$\frac{90.00}{20.00} - 2.95$	Depositor
Resolution (Å)	19.79 - 2.95	EDS
% Data completeness	99.9 (20.00-2.95)	Depositor
(in resolution range)	99.9 (19.79-2.95)	EDS
R _{merge}	0.07	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	5.25 (at 2.93Å)	Xtriage
Refinement program	REFMAC	Depositor
D D.	0.200 , 0.225	Depositor
R, R_{free}	0.204 , 0.228	DCC
R_{free} test set	904 reflections (5.10%)	wwPDB-VP
Wilson B-factor $(Å^2)$	64.9	Xtriage
Anisotropy	0.086	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.23 , 48.5	EDS
L-test for $twinning^2$	$< L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	0.029 for -h,-k,l	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	3890	wwPDB-VP
Average B, all atoms $(Å^2)$	67.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.12% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CCC, MG, GDP, TL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.56	0/2080	1.08	5/3244~(0.2%)	
2	В	0.56	0/2106	1.03	4/3285~(0.1%)	
All	All	0.56	0/4186	1.06	9/6529~(0.1%)	

There are no bond length outliers.

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	38	G	C3'-C2'-C1'	-6.87	96.00	101.50
1	А	65	А	P-O3'-C3'	6.73	127.78	119.70
2	В	65	А	P-O3'-C3'	6.46	127.45	119.70
1	А	38	G	P-O3'-C3'	6.19	127.12	119.70
2	В	39	С	O4'-C1'-N1	6.12	113.09	108.20
2	В	28	С	O4'-C1'-N1	5.61	112.69	108.20
1	А	32	G	O4'-C1'-N9	5.34	112.48	108.20
1	А	39	С	O4'-C1'-N1	5.24	112.39	108.20
2	В	13	А	C3'-C2'-C1'	-5.23	97.31	101.50

All (9) bond angle outliers are listed below:

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1906	0	954	0	0
2	В	1901	0	953	2	0
3	А	5	0	2	0	0
3	В	5	0	2	1	0
4	А	5	0	0	0	0
4	В	5	0	0	0	0
5	А	16	0	0	0	0
5	В	11	0	0	0	0
6	А	27	0	0	0	0
6	В	9	0	0	0	0
All	All	3890	0	1911	2	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 0.

All (2) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:B:49:G:C2	2:B:52:A:N6	2.83	0.47
2:B:36:G:O6	3:B:89:GLY:HA3	2.21	0.41

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

There are no protein molecules in this entry.

5.3.2 Protein sidechains (i)

There are no protein molecules in this entry.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	86/88~(97%)	16 (18%)	3(3%)
2	В	87/88~(98%)	13 (14%)	1 (1%)
All	All	173/176~(98%)	29 (16%)	4 (2%)

Mol	Chain	Res	Type
1	А	13	А
1	А	14	А
1	А	19	A A U U
1	А	20	U
1	А	33	А
1	А	39	С
1	А	40	А
	А	50	G
1	А	51	А
1	А	52	А
1	A B B	59	А
1	А	65	А
1	А	66	С
1	А	75	А
1	А	86	G
1	А	88	CCC
2	В	12	G
2	В	13 14 20	А
2	В	14	А
2	В	20	U
2	В	21	А
2	В	- 33	А
2	В	39	С
2	В	40	А
2	В	53	А
2	В	59	А
2	В	65	А
$ \begin{array}{r} 2 \\ $	В	66	ACAGAAAACAGCCCGAAUAACAA <tr< td=""></tr<>
2	В	75	А

All (29) RNA backbone outliers are listed below:

All (4) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	А	38	G
1	А	51	А
1	А	65	А
2	В	65	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

3 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Ch		Chain	Chain Res I		Bond lengths			B	ond ang	les
IVIOI	Mol Type Chain	nes	Link	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
2	CCC	В	88	2	20,25,26	2.69	4 (20%)	28,38,41	1.54	6 (21%)
1	CCC	А	88	1	20,25,26	2.68	4 (20%)	28,38,41	1.52	5 (17%)
1	GDP	А	1	1	24,30,30	1.17	2 (8%)	30,47,47	1.52	7 (23%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	CCC	В	88	2	-	0/7/35/36	0/3/3/3
1	CCC	А	88	1	-	0/7/35/36	0/3/3/3
1	GDP	А	1	1	-	3/12/32/32	0/3/3/3

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
2	В	88	CCC	C5-C4	-7.09	1.26	1.42
1	А	88	CCC	C5-C4	-7.02	1.26	1.42
1	А	88	CCC	C6-C5	-6.46	1.19	1.35
2	В	88	CCC	C6-C5	-6.45	1.19	1.35
2	В	88	CCC	C6-N1	-6.25	1.22	1.38
1	А	88	CCC	C6-N1	-6.22	1.23	1.38
1	А	1	GDP	C5-C6	-3.81	1.39	1.47
2	В	88	CCC	C2-N1	-2.61	1.34	1.40
1	А	88	CCC	C2-N1	-2.61	1.34	1.40
1	А	1	GDP	C2-N3	2.25	1.38	1.33

All (10) bond length outliers are listed below:

All (18) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	В	88	CCC	O3'-C3'-C2'	3.76	111.98	105.08
1	А	88	CCC	O3'-C3'-C2'	3.45	111.40	105.08

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	1	GDP	PA-O3A-PB	-3.31	121.46	132.83
1	А	1	GDP	C5-C6-N1	3.27	119.72	113.95
2	В	88	CCC	C6-C5-C4	3.11	122.52	117.50
1	А	88	CCC	C6-C5-C4	3.09	122.49	117.50
2	В	88	CCC	O2'-C2'-C3'	3.07	110.72	105.08
1	А	88	CCC	O2'-C2'-C3'	3.02	110.61	105.08
1	А	1	GDP	C8-N7-C5	2.88	108.47	102.99
1	А	1	GDP	C2-N1-C6	-2.85	119.86	125.10
1	А	88	CCC	O2'-PC-O1C	-2.65	108.77	115.76
2	В	88	CCC	O3'-PC-O1C	-2.48	109.22	115.76
1	А	88	CCC	C4-N3-C2	-2.43	116.34	120.25
2	В	88	CCC	C4-N3-C2	-2.41	116.37	120.25
2	В	88	CCC	O2'-PC-O1C	-2.28	109.73	115.76
1	А	1	GDP	O6-C6-C5	-2.27	119.95	124.37
1	А	1	GDP	C3'-C2'-C1'	-2.19	97.68	100.98
1	А	1	GDP	C2'-C3'-C4'	2.10	106.71	102.64

Continued from previous page...

There are no chirality outliers.

All (3) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	А	1	GDP	O4'-C4'-C5'-O5'
1	А	1	GDP	C3'-C4'-C5'-O5'
1	А	1	GDP	C5'-O5'-PA-O1A

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 39 ligands modelled in this entry, 37 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Turne	Chain	Res	Link	B	ond leng	gths	B	Bond ang	gles
10101	Type	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	GLY	В	89	-	4,4,4	1.10	1 (25%)	3,4,4	1.68	1 (33%)
3	GLY	А	89	-	4,4,4	1.12	1 (25%)	$3,\!4,\!4$	1.68	1 (33%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	GLY	В	89	-	-	0/2/2/2	-
3	GLY	А	89	-	-	0/2/2/2	-

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	А	89	GLY	OXT-C	-2.10	1.23	1.30
3	В	89	GLY	OXT-C	-2.06	1.23	1.30

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	В	89	GLY	OXT-C-CA	2.05	121.61	113.45
3	А	89	GLY	OXT-C-CA	2.05	121.60	113.45

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	В	89	GLY	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	# R S	SRZ:	>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
1	А	86/88~(97%)	-0.22	1 (1%)	79	63	51,64,93,100	0
2	В	87/88~(98%)	-0.08	2 (2%)	60	43	44, 61, 91, 96	0
All	All	173/176~(98%)	-0.15	3 (1%)	70	53	44, 62, 93, 100	0

All (3) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	В	21	A	3.9
1	А	60	G	2.5
2	В	22	А	2.3

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	\mathbf{RSR}	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q < 0.9
1	GDP	А	1	28/28	0.84	0.18	$101,\!105,\!108,\!109$	0
2	CCC	В	88	23/24	0.92	0.18	85,88,93,94	0
1	CCC	А	88	23/24	0.94	0.18	101,107,113,115	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
5	MG	А	106	1/1	0.35	1.92	88,88,88,88	0
5	MG	В	122	1/1	0.37	0.61	84,84,84,84	0
4	TL	А	207	1/1	0.64	0.91	42,42,42,42	1
4	TL	В	209	1/1	0.70	0.65	190,190,190,190	1
4	TL	А	205	1/1	0.80	0.08	215,215,215,215	0
5	MG	А	126	1/1	0.81	0.48	97,97,97,97	0
5	MG	А	113	1/1	0.82	0.93	$95,\!95,\!95,\!95$	0
5	MG	А	112	1/1	0.85	0.21	97,97,97,97	0
5	MG	А	103	1/1	0.85	1.00	89,89,89,89	0
3	GLY	В	89	5/5	0.85	0.32	64,64,64,64	0
5	MG	А	127	1/1	0.86	1.73	94,94,94,94	0
5	MG	В	115	1/1	0.86	0.42	78,78,78,78	0
5	MG	А	101	1/1	0.86	0.20	$55,\!55,\!55,\!55$	0
5	MG	В	125	1/1	0.86	0.91	92,92,92,92	0
5	MG	В	124	1/1	0.87	0.76	85,85,85,85	0
5	MG	А	117	1/1	0.87	0.48	$97,\!97,\!97,\!97$	0
5	MG	В	123	1/1	0.88	0.81	83,83,83,83	0
5	MG	В	120	1/1	0.88	1.34	90,90,90,90	0
5	MG	А	116	1/1	0.88	0.15	$102,\!102,\!102,\!102$	0
3	GLY	А	89	5/5	0.89	0.25	$59,\!59,\!60,\!61$	0
5	MG	А	118	1/1	0.89	0.74	91,91,91,91	0
5	MG	В	108	1/1	0.89	0.40	$75,\!75,\!75,\!75$	0
5	MG	А	114	1/1	0.90	1.70	87,87,87,87	0
4	TL	В	201	1/1	0.90	0.27	$156,\!156,\!156,\!156$	1
5	MG	А	102	1/1	0.91	0.44	82,82,82,82	0
4	TL	В	208	1/1	0.91	1.03	106,106,106,106	1
5	MG	В	111	1/1	0.91	0.50	80,80,80,80	0
5	MG	А	128	1/1	0.92	0.48	70,70,70,70	0
5	MG	А	109	1/1	0.93	0.15	102,102,102,102	0
5	MG	В	121	1/1	0.93	0.55	102,102,102,102	0
4	TL	А	204	1/1	0.93	0.06	164, 164, 164, 164	0
4	TL	А	210	1/1	0.94	0.30	120,120,120,120	1
5	MG	В	119	1/1	0.94	0.35	106,106,106,106	0
4	TL	В	202	1/1	0.94	0.06	172,172,172,172	0
4	TL	В	203	1/1	0.94	0.07	$155,\!155,\!155,\!155$	1
5	MG	В	110	1/1	0.95	0.29	89,89,89,89	0
5	MG	А	104	1/1	0.96	0.61	82,82,82,82	0

Continued from previous page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q < 0.9
5	MG	А	107	1/1	0.97	0.41	83,83,83,83	0
4	TL	А	206	1/1	0.98	0.13	$127,\!127,\!127,\!127$	1

6.5 Other polymers (i)

There are no such residues in this entry.

