

wwPDB EM Validation Summary Report (i)

Nov 9, 2022 – 04:52 PM EST

PDB ID	:	6P5N
EMDB ID	:	EMD-20258
Title	:	Structure of a mammalian 80S ribosome in complex with a single translocated
		Israeli Acute Paralysis Virus IRES and eRF1
Authors	:	Acosta-Reyes, F.J.; Neupane, R.; Frank, J.; Fernandez, I.S.
Deposited on	:	2019-05-30
Resolution	:	3.20 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.2
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	5	3594	7%73%	27%
2	7	119	84%	16%
3	8	156	74%	22% •
4	AA	257	94%	
5	AB	402	• 96%	
6	AC	392	87%	5% 8%
7	AD	297	97%	
8	AE	291	· · · ·	26%

Mol	Chain	Length	Quality of chain	
9	AF	249	88%	• 10%
10	AG	242	<u>6%</u> 92%	• 7%
11	AH	192	• 99%	
12	AI	214	5% 95%	
13	AJ	178	94%	
14	AL	211	• 93%	• 5%
15	AM	198	6 6% •	30%
16	AN	204	97%	•
17	AO	203	• 95%	
18	AP	184	83%	• 17%
19	AQ	188	94%	6% •
20	AR	196	88%	• 8%
21	AS	176	93%	7%
22	AT	160	6% 96%	
23	AU	128	14% 72% 5%	23%
24	AV	140	• 91%	• 8%
25	AW	157	40% 60%	
26	AX	156	75% •	24%
27	AY	145	89%	• 8%
28	AZ	136	99%	
29	Aa	148	▲ 98%	
30	Ab	226	7% 45% • 54%	
31	Ac	115	84%	• 15%
32	Ad	125	<u>6%</u> 84%	• 14%
33	Ae	135	• 93%	• 5%

Mol	Chain	Length	Quality of chain	
34	Af	110	9 7%	••
35	Ag	126	6% 88%	• 10%
36	Ah	123	98%	•••
37	Ai	105	97%	•
38	Aj	97	▲ 86%	• 11%
39	Ak	70	94%	• •
40	Al	51	96%	•••
41	Am	52	100%	
42	An	25	100%	
43	Ao	106	5% 97%	••
44	Ар	92	• 97%	••
45	Ar	137	90%	• 9%
46	AK	217	90% 	12% •
47	2	1869	8% 63% 27%	• 9%
48	В	295	6% 73%	26%
49	С	264	80%	19%
50	D	255	86%	• 13%
51	Е	281	31% 80%	19%
52	F	263	98%	·
53	G	204	8%	9%
54	Н	249	21%	• 5%
55	Ι	194	20% 95%	• 5%
56	J	207	9%97%	•
57	K	194	94%	• 5%
58	L	149	45% 63% • 36%	

Mol	Chain	Length	Quality of chain	
59	М	158	87%	• 9%
		1.0.0	89%	
60	N	132	85%	• 11%
61	Ο	151	97%	••
62	Р	151	88%	• 10%
			38%	
63	Q	145	73% 8% •	18%
64	R	172	82%	17%
65	S	135	96%	•••
	T	150	24%	
66	Т	152	92%	• 5%
67	U	145	94%	• •
68	V	110	39%	1.00/
00	v	113	84%	10%
69	W	83	98%	•
70	Х	130	98%	
71	Y	143	95%	
72	Z	134	9%	. 7%
			18%	. ,,,,
73	a	125	58% • 40%	
74	b	115	83%	15%
75	с	84	99%	
76	d	69	7%	• 10%
		F C	20%	10/0
((e	50	96%	••
78	f	133	41% • 58%	
79	g	156	42% • 56%	
80	h	317	46%	
0.1	٨	497	76%	
81	Aq	437	90%	5% 5%
82	1	251	36% 46%	18%

2 Entry composition (i)

There are 82 unique types of molecules in this entry. The entry contains 219295 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 28S rRNA.

Mol	Chain	Residues			AltConf	Trace			
1	5	3594	Total 77074	C 34325	N 14116	O 25039	Р 3594	0	0

• Molecule 2 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	7	119	Total 2538	C 1132	N 454	0 834	Р 118	0	0

• Molecule 3 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	8	151	Total 3208	C 1432	N 564	O 1062	Р 150	0	0

• Molecule 4 is a protein called uL2.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	AA	248	Total 1895	C 1186	N 389	0 314	S 6	0	0

• Molecule 5 is a protein called uL3.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	AB	394	Total 3172	C 2020	N 597	0 542	S 13	0	0

• Molecule 6 is a protein called uL4.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	AC	362	Total 2883	C 1812	N 577	O 480	S 14	0	0

• Molecule 7 is a protein called uL18.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	AD	293	Total 2391	C 1512	N 438	O 427	$\begin{array}{c} \mathrm{S} \\ \mathrm{14} \end{array}$	0	0

• Molecule 8 is a protein called eL6.

Mol	Chain	Residues		Ate			AltConf	Trace	
8	AE	216	Total 1729	C 1115	N 329	0 282	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called L30.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
9	AF	225	Total 1875	C 1205	N 358	O 303	S 9	0	0

• Molecule 10 is a protein called eL8.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	AG	225	Total 1819	C 1161	N 351	O 303	${S \atop 4}$	0	0

• Molecule 11 is a protein called uL6.

Mol	Chain	Residues		At	oms		AltConf	Trace	
11	AH	190	Total 1516	C 954	N 284	0 272	S 6	0	0

• Molecule 12 is a protein called uL16.

Mol	Chain	Residues		At	AltConf	Trace			
12	AI	205	Total 1664	C 1056	N 321	0 274	S 13	0	0

• Molecule 13 is a protein called uL11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	AJ	170	Total 1362	C 861	N 254	0 241	S 6	0	0

• Molecule 14 is a protein called eL13.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	AL	201	Total 1627	C 1020	N 341	O 262	$\frac{S}{4}$	0	0

• Molecule 15 is a protein called L14e.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	AM	138	Total 1137	С 727	N 221	O 182	${ m S} 7$	0	0

• Molecule 16 is a protein called eL15.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
16	AN	203	Total 1701	C 1072	N 359	0 266	$\frac{S}{4}$	0	0

• Molecule 17 is a protein called uL13.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
17	AO	199	Total 1631	C 1052	N 319	O 255	${ m S}{ m 5}$	0	0

• Molecule 18 is a protein called uL22.

Mol	Chain	Residues	Atoms					AltConf	Trace
18	AP	153	Total 1242	C 777	N 241	0 215	S 9	0	0

• Molecule 19 is a protein called eL18.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	AQ	187	Total 1526	C 964	N 306	O 252	${S \atop 4}$	0	0

• Molecule 20 is a protein called eL19.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
20	AR	180	Total 1503	C 931	N 324	0 238	S 10	0	0

• Molecule 21 is a protein called eL20.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
21	AS	176	Total 1457	C 928	N 283	O 235	S 11	0	0

• Molecule 22 is a protein called eL21.

Mol	Chain	Residues		Atoms					Trace
22	AT	159	Total 1298	C 823	N 252	0 217	S 6	0	0

• Molecule 23 is a protein called eL22.

Mol	Chain	Residues		Atoms					Trace
23	AU	99	Total 818	C 520	N 146	0 150	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 24 is a protein called uL14.

Mol	Chain	Residues		Atoms					Trace
24	AV	129	Total 969	C 613	N 182	O 169	${ m S}{ m 5}$	0	0

• Molecule 25 is a protein called eL24.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
25	AW	63	Total 528	C 337	N 103	O 85	${ m S} { m 3}$	0	0

• Molecule 26 is a protein called eL23.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	AX	118	Total 967	C 618	N 181	0 167	S 1	0	0

• Molecule 27 is a protein called uL24.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	AY	134	Total 1115	C 700	N 226	0 186	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called eL27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	AZ	135	Total 1107	С 714	N 208	0 182	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called uL15.

Mol	Chain	Residues		At	oms			AltConf	Trace
29	Aa	147	Total 1162	С 734	N 239	0 185	$\frac{S}{4}$	0	0

• Molecule 30 is a protein called eL29.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	Ab	104	Total 848	C 527	N 189	0 129	${ m S} { m 3}$	0	0

• Molecule 31 is a protein called eL30.

Mol	Chain	Residues		At	oms			AltConf	Trace
31	Ac	98	Total 761	C 481	N 134	0 140	S 6	0	0

• Molecule 32 is a protein called eL31.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	Ad	107	Total 888	C 560	N 171	O 155	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 33 is a protein called eL32.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	Ae	128	Total 1053	C 667	N 216	0 165	${ m S}{ m 5}$	0	0

• Molecule 34 is a protein called eL33.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	Af	109	Total 876	C 555	N 174	0 143	${S \atop 4}$	0	0

• Molecule 35 is a protein called eL34.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	Ag	114	Total 906	$ m C \ 566$	N 187	0 147	S 6	0	0

• Molecule 36 is a protein called eL35.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	Ah	122	Total 1013	C 640	N 204	0 168	S 1	0	0

• Molecule 37 is a protein called eL36.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	Ai	102	Total 830	C 520	N 176	0 129	${S \atop 5}$	0	0

• Molecule 38 is a protein called eL37.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	Aj	86	Total 705	C 434	N 155	0 111	${ m S}{ m 5}$	0	0

• Molecule 39 is a protein called eL38.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
39	Ak	69	Total 569	C 366	N 101	O 99	${ m S} { m 3}$	0	0

• Molecule 40 is a protein called eL39.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
40	Al	50	Total 447	C 286	N 96	0 64	S 1	0	0

• Molecule 41 is a protein called eL40.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
41	Am	52	Total 429	C 266	N 90	O 67	S 6	0	0

• Molecule 42 is a protein called eL41.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
49	An	25	Total	С	Ν	Ο	\mathbf{S}	0	0
42	АШ	20	239	145	64	27	3	0	0

• Molecule 43 is a protein called eL42.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	Ao	104	Total 851	C 533	N 174	0 138	S 6	0	0

• Molecule 44 is a protein called eL43.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	Ap	91	Total 708	C 445	N 136	O 120	S 7	0	0

• Molecule 45 is a protein called eL28.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	Ar	124	Total 994	C 616	N 205	0 167	S 6	0	0

• Molecule 46 is a protein called uL1.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	AK	212	Total 1705	C 1091	N 306	O 300	S 8	0	0

• Molecule 47 is a RNA chain called 18S rRNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
47	2	1697	Total 36229	C 16171	N 6507	0 11855	Р 1696	0	0

• Molecule 48 is a protein called uS2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
48	В	217	Total 1706	C 1085	N 295	O 317	${ m S} 9$	0	0

• Molecule 49 is a protein called eS1.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	С	213	Total 1729	C 1098	N 309	O 308	S 14	0	0

• Molecule 50 is a protein called uS5.

Mol	Chain	Residues		At	oms			AltConf	Trace
50	D	221	Total 1712	C 1107	N 296	O 299	S 10	0	0

• Molecule 51 is a protein called uS3.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
51	Е	228	Total 1768	C 1126	N 318	0 316	S 8	0	0

• Molecule 52 is a protein called eS4.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	F	262	Total 2073	C 1323	N 384	O 357	S 9	0	0

• Molecule 53 is a protein called uS7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
53	G	185	Total 1471	C 921	N 277	O 266	S 7	0	0

• Molecule 54 is a protein called eS6.

Mol	Chain	Residues		Atoms					Trace
54	Н	237	Total 1923	C 1200	N 387	O 329	${f S}7$	0	0

• Molecule 55 is a protein called eS7.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	Ι	185	Total 1488	C 952	N 271	0 264	S 1	0	0

• Molecule 56 is a protein called eS8.

Mol	Chain	Residues		Ate	AltConf	Trace			
56	J	206	Total 1686	C 1058	N 332	0 291	${ m S}{ m 5}$	0	0

• Molecule 57 is a protein called uS4.

Mol	Chain	Residues		At	oms			AltConf	Trace
57	K	185	Total 1525	C 969	N 306	0 248	${S \over 2}$	0	0

• Molecule 58 is a protein called eS10.

Mol	Chain	Residues		At	oms		AltConf	Trace	
58	L	96	Total 810	C 530	N 143	0 131	S 6	0	0

• Molecule 59 is a protein called uS17.

Mol	Chain	Residues		At	oms		AltConf	Trace	
59	М	143	Total 1175	C 749	N 222	O 198	S 6	0	0

• Molecule 60 is a protein called eS12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
60	Ν	117	Total 908	C 570	N 161	0 169	S 8	0	0

• Molecule 61 is a protein called uS15.

Mol	Chain	Residues	Atoms					AltConf	Trace
61	О	149	Total 1202	С 770	N 228	O 203	S 1	0	0

• Molecule 62 is a protein called uS11.

Mol	Chain	Residues		At	oms		AltConf	Trace	
62	Р	136	Total 1016	C 621	N 199	0 190	S 6	0	0

• Molecule 63 is a protein called uS19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
63	Q	119	Total 990	C 630	N 186	0 167	${ m S} 7$	0	0

• Molecule 64 is a protein called uS9.

Mol	Chain	Residues		Atoms					Trace
64	R	142	Total 1128	С 717	N 213	0 195	${ m S} { m 3}$	0	0

• Molecule 65 is a protein called eS17.

Mol	Chain	Residues		Atoms					Trace
65	S	132	Total 1068	C 670	N 199	0 195	$\frac{S}{4}$	0	0

• Molecule 66 is a protein called uS13.

Mol	Chain	Residues		At	oms			AltConf	Trace
66	Т	144	Total 1190	C 746	N 241	O 202	S 1	0	0

• Molecule 67 is a protein called eS19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	U	141	Total 1097	C 688	N 211	0 195	${ m S} { m 3}$	0	0

• Molecule 68 is a protein called uS10.

Mol	Chain	Residues		At	oms			AltConf	Trace
68	V	100	Total 795	C 498	N 152	0 141	${f S}$ 4	0	0

• Molecule 69 is a protein called eS21.

Mol	Chain	Residues		At	oms			AltConf	Trace
69	W	83	Total 630	C 387	N 118	0 120	${ m S}{ m 5}$	0	0

• Molecule 70 is a protein called uS8.

Mol	Chain	Residues		At	oms			AltConf	Trace
70	Х	129	Total 1034	$\begin{array}{c} \mathrm{C} \\ 659 \end{array}$	N 193	O 176	S 6	0	0

• Molecule 71 is a protein called uS12.

Mol	Chain	Residues		At	oms			AltConf	Trace
71	Y	141	Total 1098	C 693	N 219	0 183	${ m S} { m 3}$	0	0

• Molecule 72 is a protein called eS24.

Mol	Chain	Residues		At	oms			AltConf	Trace
72	Z	124	Total 1011	C 640	N 198	0 168	${f S}{5}$	0	0

• Molecule 73 is a protein called eS25.

Mol	Chain	Residues		At	oms			AltConf	Trace
73	a	75	Total 598	C 382	N 111	0 104	S 1	0	0

• Molecule 74 is a protein called eS26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
74	b	98	Total 778	C 485	N 158	O 129	S 6	0	0

• Molecule 75 is a protein called eS27.

Mol	Chain	Residues		At	oms			AltConf	Trace
75	С	83	Total 651	C 408	N 121	0 115	${f S}7$	0	0

• Molecule 76 is a protein called eS28.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
76	d	62	Total 488	C 297	N 97	O 92	${S \over 2}$	0	0

• Molecule 77 is a protein called eS29.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
77	е	55	Total	С	Ν	Ο	\mathbf{S}	0	0
''	C	00	459	286	94	74	5	0	0

• Molecule 78 is a protein called eS30.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
78	f	56	Total 447	C 276	N 98	0 72	S 1	0	0

• Molecule 79 is a protein called eS31.

Mol	Chain	Residues		At	oms			AltConf	Trace
79	g	68	Total 555	C 351	N 103	0 94	${f S}7$	0	0

• Molecule 80 is a protein called RACK1.

Mol	Chain	Residues		At	AltConf	Trace			
80	h	313	Total 2436	C 1535	N 424	O 465	S 12	0	0

• Molecule 81 is a protein called Eukaryotic peptide chain release factor subunit 1.

Mol	Chain	Residues		At	AltConf	Trace			
81	Aq	416	Total 3278	C 2085	N 559	O 623	S 11	0	0

• Molecule 82 is a RNA chain called IAPV-IRES.

Mol	Chain	Residues		А	toms			AltConf	Trace
82	1	207	Total 4407	C 1970	N 781	0 1449	Р 207	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 28S rRNA

C1640 C1661 C1664 C1664 C1664 C1666 C1666 C1666 C1666 C1666 C1666 C1666 C1731 C1734 C1734 C1734 C1734 C1734 C1735 C1736 C1735 C1736 C1736 C1736 C1736 C1736 C1756 C1756 C1756 C1766 C1776 C1766 C1766 C1766 C1776 C1766 C1766 C1766 C1766 C1766 C1766 C1766 C1766 C1766 C1766 C1766 C1766 C1766 C1766 C1766 C1766 C1776 C1776 C1776 C1766 C17776 C17777777777
C1809 C1815 C1821 C1820 C1828 C1828 C1833 C1833 C1833 C1833 C1833 C1885 C1885 C1885 C1885 C1886 C1885 C1886 C19666 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966 C1966
c13961 A1962 A1965 A1967 A1967 A1967 A1973 A1974 A1975 A1976 A1977 A1976 A1977 A1976 A1977 A1976 A1977 A1976 A1982 A1982 A1983 A1994 A1995 A1995 A1996 A1997 A1996 A1996 A1997 A1996 A1996 A1996 A1996 A1996 A1996 A1996 A1996 A1996 A1996<
C2 023 A2 025 A2 025 A2 025 A2 025 A2 042 A2 042 A2 043 A2 045 A
C2289 C2284 C2284 C2284 C2284 C2284 C2285 C235 C2385 C2455 C2455 C2455 C2455 C2455 C2455 C2455 C
02476 C2441 C2441 C2441 C2443 C2443 C2443 C2443 C2444 C2443 C2443 C2443 C2443 C2443 C2444 C2443 C2443 C2443 C2443 C2444 C2449 C2449 C2449 C2449 C2449 C2449 C2449 C2449 C2449 C2564 C2565 C2566 C2566 C2566 C2566 C2566 C2566 </td
C2569 U2575 U2575 C2588 C2588 C2588 C2588 A5601 C2588 A2618 A2618 A2618 A2618 A2618 A2618 A2618 A2649 C2663 C2664 U2687 A2669 U2687 A2663 U2686 U2687 A2663 C2670 C2670 C26714 C2670 C26714 C2663 C26714 C27145 C27145 C271
02723 02735 02735 02735 02735 02755 02755 02763 02763 02763 02763 02763 02763 02763 02763 02763 02765 02765 02765 02770 02770 02770 02770 02770 02770 02770 02770 02770 02770 02770 02770 02855 0
(3617 (3617 (3618) (3719) (3719) (3711) (3716) (3711) (3716) (3716) (3716) (3776) (37
A3775 A3775 C3775 C3775 C3775 C3775 A3785 A3785 C3810 C3810 C3810 C3810 C3811 C3812 C3811 C3811 C3812 C3811 C3812 C3811 C3812 C3811 C3812 C3811 C3812 C3811 C3812 C3812 C3812 C3812 C3811 C3812 C3811 C3812 C3811 C3812 C3811 C3812 C3812 C3812 C3811 C3812 C3812 C3811 C3812 C3811 C3812 C3812 C3812 C3812 C3811 C3812 C3823 C3832 C
C3948 A3949 A3945 A3954 A3955 A3955 </td
P4066 P4066 U44070 U44070 U44070 U44070 U44075 U44075 U44075 U44075 U44075 U44075 U44075 U44075 U44075 U44075 U44075 U44075 Q44075 U44075 Q44075 U44075 Q44075 U44075 Q44075 U4405 Q4011 U44115 Q41115 U44112 Q41126 Q4112 Q41135 Q4136 Q41147 Q4136 Q4136 Q4135 Q4147 Q4147 Q4147 Q4146 Q4146 Q4145 Q4152 Q4145
Odd 158 Odd 158 0.4159 0.4159 0.4170 0.4170 0.4171 0.4170 0.4172 0.4170 0.4173 0.4170 0.4181 0.4172 0.4181 0.4181 0.4181 0.4172 0.4181 0.4181 0.4181 0.4181 0.4182 0.4183 0.4183 0.4183 0.4184 0.4183 0.4184 0.4183 0.4225 0.4226 0.42551 0.4225 0.42551 0.4226 0.42551 0.4225 0.42551 0.4226 0.42551 0.4226 0.42551 0.4226 0.42551 0.4226 0.42551 0.4226 0.4226 0.4226 0.4226 0.4226 0.4226 0.4226 0.4226 0.4226 0.4226 0.4226 0.4226 0.4226 0.4

\bullet Molecule 25: eL24				
Chain AW:	40%		60%	
MI K2 K2 K2 K2 K2 K2 K2 K2 K2 K2	VAL LYS PHE GLN GLN ARG ALA ALA ALA ALA SET SEU SEU	ALA ASP MET ILF LYS ALA ASN CLN CLN CLN CLN CLU CLU	VAL ARG ALA GLN GLN GLU GLU ARG ALA ALA ALA	ALA ALA CVS GLU GLU CVS ALA ALA ALA LVS ALA LVS LVS LVS LVS
GLN ALA SER LYS LYS LYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA PRO LYS CVS CVS CVS LYS LYS PRO VAL VAL	SER ALA PRO ARG VAL GLY GLY LYS ARG		
• Molecule 26: eL23				
Chain AX:	75%		• 249	6
MET MLA ALA ALA PRO LYS LYS ALA ALA ALA PRO PRO PRO CUU VAL	LYS LYS ALA LYS ALA LYS LYS ALA ALA ALA VAL VAL	LYS GLY VAL HIS HIS ER HIS LYS LYS LYS LYS LYS	R67 D92 195 1156	
\bullet Molecule 27: uL24				
Chain AY:	{	39%		• 8%
M1 K2 N1 4 N1 4 D5 2 D5 2 D5 2 D5 2 D5 2 D5 2 D5 2 D5 2	K134 TYR LYS GLU GLU GLU ULD CLU CLU CLU CLU CLU CLN	GLU		
\bullet Molecule 28: eL27				
Chain AZ:		99%		·
RET C2 D30 F 136 F 136				
• Molecule 29: uL15				
Chain Aa:		98%		
CLM P2 V82 V124 A148				
• Molecule 30: eL29				
Chain Ab:	45%	•	54%	
MET A2 A2 A2 A5 A65 A65 A71 A71 A74 A74 A74	L75 V76 LYS LYS CUS CUS CUS CUS CUS TYS THR THR THR THR THR	LYS GLY H94 H101 K103 K103 L104	R107 L116 R117 LEU SER ARG PR0 GLN TH	LYS LYS ALA LYS LYS CYS GUV CYS CLN GLN CYS CYY
VAL LYAS ALA ALA CLN TILE LYAS CLN ALA ALA ALA CLN TILE CLN SER LYS SER LYS	LYS GLY GLY GLN ALA GLU THR LYS PRO LYS ALA	GLN ALA GLU CHR LYS PRO LYS ALA GLN GLN	ALA PRO LYS ALA GLN GLN GLY FVO	LYS ALA GLN GLN GLN CLY FRO LYS FRO

 \bullet Molecule 31: eL30

MET A2 K99 A100 A101 K103 A102 K103 A102 K103 A102		
• Molecule 38: eL37		
Chain Aj:	86%	• 11%
MET 12 G38 K85 K85 K87 AILA AILA AILA AILA AILA AILA AILA SER SER SER SER SER		
• Molecule 39: eL38		
Chain Ak:	94%	
● Molecule 40: eL39	K67 L69 K70	
Chain Al:	96%	••
MET 22 16 128 128 128 128 128 128 128 128		
• Molecule 41: eL40		
Chain Am:	100%	
151 K102		
• Molecule 42: eL41		
Chain An:	100%	
There are no outlier residues	recorded for this chain.	
• Molecule 43: eL42		
Chain Ao:	97%	•••
MET V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2		
• Molecule 44: eL43		
Chain Ap:	97%	

W O R L D W I D E PROTEIN DATA BANK

 \bullet Molecule 48: uS2

II06 E107 V110 C1109 C1110 C1111 A117 A117 A117 A117	
• Molecule 69: eS21	
Chain W:	
HI CONTRACTOR CONTRAC	
• Molecule 70: uS8	
Chain X: 98% ···	
MET 127 F130	
• Molecule 71: uS12	
Chain Y: 95%	
ALA G2 G33 K60 K60 K60 F62 F62 F63 F86 F131 SBR	
• Molecule 72: eS24	
9% Chain Z: 90% • 7%	
MET ASN ASN T34 A45 A45 A45 A45 A45 C124 C126 C126 C126 C126 C126 C126 C126 C126	
• Molecule 73: eS25	
Chain a: 58% · 40%	
MET PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	K60 A71 E75
G81 681 G89 689 B90 893 S101 8101 K114 8111 M112 8111 M112 8111 M112 8111 ALA ALA	
• Molecule 74: eS26	
Chain b: 83% · 15%	
MET 12 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	
WORLDWIDE PROTEIN DATA BANK	

• Molecule 75: eS27			
Chain c:	99%		
MET P2 E15 E15 K16 P38 C39 C40 C40 C40 C40 C40 C40 C40	161 161 161 161 161 161 161 161 184 184		
• Molecule 76: eS28			
Chain d:	88%	• 10%	
MET ASP THR SER SER ARG ARG ARG ARG P C 19 C 19 C 19 C 19 C 13 C 138 C	Re65 Re67 L68 ARG		
• Molecule 77: eS29			
Chain e:	96%	•	
MET 62 43 64 65 16 7 7 7 89 89 81 81 812	► 14 E14 D56		
• Molecule 78: eS30			
Chain f:	41% •	58%	-
MET OLIN CLIN PHE VAL ARG ALA ALA CLN CLN HIS HIS CLU CLU VAL VAL	THR ARG GLU GLU CLU GLU THR ALA ALA ALA ALA ALA SER LLEU CLU CLU ALA ALA	PRU ASP GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	GLU CYS CYS GLY GLN
	• • • • • • •	•••• •	
ALA LEU SER THR LEU CLU VAL ALA ALA ARG GLY GLY CLY	VAL HIS G77 G77 G77 F101 R101 R101 R101 R113 N117 V118 V118 P120 P120	F122 G123 K124 K125 S132	
\bullet Molecule 79: eS31			
Chain g:	42% 42%	56%	
AET LIJA HET CLEA LIJA LIJA LIJA LEA LEA LEA LEA LEA LEA LEA LEA	LU ALL PRO PRO PRO PRO PRO PRO PRO PRO VILA VILA VILA VILA VILA VILA	LLE RAD ASP ALLA ALLA ALLA ALLA ALLA ALLA ALLA	LEU JEU ISP ISN ISN
208424646046464			
ILLE GLN CLYS CLV CLYS CLV CLY THR THR THR TLEU LLEU LLEU LLEU ARG CLY	CLY ALA LYS LYS LYS LYS CLYS XS3 XS3 XS3 XS3 XS3 XS3 XS3 XS3 XS3 XS	H95 R95 R95 K96 K97 K99 R99 A101 V102 L103 K104 Y106 K103	V108 D109 E110 M111 G112 K113 F115 R115 R115 R115 R116 R118 R118 R119 R119 R119
••••••	** **********	•	
C121 P122 S123 S123 D124 E125 C126 G127 A128 G129 V130 V130 M132	A133 A133 S134 F136 F136 F136 F136 F137 F138 F138 F138 F138 F138 F140 C144 C144 C144 F146 F146 F146 F146 F146 F146 F146 F	C149 F150 ASN LYS GLU ASP ASP LYS	
• Molecule 80: RAC	K1		
Chain h:	46% 97%		

ن ق	G	0 0	5	» D :	⊃ U	b U	IJ -	A	U	0	n	n	A U	5	D A	Ä	o e	A	A	C D	5 5 ;	n	C) U	D A	50	ر 6416	A6417	U6418	C6419	U6421	U6422	C6423	A6425	U6426	G6427	00428	U6430	A6431								
C6432	C6433	C0434 A6435	U6436	C6437	U6439	U6440	A6441	A6443	G6444	G6445	A6446	A6447	U6449	U6450	U6451	C6452	C6453 A6454	A6455	U6456	A6457	A6458	C6460	U6461	C6462	U6463	G6465	U6466	G6467	06468 A6469	A6470	G6471	G6472 C6473	U6474	U6475	A6476	A6478	G6479	U6480	G6481	A6482	66484	G6485	U6486	C6487	VEA RO	G6490	G6491
U6492	G6493	C6495	C6496	U6497	A6498 U6499	UGEOO	U6501	A6502	G6504	Gesos	U6506	G6507		G6510	A6511 🔶	G6512	C6513		C6516	G6517	G6518	U6519	G6521	C6522	A6523	G6524 C6525	C6526	C6527	C6528	A0529 C6530	C6531	A6532	A6534	U6535	C6536		C6539	U6540	A6541	U6542	U6543	G6545	A6546			G6550	A6551
A6552	C6553	G6555	CG556	06558 G6558	U6562	A6567	G6568	A6571	C6572	A6573	CREZE	A6576		C6579	G6580	U6581 A6582	U6583	G6584	G6585	00000 A6587	A6588	C6589		A6592	U6593 🔶	G6594	G6596	G6597	C6598		U6601		G6604	AGGO5	A6606	UG608	46609	C6610	C6611	A6612		C6616 116617	0001 V 06618				
G6619	A6620 U6621	A6622																																													

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	27658	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	56.90	Depositor
Minimum defocus (nm)	1200	Depositor
Maximum defocus (nm)	4900	Depositor
Magnification	130000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.192	Depositor
Minimum map value	-0.108	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.008	Depositor
Recommended contour level	0.03	Depositor
Map size (Å)	441.168, 441.168, 441.168	wwPDB
Map dimensions	416, 416, 416	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.0605, 1.0605, 1.0605	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain Bond lengths Bond angle		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	5	0.24	0/86214	0.68	7/134455~(0.0%)
2	7	0.22	0/2836	0.66	0/4421
3	8	0.25	0/3581	0.68	0/5577
4	AA	0.68	0/1933	0.84	0/2592
5	AB	0.66	0/3240	0.80	0/4339
6	AC	0.65	0/2937	0.79	0/3946
7	AD	0.67	0/2437	0.79	0/3264
8	AE	0.68	0/1762	0.83	0/2362
9	AF	0.66	0/1911	0.79	0/2549
10	AG	0.67	0/1850	0.82	0/2491
11	AH	0.70	0/1535	0.81	0/2063
12	AI	0.66	0/1702	0.82	0/2272
13	AJ	0.68	0/1385	0.80	0/1852
14	AL	0.66	0/1658	0.85	0/2219
15	AM	0.67	0/1158	0.79	0/1547
16	AN	0.64	0/1746	0.84	0/2338
17	AO	0.67	0/1663	0.81	0/2223
18	AP	0.65	0/1268	0.80	0/1700
19	AQ	0.65	0/1557	0.82	0/2086
20	AR	0.66	0/1519	0.82	0/2006
21	AS	0.65	0/1498	0.79	0/2012
22	AT	0.65	0/1326	0.81	0/1770
23	AU	0.67	0/832	0.76	0/1116
24	AV	0.71	0/983	0.81	0/1319
25	AW	0.65	0/541	0.82	0/720
26	AX	0.65	0/984	0.78	0/1323
27	AY	0.66	0/1132	0.82	0/1504
28	AZ	0.66	0/1130	0.83	0/1507
29	Aa	0.65	0/1191	0.82	0/1590
30	Ab	0.68	0/861	0.83	0/1138
31	Ac	0.70	0/771	0.76	0/1034
32	Ad	0.66	0/903	0.82	0/1216
33	Ae	0.66	0/1071	0.80	0/1429
34	Af	0.66	0/895	0.82	0/1198

Mol Chain		Bond lengths		Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
35	Ag	0.68	0/916	0.86	0/1220	
36	Ah	0.67	0/1021	0.82	0/1348	
37	Ai	0.68	0/841	0.82	0/1112	
38	Aj	0.65	0/720	0.86	0/952	
39	Ak	0.67	0/575	0.81	0/759	
40	Al	0.63	0/459	0.78	0/608	
41	Am	0.66	0/435	0.79	0/575	
42	An	0.61	0/240	0.87	0/305	
43	Ao	0.65	0/864	0.82	0/1140	
44	Ap	0.69	0/718	0.84	0/953	
45	Ar	0.68	0/1010	0.84	0/1354	
46	AK	0.70	0/1733	0.85	0/2324	
47	2	0.24	0/40509	0.70	14/63128~(0.0%)	
48	В	0.68	0/1744	0.76	0/2371	
49	С	0.67	0/1756	0.79	0/2350	
50	D	0.68	0/1748	0.77	0/2362	
51	Е	0.70	0/1796	0.82	0/2417	
52	F	0.67	0/2115	0.80	0/2843	
53	G	0.69	0/1492	0.78	0/2005	
54	Н	0.68	0/1946	0.84	0/2590	
55	Ι	0.68	0/1510	0.79	0/2022	
56	J	0.67	0/1715	0.80	0/2287	
57	Κ	0.68	0/1550	0.83	0/2069	
58	L	0.66	0/834	0.77	0/1125	
59	М	0.66	0/1195	0.82	0/1597	
60	Ν	0.72	0/918	0.82	0/1233	
61	0	0.67	0/1226	0.79	0/1649	
62	Р	0.69	0/1029	0.84	0/1380	
63	Q	0.68	0/1009	0.81	0/1346	
64	R	0.68	0/1146	0.82	0/1534	
65	S	0.69	0/1082	0.80	0/1452	
66	Т	0.69	0/1208	0.82	0/1618	
67	U	0.70	0/1115	0.81	0/1493	
68	V	0.69	0/805	0.82	0/1081	
69	W	0.70	0/638	0.79	0/855	
70	Х	0.67	0/1051	0.80	0/1406	
71	Y	0.69	0/1116	0.81	0/1490	
72	Ζ	0.67	0/1028	0.82	0/1366	
73	a	0.70	0/604	0.84	0/810	
74	b	0.67	0/791	0.82	0/1062	
75	с	0.68	0/665	0.81	0/891	
76	d	0.68	0/490	0.82	0/656	
77	е	0.67	0/470	0.83	0/623	

Mal	Chain	Bond	lengths	E	Bond angles
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
78	f	0.71	0/451	0.85	0/592
79	g	0.69	0/567	0.88	0/753
80	h	0.69	0/2493	0.80	0/3394
81	Aq	0.71	0/3331	0.81	1/4479~(0.0%)
82	1	0.23	0/4927	0.72	1/7675~(0.0%)
All	All	0.47	0/235612	0.74	23/345832~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
5	AB	0	3
14	AL	0	1
30	Ab	0	1
34	Af	0	1
36	Ah	0	1
46	AK	0	4
49	С	0	1
53	G	0	1
60	N	0	1
63	Q	0	1
65	S	0	1
66	Т	0	1
70	Х	0	1
71	Y	0	1
79	g	0	1
All	All	0	20

There are no bond length outliers.

The worst 5 of 23 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
47	2	1858	G	C2'-C3'-O3'	8.65	128.52	109.50
1	5	928	А	C2'-C3'-O3'	5.98	123.27	113.70
1	5	48	G	C2'-C3'-O3'	5.86	123.07	113.70
82	1	6506	U	C2'-C3'-O3'	5.85	123.05	113.70
47	2	885	U	C2'-C3'-O3'	5.83	123.02	113.70

There are no chirality outliers.

Mol	Chain	Res	Type	Group
5	AB	241	PRO	Peptide
5	AB	257	TRP	Peptide
5	AB	258	HIS	Peptide
14	AL	46	ILE	Peptide
30	Ab	101	HIS	Peptide

5 of 20 planarity outliers are listed below:

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
4	AA	246/257~(96%)	222 (90%)	24 (10%)	0	100	100
5	AB	392/402~(98%)	372 (95%)	18 (5%)	2 (0%)	29	67
6	AC	360/392~(92%)	329 (91%)	28 (8%)	3 (1%)	19	58
7	AD	291/297~(98%)	272 (94%)	18 (6%)	1 (0%)	41	74
8	AE	208/291~(72%)	187 (90%)	20 (10%)	1 (0%)	29	67
9	AF	223/249~(90%)	210 (94%)	11 (5%)	2 (1%)	17	56
10	AG	221/242 (91%)	208 (94%)	13 (6%)	0	100	100
11	AH	188/192~(98%)	176 (94%)	12 (6%)	0	100	100
12	AI	201/214~(94%)	181 (90%)	20 (10%)	0	100	100
13	AJ	168/178~(94%)	160 (95%)	7 (4%)	1 (1%)	25	64
14	AL	199/211~(94%)	191 (96%)	7 (4%)	1 (0%)	29	67
15	AM	136/198~(69%)	122 (90%)	13 (10%)	1 (1%)	22	61
16	AN	201/204~(98%)	194 (96%)	6 (3%)	1 (0%)	29	67
17	AO	197/203~(97%)	191 (97%)	5 (2%)	1 (0%)	29	67

0	£		
Communea	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
18	AP	151/184~(82%)	140 (93%)	11 (7%)	0	100	100
19	AQ	185/188~(98%)	170 (92%)	14 (8%)	1 (0%)	29	67
20	AR	178/196~(91%)	171 (96%)	6 (3%)	1 (1%)	25	64
21	AS	174/176~(99%)	159 (91%)	13 (8%)	2 (1%)	14	51
22	AT	157/160~(98%)	145 (92%)	9 (6%)	3 (2%)	8	39
23	AU	97/128~(76%)	90 (93%)	7 (7%)	0	100	100
24	AV	127/140~(91%)	122 (96%)	5 (4%)	0	100	100
25	AW	61/157~(39%)	57 (93%)	4 (7%)	0	100	100
26	AX	116/156~(74%)	111 (96%)	5 (4%)	0	100	100
27	AY	132/145~(91%)	125 (95%)	7 (5%)	0	100	100
28	AZ	133/136~(98%)	125 (94%)	8 (6%)	0	100	100
29	Aa	145/148~(98%)	135 (93%)	10 (7%)	0	100	100
30	Ab	100/226~(44%)	92 (92%)	6 (6%)	2 (2%)	7	38
31	Ac	96/115~(84%)	91 (95%)	5 (5%)	0	100	100
32	Ad	105/125~(84%)	96 (91%)	7 (7%)	2 (2%)	8	39
33	Ae	126/135~(93%)	118 (94%)	8 (6%)	0	100	100
34	Af	107/110~(97%)	95 (89%)	11 (10%)	1 (1%)	17	56
35	Ag	112/126~(89%)	108 (96%)	4 (4%)	0	100	100
36	Ah	120/123~(98%)	119 (99%)	0	1 (1%)	19	58
37	Ai	100/105~(95%)	94 (94%)	6 (6%)	0	100	100
38	Aj	84/97~(87%)	77 (92%)	6 (7%)	1 (1%)	13	49
39	Ak	67/70~(96%)	64 (96%)	3 (4%)	0	100	100
40	Al	48/51~(94%)	43 (90%)	5 (10%)	0	100	100
41	Am	50/52~(96%)	47 (94%)	3 (6%)	0	100	100
42	An	23/25~(92%)	22 (96%)	1 (4%)	0	100	100
43	Ao	102/106~(96%)	95 (93%)	7 (7%)	0	100	100
44	Ap	89/92~(97%)	85 (96%)	4 (4%)	0	100	100
45	Ar	122/137~(89%)	112 (92%)	9 (7%)	1 (1%)	19	58
46	AK	210/217~(97%)	149 (71%)	53 (25%)	8 (4%)	3	22
48	В	215/295~(73%)	194 (90%)	21 (10%)	0	100	100
49	С	211/264~(80%)	192 (91%)	19 (9%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
50	D	219/255~(86%)	208 (95%)	11 (5%)	0	100	100
51	Е	226/281~(80%)	204 (90%)	22 (10%)	0	100	100
52	F	260/263~(99%)	237~(91%)	23~(9%)	0	100	100
53	G	181/204~(89%)	167 (92%)	14 (8%)	0	100	100
54	Н	235/249~(94%)	213 (91%)	20 (8%)	2(1%)	17	56
55	Ι	181/194~(93%)	167 (92%)	13 (7%)	1 (1%)	25	64
56	J	204/207~(99%)	184 (90%)	18 (9%)	2(1%)	15	54
57	K	183/194~(94%)	169 (92%)	14 (8%)	0	100	100
58	L	94/149~(63%)	83 (88%)	11 (12%)	0	100	100
59	М	139/158~(88%)	126 (91%)	12 (9%)	1 (1%)	22	61
60	Ν	115/132~(87%)	91 (79%)	24 (21%)	0	100	100
61	Ο	147/151~(97%)	138 (94%)	9 (6%)	0	100	100
62	Р	134/151~(89%)	117 (87%)	16 (12%)	1 (1%)	22	61
63	Q	117/145~(81%)	100 (86%)	12 (10%)	5 (4%)	2	20
64	R	140/172~(81%)	128 (91%)	11 (8%)	1 (1%)	22	61
65	S	130/135~(96%)	112 (86%)	16 (12%)	2(2%)	10	44
66	Т	142/152~(93%)	124 (87%)	16 (11%)	2(1%)	11	46
67	U	139/145~(96%)	127 (91%)	11 (8%)	1 (1%)	22	61
68	V	98/119~(82%)	91 (93%)	7 (7%)	0	100	100
69	W	81/83~(98%)	75 (93%)	6 (7%)	0	100	100
70	X	127/130~(98%)	118 (93%)	9 (7%)	0	100	100
71	Y	139/143~(97%)	127 (91%)	8 (6%)	4 (3%)	4	28
72	Z	122/134~(91%)	112 (92%)	9 (7%)	1 (1%)	19	58
73	a	73/125~(58%)	69 (94%)	4 (6%)	0	100	100
74	b	96/115~(84%)	86 (90%)	10 (10%)	0	100	100
75	с	81/84~(96%)	74 (91%)	7 (9%)	0	100	100
76	d	60/69~(87%)	55 (92%)	5 (8%)	0	100	100
77	e	53/56~(95%)	47 (89%)	6 (11%)	0	100	100
78	f	54/133~(41%)	47 (87%)	7 (13%)	0	100	100
79	g	66/156~(42%)	56 (85%)	10 (15%)	0	100	100
80	h	$\overline{311/317}~(98\%)$	263 (85%)	46 (15%)	2 (1%)	25	64

Continued	from	manious	2000
Commuea j	10m	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Per	$\mathbf{rcentiles}$
81	Aq	414/437~(95%)	359~(87%)	50 (12%)	5 (1%)	1	3 49
All	All	11735/13353~(88%)	10732 (92%)	936 (8%)	67 (1%)	2	9 64

5 of 67 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
45	Ar	68	SER
46	AK	152	LYS
56	J	206	LYS
6	AC	126	SER
13	AJ	147	ARG

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
4	AA	189/199~(95%)	182~(96%)	7 (4%)	34 68
5	AB	342/347~(99%)	339~(99%)	3 (1%)	78 91
6	AC	302/323~(94%)	285~(94%)	17 (6%)	21 57
7	AD	247/250~(99%)	244 (99%)	3 (1%)	71 88
8	AE	190/251~(76%)	186 (98%)	4 (2%)	53 79
9	AF	196/218~(90%)	193 (98%)	3 (2%)	65 85
10	AG	194/208~(93%)	192 (99%)	2 (1%)	76 90
11	AH	169/171~(99%)	169 (100%)	0	100 100
12	AI	175/181~(97%)	173~(99%)	2(1%)	73 88
13	AJ	143/149~(96%)	141 (99%)	2(1%)	67 86
14	AL	167/176~(95%)	164 (98%)	3(2%)	59 82
15	AM	117/151~(78%)	110 (94%)	7 (6%)	19 54
16	AN	171/172~(99%)	167 (98%)	4 (2%)	50 78
17	AO	171/173~(99%)	165 (96%)	6 (4%)	36 69
18	AP	134/163~(82%)	133 (99%)	1 (1%)	84 94

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
19	AQ	166/167~(99%)	156 (94%)	10 (6%)	19	54
20	AR	159/175~(91%)	153~(96%)	6~(4%)	33	67
21	AS	155/155~(100%)	144 (93%)	11 (7%)	14	47
22	AT	139/140~(99%)	137~(99%)	2(1%)	67	86
23	AU	91/116~(78%)	84 (92%)	7 (8%)	13	44
24	AV	100/107~(94%)	99~(99%)	1 (1%)	76	90
25	AW	55/126 (44%)	55 (100%)	0	100	100
26	AX	106/134~(79%)	105 (99%)	1 (1%)	78	91
27	AY	124/135~(92%)	119 (96%)	5 (4%)	31	66
28	AZ	117/118~(99%)	117 (100%)	0	100	100
29	Aa	119/120~(99%)	117 (98%)	2 (2%)	60	83
30	Ab	84/172~(49%)	83 (99%)	1 (1%)	71	88
31	Ac	84/98~(86%)	83 (99%)	1 (1%)	71	88
32	Ad	98/110 (89%)	98 (100%)	0	100	100
33	Ae	$114/121 \ (94\%)$	112 (98%)	2 (2%)	59	82
34	Af	88/89~(99%)	88 (100%)	0	100	100
35	Ag	98/106~(92%)	95~(97%)	3 (3%)	40	72
36	Ah	109/110~(99%)	109 (100%)	0	100	100
37	Ai	86/89~(97%)	86 (100%)	0	100	100
38	Aj	73/80~(91%)	71 (97%)	2(3%)	44	75
39	Ak	64/65~(98%)	61 (95%)	3~(5%)	26	62
40	Al	47/48~(98%)	46 (98%)	1 (2%)	53	79
41	Am	48/48 (100%)	48 (100%)	0	100	100
42	An	24/24~(100%)	24 (100%)	0	100	100
43	Ao	92/94~(98%)	91 (99%)	1 (1%)	73	88
44	Ар	74/75~(99%)	72 (97%)	2(3%)	44	75
45	Ar	108/121~(89%)	108 (100%)	0	100	100
46	AK	190/196~(97%)	177 (93%)	13 (7%)	16	49
48	В	180/245~(74%)	179 (99%)	1 (1%)	86	94
49	С	194/231~(84%)	193 (100%)	1 (0%)	88	95
50	D	186/205~(91%)	184 (99%)	2 (1%)	73	88

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
51	Е	190/232~(82%)	188 (99%)	2(1%)	73	88
52	F	223/225~(99%)	220~(99%)	3~(1%)	69	87
53	G	158/170~(93%)	158 (100%)	0	100	100
54	Η	207/218~(95%)	205 (99%)	2 (1%)	76	90
55	Ι	165/174~(95%)	165 (100%)	0	100	100
56	J	178/179~(99%)	175 (98%)	3 (2%)	60	83
57	Κ	161/168~(96%)	159 (99%)	2 (1%)	71	88
58	L	87/125 (70%)	85 (98%)	2 (2%)	50	78
59	М	130/142~(92%)	125 (96%)	5 (4%)	33	67
60	Ν	99/108~(92%)	95 (96%)	4 (4%)	31	66
61	О	130/131~(99%)	128 (98%)	2 (2%)	65	85
62	Р	106/119~(89%)	104 (98%)	2 (2%)	57	81
63	Q	108/130~(83%)	100 (93%)	8 (7%)	13	46
64	R	117/140~(84%)	117 (100%)	0	100	100
65	S	119/121~(98%)	119 (100%)	0	100	100
66	Т	125/132~(95%)	124 (99%)	1 (1%)	81	93
67	U	111/116~(96%)	108 (97%)	3 (3%)	44	75
68	V	92/107~(86%)	92 (100%)	0	100	100
69	W	68/68~(100%)	66 (97%)	2 (3%)	42	74
70	Х	112/113~(99%)	112 (100%)	0	100	100
71	Y	113/114~(99%)	112 (99%)	1 (1%)	78	91
72	Z	107/115~(93%)	105 (98%)	2 (2%)	57	81
73	a	66/103~(64%)	64 (97%)	2 (3%)	41	73
74	b	86/99~(87%)	84 (98%)	2 (2%)	50	78
75	с	75/76~(99%)	75 (100%)	0	100	100
76	d	55/62~(89%)	54 (98%)	1 (2%)	59	82
77	е	48/49~(98%)	47 (98%)	1 (2%)	53	79
78	f	46/106~(43%)	44 (96%)	2 (4%)	29	64
79	g	61/140~(44%)	60 (98%)	1 (2%)	62	84
80	h	272/275~(99%)	269 (99%)	3 (1%)	73	88
81	Aq	358/376~(95%)	342 (96%)	16 (4%)	27	63

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
All	All	10252/11385~(90%)	10038 (98%)	214 (2%)	56 79

5 of 214 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
35	Ag	105	LYS
51	Е	90	LYS
81	Aq	100	ILE
39	Ak	29	LYS
46	AK	95	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 92 such side chains are listed below:

Mol	Chain	Res	Type
48	В	128	GLN
55	Ι	165	ASN
48	В	180	GLN
53	G	118	ASN
59	М	100	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	5	3569/3594~(99%)	943 (26%)	77~(2%)
2	7	118/119~(99%)	18 (15%)	1 (0%)
3	8	149/156~(95%)	34 (22%)	1 (0%)
47	2	1685/1869~(90%)	504 (29%)	50 (2%)
82	1	206/251~(82%)	115 (55%)	14 (6%)
All	All	5727/5989 (95%)	1614 (28%)	143 (2%)

5 of 1614 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	5	4	G
1	5	9	С
1	5	10	А
1	5	12	А
1	5	13	U

5 of 143 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
47	2	1488	С
47	2	1554	С
82	1	6450	U
1	5	3603	G
1	5	2848	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	5	26

The worst 5 of 26 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	5	2113:G	O3'	2258:C	Р	41.75
1	5	1252:C	O3'	1271:G	Р	37.28
1	5	1405:C	O3'	1409:G	Р	20.58
1	5	1219:G	O3'	1233:G	Р	19.67
1	5	1696:C	O3'	1720:C	Р	18.85

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-20258. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 208

Z Index: 208

6.2.2 Raw map

X Index: 208

Y Index: 208

Z Index: 208

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 239

Z Index: 225

6.3.2 Raw map

X Index: 239

Y Index: 217

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.03. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{20258}msk_{1.map}$ (i) 6.5.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1309 nm^3 ; this corresponds to an approximate mass of 1182 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{B}_{\mathrm{assolution ostimato}}(\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.20	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	3.99	6.16	4.12

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.99 differs from the reported value 3.2 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-20258 and PDB model 6P5N. Per-residue inclusion information can be found in section 3 on page 18.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.03 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.03).

9.4 Atom inclusion (i)

At the recommended contour level, 79% of all backbone atoms, 75% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.03) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.7502	0.4850
1	0.2503	0.2150
2	0.8021	0.4770
5	0.8373	0.4960
7	0.9271	0.5430
8	0.8660	0.5170
AA	0.8281	0.5530
AB	0.8059	0.5410
AC	0.7949	0.5350
AD	0.7598	0.5180
AE	0.7439	0.5010
AF	0.8026	0.5440
AG	0.7184	0.5010
AH	0.7185	0.5150
AI	0.7534	0.5300
AJ	0.7010	0.4970
AK	0.1627	0.2730
AL	0.7697	0.5280
AM	0.7580	0.5210
AN	0.8586	0.5640
AO	0.7953	0.5310
AP	0.8043	0.5460
AQ	0.7947	0.5490
AR	0.7285	0.4860
AS	0.8019	0.5340
AT	0.7609	0.5360
AU	0.6579	0.4710
AV	0.7835	0.5410
AW	0.7839	0.5430
AX	0.7479	0.5300
AY	0.7681	0.5330
AZ	0.7642	0.5230
Aa	0.8378	0.5550
Ab	0.6810	0.4740
Ac	0.7903	0.5340

0.0 <0.0

1.0

Chain	Atom inclusion	Q-score
Ad	0.7363	0.5270
Ae	0.7955	0.5480
Af	0.8207	0.5500
Ag	0.7710	0.5320
Ah	0.7344	0.5040
Ai	0.7236	0.5050
Aj	0.8497	0.5560
Ak	0.6458	0.4770
Al	0.7892	0.5420
Am	0.7590	0.5380
An	0.7890	0.5430
Ao	0.7830	0.5460
Ap	0.7645	0.5340
Aq	0.2125	0.3460
Ar	0.7941	0.5400
В	0.6870	0.4970
С	0.6963	0.5030
D	0.7286	0.5150
E	0.4893	0.4330
F	0.7011	0.5030
G	0.6383	0.4810
Н	0.5795	0.4290
I	0.5886	0.4480
J	0.7191	0.5110
K	0.6969	0.4950
L	0.3139	0.3490
M	0.7263	0.5250
N	0.0268	0.2410
0	0.7573	0.5240
P	0.7224	0.5180
	0.4415	0.3940
R	0.6163	0.4630
S	0.5713	0.4440
	0.5389	0.4260
U	0.5604	0.4150
	0.4625	0.4270
W	0.6899	0.4890
	0.7723	0.5240
Y T	0.7302	0.5240
Z	0.6626	0.4740
a	0.5163	0.4170
b	0.7457	0.5230

Chain	Atom inclusion	Q-score
с	0.6526	0.4970
d	0.6468	0.5090
е	0.6122	0.4390
f	0.5651	0.4630
g	0.0815	0.2690
h	0.4220	0.3740

