

Full wwPDB X-ray Structure Validation Report (i)

Dec 17, 2023 - 07:33 am GMT

PDB ID	:	4PJO
Title	:	Minimal U1 snRNP
Authors	:	Kondo, Y.; Oubridge, C.; van Roon, A.M.; Nagai, K.
Deposited on	:	2014-05-12
Resolution	:	3.30 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1149 (3.34-3.26)
Ramachandran outliers	138981	1183 (3.34-3.26)
Sidechain outliers	138945	1182 (3.34-3.26)
RSRZ outliers	127900	1115 (3.34-3.26)
RNA backbone	3102	1117 (3.70-2.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain						
			2%						
1	A	126		59%	8%	33%			
			19%						
1	0	126		58%	6% •	35%			
			.%						
1	a	126		60%	5% •	34%			
			9%						
1	0	126		56%	6% •	36%			
			3%						
2	В	95		82%		5%	13%		

Mol	Chain	Length	Quality of chain	
0	Л	05	15%	
2	P	95	80%	7% 13%
2	b	95		18%
2	р	95	2% 80%	9% • 9%
3	С	91	86%	9% 5%
3	Q	91	2% 86 %	8% 7%
3	с	91	87%	9% •
3	q	91	87%	7% • •
4	D	118	74% 9%	17%
4	R	118	66% 15%	19%
4	d	118	64% 14% •	22%
4	r	118	71% 9%	19%
5	Е	92	^{3%}	• 16%
5	S	92	^{2%} 65% 18%	16%
5	е	92	^{2%} 63% 20%	• 16%
5	s	92	4% 67% 15%	• 16%
6	F	75	84%	13% •
6	Т	75	85%	12% ••
6	f	75	% • 85%	12% ••
6	t	75	% • 87%	11% ••
7	G	76	82%	16% ·
7	U	76	80%	13% 7%
7	g	76	87%	9% •
7	u	76	14%	11% •
8	K	60	95%	
8	N	60	18%	F0/ 120/
0	⊥ N	00	83%	⊃% 12%

Mol	Chain	Length	Quality of chain						
8	k	60	87%		8% 5%				
8	n	60	83%		12% • •				
9	L	61	74%	13%	13%				
9	М	61	64%	23%	13%				
9	1	61	77%	10%	13%				
9	m	61	70%	10% •	18%				
10	1	60	55% 15%	10%	20%				
10	2	60	52% 23%	5%	20%				
10	3	60	55% 15%	8%	22%				
10	4	60	53% 20%	8%	18%				
11	Х	10	50%	50%					
11	Y	10	60%	40%					
11	х	10	80%		20%				
11	У	10	80%		20%				

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
14	MG	1	202	-	-	-	Х
16	EOH	4	201	-	-	-	Х
18	SO4	У	103	-	-	-	Х

2 Entry composition (i)

There are 19 unique types of molecules in this entry. The entry contains 26921 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	Q 1	Total	С	Ν	0	\mathbf{S}	0	0	0
	A	04	657	412	116	123	6	0	0	0
1	0	02	Total	С	Ν	0	S	0	0	0
	a	00	652	409	115	122	6	0	0	0
1	0	80	Total	С	Ν	0	S	0	0	0
1	U	82	643	403	113	121	6	0	0	0
1	0	Q1	Total	С	Ν	0	S	0	0	0
	81	637	400	112	119	6	0	0	U	

• Molecule 1 is a protein called Small nuclear ribonucleoprotein Sm D3.

• Molecule 2 is a protein called Small nuclear ribonucleoprotein-associated proteins B and B'.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	Р	83	Total	С	Ν	0	S	0	0	0
	D	00	673	425	123	118	7	0	0	0
0	h	79	Total	С	Ν	0	S	0	0	0
	D	10	635	402	114	112	7	0	0	0
0	D	\$3	Total	С	Ν	0	S	0	0	0
	1	00	673	425	123	118	7	0	0	0
0	n	86	Total	С	Ν	0	S	0	0	0
	р	80	692	435	126	124	7	0	0	0

• Molecule 3 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace	
9	C	86	Total	С	Ν	0	S	0	0	0	
3	C	80	668	423	117	125	3	0	0	0	
9	0	97	Total	С	Ν	0	\mathbf{S}	0	0	0	
3	С	01	675	428	118	126	3	0	0	0	
9	0	05	95	Total	С	Ν	0	S	0	0	0
3	Q	00	664	421	116	124	3	0	0	0	
9	a	97	Total	С	Ν	0	S	0	0	0	
3	q	01	674	426	118	127	3	U		U	

4PJO

Chain	Residue	Modelled	Actual	Comment	Reference
С	-5	GLY	-	linker	UNP P62314
С	-4	SER	-	linker	UNP P62314
С	-3	GLY	-	linker	UNP P62314
С	-2	SER	-	linker	UNP P62314
С	-1	GLY	-	linker	UNP P62314
С	0	SER	-	linker	UNP P62314
С	1	VAL	-	linker	UNP P62314
с	-5	GLY	-	linker	UNP P62314
с	-4	SER	-	linker	UNP P62314
с	-3	GLY	-	linker	UNP P62314
с	-2	SER	-	linker	UNP P62314
с	-1	GLY	-	linker	UNP P62314
с	0	SER	-	linker	UNP P62314
с	1	VAL	-	linker	UNP P62314
Q	-5	GLY	-	linker	UNP P62314
Q	-4	SER	-	linker	UNP P62314
Q	-3	GLY	-	linker	UNP P62314
Q	-2	SER	-	linker	UNP P62314
Q	-1	GLY	-	linker	UNP P62314
Q	0	SER	-	linker	UNP P62314
Q	1	VAL	-	linker	UNP P62314
q	-5	GLY	-	linker	UNP P62314
q	-4	SER	-	linker	UNP P62314
q	-3	GLY	-	linker	UNP P62314
q	-2	SER	-	linker	UNP P62314
q	-1	GLY	-	linker	UNP P62314
q	0	SER	-	linker	UNP P62314
q	1	VAL	-	linker	UNP P62314

There are 28 discrepancies between the modelled and reference sequences:

• Molecule 4 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	Л	08	Total	С	Ν	0	S	0	0	0
4	D	90	796	498	144	148	6	0	0	0
4	d	02	Total	С	Ν	0	S	0	0	0
4	u	92	753	472	138	138	5	0	0	0
4	D	06	Total	С	Ν	0	S	0	1	0
4	n	90	790	497	141	146	6	0	L	0
4	r	05	Total	С	Ν	0	S	0	0	0
4	1	90	777	486	141	144	6		0	U

• Molecule 5 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
5	F	77	Total	С	Ν	0	\mathbf{S}	0	0	0
5	E	11	638	405	113	115	5	0	0	0
5	0	77	Total	С	Ν	0	S	0	0	0
5	е	11	638	405	113	115	5	0	0	0
5	C	77	Total	С	Ν	0	S	0	0	0
5	L L	11	638	405	113	115	5	0	0	0
5	G	77	Total	С	Ν	0	S	0	0	0
5	5	11	638	405	113	115	5	0		U

• Molecule 6 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
6	Б	79	Total	С	Ν	0	\mathbf{S}	0	0	0
0	Г	13	568	367	94	102	5	0	0	0
6	f	74	Total	С	Ν	0	S	0	0	0
0	1	14	577	373	95	104	5	0	0	0
6	т	74	Total	С	Ν	0	S	0	0	0
0	L	14	577	373	95	104	5	0	0	0
6	+	74	Total	С	Ν	0	S	0	0	0
0	U	14	577	373	95	104	5	0		

• Molecule 7 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	G 74		Total	С	Ν	Ο	\mathbf{S}	0	1	0
1	G	14	584	369	106	103	6	0	L	0
7	CC CC	72	Total	С	Ν	Ο	S	0	0	0
1	g	10	568	358	102	102	6	0	0	0
7	T	71	Total	С	Ν	0	S	0	0	0
1	U	(1	558	353	100	99	6	0	0	0
7		72	Total	С	Ν	Ο	S	0	0	0
· ·	u	10	568	358	102	102	6			U

• Molecule 8 is a protein called U1 small nuclear ribonucleoprotein 70 kDa.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
8	K	58	Total	С	Ν	Ο	S	0	0	0
0	IX		477	313	82	81	1	0	0	0
0	1.	57	Total	С	Ν	Ο	\mathbf{S}	0	0	0
0	K	57	470	309	81	79	1	0	0	0
0	N	52	Total	С	Ν	Ο	\mathbf{S}	0	0	0
0	IN IN	55	431	283	73	74	1	0	U	0

Continued from previous page...

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
8	n	58	Total	С	Ν	0	S	0	0	0
Ũ		00	477	313	82	81	1	Ũ	Ũ	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
K	1	GLY	-	expression tag	UNP P08621
k	1	GLY	-	expression tag	UNP P08621
N	1	GLY	-	expression tag	UNP P08621
n	1	GLY	-	expression tag	UNP P08621

• Molecule 9 is a protein called U1 small nuclear ribonucleoprotein C.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
0	т	53	Total	С	Ν	Ο	\mathbf{S}	0	0	0
9			448	280	77	87	4	0	0	0
0	1	53	Total	С	Ν	Ο	S	0	0	0
9	1		448	280	77	87	4	0	0	0
0	М	52	Total	С	Ν	Ο	S	0	0	0
9	111		448	280	77	87	4	0	0	0
0	m	50	Total	С	Ν	Ο	S	0	0	0
9	111	50	425	266	73	82	4	0	0	0

• Molecule 10 is a RNA chain called U1 RNA variant (48-MER) with 4-helix junction replaced by kissing loop (HIV-1 (Mal) DIS) and shorter stem-loop 4..

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
10	1	18	Total	С	Ν	0	Р	0	0	0
10	1	40	1036	458	183	345	50	0	0	0
10	2	18	Total	С	Ν	0	Р	0	0	0
10	Δ	40	1036	458	183	345	50	0	0	0
10	2	47	Total	С	Ν	0	Р	0	0	0
10	3	41	1013	448	178	338	49	0	0	0
10	1	40	Total	С	Ν	0	Р	0	0	0
10	4	49	1059	468	188	352	51		0	U

 Molecule 11 is a RNA chain called RNA (5'-R(*AP*GP*GP*UP*AP*AP*GP*UP*CP*C)-3').

Mol	Chain	Residues		Atoms					AltConf	Trace
11	Х	10	Total 212	C 96	N 40	O 67	Р 9	0	0	0

Mol	Chain	Residues		Ate	\mathbf{oms}			ZeroOcc	AltConf	Trace
11	37	10	Total	С	Ν	0	Р	0	0	0
11	Х	10	212	96	40	67	9	0	0	0
11	V	10	Total	С	Ν	0	Р	0	0	0
11	I	10	212	96	40	67	9	0	0	0
11	T	10	Total	С	Ν	0	Р	0	0	0
11	У	10	212	96	40	67	9	0	U	U

Continued from previous page...

• Molecule 12 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
12	L	1	Total Zn 1 1	0	0
12	1	1	Total Zn 1 1	0	0
12	М	1	Total Zn 1 1	0	0
12	m	1	Total Zn 1 1	0	0

• Molecule 13 is 4-(2-HYDROXYETHYL)-1-PIPERAZINE ETHANESULFONIC ACID (three-letter code: EPE) (formula: C₈H₁₈N₂O₄S).

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf	
12	1	1	Total	С	Ν	0	\mathbf{S}	0	0	
15	1	1	15	8	2	4	1	0	0	
19	13 2	2 1) 1	Total	С	Ν	Ο	S	0	0
15			15	8	2	4	1	0	0	

у

Residues ZeroOcc \mathbf{Mol} Chain Atoms AltConf Total Mg Mg Total Total Mg $\mathbf{2}$ Total Mg Total Mg

Total

• Molecule 14 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

• Molecule 15 is POTASSIUM ION (three-letter code: K) (formula: K).

Mg

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
15	1	1	Total K 1 1	0	0
15	b	2	Total K 2 2	0	0
15	Q	1	Total K 1 1	0	0
15	3	2	Total K 2 2	0	0

• Molecule 16 is ETHANOL (three-letter code: EOH) (formula: C_2H_6O).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
16	4	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 3 & 2 & 1 \end{array}$	0	0

• Molecule 17 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
17	4	1	Total Cl 1 1	0	0

• Molecule 18 is SULFATE ION (three-letter code: SO4) (formula: O₄S).

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	
18	У	1	Total 5	0 4	S 1	0	0

• Molecule 19 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
19	D	5	Total O 5 5	0	0
19	G	2	Total O 2 2	0	0
19	К	1	Total O 1 1	0	0
19	1	6	Total O 6 6	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
19	a	1	Total O 1 1	0	0
19	b	1	Total O 1 1	0	0
19	с	2	Total O 2 2	0	0
19	d	6	Total O 6 6	0	0
19	g	1	Total O 1 1	0	0
19	2	4	Total O 4 4	0	0
19	Р	2	Total O 2 2	0	0
19	R	1	Total O 1 1	0	0
19	S	1	Total O 1 1	0	0
19	Т	1	Total O 1 1	0	0
19	Ν	1	Total O 1 1	0	0
19	3	2	Total O 2 2	0	0
19	Y	1	Total O 1 1	0	0
19	р	1	Total O 1 1	0	0
19	q	2	Total O 2 2	0	0
19	r	1	Total O 1 1	0	0
19	t	1	Total O 1 1	0	0
19	m	1	Total O 1 1	0	0
19	4	4	Total O 4 4	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 3: Small nuclear ribonucleoprotein Sm D1

• Molecule 6: Small nuclear ribonucleoprotein F

Chain t:	87%	11% ••
MET 82 13 P4 K8 K8 L14 L14 L23 L23 M27 K8 R65 R73	074 775	
• Molecule 7: Small nuc	lear ribonucleoprotein G	
Chain G:	82%	16%
MET SER K1 K1 F13 M13 M13 M13 M13 M13 F13 V27 V27 V27 V27 S51 S51 S51 S51 S51 S51 S51 S51 S51 S51	157 75 863 863 863 863 863 863 863 863 863 863	
• Molecule 7: Small nuc	lear ribonucleoprotein G	
Chain g:	87%	9% •
MET SER LY55 A4 K10 K10 W27 M55 M55 M65 M65 M65 M65 M65	V76	
• Molecule 7: Small nuc	lear ribonucleoprotein G	
Chain U:	80%	13% 7%
MET 1 LYS LYS A 4 A 4 N22 H26 H26 B35 B35 B47 M47 M47 M47	A49 SER CLIY CLIY CLIY CLIY CLIY CCI CCI CCI CCI CCI CCI CCI CCI CCI C	
• Molecule 7: Small nuc	lear ribonucleoprotein G	
Chain u:	86%	11% •
MET SER L/YS H5 H5 H25 H25 H25 H26 H26 H26 H26 H26 H26 H26 H26 H26 H26	150 851 853 853 853 853 855 855 855 855 855 855	
• Molecule 8: U1 small :	nuclear ribonucleoprotein 70 kDa	
Chain K:	95%	• •
GLY T2 ML6 RE9 ALA		
• Molecule 8: U1 small :	nuclear ribonucleoprotein 70 kDa	
Chain k:	87%	8% 5%
01.Y 111.R 11.0 11.0 11.0 11.0 11.0 11.0 11.		
• Molecule 8: U1 small :	nuclear ribonucleoprotein 70 kDa	

	18%		
Chain N:	83%	5%	12%
GLY THR GLN PHE LEU N8 N8 L9	L10 L11 L12 F13 F13 R52 R52 A86 A86 A86 A86 A86 A86 A86 A86 A86		
• Molecule 8	: U1 small nuclear ribonucleoprotein 70 kDa		
	18%		
Chain n:	83%	12	2% • •
GLY 12 72 74 74 75 76 76 76 76 76 76 76	L10 R16 P13 P13 P13 P13 P14 P13 P15 P15 P15 P15 P15 P15 P15 P15		
• Molecule 9	: U1 small nuclear ribonucleoprotein C		
3%			
Chain L:	74%	13%	13%
MET P2 D10 R21	K29 M42 E44 E44 F154 GLN GLN GLN GLN GLN CLYS		
• Molecule 9	: U1 small nuclear ribonucleoprotein C		
5%			
Chain I:	77%	10%	13%
MET P2 T11 K29 K29 K35	848 1553 ALA ALA CLN GLN GLN GLN CLN CLN		
• Molecule 9	: U1 small nuclear ribonucleoprotein C		
	23%		
Chain M:	64% 2	3%	13%
MET P2 K3 F4 D7 X8 C9 C9 C9	111 113 114 114 114 114 114 114 114 114	PHE GLN GLN GLY LYS	
• Molecule 9	: U1 small nuclear ribonucleoprotein C		
_	23%		
Chain m:	70% 10	0% •	18%
MET P2 F4 Y5 C6 D7 Y8 C9 C9	TI1 T11 T13 T14 H15 S26 G27 G27 G27 G27 G27 G27 G27 G27 G28 G27 G28 G27 G28 G27 G28 G28 G28 G28 G28 G28 G28 G28 G28 G28		

• Molecule 10: U1 RNA variant (48-MER) with 4-helix junction replaced by kissing loop (HIV-1 (Mal) DIS) and shorter stem-loop 4.

Chain 1:	55%	15%	10%	20%
61 62 010 619 620 620	U124 1255 1265 1276 1276 1276 1127 1278 1232 1232 1232 1335 1335 1335 1335 1335	0000		
		PROTEIN DATA BANK		

• Molecule 10: U1 RNA variant (48-MER) with 4-helix junction replaced by kissing loop (HIV-1 (Mal) DIS) and shorter stem-loop 4.

Chain 2: 52% 23% 5% 20%

• Molecule 10: U1 RNA variant (48-MER) with 4-helix junction replaced by kissing loop (HIV-1 (Mal) DIS) and shorter stem-loop 4.

Chain 3:	55%	15%	8%	22%
G1 110 619 620	U124 1126 1127 0128 0131 0131 0133 0133 0133 0133 0133 013	C O		

• Molecule 10: U1 RNA variant (48-MER) with 4-helix junction replaced by kissing loop (HIV-1 (Mal) DIS) and shorter stem-loop 4.

Chain 4:	53%	20%	8%	18%
G1 G2 U10 A18 G19 G20	U124 U124 0128 0128 0128 0128 0139 0133 0133 0133 0133 0133 0133 0133	00		
• Molecule 1	11: RNA (5'-R(*AP*GP*GP*UP*	AP*AP*0	GP*UP*	CP*C)-3')
Chain X:	50%		50%	
A1 62 63 45 45 C10 C10				
• Molecule 1	11: RNA (5'-R(*AP*GP*GP*UP*	AP*AP*(GP*UP*	CP*C)-3')
Chain x:	80%			20%
A1 G2 G3 A5 C10 C10				
• Molecule 1	11: RNA (5'-R(*AP*GP*GP*UP*	AP*AP*(GP*UP*	CP*C)-3')
Chain Y:	60%		40%	
A1 G2 G3 A5 A5 G7 C10				
• Molecule 1	11: RNA (5'-R(*AP*GP*GP*UP*	AP*AP*0	GP*UP*	CP*C)-3')
Chain y:	80%			20%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	120.36Å 172.63Å 256.32Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	70.00 - 3.30	Depositor
Resolution (A)	69.67 - 3.30	EDS
% Data completeness	97.4 (70.00-3.30)	Depositor
(in resolution range)	97.4 (69.67-3.30)	EDS
R _{merge}	0.10	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	3.52 (at 3.33Å)	Xtriage
Refinement program	REFMAC	Depositor
P. P.	0.207 , 0.255	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.196 , 0.240	DCC
R_{free} test set	3972 reflections $(5.03%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	86.2	Xtriage
Anisotropy	0.287	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.28 , 72.7	EDS
L-test for $twinning^2$	$ < L >=0.47, < L^2>=0.30$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.90	EDS
Total number of atoms	26921	wwPDB-VP
Average B, all atoms $(Å^2)$	102.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.10% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: EOH, CL, MG, EPE, GTP, K, ZN, SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.74	1/665~(0.2%)	1.04	4/896~(0.4%)	
1	0	0.52	0/651	1.15	5/878~(0.6%)	
1	a	0.71	0/660	1.18	8/889~(0.9%)	
1	0	0.53	0/645	1.19	6/870~(0.7%)	
2	В	0.77	0/683	1.08	2/910~(0.2%)	
2	Р	0.65	0/683	1.08	1/910~(0.1%)	
2	b	0.75	0/644	1.10	1/858~(0.1%)	
2	р	0.63	0/702	1.16	3/936~(0.3%)	
3	С	0.87	0/676	1.19	6/914~(0.7%)	
3	Q	0.74	0/672	1.19	6/909~(0.7%)	
3	с	0.84	0/683	1.28	4/924~(0.4%)	
3	q	0.67	0/682	1.22	7/922~(0.8%)	
4	D	0.75	1/805~(0.1%)	1.15	6/1081~(0.6%)	
4	R	0.80	0/803	1.32	8/1079~(0.7%)	
4	d	0.76	0/762	1.18	5/1022~(0.5%)	
4	r	0.69	0/786	1.14	2/1055~(0.2%)	
5	Ε	0.67	0/646	0.98	2/867~(0.2%)	
5	S	0.64	0/646	1.30	6/867~(0.7%)	
5	е	0.71	0/646	1.13	4/867~(0.5%)	
5	s	0.62	0/646	1.27	5/867~(0.6%)	
6	F	0.81	1/580~(0.2%)	1.17	3/783~(0.4%)	
6	Т	0.69	0/589	1.16	3/795~(0.4%)	
6	f	0.77	0/589	1.24	4/795~(0.5%)	
6	t	0.66	1/589~(0.2%)	1.18	4/795~(0.5%)	
7	G	0.76	0/595	1.28	5/794~(0.6%)	
7	U	0.57	0/564	1.06	1/752~(0.1%)	
7	g	0.77	1/575~(0.2%)	1.27	4/768~(0.5%)	
7	u	0.59	0/575	1.17	4/768~(0.5%)	
8	Κ	0.76	0/499	1.10	1/688~(0.1%)	
8	Ν	0.61	0/452	1.11	1/624~(0.2%)	
8	k	0.77	0/492	1.10	$2\overline{)}678~(0.3\%)$	
8	n	0.63	$0/\overline{499}$	1.09	4/688 (0.6%)	

4PJO	
------	--

		Bo	nd lengths	Bond angles		
Mol	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
9	L	0.60	0/460	1.00	2/618~(0.3%)	
9	М	0.61	0/460	1.12	6/618~(1.0%)	
9	1	0.58	0/460	0.96	0/618	
9	m	0.56	0/437	1.16	4/587~(0.7%)	
10	1	0.62	0/1122	1.21	12/1747~(0.7%)	
10	2	0.58	0/1122	1.16	7/1747~(0.4%)	
10	3	0.49	0/1096	1.09	6/1706~(0.4%)	
10	4	0.49	0/1148	1.10	7/1788~(0.4%)	
11	Х	0.44	0/237	1.33	5/368~(1.4%)	
11	Y	0.43	0/237	1.26	4/368~(1.1%)	
11	Х	0.44	0/237	1.11	2/368~(0.5%)	
11	У	0.40	0/237	0.94	0/368	
All	All	0.67	5/27637~(0.0%)	1.16	182/38350~(0.5%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
2	Р	0	1
3	С	0	1
3	с	0	1
4	R	0	1
4	r	0	1
6	Т	0	1
8	k	0	1
8	n	0	1
All	All	0	9

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	D	89	PRO	N-CD	5.34	1.55	1.47
1	А	81	PRO	N-CD	5.18	1.55	1.47
6	F	9	PRO	N-CD	5.13	1.55	1.47
7	g	66	SER	CB-OG	-5.13	1.35	1.42
6	t	4	PRO	N-CD	5.04	1.54	1.47

All (182) bond angle outliers are listed below:

4P	J	Ο

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\mathbf{Ideal}(^{o})$
5	S	87	LEU	CB-CG-CD2	13.57	134.07	111.00
9	m	28	ARG	NE-CZ-NH1	12.22	126.41	120.30
6	f	73	ARG	NE-CZ-NH1	-10.81	114.89	120.30
4	d	32	LEU	CB-CG-CD2	10.65	129.10	111.00
10	2	136	G	C4'-C3'-O3'	-10.48	87.40	109.40
4	D	73	MET	CG-SD-CE	-10.37	83.61	100.20
1	0	73	LEU	CB-CG-CD2	10.19	128.32	111.00
4	R	94	ARG	NE-CZ-NH1	10.05	125.32	120.30
6	${ m t}$	73	ARG	NE-CZ-NH1	-10.04	115.28	120.30
4	D	102	ARG	NE-CZ-NH1	-9.75	115.42	120.30
3	с	19	LEU	CB-CG-CD1	9.69	127.46	111.00
11	Х	3	G	O5'-P-OP2	-9.67	97.00	105.70
5	s	59	ASP	CB-CG-OD2	9.41	126.77	118.30
3	Q	19	LEU	CB-CG-CD1	9.24	126.71	111.00
10	4	128	U	O5'-P-OP1	-8.88	97.70	105.70
10	2	128	U	O5'-P-OP1	-8.75	97.83	105.70
11	Х	3	G	O5'-P-OP1	8.70	121.14	110.70
5	s	71	ARG	NE-CZ-NH2	-8.53	116.03	120.30
3	с	36	MET	CG-SD-CE	-8.53	86.56	100.20
6	f	73	ARG	NE-CZ-NH2	8.53	124.56	120.30
4	R	102	ARG	NE-CZ-NH1	-8.41	116.09	120.30
6	\mathbf{t}	73	ARG	NE-CZ-NH2	8.39	124.50	120.30
10	1	137	U	O5'-P-OP1	-8.33	98.20	105.70
2	р	18	ARG	NE-CZ-NH2	-8.00	116.30	120.30
8	Ν	52	ARG	NE-CZ-NH2	-7.98	116.31	120.30
1	0	51	ARG	NE-CZ-NH2	7.92	124.26	120.30
3	q	56	GLU	OE1-CD-OE2	-7.92	113.80	123.30
3	С	45	MET	CG-SD-CE	-7.91	87.55	100.20
1	0	69	ARG	NE-CZ-NH1	7.90	124.25	120.30
9	М	10	ASP	CB-CG-OD2	-7.89	111.20	118.30
3	Q	45	MET	CG-SD-CE	-7.72	87.85	100.20
2	р	14	ASP	CB-CG-OD2	-7.69	111.38	118.30
11	Х	5	A	O5'-P-OP2	7.62	119.84	110.70
10	1	138	G	O5'-P-OP1	7.52	119.72	110.70
4	R	94	ARG	NE-CZ-NH2	-7.47	116.57	120.30
3	С	45	MET	CG-SD-CE	-7.40	88.35	100.20
10	1	138	G	O5'-P-OP2	-7.39	99.05	105.70
5	S	86	LEU	CA-CB-CG	7.38	132.26	115.30
6	f	3	LEU	CA-CB-CG	7.37	132.24	115.30
10	1	128	U	05'-P-OP1	-7.32	99.11	105.70
11	Y	6	A	O5'-P-OP2	-7.22	99.20	105.70
1	0	51	ARG	NE-CZ-NH1	-7.14	116.73	120.30
10	1	124	U	O5'-P-OP1	-7.13	99.28	105.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
10	2	124	U	O5'-P-OP1	-7.12	99.29	105.70
8	K	16	ARG	NE-CZ-NH1	7.04	123.82	120.30
1	a	69	ARG	NE-CZ-NH1	7.00	123.80	120.30
1	a	54	ARG	NE-CZ-NH1	6.97	123.79	120.30
1	0	12	GLU	OE1-CD-OE2	6.96	131.65	123.30
3	q	66	ARG	NE-CZ-NH2	6.94	123.77	120.30
1	0	76	MET	CB-CG-SD	6.90	133.09	112.40
3	q	45	MET	CG-SD-CE	-6.88	89.19	100.20
10	1	137	U	N1-C1'-C2'	-6.87	104.45	112.00
10	3	126	А	O5'-P-OP1	-6.87	99.52	105.70
7	G	13	MET	CG-SD-CE	-6.85	89.23	100.20
9	М	10	ASP	CB-CG-OD1	6.84	124.46	118.30
10	2	126	А	O5'-P-OP1	-6.84	99.54	105.70
4	R	47	ARG	NE-CZ-NH2	-6.83	116.89	120.30
4	R	20	GLU	OE1-CD-OE2	-6.83	115.10	123.30
1	a	54	ARG	NE-CZ-NH2	-6.83	116.89	120.30
9	m	28	ARG	NE-CZ-NH2	-6.75	116.92	120.30
11	Y	4	U	O5'-P-OP2	6.75	118.80	110.70
8	k	16	ARG	NE-CZ-NH1	6.74	123.67	120.30
3	Q	66	ARG	CG-CD-NE	6.74	125.95	111.80
10	4	124	U	O5'-P-OP1	-6.70	99.67	105.70
7	u	32	ARG	NE-CZ-NH2	6.69	123.65	120.30
10	3	128	U	O5'-P-OP1	-6.69	99.68	105.70
1	А	69	ARG	NE-CZ-NH1	6.64	123.62	120.30
11	Х	3	G	O5'-P-OP2	-6.55	99.81	105.70
7	g	25	ARG	NE-CZ-NH2	-6.51	117.05	120.30
1	0	77	LEU	CA-CB-CG	6.45	130.14	115.30
7	G	63	ARG	NE-CZ-NH1	6.45	123.52	120.30
10	1	126	А	O5'-P-OP1	-6.38	99.95	105.70
6	Т	14	LEU	CB-CG-CD1	6.38	121.84	111.00
4	d	102	ARG	NE-CZ-NH1	-6.38	117.11	120.30
4	r	99	MET	CG-SD-CE	-6.37	90.01	100.20
10	1	137	U	05'-P-OP2	6.37	118.34	110.70
9	М	40	LYS	CD-CE-NZ	6.36	126.33	111.70
9	m	3	LYS	CB-CG-CD	6.34	128.07	111.60
7	u	25	ARG	NE-CZ-NH2	-6.29	117.16	120.30
4	R	99	MET	CG-SD-CE	-6.27	90.16	100.20
9	Μ	42	MET	CG-SD-CE	6.26	110.22	100.20
2	В	18	ARG	NE-CZ-NH2	-6.25	117.17	120.30
11	X	4	U	O5'-P-OP2	6.16	118.10	110.70
8	k	46	ARG	NE-CZ-NH2	-6.16	117.22	120.30
5	S	74	LEU	N-CA-C	-6.13	94.46	111.00

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
3	С	51	GLU	OE1-CD-OE2	-6.12	115.95	123.30
1	А	54	ARG	NE-CZ-NH2	-6.10	117.25	120.30
5	S	58	LEU	CB-CG-CD1	-6.09	100.65	111.00
10	1	136	G	C4'-C3'-O3'	6.09	125.17	113.00
4	D	99	MET	CG-SD-CE	-6.07	90.48	100.20
3	С	66	ARG	CG-CD-NE	6.07	124.55	111.80
7	g	75	ARG	NE-CZ-NH1	6.07	123.33	120.30
6	t	3	LEU	C-N-CD	6.06	141.13	128.40
11	Y	4	U	O5'-P-OP1	-6.05	100.25	105.70
4	R	55	ARG	NE-CZ-NH1	6.04	123.32	120.30
9	L	21	ARG	NE-CZ-NH1	6.01	123.31	120.30
8	n	50	ASP	CB-CG-OD1	-6.01	112.89	118.30
10	4	136	G	C4'-C3'-O3'	6.00	125.00	113.00
6	Т	15	THR	CA-C-N	6.00	128.19	116.20
10	2	123	А	C2'-C3'-O3'	5.97	123.25	113.70
3	С	50	ARG	NE-CZ-NH1	5.95	123.28	120.30
10	4	126	А	O5'-P-OP1	-5.95	100.35	105.70
1	a	77	LEU	CB-CG-CD2	-5.94	100.91	111.00
3	q	19	LEU	CB-CG-CD2	5.93	121.08	111.00
7	G	57	ILE	N-CA-C	-5.91	95.04	111.00
1	a	82	MET	CG-SD-CE	5.89	109.62	100.20
5	е	30	ARG	NE-CZ-NH2	-5.89	117.36	120.30
5	Е	16	GLN	C-N-CD	5.88	140.75	128.40
10	3	124	U	O5'-P-OP1	-5.88	100.41	105.70
3	q	33	ASP	CB-CG-OD2	-5.87	113.02	118.30
4	R	65	MET	CG-SD-CE	-5.86	90.83	100.20
5	е	74	LEU	CB-CG-CD1	5.84	120.93	111.00
3	с	66	ARG	CG-CD-NE	5.84	124.06	111.80
7	G	25	ARG	NE-CZ-NH1	5.80	123.20	120.30
2	Р	18	ARG	NE-CZ-NH2	-5.79	117.41	120.30
11	Х	2	G	O4'-C4'-C3'	-5.78	98.22	104.00
1	a	77	LEU	CB-CG-CD1	5.78	120.83	111.00
3	С	19	LEU	CB-CG-CD2	5.77	120.81	111.00
4	d	93	ASP	CB-CG-OD1	5.76	123.48	118.30
7	u	25	ARG	NE-CZ-NH1	5.75	123.18	120.30
4	d	60	ASP	CB-CG-OD2	5.73	123.46	118.30
11	Х	5	A	O5'-P-OP1	5.72	117.56	110.70
1	A	51	ARG	NE-CZ-NH2	-5.71	117.44	120.30
6	F	15	THR	N-CA-CB	5.71	121.16	110.30
3	Q	66	ARG	NE-CZ-NH1	-5.71	117.45	120.30
10	3	126	A	O5'-P-OP2	5.71	117.55	110.70
3	q	66	ARG	CG-CD-NE	5.70	123.77	111.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	g	75	ARG	NE-CZ-NH2	-5.69	117.45	120.30
1	0	82	MET	CG-SD-CE	5.68	109.29	100.20
11	Y	6	А	O5'-P-OP1	5.67	117.51	110.70
7	G	25	ARG	NE-CZ-NH2	-5.65	117.47	120.30
6	F	8	LYS	C-N-CD	5.63	140.22	128.40
5	S	76	ARG	NE-CZ-NH1	-5.61	117.50	120.30
5	S	75	GLY	N-CA-C	-5.58	99.14	113.10
9	L	10	ASP	CB-CG-OD2	5.58	123.33	118.30
1	А	80	ALA	C-N-CD	5.58	140.12	128.40
4	d	65	MET	CG-SD-CE	-5.57	91.30	100.20
9	m	28	ARG	CD-NE-CZ	5.56	131.38	123.60
7	U	25	ARG	NE-CZ-NH2	-5.56	117.52	120.30
5	s	74	LEU	CB-CG-CD1	5.55	120.44	111.00
4	D	88	LYS	C-N-CD	5.54	140.04	128.40
3	Q	18	GLU	OE1-CD-OE2	5.50	129.90	123.30
10	4	2	G	O5'-P-OP1	-5.50	100.75	105.70
10	3	136	G	C4'-C3'-O3'	5.49	123.99	113.00
2	р	7	SER	CA-CB-OG	5.46	125.93	111.20
9	М	31	LYS	CD-CE-NZ	5.44	124.21	111.70
5	Е	74	LEU	CB-CG-CD1	5.41	120.20	111.00
10	1	126	A	O5'-P-OP2	5.40	117.18	110.70
10	4	126	А	O5'-P-OP2	5.36	117.14	110.70
9	М	44	GLU	CB-CA-C	5.36	121.12	110.40
10	2	126	А	O5'-P-OP2	5.32	117.08	110.70
1	0	3	ILE	CA-CB-CG2	5.31	121.52	110.90
4	D	102	ARG	NE-CZ-NH2	5.31	122.95	120.30
7	g	25	ARG	NE-CZ-NH1	5.31	122.95	120.30
3	q	82	ASP	CB-CG-OD1	5.30	123.07	118.30
6	F	21	VAL	CB-CA-C	-5.29	101.35	111.40
8	n	49	GLU	OE1-CD-OE2	-5.27	116.98	123.30
7	u	32	ARG	NE-CZ-NH1	-5.26	117.67	120.30
3	С	18	GLU	OE1-CD-OE2	5.26	129.61	123.30
1	a	29	ARG	NE-CZ-NH2	-5.25	117.67	120.30
6	Т	73	ARG	CA-CB-CG	5.25	124.95	113.40
4	r	102	ARG	NE-CZ-NH1	-5.23	117.69	120.30
1	a	77	LEU	CA-CB-CG	5.20	127.26	115.30
10	1	2	G	O5'-P-OP1	-5.20	101.02	105.70
1	0	73	LEU	CB-CG-CD1	-5.17	102.21	111.00
6	${ m t}$	73	ARG	CG-CD-NE	5.15	122.61	111.80
1	О	69	ARG	NE-CZ-NH1	5.13	122.86	120.30
5	S	36	TYR	N-CA-C	5.12	124.83	111.00
10	4	137	U	N1-C1'-C2'	5.11	120.65	114.00

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	b	25	ARG	NE-CZ-NH2	-5.08	117.76	120.30
4	D	15	GLU	N-CA-C	5.07	124.68	111.00
3	Q	33	ASP	CB-CG-OD2	-5.07	113.74	118.30
6	f	73	ARG	CG-CD-NE	5.07	122.44	111.80
8	n	16	ARG	NE-CZ-NH1	5.05	122.83	120.30
5	е	14	MET	CG-SD-CE	5.05	108.28	100.20
10	1	136	G	P-O3'-C3'	5.05	125.76	119.70
5	S	73	GLN	CA-CB-CG	5.05	124.51	113.40
5	е	76	ARG	NE-CZ-NH1	-5.04	117.78	120.30
10	3	137	U	N1-C1'-C2'	5.02	120.53	114.00
10	2	26	А	P-O5'-C5'	-5.02	112.87	120.90
8	n	53	ASP	CB-CG-OD2	5.02	122.81	118.30
2	В	9	MET	CG-SD-CE	5.00	108.20	100.20

There are no chirality outliers.

All (9) planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
1	А	1	MET	Peptide
3	С	81	VAL	Peptide
2	Р	87	PRO	Peptide
4	R	17	GLN	Peptide
6	Т	16	GLY	Peptide
3	с	42	ALA	Peptide
8	k	57	PRO	Peptide
8	n	56	PRO	Peptide
4	r	17	GLN	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	82/126~(65%)	80 (98%)	2 (2%)	0	100	100
1	Ο	80/126~(64%)	74 (92%)	6 (8%)	0	100	100
1	a	81/126~(64%)	76 (94%)	5 (6%)	0	100	100
1	О	79/126~(63%)	75~(95%)	4 (5%)	0	100	100
2	В	81/95~(85%)	80 (99%)	1 (1%)	0	100	100
2	Р	81/95~(85%)	80 (99%)	1 (1%)	0	100	100
2	b	74/95~(78%)	73~(99%)	1 (1%)	0	100	100
2	р	84/95~(88%)	82 (98%)	2 (2%)	0	100	100
3	С	84/91~(92%)	79 (94%)	5 (6%)	0	100	100
3	Q	83/91~(91%)	81 (98%)	2 (2%)	0	100	100
3	с	85/91~(93%)	81 (95%)	4 (5%)	0	100	100
3	q	85/91~(93%)	83 (98%)	2 (2%)	0	100	100
4	D	94/118 (80%)	90 (96%)	4 (4%)	0	100	100
4	R	93/118 (79%)	87 (94%)	6 (6%)	0	100	100
4	d	88/118 (75%)	86 (98%)	2 (2%)	0	100	100
4	r	91/118~(77%)	85 (93%)	6 (7%)	0	100	100
5	Е	75/92~(82%)	71 (95%)	4 (5%)	0	100	100
5	S	75/92~(82%)	72 (96%)	3 (4%)	0	100	100
5	е	75/92~(82%)	72 (96%)	3 (4%)	0	100	100
5	s	75/92~(82%)	70 (93%)	5 (7%)	0	100	100
6	F	71/75~(95%)	67 (94%)	4 (6%)	0	100	100
6	Т	72/75~(96%)	68 (94%)	4 (6%)	0	100	100
6	f	72/75~(96%)	69 (96%)	3 (4%)	0	100	100
6	t	72/75~(96%)	69 (96%)	3 (4%)	0	100	100
7	G	73/76~(96%)	69 (94%)	4 (6%)	0	100	100
7	U	67/76~(88%)	64 (96%)	3 (4%)	0	100	100
7	g	71/76~(93%)	68 (96%)	3 (4%)	0	100	100
7	u	$\overline{71/76}\ (93\%)$	69 (97%)	2 (3%)	0	100	100
8	K	56/60~(93%)	52 (93%)	4 (7%)	0	100	100
8	N	51/60~(85%)	47 (92%)	4 (8%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
8	k	55/60~(92%)	53~(96%)	2~(4%)	0	100	100
8	n	56/60~(93%)	47 (84%)	9 (16%)	0	100	100
9	L	51/61~(84%)	48 (94%)	3~(6%)	0	100	100
9	М	51/61~(84%)	47 (92%)	4 (8%)	0	100	100
9	1	51/61~(84%)	48 (94%)	3~(6%)	0	100	100
9	m	48/61~(79%)	47 (98%)	1 (2%)	0	100	100
All	All	2633/3176~(83%)	2509 (95%)	124 (5%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	73/101~(72%)	69~(94%)	4 (6%)	21	52
1	Ο	72/101~(71%)	67~(93%)	5(7%)	15	44
1	a	73/101~(72%)	68~(93%)	5(7%)	16	44
1	О	71/101~(70%)	61 (86%)	10 (14%)	3	16
2	В	76/85~(89%)	73~(96%)	3(4%)	32	62
2	Р	76/85~(89%)	71 (93%)	5 (7%)	16	46
2	b	72/85~(85%)	69~(96%)	3 (4%)	30	60
2	р	78/85~(92%)	$70 \ (90\%)$	8 (10%)	7	26
3	С	79/83~(95%)	78~(99%)	1 (1%)	69	82
3	Q	79/83~(95%)	77~(98%)	2(2%)	47	72
3	с	80/83~(96%)	77 (96%)	3 (4%)	33	62
3	q	80/83~(96%)	76~(95%)	4 (5%)	24	55
4	D	93/110~(84%)	88~(95%)	5(5%)	22	53
4	R	92/110~(84%)	82 (89%)	10 (11%)	6	24
4	d	88/110 (80%)	75~(85%)	13 (15%)	3	13

4P	J	Ο	

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
4	r	91/110 (83%)	83 (91%)	8 (9%)	10	33
5	Е	72/84~(86%)	68 (94%)	4 (6%)	21	52
5	S	72/84~(86%)	61 (85%)	11 (15%)	2	12
5	е	72/84~(86%)	57 (79%)	15 (21%)	1	4
5	s	72/84~(86%)	61 (85%)	11 (15%)	2	12
6	F	61/64~(95%)	55~(90%)	6 (10%)	8	29
6	Т	63/64~(98%)	56~(89%)	7 (11%)	6	23
6	f	63/64~(98%)	54 (86%)	9 (14%)	3	15
6	t	63/64~(98%)	56 (89%)	7 (11%)	6	23
7	G	65/66~(98%)	57 (88%)	8 (12%)	4	20
7	U	62/66~(94%)	53 (86%)	9 (14%)	3	14
7	g	63/66~(96%)	59 (94%)	4 (6%)	18	47
7	u	63/66~(96%)	57 (90%)	6 (10%)	8	29
8	Κ	53/53~(100%)	53 (100%)	0	100	100
8	Ν	48/53~(91%)	46 (96%)	2(4%)	30	60
8	k	52/53~(98%)	50 (96%)	2 (4%)	33	62
8	n	53/53~(100%)	49 (92%)	4 (8%)	13	39
9	L	51/56~(91%)	45 (88%)	6 (12%)	5	21
9	М	51/56~(91%)	42 (82%)	9 (18%)	2	8
9	1	51/56~(91%)	45 (88%)	6 (12%)	5	21
9	m	48/56~(86%)	42 (88%)	6 (12%)	4	19
All	All	2471/2808 (88%)	2250 (91%)	221 (9%)	9	32

 α tio d fa .

All (221) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	34	GLU
1	А	38	ASN
1	А	47	THR
1	А	82	MET
2	В	13	ILE
2	В	16	ARG
2	В	17	MET
3	С	4	VAL
4	D	33	THR

Mol	Chain	Res	Type
4	D	52	LEU
4	D	61	ARG
4	D	94	ARG
4	D	115	ILE
5	Е	16	GLN
5	Е	29	SER
5	Е	60	ASP
5	Е	82	ASP
6	F	27	MET
6	F	28	GLU
6	F	51	ILE
6	F	59	LEU
6	F	65	ARG
6	F	73	ARG
7	G	3	LYS
7	G	11	LYS
7	G	27	VAL
7	G	46	VAL
7	G	50	THR
7	G	51	SER
7	G	69	MET
7	G	75	ARG
9	L	29	LYS
9	L	42	MET
9	L	44	GLU
9	L	48	SER
9	L	53	THR
9	L	54	THR
1	a	24	THR
1	a	34	GLU
1	a	77	LEU
1	a	78	LYS
1	a	82	MET
2	b	11	GLN
2	b	71	LEU
2	b	80	MET
3	с	4	VAL
3	с	11	SER
3	с	41	LYS
4	d	15	GLU
4	d	17	GLN
4	d	20	GLU

Mol	Chain	Res	Type
4	d	21	GLU
4	d	22	GLU
4	d	32	LEU
4	d	33	THR
4	d	37	LYS
4	d	42	VAL
4	d	51	LYS
4	d	61	ARG
4	d	75	THR
4	d	94	ARG
5	е	14	MET
5	е	20	LEU
5	е	25	LEU
5	е	29	SER
5	е	38	GLN
5	е	60	ASP
5	е	62	GLU
5	е	63	GLU
5	е	67	LYS
5	е	69	LYS
5	е	70	SER
5	е	79	LEU
5	е	80	LYS
5	е	82	ASP
5	е	89	SER
6	f	3	LEU
6	f	8	LYS
6	f	14	LEU
6	f	23	LEU
6	f	27	MET
6	f	44	LEU
6	f	51	ILE
6	f	59	LEU
6	f	65	ARG
7	g	10	LYS
7	g	27	VAL
7	g	59	MET
7	g	69	MET
8	k	10	LEU
8	k	52	ARG
9	1	29	LYS
9	1	35	LYS

Mol	Chain	Res	Type
9	1	48	SER
9	1	52	LYS
9	1	53	THR
9	1	54	THR
1	0	24	THR
1	0	34	GLU
1	0	78	LYS
1	0	82	MET
1	0	83	LEU
2	Р	11	GLN
2	Р	13	ILE
2	Р	71	LEU
2	Р	80	MET
2	Р	88	LYS
3	Q	4	VAL
3	Q	11	SER
4	R	11	MET
4	R	12	THR
4	R	16	LEU
4	R	33	THR
4	R	37	LYS
4	R	42	VAL
4	R	51	LYS
4	R	61	ARG
4	R	75	THR
4	R	114	LEU
5	S	20	LEU
5	S	25	LEU
5	S	38	GLN
5	S	59	ASP
5	S	60	ASP
5	S	62	GLU
5	S	63	GLU
5	S	67	LYS
5	S	69	LYS
5	S	78	MET
5	S	82	ASP
6	Т	8	LYS
6	Т	23	LEU
6	Т	27	MET
6	Т	44	LEU
6	Т	51	ILE

Mol	Chain	Res	Type
6	Т	65	ARG
6	Т	73	ARG
7	U	26	HIS
7	U	32	ARG
7	U	46	VAL
7	U	48	MET
7	U	63	ARG
7	U	65	ASN
7	U	69	MET
7	U	74	GLU
7	U	75	ARG
8	Ν	28	LEU
8	Ν	46	ARG
9	М	26	SER
9	М	29	LYS
9	М	35	LYS
9	М	39	GLN
9	М	45	GLN
9	М	48	SER
9	М	49	LEU
9	М	51	ASP
9	М	54	THR
1	0	3	ILE
1	0	20	CYS
1	0	24	THR
1	0	34	GLU
1	0	46	ILE
1	0	51	ARG
1	0	73	LEU
1	0	78	LYS
1	0	82	MET
1	0	83	LEU
2	р	7	SER
2	р	12	HIS
2	р	54	LYS
2	р	56	SER
2	р	57	LYS
2	р	58	GLN
2	р	67	LEU
2	р	71	LEU
3	q	4	VAL
3	q	11	SER

Mol	Chain	Res	Type
3	q	19	LEU
3	q	82	ASP
4	r	20	GLU
4	r	37	LYS
4	r	42	VAL
4	r	51	LYS
4	r	61	ARG
4	r	75	THR
4	r	94	ARG
4	r	114	LEU
5	S	14	MET
5	S	25	LEU
5	S	27	ASN
5	S	60	ASP
5	S	62	GLU
5	S	63	GLU
5	S	68	THR
5	S	70	SER
5	S	80	LYS
5	S	82	ASP
5	S	86	LEU
6	t	3	LEU
6	t	8	LYS
6	t	14	LEU
6	t	23	LEU
6	t	27	MET
6	t	51	ILE
6	t	65	ARG
7	u	27	VAL
7	u	50	THR
7	u	51	SER
7	u	57	ILE
7	u	59	MET
7	u	69	MET
8	n	3	GLN
8	n	28	LEU
8	n	48	PHE
8	n	50	ASP
9	m	3	LYS
9	m	26	SER
9	m	29	LYS
9	m	39	GLN

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
9	m	45	GLN
9	m	48	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:

Mol	Chain	Res	Type
5	Е	73	GLN
6	F	43	GLN
2	Р	11	GLN
7	U	26	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
10	1	46/60~(76%)	14 (30%)	4 (8%)
10	2	46/60~(76%)	14 (30%)	3~(6%)
10	3	45/60~(75%)	14 (31%)	3~(6%)
10	4	47/60~(78%)	16 (34%)	4 (8%)
11	Х	9/10~(90%)	1 (11%)	0
11	Y	9/10~(90%)	2 (22%)	0
11	Х	9/10~(90%)	0	0
11	У	9/10~(90%)	2(22%)	0
All	All	220/280~(78%)	63~(28%)	14 (6%)

All (63) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
10	1	10	U
10	1	18	А
10	1	19	G
10	1	20	G
10	1	124	U
10	1	126	А
10	1	128	U
10	1	130	G
10	1	132	G
10	1	133	G
10	1	135	А
10	1	136	G
10	1	137	U

Mol	Chain	Res	Type
10	1	138	G
11	Х	9	С
10	2	10	U
10	2	18	А
10	2	19	G
10	2	20	G
10	2	124	U
10	2	126	А
10	2	128	U
10	2	130	G
10	2	131	U
10	2	132	G
10	2	133	G
10	2	135	А
10	2	137	U
10	2	138	G
10	3	10	U
10	3	18	А
10	3	19	G
10	3	20	G
10	3	124	U
10	3	126	А
10	3	128	U
10	3	130	G
10	3	131	U
10	3	132	G
10	3	133	G
10	3	135	А
10	3	136	G
10	3	137	U
11	Y	3	G
11	Y	7	G
10	4	10	U
10	4	18	А
10	4	19	G
10	4	20	G
10	4	124	U
10	4	126	A
10	4	128	U
10	4	130	G
10	4	131	U
10	4	132	G

Continued from previous page...

Mol	Chain	Res	Type
10	4	133	G
10	4	135	А
10	4	136	G
10	4	137	U
10	4	138	G
10	4	139	G
11	у	2	G
11	У	7	G

All (14) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
10	1	126	А
10	1	128	U
10	1	136	G
10	1	137	U
10	2	126	А
10	2	128	U
10	2	137	U
10	3	126	А
10	3	128	U
10	3	136	G
10	4	126	А
10	4	128	U
10	4	136	G
10	4	138	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 35 ligands modelled in this entry, 31 are monoatomic - leaving 4 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and

the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	In Trune Chain Dec		Tink	Bond lengths			Bond angles			
INIOI	туре	Chain	nes	LINK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
13	EPE	1	201	-	$15,\!15,\!15$	1.93	1 (6%)	18,20,20	2.28	6 (33%)
16	EOH	4	201	-	2,2,2	0.56	0	1,1,1	0.19	0
18	SO4	У	103	-	4,4,4	0.38	0	6,6,6	0.60	0
13	EPE	2	201	-	$15,\!15,\!15$	1.97	1 (6%)	18,20,20	2.24	10 (55%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	EPE	1	201	-	-	1/9/19/19	0/1/1/1
13	EPE	2	201	-	-	4/9/19/19	0/1/1/1

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
13	1	201	EPE	C10-S	-6.98	1.67	1.77
13	2	201	EPE	C10-S	-6.93	1.67	1.77

All (16) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	1	201	EPE	O1S-S-C10	5.47	113.51	106.92
13	2	201	EPE	C6-C5-N4	4.83	120.56	110.64
13	1	201	EPE	C6-N1-C2	3.69	117.14	108.83
13	1	201	EPE	O2S-S-O1S	-3.52	101.77	113.95
13	2	201	EPE	O1S-S-C10	3.44	111.06	106.92
13	1	201	EPE	C3-C2-N1	3.29	117.40	110.64
13	1	201	EPE	O3S-S-C10	3.27	111.06	105.77
13	2	201	EPE	C7-N4-C3	2.83	118.48	111.23
13	2	201	EPE	O8-C8-C7	2.83	122.92	111.19
13	2	201	EPE	C3-C2-N1	2.68	116.13	110.64
13	2	201	EPE	O2S-S-O1S	-2.66	104.76	113.95
13	1	201	EPE	C2-C3-N4	2.63	116.05	110.64
13	2	201	EPE	C6-N1-C2	2.21	113.81	108.83

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	2	201	EPE	O3S-S-C10	2.14	109.23	105.77
13	2	201	EPE	C2-C3-N4	-2.12	106.29	110.64
13	2	201	EPE	C5-C6-N1	2.09	114.93	110.64

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
13	2	201	EPE	C9-C10-S-O2S
13	2	201	EPE	C9-C10-S-O3S
13	1	201	EPE	C8-C7-N4-C5
13	2	201	EPE	C9-C10-S-O1S
13	2	201	EPE	C10-C9-N1-C2

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ > 2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	А	84/126~(66%)	0.18	3 (3%) 42 40	50,68,102,155	0
1	Ο	82/126~(65%)	1.28	24 (29%) 0 0	96,125,152,182	0
1	a	83/126~(65%)	-0.22	1 (1%) 79 78	46, 70, 103, 123	0
1	0	81/126~(64%)	0.83	11 (13%) 3 2	87, 137, 161, 176	0
2	В	83/95~(87%)	0.63	3 (3%) 42 40	41,65,189,219	0
2	Р	83/95~(87%)	0.98	14 (16%) 1 1	68, 111, 178, 219	0
2	b	78/95~(82%)	0.05	1 (1%) 77 77	45, 70, 135, 185	0
2	р	86/95~(90%)	0.08	2 (2%) 60 59	75, 122, 185, 221	0
3	С	86/91~(94%)	-0.11	0 100 100	39, 56, 120, 139	0
3	Q	85/91~(93%)	0.06	2 (2%) 59 56	55, 77, 125, 140	0
3	с	87/91~(95%)	0.04	0 100 100	42, 60, 124, 139	0
3	q	87/91~(95%)	-0.22	0 100 100	57, 82, 131, 150	0
4	D	98/118~(83%)	0.01	0 100 100	38, 62, 151, 181	0
4	R	96/118 (81%)	0.13	0 100 100	49, 73, 157, 176	0
4	d	92/118~(77%)	-0.05	0 100 100	41,63,154,176	0
4	r	95/118 (80%)	-0.06	1 (1%) 80 81	63, 85, 172, 233	0
5	Е	77/92~(83%)	0.52	3 (3%) 39 37	49, 75, 113, 134	0
5	S	77/92~(83%)	-0.30	2 (2%) 56 53	75, 117, 159, 177	0
5	e	77/92~(83%)	0.63	2 (2%) 56 53	52, 81, 126, 150	0
5	S	77/92~(83%)	0.23	4 (5%) 27 25	86, 115, 155, 171	0
6	F	73/75~(97%)	-0.04	0 100 100	45, 64, 95, 133	0
6	Т	74/75~(98%)	-0.09	0 100 100	59, 88, 136, 175	0
6	f	74/75~(98%)	0.35	1 (1%) 75 75	52, 76, 101, 129	0
6	t	$7\overline{4}/75~(98\%)$	0.28	1 (1%) 75 75	73, 100, 144, 178	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
7	G	74/76~(97%)	0.62	2 (2%) 54 52	51, 80, 120, 137	0
7	U	71/76~(93%)	0.33	8 (11%) 5 5	95, 130, 165, 178	0
7	g	73/76~(96%)	-0.01	0 100 100	55, 83, 123, 168	0
7	u	73/76~(96%)	0.72	11 (15%) 2 2	98, 133, 171, 188	0
8	К	58/60~(96%)	-0.13	0 100 100	52, 83, 139, 159	0
8	Ν	53/60~(88%)	1.03	11 (20%) 1 1	57, 121, 162, 171	0
8	k	57/60~(95%)	-0.18	0 100 100	52, 90, 130, 155	0
8	n	58/60~(96%)	0.95	11 (18%) 1 1	80, 140, 185, 196	0
9	L	53/61~(86%)	0.25	2 (3%) 40 37	72, 106, 180, 197	0
9	М	53/61~(86%)	1.46	14 (26%) 0 0	102, 140, 194, 199	0
9	1	53/61~(86%)	0.27	3 (5%) 23 23	70, 112, 177, 202	0
9	m	50/61~(81%)	1.30	14 (28%) 0 0	116, 157, 210, 217	0
10	1	47/60 (78%)	-0.39	0 100 100	46, 93, 150, 176	0
10	2	47/60 (78%)	-0.23	0 100 100	47, 99, 158, 175	0
10	3	46/60~(76%)	-0.22	0 100 100	72, 127, 151, 178	0
10	4	48/60~(80%)	-0.05	0 100 100	77, 129, 173, 196	0
11	Х	10/10 (100%)	-0.75	0 100 100	88, 119, 157, 164	0
11	Y	10/10 (100%)	-0.09	0 100 100	114, 143, 162, 164	0
11	X	10/10 (100%)	-0.06	0 100 100	89, 118, 165, 176	0
11	У	10/10 (100%)	0.56	1 (10%) 7 7	130, 152, 171, 177	0
All	All	2943/3456 (85%)	0.26	152 (5%) 27 25	38, 95, 165, 233	0

Continued from previous page...

All (152) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	Р	56	SER	18.1
8	n	2	THR	9.5
2	Р	55	ASN	8.7
8	n	3	GLN	7.3
2	Р	57	LYS	6.9
8	n	10	LEU	6.9
8	Ν	9	LEU	6.8
8	Ν	8	ASN	6.8
9	m	14	THR	6.8
8	N	10	LEU	6.4

4P	J	0
	~	~

Mol	Chain	Res	Type	RSRZ
8	N	13	PHE	6.3
1	0	12	GLU	6.3
8	n	7	PRO	5.5
6	t	75	VAL	5.5
2	Р	58	GLN	5.5
1	0	35	ALA	5.4
7	u	50	THR	5.3
1	0	77	LEU	5.2
9	m	13	LEU	5.1
8	Ν	12	LEU	4.9
9	М	2	PRO	4.9
9	М	4	PHE	4.8
9	М	8	TYR	4.8
8	n	4	PHE	4.8
1	0	34	GLU	4.6
1	0	15	GLY	4.4
9	m	12	TYR	4.4
9	М	38	TYR	4.4
9	m	11	THR	4.4
8	Ν	7	PRO	4.3
9	М	13	LEU	4.2
9	m	15	HIS	4.1
1	0	79	ASN	4.1
8	Ν	6	PRO	4.1
8	Ν	11	ALA	4.0
1	0	76	MET	3.9
2	Р	53	PRO	3.9
9	1	12	TYR	3.9
1	А	1	MET	3.9
1	0	2	SER	3.8
8	n	5	LEU	3.7
2	P	60	GLU	3.7
2	В	59	ALA	3.7
9	М	7	ASP	3.6
9	М	12	TYR	3.5
2	Р	51	ILE	3.5
1	0	10	LEU	3.5
1	0	81	PRO	3.5
1	A	2	SER	3.5
2	P	54	LYS	3.4
1	0	16	HIS	3.4
7	u	51	SER	3.4

4PJO

Mol	Chain	Res	Type	RSRZ
1	0	3	ILE	3.4
8	n	8	ASN	3.4
2	Р	52	LYS	3.3
9	1	2	PRO	3.3
2	В	14	ASP	3.3
7	U	68	ILE	3.3
9	М	14	THR	3.2
8	n	6	PRO	3.2
2	Р	61	ARG	3.2
8	Ν	33	HIS	3.1
9	М	51	ASP	3.1
9	М	53	THR	3.1
8	n	9	LEU	3.1
1	0	18	VAL	3.0
1	Ο	82	MET	3.0
7	u	35	ASP	3.0
1	0	7	ILE	3.0
1	0	63	ILE	3.0
7	u	5	HIS	2.9
2	р	90	THR	2.9
9	1	11	THR	2.9
7	U	69	MET	2.9
2	В	60	GLU	2.9
2	Р	63	GLU	2.9
3	Q	-2	SER	2.8
5	s	88	GLN	2.8
9	М	21	ARG	2.8
8	n	13	PHE	2.8
9	m	5	TYR	2.7
7	u	27	VAL	2.7
1	0	11	HIS	2.7
9	М	43	GLU	2.7
1	0	74	PRO	2.7
1	Ο	17	ILE	2.7
1	Ο	10	LEU	2.7
5	е	78	MET	2.7
1	0	56	ALA	2.7
9	m	2	PRO	2.6
7	u	9	LEU	2.6
1	0	8	LYS	2.6
5	S	37	GLU	2.6
7	U	21	LEU	2.6

4PJO

Mol	Chain	Res	Type	RSRZ
9	М	15	HIS	2.6
5	s	14	MET	2.6
3	Q	82	ASP	2.6
1	0	41	CYS	2.6
9	m	26	SER	2.5
1	0	73	LEU	2.5
9	М	54	THR	2.5
1	0	77	LEU	2.5
2	р	69	LEU	2.5
5	Е	14	MET	2.5
2	Р	59	ALA	2.5
9	m	4	PHE	2.5
7	u	53	GLN	2.5
2	b	7	SER	2.5
1	А	3	ILE	2.5
7	G	59	MET	2.5
5	S	36	TYR	2.5
1	0	78	LYS	2.5
6	f	2	SER	2.5
7	U	72	ALA	2.4
5	е	56	LEU	2.4
1	0	39	MET	2.4
5	S	87	LEU	2.4
9	m	7	ASP	2.4
2	Р	50	LYS	2.4
5	S	56	LEU	2.4
9	m	10	ASP	2.4
1	0	20	CYS	2.3
7	u	40	LEU	2.3
5	Е	44	GLU	2.3
1	Ο	28	TYR	2.3
7	u	60	VAL	2.3
11	У	1	А	2.3
1	0	14	GLU	2.3
1	0	32	LEU	2.3
7	U	70	LEU	2.3
7	u	62	ILE	2.2
7	U	22	ASN	2.2
1	0	7	ILE	2.2
1	a	3	ILE	2.2
1	0	11	HIS	2.2
2	Р	62	GLU	2.2

Mol	Chain	Res	Type	RSRZ
7	U	67	ILE	2.2
8	n	18	PRO	2.1
9	L	53	THR	2.1
9	m	8	TYR	2.1
7	u	61	VAL	2.1
5	Е	24	TYR	2.1
9	m	28	ARG	2.1
4	r	12	THR	2.1
9	m	32	GLU	2.1
8	Ν	32	LYS	2.1
1	0	24	THR	2.0
1	0	22	THR	2.0
7	G	40	LEU	2.0
8	Ν	58	THR	2.0
9	L	5	TYR	2.0
7	U	35	ASP	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
14	MG	2	203	1/1	0.35	0.18	87,87,87,87	0
18	SO4	У	103	5/5	0.39	0.60	192,193,205,208	0
16	EOH	4	201	3/3	0.42	1.11	112,112,115,119	0
14	MG	1	202	1/1	0.45	0.92	106,106,106,106	0
15	K	3	205	1/1	0.45	0.23	122,122,122,122	0
14	MG	3	202	1/1	0.47	0.13	91,91,91,91	0
14	MG	2	204	1/1	0.60	0.27	94,94,94,94	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
14	MG	1	209	1/1	0.65	0.27	95,95,95,95	0
14	MG	1	205	1/1	0.70	0.29	71,71,71,71	0
14	MG	1	208	1/1	0.72	0.27	75,75,75,75	0
13	EPE	1	201	15/15	0.77	0.35	131,146,150,162	0
14	MG	4	202	1/1	0.79	0.31	86,86,86,86	0
14	MG	1	202	1/1	0.80	0.27	100,100,100,100	0
14	MG	1	207	1/1	0.80	0.18	82,82,82,82	0
13	EPE	2	201	15/15	0.81	0.44	92,116,141,146	0
14	MG	3	204	1/1	0.81	0.25	97,97,97,97	0
14	MG	1	206	1/1	0.86	0.27	86,86,86,86	0
14	MG	1	203	1/1	0.87	0.20	$52,\!52,\!52,\!52$	0
14	MG	2	205	1/1	0.87	0.26	$61,\!61,\!61,\!61$	0
15	K	3	206	1/1	0.88	0.41	$125,\!125,\!125,\!125$	0
15	K	b	101	1/1	0.88	0.33	105,105,105,105	0
14	MG	У	102	1/1	0.88	0.21	100,100,100,100	0
14	MG	У	101	1/1	0.89	0.31	100,100,100,100	0
14	MG	3	201	1/1	0.89	0.15	75, 75, 75, 75, 75	0
14	MG	3	203	1/1	0.89	0.12	80,80,80,80	0
15	K	b	102	1/1	0.89	0.24	124,124,124,124	0
14	MG	2	202	1/1	0.92	0.36	$69,\!69,\!69,\!69$	0
15	K	Q	101	1/1	0.93	0.14	$97,\!97,\!97,\!97$	0
15	K	1	210	1/1	0.95	0.09	91,91,91,91	0
17	CL	4	203	1/1	0.95	0.11	111,111,111,111	0
14	MG	1	204	1/1	0.95	0.16	64,64,64,64	0
12	ZN	М	201	1/1	0.97	0.10	126,126,126,126	0
12	ZN	m	201	1/1	0.98	0.09	136,136,136,136	0
12	ZN	1	201	1/1	0.99	0.11	98,98,98,98	0
12	ZN	L	201	1/1	0.99	0.13	83,83,83,83	0

Other polymers (i) 6.5

There are no such residues in this entry.

