PDB ID : 3POX
Title : Crystal Structure of E.coli OmpF porin in lipidic cubic phase: space group P1
Authors : Efremov, R.G.; Sazanov, L.A.
Deposited on : 2010-11-23
Resolution : 2.00 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
http://wwpdb.org/validation/2016/XrayValidationReportHelp
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.02b-467
- Mogul : 1.7.2 (RC1), CSD as538be (2017)
- Xtriage (Phenix) : 1.9-1692
- EDS : trunk28620
- Percentile statistics : 20161228.v01 (using entries in the PDB archive December 28th 2016)
- Refmac : 5.8.0135
- CCP4 : 6.5.0
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : recalc28949
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>free</sub></td>
<td>100719</td>
<td>6609 (2.00-2.00)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>112137</td>
<td>7775 (2.00-2.00)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>110173</td>
<td>7679 (2.00-2.00)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>110143</td>
<td>7678 (2.00-2.00)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>101464</td>
<td>6696 (2.00-2.00)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%. The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>340</td>
<td>1% 89% 12%</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>340</td>
<td>3% 86% 13%</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>340</td>
<td>2% 90% 10%</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>340</td>
<td>3% 90% 10%</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>340</td>
<td>3% 89% 10%</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>340</td>
<td>3% 89% 11%</td>
</tr>
</tbody>
</table>
The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>343</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>344</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>346</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>347</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>349</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>354</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>356</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>357</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>358</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>359</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>361</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>363</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>342</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>345</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>346</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>351</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>352</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>353</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>342</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>345</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>348</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>349</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>352</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>357</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>358</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>359</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>360</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>361</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>362</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>363</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>342</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>344</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>346</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>348</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>349</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>341</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>342</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>343</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>345</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>347</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>348</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>341</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>342</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>343</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>345</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>346</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>E</td>
<td>352</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 5 unique types of molecules in this entry. The entry contains 18507 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called OmpF protein.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>340</td>
<td>Total C N O S 2627 1654 438 532 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>340</td>
<td>Total C N O S 2627 1654 438 532 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>340</td>
<td>Total C N O S 2627 1654 438 532 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>340</td>
<td>Total C N O S 2627 1654 438 532 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>340</td>
<td>Total C N O S 2627 1654 438 532 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 2 is (2R)-2,3-DIHYDROXYPROPYL (9Z)-OCTADEC-9-ENOATE (three-letter code: OLC) (formula: C\textsubscript{21}H\textsubscript{40}O\textsubscript{4}).

![OLC](attachment:OLC.png)
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 21 4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 21 4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total C O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 21 4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1</td>
<td>Total C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 12</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F</td>
<td>1</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is POTASSIUM ION (three-letter code: K) (formula: K).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>D</td>
<td>4</td>
<td>Total K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>3</td>
<td>Total K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>3</td>
<td>Total K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>4</td>
<td>Total K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>3</td>
<td>Total K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>3</td>
<td>Total K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 4 is THIOCYANATE ION (three-letter code: SCN) (formula: CNS).

![SCN structure]
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total C N S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1</td>
<td>Total C N S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>1</td>
<td>Total C N S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>1</td>
<td>Total C N S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1</td>
<td>Total C N S</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 5 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
<td>267</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>236</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>257</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>272</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>278</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>212</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: OmpF protein

Chain A:

- Molecule 1: OmpF protein

Chain B:

- Molecule 1: OmpF protein

Chain C:

- Molecule 1: OmpF protein

Chain D:
• Molecule 1: OmpF protein

Chain E:

• Molecule 1: OmpF protein

Chain F:

3% 89% 11%
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td></td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>79.57Å 86.02Å 116.56Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>20.00 – 2.00</td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>96.6 (20.00-2.00)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>sym</sub></td>
<td>0.14</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)><sup>1</sup></td>
<td>1.82 (at 2.01Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>PHENIX (phenix.refine: 1.6.4_486)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R<sub>free</sub></td>
<td>0.188 , 0.225</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>free</sub> test set</td>
<td>9825 reflections (5.01%)</td>
<td>DCC</td>
</tr>
<tr>
<td>Wilson B-factor (Å<sup>2</sup>)</td>
<td>21.8</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.261</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k<sub>sol</sub>(e/Å<sup>3</sup>), B<sub>sol</sub>(Å<sup>2</sup>)</td>
<td>0.40 , 64.6</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning<sup>2</sup></td>
<td><L> = 0.49, <L<sup>2</sup>> = 0.32</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>No twinning to report.</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F<sub>a</sub>F<sub>c</sub> correlation</td>
<td>0.95</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>18507</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å<sup>2</sup>)</td>
<td>27.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 7.31% of the height of the origin peak. No significant pseudotranslation is detected.

¹Intensities estimated from amplitudes.

²Theoretical values of <L>, <L²> for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: K, OLC, SCN.

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol | Chain | Bond lengths RMSZ | #|Z| >5 | Bond angles RMSZ | #|Z| >5 |
|-----|-------|-------------------|---------|-----------------|-----------------|---------|
| 1 | A | 0.44 | 0/2683 | 0.56 | 0/3628 |
| 1 | B | 0.39 | 0/2683 | 0.54 | 0/3628 |
| 1 | C | 0.40 | 0/2683 | 0.55 | 0/3628 |
| 1 | D | 0.40 | 0/2683 | 0.55 | 0/3628 |
| 1 | E | 0.43 | 0/2683 | 0.57 | 0/3628 |
| 1 | F | 0.36 | 0/2683 | 0.53 | 0/3628 |
| All | All | 0.40 | 0/16098 | 0.55 | 0/21768 |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2627</td>
<td>0</td>
<td>2444</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>2627</td>
<td>0</td>
<td>2444</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>2627</td>
<td>0</td>
<td>2444</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>2627</td>
<td>0</td>
<td>2444</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>2627</td>
<td>0</td>
<td>2444</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>2627</td>
<td>0</td>
<td>2444</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>342</td>
<td>0</td>
<td>531</td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>205</td>
<td>0</td>
<td>321</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>323</td>
<td>0</td>
<td>499</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>109</td>
<td>0</td>
<td>167</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>118</td>
<td>0</td>
<td>183</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>88</td>
<td>0</td>
<td>135</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>267</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>236</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>257</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>272</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>278</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>212</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>18507</td>
<td>0</td>
<td>16500</td>
<td>201</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (201) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:179:SER:HB2</td>
<td>1:B:188:VAL:HG22</td>
<td>1.53</td>
<td>0.90</td>
</tr>
<tr>
<td>1:A:258:LEU:CD1</td>
<td>1:A:276:THR:HG23</td>
<td>2.07</td>
<td>0.84</td>
</tr>
<tr>
<td>2:A:359:OLC:H24</td>
<td>1:B:172:ASP:OD1</td>
<td>1.79</td>
<td>0.83</td>
</tr>
<tr>
<td>1:C:179:SER:CB</td>
<td>1:C:188:VAL:HG12</td>
<td>2.09</td>
<td>0.83</td>
</tr>
<tr>
<td>2:C:363:OLC:H22</td>
<td>5:C:546:HOH:O</td>
<td>1.77</td>
<td>0.82</td>
</tr>
<tr>
<td>1:C:172:ASP:OD1</td>
<td>2:C:359:OLC:H24</td>
<td>1.80</td>
<td>0.81</td>
</tr>
<tr>
<td>1:E:334:VAL:CG2</td>
<td>2:E:347:OLC:H9</td>
<td>2.13</td>
<td>0.79</td>
</tr>
<tr>
<td>1:C:179:SER:HB2</td>
<td>1:C:188:VAL:HG12</td>
<td>1.65</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:C:348:OLC:H7A</td>
<td>2:C:349:OLC:H2A</td>
<td>1.66</td>
<td>0.77</td>
</tr>
<tr>
<td>2:B:344:OLC:H9</td>
<td>2:B:345:OLC:H21</td>
<td>1.68</td>
<td>0.73</td>
</tr>
<tr>
<td>1:E:334:VAL:HG22</td>
<td>2:E:347:OLC:H9</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>1:D:18:VAL:HG13</td>
<td>1:D:337:VAL:HG22</td>
<td>1.71</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:71:GLU:HB3</td>
<td>1:C:80:LYS:HD2</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:F:179:SER:HB2</td>
<td>1:F:188:VAL:HG22</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:C:18:VAL:HG13</td>
<td>1:C:337:VAL:HG22</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:C:111:TYR:OH</td>
<td>1:C:188:VAL:HG13</td>
<td>1.92</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:111:TYR:OH</td>
<td>1:B:188:VAL:HG23</td>
<td>1.92</td>
<td>0.70</td>
</tr>
<tr>
<td>1:F:54:ASP:HB3</td>
<td>1:F:91:ALA:HB2</td>
<td>1.73</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:160:LYS:HE2</td>
<td>5:D:1294:HOH:O</td>
<td>1.93</td>
<td>0.69</td>
</tr>
<tr>
<td>2:C:353:OLC:H2A</td>
<td>2:C:363:OLC:H18</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:179:SER:HB3</td>
<td>1:C:188:VAL:HG12</td>
<td>1.75</td>
<td>0.67</td>
</tr>
<tr>
<td>1:F:258:LEU:CD1</td>
<td>1:F:276:THR:HG23</td>
<td>2.25</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:179:SER:CB</td>
<td>1:B:188:VAL:HG22</td>
<td>2.25</td>
<td>0.66</td>
</tr>
<tr>
<td>1:E:262:GLN:HG2</td>
<td>1:E:272:SER:HB2</td>
<td>1.78</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:334:VAL:CG2</td>
<td>2:C:359:OLC:H12</td>
<td>2.28</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:330:ASP:H</td>
<td>2:E:344:OLC:C1</td>
<td>2.09</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:178:ILE:HG13</td>
<td>2:D:342:OLC:H11</td>
<td>1.78</td>
<td>0.64</td>
</tr>
<tr>
<td>1:F:179:SER:CB</td>
<td>1:F:188:VAL:HG22</td>
<td>2.30</td>
<td>0.62</td>
</tr>
<tr>
<td>2:A:361:OLC:H18</td>
<td>2:A:365:OLC:C1</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:258:LEU:CD1</td>
<td>1:B:276:THR:HG23</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:179:SER:HB3</td>
<td>1:A:188:VAL:HG22</td>
<td>1.83</td>
<td>0.61</td>
</tr>
<tr>
<td>1:F:286:ILE:HG23</td>
<td>1:F:323:LYS:HD3</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:111:TYR:OH</td>
<td>1:A:188:VAL:HG23</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:179:SER:CB</td>
<td>1:A:188:VAL:HG22</td>
<td>2.30</td>
<td>0.59</td>
</tr>
<tr>
<td>2:E:347:OLC:C11</td>
<td>2:E:348:OLC:H3</td>
<td>2.32</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:267:PHE:HB2</td>
<td>2:D:349:OLC:H22</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:80:LYS:HD2</td>
<td>1:F:71:GLU:HB3</td>
<td>1.84</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:180:TYR:CE1</td>
<td>2:B:350:OLC:H5</td>
<td>2.40</td>
<td>0.57</td>
</tr>
<tr>
<td>1:E:253:LYS:HE2</td>
<td>1:E:282:ASP:OD2</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>2:C:347:OLC:H5</td>
<td>2:C:358:OLC:O19</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>2:A:356:OLC:H7</td>
<td>1:C:334:VAL:HG12</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:71:GLU:CB</td>
<td>1:C:80:LYS:HD2</td>
<td>2.35</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:263:TYR:O</td>
<td>1:A:271:PRO:HD2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:299:ALA:HB3</td>
<td>2:E:347:OLC:C18</td>
<td>2.36</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:257:VAL:O</td>
<td>1:F:258:LEU:HD13</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:258:LEU:HD12</td>
<td>1:F:276:THR:HG23</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>2:F:341:OLC:C1</td>
<td>2:F:342:OLC:H2A</td>
<td>2.36</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:204:PRO:HG2</td>
<td>1:B:247:THR:HG23</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:100:ARG:NH2</td>
<td>1:C:71:GLU:HG3</td>
<td>2.20</td>
<td>0.55</td>
</tr>
<tr>
<td>1:F:196:ARG:HD3</td>
<td>1:F:208:GLY:O</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:191:TYR:HE2</td>
<td>2:C:352:OLC:H5</td>
<td>1.71</td>
<td>0.55</td>
</tr>
<tr>
<td>2:E:347:OLC:H11A</td>
<td>2:E:348:OLC:C3</td>
<td>2.38</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:178:ILE:HG12</td>
<td>2:D:342:OLC:H14</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:253:LYS:HE2</td>
<td>1:F:282:ASP:OD2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:92:ASP:O</td>
<td>1:A:145:PHE:HA</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:257:VAL:O</td>
<td>1:A:258:LEU:HD13</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:196:ARG:HD3</td>
<td>1:B:208:GLY:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:266:ASP:N</td>
<td>2:C:362:OLC:H24</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:334:VAL:HG22</td>
<td>2:C:359:OLC:H12</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>2:E:347:OLC:C10</td>
<td>2:E:348:OLC:H3</td>
<td>2.38</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:46:LYS:HG2</td>
<td>5:E:1092:HOH:O</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:61:TRP:CZ2</td>
<td>1:D:63:TYR:HB2</td>
<td>2.45</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:179:SER:HB3</td>
<td>1:E:188:VAL:HG23</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:263:TYR:O</td>
<td>1:E:271:PRO:HD2</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:111:TYR:OH</td>
<td>1:F:188:VAL:HG23</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:223:ASN:O</td>
<td>1:F:224:ASN:HB2</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:235:ARG:HD3</td>
<td>1:D:253:LYS:HG2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:313:TYR:CE2</td>
<td>1:B:332:VAL:HG22</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:71:GLU:HG3</td>
<td>1:C:100:ARG:NH2</td>
<td>2.26</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:259:LEU:HB3</td>
<td>2:D:346:OLC:H6A</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>2:E:347:OLC:H10</td>
<td>2:E:348:OLC:H3</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:111:TYR:OH</td>
<td>1:B:188:VAL:CG2</td>
<td>2.58</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:54:ASP:HB3</td>
<td>1:B:91:ALA:HB2</td>
<td>1.92</td>
<td>0.51</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:196:ARG:HD3</td>
<td>1:C:208:GLY:O</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:71:GLU:HG3</td>
<td>1:B:100:ARG:NH2</td>
<td>2.26</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:48:GLU:HG3</td>
<td>1:E:56:THR:CG2</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>2:C:360:OLC:H12A</td>
<td>2:C:360:OLC:H8A</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:92:ASP:O</td>
<td>1:E:145:PHE:HA</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:173:GLY:HA3</td>
<td>1:A:194:ALA:HB2</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:61:TRP:CE2</td>
<td>1:C:63:TYR:HB2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:271:PRO:HB2</td>
<td>2:A:343:OLC:H2</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:111:TYR:CE</td>
<td>1:F:188:VAL:HG23</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:111:TYR:CE</td>
<td>1:C:188:VAL:HG13</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:18:VAL:HG13</td>
<td>1:E:337:VAL:HG22</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:25:LYS:HE3</td>
<td>1:C:329:ASP:CG</td>
<td>2.33</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:263:TYR:O</td>
<td>1:C:271:PRO:HD2</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>2:C:347:OLC:H3</td>
<td>2:C:358:OLC:O19</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:204:PRO:HB2</td>
<td>1:F:247:THR:HG23</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:266:ASP:O</td>
<td>2:C:362:OLC:H24</td>
<td>1.79</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:336:ILE:HB</td>
<td>2:E:341:OLC:H9</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>2:E:343:OLC:H2A</td>
<td>2:E:344:OLC:H5</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:223:ASN:O</td>
<td>1:B:224:ASN:HB2</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:142:SER:HA</td>
<td>1:D:152:ASN:OD1</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:270:ARG:NH2</td>
<td>5:E:641:HOH:O</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:255:GLN:NE2</td>
<td>5:B:956:HOH:O</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:180:TYR:HB2</td>
<td>2:F:343:OLC:C1</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:263:TYR:O</td>
<td>1:B:271:PRO:HD2</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:143:ASN:HA</td>
<td>1:B:148:VAL:O</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:25:LYS:HE3</td>
<td>1:C:329:ASP:OD1</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:313:TYR:CD2</td>
<td>1:B:332:VAL:HG22</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:7:ASP:HB2</td>
<td>5:B:661:HOH:O</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:196:ARG:HD3</td>
<td>1:E:208:GLY:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:259:LEU:HD11</td>
<td>2:B:351:OLC:H8</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:258:LEU:HD11</td>
<td>1:A:276:THR:HG23</td>
<td>1.91</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:351:OLC:O19</td>
<td>2:B:351:OLC:C4</td>
<td>2.62</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:147:LEU:HD11</td>
<td>2:A:353:OLC:H3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:92:ASP:O</td>
<td>1:B:145:PHE:HA</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:56:THR:HB</td>
<td>1:F:89:LYS:HG2</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:61:TRP:CE2</td>
<td>1:A:63:TYR:HB2</td>
<td>2.50</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:111:TYR:CZ</td>
<td>1:A:188:VAL:HG23</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:234:THR:O</td>
<td>1:B:235:ARG:HD3</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:179:SER:HB2</td>
<td>1:A:188:VAL:HG22</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:111:TYR:CZ</td>
<td>1:B:188:VAL:HG23</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:191:TYR:CE2</td>
<td>2:C:352:OLC:H5</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:270:ARG:O</td>
<td>1:D:270:ARG:HG2</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:48:GLU:HG3</td>
<td>1:D:56:THR:CG2</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:257:VAL:O</td>
<td>1:B:258:LEU:HD13</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>2:C:363:OLC:H5A</td>
<td>2:C:363:OLC:H8A</td>
<td>1.61</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:220:TYR:OH</td>
<td>2:B:345:OLC:H21A</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:61:TRP:CZ2</td>
<td>1:B:63:TYR:HB2</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:150:GLY:O</td>
<td>1:F:180:TYR:HA</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:50:GLN:NE2</td>
<td>5:B:1263:HOH:O</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:223:ASN:O</td>
<td>1:E:225:ILE:HG13</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:231:TYR:HB2</td>
<td>2:D:348:OLC:H3</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:178:ILE:CG1</td>
<td>2:D:342:OLC:H14</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:30:ASN:ND2</td>
<td>1:B:327:GLY:HA2</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:187:ILE:HG13</td>
<td>1:D:218:LEU:HD23</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:263:TYR:O</td>
<td>1:D:271:PRO:HD2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:119:GLY:HA2</td>
<td>1:C:294:TYR:OH</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:142:SER:HA</td>
<td>1:C:152:ASN:OD1</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:218:LEU:HG</td>
<td>2:C:349:OLC:H9</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:267:phe:HB2</td>
<td>2:C:360:OLC:H21</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>2:A:345:OLC:H3</td>
<td>2:A:362:OLC:H4</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:100:ARG:NH2</td>
<td>1:F:71:GLU:HG3</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:258:LEU:O</td>
<td>1:A:259:LEU:HD23</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:27:ASN:OD1</td>
<td>1:C:29:GLU:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:181:GLU:HA</td>
<td>1:E:185:PHE:O</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:61:TRP:CZ2</td>
<td>1:F:63:TYR:HB2</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:71:GLU:HG2</td>
<td>1:E:80:LYS:HG3</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:228:ALA:HB3</td>
<td>1:D:260:VAL:CG2</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:262:GLN:OE1</td>
<td>1:F:270:ARG:NH1</td>
<td>2.48</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:300:THR:HG21</td>
<td>2:E:348:OLC:H5A</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:253:LYS:HE2</td>
<td>1:C:282:ASP:OD2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:104:VAL:HG22</td>
<td>1:B:177:SER:HB3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:13:LEU:HD12</td>
<td>1:D:44:GLY:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:71:GLU:HG3</td>
<td>1:F:100:ARG:NH2</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:254:THR:HA</td>
<td>1:B:279:LYS:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:173:GLY:HA3</td>
<td>1:E:194:ALA:HB2</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:204:PRO:HB2</td>
<td>1:B:247:THR:HG21</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:305:LYS:NZ</td>
<td>5:B:661:HOH:O</td>
<td>2.52</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:25:LYS:HD3</td>
<td>2:E:344:OLC:H2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:90:TYR:O</td>
<td>1:E:91:ALA:C</td>
<td>2.58</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:203:GLN:HA</td>
<td>1:E:204:PRO:HD3</td>
<td>1.94</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:54:ASP:HB2</td>
<td>1:F:90:TYR:HE1</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:315:ILE:HG12</td>
<td>2:A:361:OLC:H3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>2:C:352:OLC:H10</td>
<td>2:C:363:OLC:H15A</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:191:TYR:CE1</td>
<td>2:D:345:OLC:H5A</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:48:GLU:HG3</td>
<td>1:D:56:THR:HG21</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:90:TYR:O</td>
<td>1:D:91:ALA:C</td>
<td>2.60</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:203:GLN:HA</td>
<td>1:A:204:PRO:HD3</td>
<td>1.92</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:46:LYS:HB3</td>
<td>1:A:46:LYS:HE2</td>
<td>1.77</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:95:SER:O</td>
<td>1:D:139:TYR:HA</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>2:E:342:OLC:H4</td>
<td>2:E:342:OLC:H7</td>
<td>1.89</td>
<td>0.40</td>
</tr>
<tr>
<td>2:C:348:OLC:H7A</td>
<td>2:C:349:OLC:C2</td>
<td>2.45</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:178:ILE:CG1</td>
<td>2:D:342:OLC:H11</td>
<td>2.48</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:269:LEU:HG</td>
<td>1:A:271:PRO:HD3</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:48:GLU:HG2</td>
<td>1:A:56:THR:CG2</td>
<td>2.52</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:253:LYS:O</td>
<td>1:B:280:ALA:HA</td>
<td>2.22</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.
5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>263/263 (100%)</td>
<td>260 (99%)</td>
<td>3 (1%)</td>
<td>78 82</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>263/263 (100%)</td>
<td>261 (99%)</td>
<td>2 (1%)</td>
<td>85 88</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>263/263 (100%)</td>
<td>260 (99%)</td>
<td>3 (1%)</td>
<td>78 82</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>263/263 (100%)</td>
<td>262 (100%)</td>
<td>1 (0%)</td>
<td>93 95</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>263/263 (100%)</td>
<td>260 (99%)</td>
<td>3 (1%)</td>
<td>78 82</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>263/263 (100%)</td>
<td>260 (99%)</td>
<td>3 (1%)</td>
<td>78 82</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1578/1578 (100%)</td>
<td>1563 (99%)</td>
<td>15 (1%)</td>
<td>80 84</td>
</tr>
</tbody>
</table>

All (15) residues with a non-rotameric sidechain are listed below:
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (13) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>30</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>30</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>50</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>30</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>50</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>30</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>30</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>60</td>
<td>GLN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.
5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

Of 114 ligands modelled in this entry, 20 are monoatomic - leaving 94 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>341</td>
<td>-</td>
<td>7,7,24</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>342</td>
<td>-</td>
<td>7,7,24</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>343</td>
<td>-</td>
<td>7,7,24</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>344</td>
<td>-</td>
<td>9,9,24</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>345</td>
<td>-</td>
<td>7,7,24</td>
<td>0.27</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>346</td>
<td>-</td>
<td>24,24,24</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>347</td>
<td>-</td>
<td>7,7,24</td>
<td>0.23</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>348</td>
<td>-</td>
<td>9,9,24</td>
<td>1.18</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>349</td>
<td>-</td>
<td>24,24,24</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>350</td>
<td>-</td>
<td>13,13,24</td>
<td>1.12</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>351</td>
<td>-</td>
<td>13,13,24</td>
<td>1.09</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>352</td>
<td>-</td>
<td>9,9,24</td>
<td>1.19</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>353</td>
<td>-</td>
<td>7,7,24</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>354</td>
<td>-</td>
<td>7,7,24</td>
<td>0.24</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>355</td>
<td>-</td>
<td>9,9,24</td>
<td>1.19</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>356</td>
<td>-</td>
<td>24,24,24</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>357</td>
<td>-</td>
<td>9,9,24</td>
<td>1.19</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>358</td>
<td>-</td>
<td>24,24,24</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>359</td>
<td>-</td>
<td>24,24,24</td>
<td>1.34</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>360</td>
<td>-</td>
<td>11,11,24</td>
<td>1.19</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>361</td>
<td>-</td>
<td>24,24,24</td>
<td>1.49</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>362</td>
<td>-</td>
<td>13,13,24</td>
<td>1.14</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>363</td>
<td>-</td>
<td>11,11,24</td>
<td>1.30</td>
</tr>
<tr>
<td>Mol</td>
<td>Type</td>
<td>Chain</td>
<td>Res</td>
<td>Link</td>
<td>Bond lengths</td>
<td>Bond angles</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>364</td>
<td>-</td>
<td>11,11,24</td>
<td>1.24</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>365</td>
<td>-</td>
<td>7,7,24</td>
<td>0.44</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>A</td>
<td>369</td>
<td>-</td>
<td>1,2,2</td>
<td>1.06</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>341</td>
<td>-</td>
<td>4,4,24</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>342</td>
<td>-</td>
<td>13,13,24</td>
<td>1.09</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>343</td>
<td>-</td>
<td>7,7,24</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>344</td>
<td>-</td>
<td>9,9,24</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>345</td>
<td>-</td>
<td>24,24,24</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>346</td>
<td>-</td>
<td>24,24,24</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>347</td>
<td>-</td>
<td>13,13,24</td>
<td>1.10</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>348</td>
<td>-</td>
<td>13,13,24</td>
<td>1.08</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>349</td>
<td>-</td>
<td>7,7,24</td>
<td>0.23</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>350</td>
<td>-</td>
<td>24,24,24</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>351</td>
<td>-</td>
<td>24,24,24</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>352</td>
<td>-</td>
<td>15,15,24</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>353</td>
<td>-</td>
<td>7,7,24</td>
<td>0.34</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>354</td>
<td>-</td>
<td>7,7,24</td>
<td>0.43</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>B</td>
<td>358</td>
<td>-</td>
<td>1,2,2</td>
<td>0.97</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>341</td>
<td>-</td>
<td>9,9,24</td>
<td>1.17</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>342</td>
<td>-</td>
<td>7,7,24</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>343</td>
<td>-</td>
<td>7,7,24</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>344</td>
<td>-</td>
<td>7,7,24</td>
<td>0.28</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>345</td>
<td>-</td>
<td>11,11,24</td>
<td>1.21</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>346</td>
<td>-</td>
<td>9,9,24</td>
<td>1.17</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>347</td>
<td>-</td>
<td>9,9,24</td>
<td>1.18</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>348</td>
<td>-</td>
<td>11,11,24</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>349</td>
<td>-</td>
<td>9,9,24</td>
<td>1.17</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>350</td>
<td>-</td>
<td>13,13,24</td>
<td>1.09</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>351</td>
<td>-</td>
<td>7,7,24</td>
<td>0.24</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>352</td>
<td>-</td>
<td>11,11,24</td>
<td>1.19</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>353</td>
<td>-</td>
<td>9,9,24</td>
<td>1.18</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>354</td>
<td>-</td>
<td>9,9,24</td>
<td>1.18</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>355</td>
<td>-</td>
<td>9,9,24</td>
<td>1.17</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>356</td>
<td>-</td>
<td>7,7,24</td>
<td>0.26</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>357</td>
<td>-</td>
<td>13,13,24</td>
<td>1.16</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>358</td>
<td>-</td>
<td>24,24,24</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>359</td>
<td>-</td>
<td>24,24,24</td>
<td>1.38</td>
</tr>
<tr>
<td>Mol</td>
<td>Type</td>
<td>Chain</td>
<td>Res</td>
<td>Link</td>
<td>Bond lengths</td>
<td>Bond angles</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>360</td>
<td>3</td>
<td>24,24,24</td>
<td>1.43</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>361</td>
<td>-</td>
<td>11,11,24</td>
<td>1.24</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>362</td>
<td>-</td>
<td>24,24,24</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>363</td>
<td>-</td>
<td>24,24,24</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>364</td>
<td>-</td>
<td>11,11,24</td>
<td>1.23</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>341</td>
<td>-</td>
<td>4,4,24</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>342</td>
<td>-</td>
<td>24,24,24</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>343</td>
<td>-</td>
<td>7,7,24</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>344</td>
<td>-</td>
<td>7,7,24</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>345</td>
<td>-</td>
<td>9,9,24</td>
<td>1.17</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>346</td>
<td>-</td>
<td>11,11,24</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>347</td>
<td>-</td>
<td>7,7,24</td>
<td>0.31</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>348</td>
<td>-</td>
<td>7,7,24</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>349</td>
<td>3</td>
<td>24,24,24</td>
<td>1.33</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>D</td>
<td>354</td>
<td>-</td>
<td>1,2,2</td>
<td>1.11</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>341</td>
<td>-</td>
<td>24,24,24</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>342</td>
<td>-</td>
<td>7,7,24</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>343</td>
<td>-</td>
<td>11,11,24</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>344</td>
<td>-</td>
<td>11,11,24</td>
<td>1.18</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>345</td>
<td>-</td>
<td>13,13,24</td>
<td>1.12</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>346</td>
<td>-</td>
<td>9,9,24</td>
<td>1.18</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>347</td>
<td>-</td>
<td>24,24,24</td>
<td>1.42</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>348</td>
<td>-</td>
<td>11,11,24</td>
<td>1.30</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>E</td>
<td>352</td>
<td>-</td>
<td>1,2,2</td>
<td>0.98</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>E</td>
<td>353</td>
<td>-</td>
<td>1,2,2</td>
<td>1.03</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>341</td>
<td>-</td>
<td>7,7,24</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>342</td>
<td>-</td>
<td>13,13,24</td>
<td>1.13</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>343</td>
<td>-</td>
<td>7,7,24</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>344</td>
<td>-</td>
<td>9,9,24</td>
<td>1.17</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>345</td>
<td>-</td>
<td>11,11,24</td>
<td>1.19</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>346</td>
<td>-</td>
<td>7,7,24</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>347</td>
<td>-</td>
<td>13,13,24</td>
<td>1.10</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>348</td>
<td>-</td>
<td>13,13,24</td>
<td>1.18</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>F</td>
<td>352</td>
<td>-</td>
<td>1,2,2</td>
<td>0.88</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analyzed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means...
no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>341</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>342</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>343</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>344</td>
<td>-</td>
<td>-</td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>345</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>346</td>
<td>-</td>
<td>-</td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>347</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>348</td>
<td>-</td>
<td>-</td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>349</td>
<td>-</td>
<td>-</td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>351</td>
<td>-</td>
<td>-</td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>352</td>
<td>-</td>
<td>-</td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>353</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>354</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>355</td>
<td>-</td>
<td>-</td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>356</td>
<td>-</td>
<td>-</td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>357</td>
<td>-</td>
<td>-</td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>358</td>
<td>-</td>
<td>-</td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>359</td>
<td>-</td>
<td>-</td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>360</td>
<td>-</td>
<td>-</td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>361</td>
<td>-</td>
<td>-</td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>362</td>
<td>-</td>
<td>-</td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>363</td>
<td>-</td>
<td>-</td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>364</td>
<td>-</td>
<td>-</td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>365</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>A</td>
<td>369</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>341</td>
<td>-</td>
<td>-</td>
<td>0/2/2/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>342</td>
<td>-</td>
<td>-</td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>343</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>344</td>
<td>-</td>
<td>-</td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>345</td>
<td>-</td>
<td>-</td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>346</td>
<td>-</td>
<td>-</td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>347</td>
<td>-</td>
<td>-</td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>348</td>
<td>-</td>
<td>-</td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>349</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>351</td>
<td>-</td>
<td>-</td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>352</td>
<td>-</td>
<td>-</td>
<td>0/13/13/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>353</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>354</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>B</td>
<td>358</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>341</td>
<td>-</td>
<td>-</td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>342</td>
<td></td>
<td></td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>343</td>
<td></td>
<td></td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>344</td>
<td></td>
<td></td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>345</td>
<td></td>
<td></td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>346</td>
<td></td>
<td></td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>347</td>
<td></td>
<td></td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>348</td>
<td></td>
<td></td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>349</td>
<td></td>
<td></td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>350</td>
<td></td>
<td></td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>351</td>
<td></td>
<td></td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>352</td>
<td></td>
<td></td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>353</td>
<td></td>
<td></td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>354</td>
<td></td>
<td></td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>355</td>
<td></td>
<td></td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>356</td>
<td></td>
<td></td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>357</td>
<td></td>
<td></td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>358</td>
<td></td>
<td></td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>359</td>
<td></td>
<td></td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>360</td>
<td>3</td>
<td></td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>361</td>
<td></td>
<td></td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>362</td>
<td></td>
<td></td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>363</td>
<td></td>
<td></td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>364</td>
<td></td>
<td></td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>341</td>
<td></td>
<td></td>
<td>0/2/2/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>342</td>
<td></td>
<td></td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>343</td>
<td></td>
<td></td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>344</td>
<td></td>
<td></td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>345</td>
<td></td>
<td></td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>346</td>
<td></td>
<td></td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>347</td>
<td></td>
<td></td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>348</td>
<td></td>
<td></td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>349</td>
<td>3</td>
<td></td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>D</td>
<td>354</td>
<td></td>
<td></td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>341</td>
<td></td>
<td></td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>342</td>
<td></td>
<td></td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>343</td>
<td></td>
<td></td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>344</td>
<td></td>
<td></td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>345</td>
<td></td>
<td></td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>346</td>
<td></td>
<td></td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>347</td>
<td></td>
<td></td>
<td>0/24/24/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>348</td>
<td></td>
<td></td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>E</td>
<td>352</td>
<td></td>
<td></td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>SCN</td>
<td>E</td>
<td>353</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>341</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>342</td>
<td>-</td>
<td>-</td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>343</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>344</td>
<td>-</td>
<td>-</td>
<td>0/7/7/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>345</td>
<td>-</td>
<td>-</td>
<td>0/9/9/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>346</td>
<td>-</td>
<td>-</td>
<td>0/5/5/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>347</td>
<td>-</td>
<td>-</td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>348</td>
<td>-</td>
<td>-</td>
<td>0/11/11/24</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>F</td>
<td>352</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

All (118) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>358</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.28</td>
<td>1.32</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>341</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.25</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>350</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.24</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>350</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.23</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>341</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.23</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>359</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.19</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>356</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.19</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>349</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.18</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>346</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.18</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>358</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.17</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>347</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.15</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>345</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.15</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>358</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.15</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>346</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.15</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>358</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.14</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>359</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.12</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>346</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.11</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>349</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.10</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>363</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.08</td>
<td>1.33</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>346</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.07</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>345</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.07</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>361</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.06</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>356</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.05</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>362</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.04</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>342</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-3.03</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>363</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-3.01</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>362</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-2.98</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>342</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-2.97</td>
<td>1.34</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>E</td>
<td>347</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-2.97</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>360</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-2.94</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>361</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-2.93</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>360</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-2.92</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>359</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-2.92</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>351</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-2.91</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>359</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-2.90</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>351</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-2.81</td>
<td>1.35</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>349</td>
<td>OLC</td>
<td>C8-C9</td>
<td>-2.74</td>
<td>1.35</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>349</td>
<td>OLC</td>
<td>C11-C10</td>
<td>-2.70</td>
<td>1.36</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>346</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.50</td>
<td>1.45</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>356</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.51</td>
<td>1.45</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>358</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.52</td>
<td>1.45</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>363</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.53</td>
<td>1.45</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>350</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.57</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>341</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.58</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>345</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.60</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>347</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.61</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>349</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.63</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>358</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.63</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>359</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.64</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>359</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.65</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>346</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.68</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>342</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.70</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>362</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.78</td>
<td>1.47</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>351</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.80</td>
<td>1.47</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>361</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.80</td>
<td>1.47</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>360</td>
<td>OLC</td>
<td>C9-C10</td>
<td>2.84</td>
<td>1.47</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>349</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.09</td>
<td>1.49</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>344</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.38</td>
<td>1.51</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>345</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.39</td>
<td>1.51</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>341</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.39</td>
<td>1.51</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>353</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.40</td>
<td>1.51</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>355</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.40</td>
<td>1.51</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>347</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.40</td>
<td>1.51</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>346</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.40</td>
<td>1.51</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>346</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.41</td>
<td>1.51</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>354</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.41</td>
<td>1.51</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>349</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.41</td>
<td>1.51</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>352</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.43</td>
<td>1.52</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>355</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.43</td>
<td>1.52</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>348</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.43</td>
<td>1.52</td>
<td>1.28</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>344</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.43</td>
<td>1.52</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>357</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.47</td>
<td>1.52</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>344</td>
<td>OLC</td>
<td>C10-C9</td>
<td>3.52</td>
<td>1.52</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>352</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.66</td>
<td>1.52</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>349</td>
<td>OLC</td>
<td>O20-C1</td>
<td>3.75</td>
<td>1.44</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>348</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.76</td>
<td>1.52</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>352</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.79</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>344</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.79</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>345</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.80</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>342</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.80</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>351</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.81</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>350</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.81</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>360</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.81</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>348</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.82</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>347</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.83</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>347</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.84</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>345</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.84</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>345</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.86</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>350</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.88</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>351</td>
<td>OLC</td>
<td>O20-C1</td>
<td>3.89</td>
<td>1.44</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>343</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.89</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>342</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.89</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>364</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.91</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>346</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.91</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>362</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.92</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>364</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.95</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>357</td>
<td>OLC</td>
<td>C9-C10</td>
<td>3.98</td>
<td>1.54</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>361</td>
<td>OLC</td>
<td>C9-C10</td>
<td>4.02</td>
<td>1.54</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>348</td>
<td>OLC</td>
<td>C9-C10</td>
<td>4.05</td>
<td>1.54</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>358</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.05</td>
<td>1.45</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>341</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.06</td>
<td>1.45</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>359</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.06</td>
<td>1.45</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>348</td>
<td>OLC</td>
<td>C9-C10</td>
<td>4.06</td>
<td>1.54</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>349</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.08</td>
<td>1.45</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>359</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.08</td>
<td>1.45</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>363</td>
<td>OLC</td>
<td>C9-C10</td>
<td>4.11</td>
<td>1.54</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>350</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.16</td>
<td>1.45</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>358</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.19</td>
<td>1.45</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>363</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.20</td>
<td>1.45</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>362</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.23</td>
<td>1.45</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>345</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.33</td>
<td>1.46</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>356</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.35</td>
<td>1.46</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>346</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.37</td>
<td>1.46</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>346</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.42</td>
<td>1.46</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>342</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.47</td>
<td>1.46</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>347</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.53</td>
<td>1.46</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>360</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.63</td>
<td>1.47</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>361</td>
<td>OLC</td>
<td>O20-C1</td>
<td>4.85</td>
<td>1.47</td>
<td>1.33</td>
</tr>
</tbody>
</table>

All (81) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>E</td>
<td>348</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-4.49</td>
<td>107.76</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>352</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-4.24</td>
<td>108.80</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>364</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-4.02</td>
<td>109.76</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>364</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-3.90</td>
<td>110.26</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>345</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-3.87</td>
<td>110.42</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>346</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-3.84</td>
<td>110.55</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>348</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-3.79</td>
<td>110.73</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>345</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-3.76</td>
<td>110.89</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>362</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-3.62</td>
<td>114.55</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>344</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-3.56</td>
<td>111.73</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>361</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-3.49</td>
<td>114.87</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>360</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-3.36</td>
<td>112.59</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>363</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-3.31</td>
<td>115.34</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>343</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-3.20</td>
<td>113.29</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>349</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-3.17</td>
<td>115.67</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>363</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-3.06</td>
<td>113.88</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>341</td>
<td>OLC</td>
<td>C3-C2-C1</td>
<td>-3.05</td>
<td>102.47</td>
<td>113.58</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>361</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-2.98</td>
<td>114.24</td>
<td>127.03</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>346</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-2.77</td>
<td>116.68</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>359</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-2.67</td>
<td>116.92</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>356</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-2.66</td>
<td>116.95</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>349</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-2.55</td>
<td>117.21</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>341</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-2.54</td>
<td>117.23</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>349</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.49</td>
<td>110.08</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>345</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.46</td>
<td>110.29</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>362</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.42</td>
<td>107.15</td>
<td>124.81</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>346</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.41</td>
<td>110.56</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>355</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.36</td>
<td>110.94</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>346</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.35</td>
<td>110.99</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>344</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.34</td>
<td>111.06</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>355</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.33</td>
<td>111.16</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>358</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-2.32</td>
<td>117.78</td>
<td>123.55</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>353</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.31</td>
<td>111.24</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>346</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-2.30</td>
<td>117.84</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>344</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.30</td>
<td>111.35</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>348</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.28</td>
<td>108.17</td>
<td>124.81</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>347</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.28</td>
<td>111.55</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>354</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.27</td>
<td>111.66</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>344</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.26</td>
<td>111.70</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>359</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.24</td>
<td>111.72</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>352</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.22</td>
<td>111.87</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>341</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.22</td>
<td>111.97</td>
<td>126.70</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>348</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-2.19</td>
<td>108.81</td>
<td>124.81</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>342</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.19</td>
<td>108.81</td>
<td>124.81</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>347</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-2.14</td>
<td>118.23</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>352</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-2.14</td>
<td>118.23</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>356</td>
<td>OLC</td>
<td>C3-C2-C1</td>
<td>-2.10</td>
<td>105.91</td>
<td>113.58</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>362</td>
<td>OLC</td>
<td>C3-C2-C1</td>
<td>-2.10</td>
<td>105.91</td>
<td>113.58</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>352</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.10</td>
<td>109.47</td>
<td>124.81</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>342</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-2.07</td>
<td>118.42</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>363</td>
<td>OLC</td>
<td>C1-C2-O20</td>
<td>-2.05</td>
<td>109.97</td>
<td>117.13</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>346</td>
<td>OLC</td>
<td>C3-C2-C1</td>
<td>-2.05</td>
<td>109.97</td>
<td>117.13</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>360</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-2.05</td>
<td>118.46</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>345</td>
<td>OLC</td>
<td>O20-C1-O19</td>
<td>-2.04</td>
<td>118.46</td>
<td>123.55</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>350</td>
<td>OLC</td>
<td>C11-C10-C9</td>
<td>-2.03</td>
<td>110.00</td>
<td>124.81</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>343</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.03</td>
<td>110.00</td>
<td>124.81</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>346</td>
<td>OLC</td>
<td>C3-C2-C1</td>
<td>-2.01</td>
<td>106.26</td>
<td>113.58</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>364</td>
<td>OLC</td>
<td>C8-C9-C10</td>
<td>-2.00</td>
<td>110.17</td>
<td>124.81</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>350</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>2.27</td>
<td>118.50</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>349</td>
<td>OLC</td>
<td>C12-C11-C10</td>
<td>2.39</td>
<td>125.51</td>
<td>112.50</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>358</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>2.83</td>
<td>120.14</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>359</td>
<td>OLC</td>
<td>C21-O20-C1</td>
<td>2.86</td>
<td>125.73</td>
<td>117.13</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>351</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>2.91</td>
<td>120.37</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>342</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>3.16</td>
<td>121.11</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>360</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>3.18</td>
<td>121.16</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>359</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>3.19</td>
<td>121.19</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>349</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>3.27</td>
<td>121.41</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>345</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>3.40</td>
<td>121.80</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>346</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>3.52</td>
<td>122.13</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>347</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>3.81</td>
<td>122.99</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>349</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>3.81</td>
<td>123.00</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>359</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>3.82</td>
<td>123.00</td>
<td>111.90</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>358</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>3.84</td>
<td>123.07</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>356</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>4.10</td>
<td>123.83</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>363</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>4.11</td>
<td>123.85</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>346</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>4.30</td>
<td>124.42</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>341</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>4.39</td>
<td>124.68</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>362</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>4.42</td>
<td>124.75</td>
<td>111.90</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>361</td>
<td>OLC</td>
<td>O20-C1-C2</td>
<td>4.97</td>
<td>126.35</td>
<td>111.90</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

44 monomers are involved in 81 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>341</td>
<td>OLC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>343</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>344</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>345</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>349</td>
<td>OLC</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>353</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>356</td>
<td>OLC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>359</td>
<td>OLC</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>360</td>
<td>OLC</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>361</td>
<td>OLC</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>362</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>365</td>
<td>OLC</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>344</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>345</td>
<td>OLC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>350</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>351</td>
<td>OLC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>347</td>
<td>OLC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>348</td>
<td>OLC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>349</td>
<td>OLC</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>352</td>
<td>OLC</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>353</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>358</td>
<td>OLC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>359</td>
<td>OLC</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>360</td>
<td>OLC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>362</td>
<td>OLC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>363</td>
<td>OLC</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>342</td>
<td>OLC</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>345</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>346</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>348</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>349</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>341</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>342</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>343</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>344</td>
<td>OLC</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>346</td>
<td>OLC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>347</td>
<td>OLC</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>348</td>
<td>OLC</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>341</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>342</td>
<td>OLC</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>343</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>344</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>345</td>
<td>OLC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>347</td>
<td>OLC</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ>2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q<0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>340/340 (100%)</td>
<td>-0.48</td>
<td>3 (0%)</td>
<td>84 83</td>
<td>11, 19, 38, 53</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>340/340 (100%)</td>
<td>-0.31</td>
<td>8 (2%)</td>
<td>59 59</td>
<td>14, 25, 46, 59</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>340/340 (100%)</td>
<td>-0.36</td>
<td>8 (2%)</td>
<td>59 59</td>
<td>13, 22, 40, 53</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>340/340 (100%)</td>
<td>-0.39</td>
<td>6 (1%)</td>
<td>69 68</td>
<td>12, 21, 42, 56</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>340/340 (100%)</td>
<td>-0.48</td>
<td>1 (0%)</td>
<td>93 93</td>
<td>11, 20, 38, 51</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>340/340 (100%)</td>
<td>-0.18</td>
<td>11 (3%)</td>
<td>48 48</td>
<td>13, 27, 49, 65</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2040/2040 (100%)</td>
<td>-0.37</td>
<td>37 (1%)</td>
<td>69 68</td>
<td>11, 22, 44, 65</td>
</tr>
</tbody>
</table>

All (37) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>147</td>
<td>LEU</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>246</td>
<td>ASN</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>182</td>
<td>TYR</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>246</td>
<td>ASN</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>7</td>
<td>ASP</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>147</td>
<td>LEU</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>7</td>
<td>ASP</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>6</td>
<td>LYS</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>7</td>
<td>ASP</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>29</td>
<td>GLU</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>285</td>
<td>GLY</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>25</td>
<td>LYS</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>7</td>
<td>ASP</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>246</td>
<td>ASN</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>91</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>29</td>
<td>GLU</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>147</td>
<td>LEU</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>25</td>
<td>LYS</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>27</td>
<td>ASN</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>209</td>
<td>LYS</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>182</td>
<td>TYR</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>182</td>
<td>TYR</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>209</td>
<td>LYS</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>53</td>
<td>SER</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>246</td>
<td>ASN</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>7</td>
<td>ASP</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>53</td>
<td>SER</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>29</td>
<td>GLU</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>53</td>
<td>SER</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>267</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>91</td>
<td>ALA</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>147</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>266</td>
<td>ASP</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>244</td>
<td>PHE</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>29</td>
<td>GLU</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>149</td>
<td>ASP</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>243</td>
<td>LYS</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. LLDF column lists the quality of electron density of the group with respect to its neighbouring residues in protein, DNA or RNA chains. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>LLDF</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>342</td>
<td>14/25</td>
<td>0.70</td>
<td>0.28</td>
<td>8.48</td>
<td>51,56,62,64</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>344</td>
<td>10/25</td>
<td>0.77</td>
<td>0.19</td>
<td>8.17</td>
<td>29,42,49,49</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>353</td>
<td>8/25</td>
<td>0.82</td>
<td>0.21</td>
<td>7.99</td>
<td>35,41,49,50</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>LLDF</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>341</td>
<td>8/25</td>
<td>0.75</td>
<td>0.25</td>
<td>7.84</td>
<td>40,44,48,52</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>352</td>
<td>12/25</td>
<td>0.72</td>
<td>0.25</td>
<td>7.54</td>
<td>51,56,59,59</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>343</td>
<td>8/25</td>
<td>0.92</td>
<td>0.16</td>
<td>6.15</td>
<td>32,36,42,43</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>349</td>
<td>25/25</td>
<td>0.68</td>
<td>0.18</td>
<td>5.65</td>
<td>39,49,54,55</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>351</td>
<td>25/25</td>
<td>0.68</td>
<td>0.21</td>
<td>5.28</td>
<td>37,46,61,68</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>348</td>
<td>12/25</td>
<td>0.75</td>
<td>0.25</td>
<td>5.28</td>
<td>50,55,59,59</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>348</td>
<td>8/25</td>
<td>0.87</td>
<td>0.17</td>
<td>5.24</td>
<td>37,43,44,46</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>352</td>
<td>12/25</td>
<td>0.75</td>
<td>0.22</td>
<td>5.24</td>
<td>27,41,58,60</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>341</td>
<td>25/25</td>
<td>0.87</td>
<td>0.17</td>
<td>5.18</td>
<td>42,49,54,55</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>350</td>
<td>12/25</td>
<td>0.78</td>
<td>0.18</td>
<td>5.02</td>
<td>31,35,46,47</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>343</td>
<td>10/25</td>
<td>0.87</td>
<td>0.21</td>
<td>4.85</td>
<td>36,44,52,56</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>342</td>
<td>14/25</td>
<td>0.63</td>
<td>0.23</td>
<td>4.79</td>
<td>50,52,58,59</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>344</td>
<td>8/25</td>
<td>0.94</td>
<td>0.11</td>
<td>4.70</td>
<td>27,31,47,51</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>346</td>
<td>12/25</td>
<td>0.79</td>
<td>0.15</td>
<td>4.63</td>
<td>32,36,41,43</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>363</td>
<td>25/25</td>
<td>0.73</td>
<td>0.22</td>
<td>4.59</td>
<td>38,46,56,66</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>342</td>
<td>25/25</td>
<td>0.65</td>
<td>0.23</td>
<td>4.35</td>
<td>45,51,70,75</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>356</td>
<td>25/25</td>
<td>0.89</td>
<td>0.16</td>
<td>4.28</td>
<td>22,36,53,65</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>358</td>
<td>25/25</td>
<td>0.67</td>
<td>0.24</td>
<td>4.26</td>
<td>49,55,61,64</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>342</td>
<td>8/25</td>
<td>0.92</td>
<td>0.11</td>
<td>4.00</td>
<td>26,35,46,48</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>347</td>
<td>8/25</td>
<td>0.88</td>
<td>0.13</td>
<td>3.78</td>
<td>25,29,36,39</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>359</td>
<td>25/25</td>
<td>0.83</td>
<td>0.18</td>
<td>3.78</td>
<td>28,40,54,54</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>360</td>
<td>25/25</td>
<td>0.79</td>
<td>0.17</td>
<td>3.63</td>
<td>23,40,72,74</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>345</td>
<td>12/25</td>
<td>0.77</td>
<td>0.17</td>
<td>3.60</td>
<td>37,43,49,49</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>361</td>
<td>25/25</td>
<td>0.74</td>
<td>0.23</td>
<td>3.40</td>
<td>40,53,64,67</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>357</td>
<td>14/25</td>
<td>0.74</td>
<td>0.18</td>
<td>3.25</td>
<td>28,46,50,51</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>E</td>
<td>352</td>
<td>3/3</td>
<td>0.95</td>
<td>0.11</td>
<td>3.19</td>
<td>20,20,21,35</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>345</td>
<td>12/25</td>
<td>0.79</td>
<td>0.19</td>
<td>3.18</td>
<td>37,46,57,57</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>343</td>
<td>8/25</td>
<td>0.83</td>
<td>0.20</td>
<td>3.07</td>
<td>48,55,61,61</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>363</td>
<td>12/25</td>
<td>0.80</td>
<td>0.15</td>
<td>3.04</td>
<td>31,39,47,48</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>347</td>
<td>25/25</td>
<td>0.83</td>
<td>0.17</td>
<td>2.96</td>
<td>26,45,53,57</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>361</td>
<td>12/25</td>
<td>0.82</td>
<td>0.16</td>
<td>2.93</td>
<td>24,32,37,37</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>348</td>
<td>12/25</td>
<td>0.83</td>
<td>0.13</td>
<td>2.88</td>
<td>42,49,52,52</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>350</td>
<td>14/25</td>
<td>0.76</td>
<td>0.19</td>
<td>2.77</td>
<td>37,49,53,55</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>345</td>
<td>14/25</td>
<td>0.62</td>
<td>0.20</td>
<td>2.72</td>
<td>32,50,57,59</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>361</td>
<td>25/25</td>
<td>0.85</td>
<td>0.17</td>
<td>2.69</td>
<td>33,43,52,60</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>345</td>
<td>25/25</td>
<td>0.71</td>
<td>0.21</td>
<td>2.63</td>
<td>34,49,60,71</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>346</td>
<td>8/25</td>
<td>0.81</td>
<td>0.15</td>
<td>2.58</td>
<td>40,45,50,51</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>346</td>
<td>25/25</td>
<td>0.87</td>
<td>0.16</td>
<td>2.51</td>
<td>29,39,54,61</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>346</td>
<td>25/25</td>
<td>0.81</td>
<td>0.17</td>
<td>2.26</td>
<td>35,44,57,61</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>359</td>
<td>25/25</td>
<td>0.86</td>
<td>0.15</td>
<td>2.18</td>
<td>30,38,57,63</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>LLDF</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>357 10/25</td>
<td>0.84</td>
<td>0.18</td>
<td>2.13</td>
<td>26,37,44,46</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>349 25/25</td>
<td>0.82</td>
<td>0.19</td>
<td>2.09</td>
<td>36,42,56,63</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>354 8/25</td>
<td>0.91</td>
<td>0.16</td>
<td>2.08</td>
<td>28,35,39,44</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>343 12/25</td>
<td>0.83</td>
<td>0.14</td>
<td>2.07</td>
<td>40,48,52,54</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>358 25/25</td>
<td>0.83</td>
<td>0.18</td>
<td>2.04</td>
<td>31,39,63,66</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>352 16/25</td>
<td>0.86</td>
<td>0.15</td>
<td>2.02</td>
<td>32,41,46,47</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>347 14/25</td>
<td>0.86</td>
<td>0.12</td>
<td>1.58</td>
<td>30,38,47,49</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>D</td>
<td>352 1/1</td>
<td>1.00</td>
<td>0.09</td>
<td>1.43</td>
<td>38,38,38,38</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>F</td>
<td>350 1/1</td>
<td>0.95</td>
<td>0.18</td>
<td>1.41</td>
<td>42,42,42,42</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>348 10/25</td>
<td>0.81</td>
<td>0.15</td>
<td>1.28</td>
<td>40,44,49,50</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>347 8/25</td>
<td>0.84</td>
<td>0.15</td>
<td>1.25</td>
<td>28,36,41,41</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>362 14/25</td>
<td>0.81</td>
<td>0.15</td>
<td>1.22</td>
<td>38,44,49,49</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>364 12/25</td>
<td>0.88</td>
<td>0.14</td>
<td>1.00</td>
<td>37,44,47,47</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>344 10/25</td>
<td>0.87</td>
<td>0.12</td>
<td>0.64</td>
<td>42,44,53,54</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>B</td>
<td>356 1/1</td>
<td>0.97</td>
<td>0.14</td>
<td>0.62</td>
<td>38,38,38,38</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>348 14/25</td>
<td>0.82</td>
<td>0.15</td>
<td>0.59</td>
<td>36,43,50,50</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>B</td>
<td>358 3/3</td>
<td>0.95</td>
<td>0.08</td>
<td>0.49</td>
<td>25,25,26,37</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>F</td>
<td>352 3/3</td>
<td>0.97</td>
<td>0.08</td>
<td>0.39</td>
<td>21,21,23,34</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>E</td>
<td>353 3/3</td>
<td>0.96</td>
<td>0.13</td>
<td>0.28</td>
<td>40,40,44,49</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>A</td>
<td>369 3/3</td>
<td>0.95</td>
<td>0.07</td>
<td>-0.16</td>
<td>23,23,25,32</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>F</td>
<td>349 1/1</td>
<td>0.99</td>
<td>0.08</td>
<td>-0.97</td>
<td>30,30,30,30</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>B</td>
<td>355 1/1</td>
<td>0.98</td>
<td>0.08</td>
<td>-0.98</td>
<td>34,34,34,34</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>C</td>
<td>367 1/1</td>
<td>0.95</td>
<td>0.06</td>
<td>-1.45</td>
<td>38,38,38,38</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SCN</td>
<td>D</td>
<td>354 3/3</td>
<td>0.96</td>
<td>0.06</td>
<td>-1.56</td>
<td>25,25,25,36</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>A</td>
<td>367 1/1</td>
<td>0.99</td>
<td>0.05</td>
<td>-1.90</td>
<td>27,27,27,27</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>C</td>
<td>365 1/1</td>
<td>0.99</td>
<td>0.04</td>
<td>-2.14</td>
<td>25,25,25,25</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>C</td>
<td>366 1/1</td>
<td>0.99</td>
<td>0.05</td>
<td>-2.18</td>
<td>28,28,28,28</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>E</td>
<td>350 1/1</td>
<td>0.99</td>
<td>0.04</td>
<td>-2.19</td>
<td>26,26,26,26</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>A</td>
<td>366 1/1</td>
<td>1.00</td>
<td>0.05</td>
<td>-2.75</td>
<td>25,25,25,25</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>D</td>
<td>351 1/1</td>
<td>0.99</td>
<td>0.04</td>
<td>-3.12</td>
<td>29,29,29,29</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>356 8/25</td>
<td>0.74</td>
<td>0.26</td>
<td>-35,50,58,59</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>343 8/25</td>
<td>0.86</td>
<td>0.44</td>
<td>-56,62,66,66</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>354 8/25</td>
<td>0.78</td>
<td>0.15</td>
<td>-36,48,60,64</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>344 10/25</td>
<td>0.74</td>
<td>0.21</td>
<td>-49,57,62,63</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>345 8/25</td>
<td>0.79</td>
<td>0.14</td>
<td>-35,44,47,49</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>351 14/25</td>
<td>0.80</td>
<td>0.16</td>
<td>-42,50,56,56</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>345 10/25</td>
<td>0.76</td>
<td>0.18</td>
<td>-39,45,49,51</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>348 14/25</td>
<td>0.63</td>
<td>0.27</td>
<td>-50,58,61,61</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>346 10/25</td>
<td>0.89</td>
<td>0.12</td>
<td>-34,44,54,57</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>355 10/25</td>
<td>0.89</td>
<td>0.13</td>
<td>-33,41,50,51</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>343 8/25</td>
<td>0.91</td>
<td>0.20</td>
<td>-39,44,48,53</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>354 10/25</td>
<td>0.73</td>
<td>0.36</td>
<td>-60,64,67,67</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>LLDF</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>365</td>
<td>8/25</td>
<td>0.72</td>
<td>0.27</td>
<td>-</td>
<td>44,48,60,60</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>C</td>
<td>368</td>
<td>1/1</td>
<td>0.99</td>
<td>0.10</td>
<td>-</td>
<td>36,36,36,36</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>355</td>
<td>10/25</td>
<td>0.79</td>
<td>0.23</td>
<td>-</td>
<td>40,51,66,66</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>353</td>
<td>8/25</td>
<td>0.94</td>
<td>0.08</td>
<td>-</td>
<td>32,34,43,44</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>343</td>
<td>8/25</td>
<td>0.94</td>
<td>0.14</td>
<td>-</td>
<td>30,37,44,48</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>344</td>
<td>8/25</td>
<td>0.80</td>
<td>0.18</td>
<td>-</td>
<td>40,44,53,55</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>342</td>
<td>8/25</td>
<td>0.87</td>
<td>0.12</td>
<td>-</td>
<td>48,50,58,60</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>341</td>
<td>12/25</td>
<td>0.86</td>
<td>0.33</td>
<td>-</td>
<td>48,54,56,56</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>360</td>
<td>12/25</td>
<td>0.70</td>
<td>0.31</td>
<td>-</td>
<td>49,54,68,68</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>349</td>
<td>8/25</td>
<td>0.83</td>
<td>0.14</td>
<td>-</td>
<td>43,45,49,50</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>A</td>
<td>368</td>
<td>1/1</td>
<td>0.99</td>
<td>0.06</td>
<td>-</td>
<td>32,32,32,32</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>346</td>
<td>10/25</td>
<td>0.76</td>
<td>0.19</td>
<td>-</td>
<td>58,60,62,62</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>341</td>
<td>10/25</td>
<td>0.82</td>
<td>0.13</td>
<td>-</td>
<td>36,40,55,59</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>E</td>
<td>349</td>
<td>1/1</td>
<td>1.00</td>
<td>0.02</td>
<td>-</td>
<td>23,23,23,23</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>F</td>
<td>347</td>
<td>14/25</td>
<td>0.78</td>
<td>0.35</td>
<td>-</td>
<td>49,60,63,64</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>352</td>
<td>10/25</td>
<td>0.86</td>
<td>0.17</td>
<td>-</td>
<td>38,47,51,51</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>B</td>
<td>357</td>
<td>1/1</td>
<td>0.99</td>
<td>0.15</td>
<td>-</td>
<td>41,41,41,41</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>B</td>
<td>341</td>
<td>5/25</td>
<td>0.70</td>
<td>0.17</td>
<td>-</td>
<td>42,44,47,47</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>E</td>
<td>351</td>
<td>1/1</td>
<td>0.97</td>
<td>0.12</td>
<td>-</td>
<td>33,33,33,33</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>D</td>
<td>341</td>
<td>5/25</td>
<td>0.94</td>
<td>0.10</td>
<td>-</td>
<td>36,39,44,45</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>F</td>
<td>351</td>
<td>1/1</td>
<td>0.99</td>
<td>0.22</td>
<td>-</td>
<td>44,44,44,44</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>347</td>
<td>10/25</td>
<td>0.77</td>
<td>0.22</td>
<td>-</td>
<td>49,50,62,63</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>E</td>
<td>344</td>
<td>12/25</td>
<td>0.72</td>
<td>0.29</td>
<td>-</td>
<td>29,54,59,59</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>D</td>
<td>350</td>
<td>1/1</td>
<td>1.00</td>
<td>0.04</td>
<td>-</td>
<td>23,23,23,23</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>353</td>
<td>10/25</td>
<td>0.80</td>
<td>0.28</td>
<td>-</td>
<td>54,56,62,63</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>D</td>
<td>353</td>
<td>1/1</td>
<td>0.98</td>
<td>0.08</td>
<td>-</td>
<td>38,38,38,38</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>C</td>
<td>351</td>
<td>8/25</td>
<td>0.72</td>
<td>0.26</td>
<td>-</td>
<td>53,56,60,60</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OLC</td>
<td>A</td>
<td>341</td>
<td>8/25</td>
<td>0.94</td>
<td>0.10</td>
<td>-</td>
<td>28,32,41,43</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.