

# wwPDB X-ray Structure Validation Summary Report (i)

Oct 2, 2023 – 11:03 PM EDT

PDB ID : 6PQ9

Title : Crystal Structure of TLA-1 S70G extended spectrum Beta-lactamase Authors : Rudino-Pinera, E.; Cifuentes-Castro, V.H.; Rodriguez-Alamazan, C.

Deposited on : 2019-07-08

Resolution : 2.19 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

MolProbity : FAILED

Mogul : 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : 1.13 EDS : FAILED

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)

Validation Pipeline (wwPDB-VP) : 2.35.1

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY\ DIFFRACTION$ 

The reported resolution of this entry is 2.19 Å.

There are no overall percentile quality scores available for this entry.

MolProbity and EDS failed to run properly - the sequence quality summary graphics cannot be shown.

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

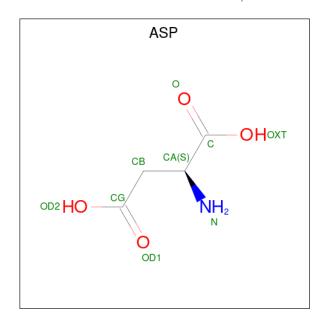
| Mol | Type | Chain | Res | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|-----|-----------|----------|---------|------------------|
| 4   | GOL  | A     | 308 | -         | X        | -       | -                |



# 2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 2425 atoms, of which 0 are hydrogens and 0 are deuteriums.

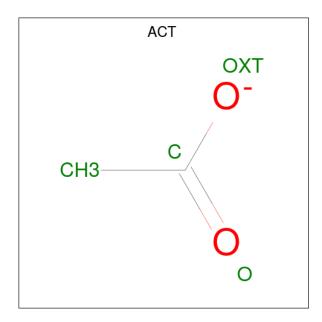
In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.


• Molecule 1 is a protein called Beta-lactamase.

| Mol | Chain | Residues | Atoms |      |     | ZeroOcc | AltConf | Trace |   |   |
|-----|-------|----------|-------|------|-----|---------|---------|-------|---|---|
| 1   | Λ     | 276      | Total | С    | N   | О       | S       | 0     | 2 | 0 |
| 1   | Α     | 210      | 2187  | 1395 | 367 | 420     | 5       | U     | 3 | U |

There is a discrepancy between the modelled and reference sequences:

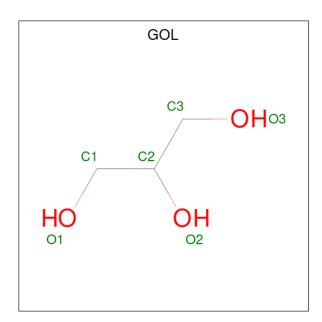
| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| A     | 70      | GLY      | SER    | engineered mutation | UNP Q9X6W1 |


• Molecule 2 is ASPARTIC ACID (three-letter code: ASP) (formula: C<sub>4</sub>H<sub>7</sub>NO<sub>4</sub>).



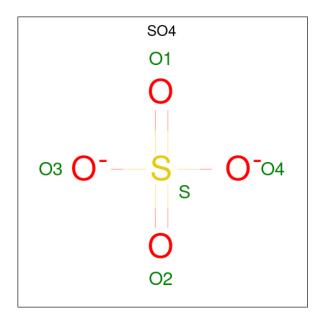
| Mol | Chain | Residues | Atoms      |        |        |        | ZeroOcc | AltConf |
|-----|-------|----------|------------|--------|--------|--------|---------|---------|
| 2   | A     | 1        | Total<br>8 | C<br>1 | N<br>1 | O<br>3 | 0       | 0       |

• Molecule 3 is ACETATE ION (three-letter code: ACT) (formula:  $C_2H_3O_2$ ).






| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 3   | A     | 1        | Total C O 4 2 2 | 0       | 0       |
| 3   | A     | 1        | Total C O 4 2 2 | 0       | 0       |
| 3   | A     | 1        | Total C O 4 2 2 | 0       | 0       |
| 3   | A     | 1        | Total C O 4 2 2 | 0       | 0       |
| 3   | A     | 1        | Total C O 4 2 2 | 0       | 0       |
| 3   | A     | 1        | Total C O 4 2 2 | 0       | 0       |
| 3   | A     | 1        | Total C O 4 2 2 | 0       | 0       |


• Molecule 4 is GLYCEROL (three-letter code: GOL) (formula: C<sub>3</sub>H<sub>8</sub>O<sub>3</sub>).





| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 4   | A     | 1        | Total C O 6 3 3 | 0       | 0       |
| 4   | A     | 1        | Total C O 6 3 3 | 0       | 0       |

 $\bullet$  Molecule 5 is SULFATE ION (three-letter code: SO4) (formula: O<sub>4</sub>S).



| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 5   | A     | 1        | Total O S 5 4 1 | 0       | 0       |

• Molecule 6 is water.



| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------|---------|---------|
| 6   | A     | 185      | Total O<br>185 185 | 0       | 0       |

Mol Probity and EDS failed to run properly - this section is therefore empty.



# 3 Data and refinement statistics (i)

EDS failed to run properly - this section is therefore incomplete.

| Property                               | Value                                           | Source    |  |
|----------------------------------------|-------------------------------------------------|-----------|--|
| Space group                            | P 41 21 2                                       | Depositor |  |
| Cell constants                         | 99.41Å 99.41Å 99.47Å                            | Depositor |  |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$ | $90.00^{\circ}$ $90.00^{\circ}$ $90.00^{\circ}$ | Depositor |  |
| Resolution (Å)                         | 19.89 - 2.19                                    | Depositor |  |
| % Data completeness                    | 99.5 (19.89-2.19)                               | Depositor |  |
| (in resolution range)                  |                                                 | -         |  |
| $R_{merge}$                            | 0.08                                            | Depositor |  |
| $R_{sym}$                              | 0.08                                            | Depositor |  |
| $< I/\sigma(I) > 1$                    | 1.11  (at  2.19Å)                               | Xtriage   |  |
| Refinement program                     | PHENIX 1.12_2829                                | Depositor |  |
| $R, R_{free}$                          | 0.191 , $0.238$                                 | Depositor |  |
| Wilson B-factor (Å <sup>2</sup> )      | 41.5                                            | Xtriage   |  |
| Anisotropy                             | 0.018                                           | Xtriage   |  |
| L-test for twinning <sup>2</sup>       | $< L > = 0.50, < L^2> = 0.34$                   | Xtriage   |  |
| Estimated twinning fraction            | 0.016 for -h,l,k                                | Vtriego   |  |
| Estimated twinning fraction            | 0.007  for -l,-k,-h                             | Xtriage   |  |
| Total number of atoms                  | 2425                                            | wwPDB-VP  |  |
| Average B, all atoms (Å <sup>2</sup> ) | 44.0                                            | wwPDB-VP  |  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.85% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of <|L|>,  $<L^2>$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 4 Model quality (i)

## 4.1 Standard geometry (i)

MolProbity failed to run properly - this section is therefore empty.

#### 4.2 Too-close contacts (i)

MolProbity failed to run properly - this section is therefore empty.

#### 4.3 Torsion angles (i)

#### 4.3.1 Protein backbone (i)

MolProbity failed to run properly - this section is therefore empty.

#### 4.3.2 Protein sidechains (i)

MolProbity failed to run properly - this section is therefore empty.

#### 4.3.3 RNA (i)

MolProbity failed to run properly - this section is therefore empty.

## 4.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 4.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 4.6 Ligand geometry (i)

11 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond



length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol   | Tuno | Chain | Res | Link  | В      | ond leng | $_{ m gths}$ | Bond angles |      |          |  |
|-------|------|-------|-----|-------|--------|----------|--------------|-------------|------|----------|--|
| IVIOI | Type | Chain | nes | Lilik | Counts | RMSZ     | # Z  > 2     | Counts      | RMSZ | # Z  > 2 |  |
| 3     | ACT  | A     | 302 | -     | 3,3,3  | 1.62     | 1 (33%)      | 3,3,3       | 1.63 | 0        |  |
| 2     | ASP  | A     | 301 | -     | 6,7,8  | 0.97     | 0            | 5,8,10      | 0.90 | 0        |  |
| 3     | ACT  | A     | 303 | -     | 3,3,3  | 1.55     | 1 (33%)      | 3,3,3       | 1.41 | 0        |  |
| 3     | ACT  | A     | 309 | -     | 3,3,3  | 1.31     | 0            | 3,3,3       | 1.83 | 2 (66%)  |  |
| 5     | SO4  | A     | 311 | -     | 4,4,4  | 0.17     | 0            | 6,6,6       | 0.26 | 0        |  |
| 3     | ACT  | A     | 304 | -     | 3,3,3  | 1.57     | 1 (33%)      | 3,3,3       | 1.46 | 0        |  |
| 3     | ACT  | A     | 305 | -     | 3,3,3  | 1.62     | 1 (33%)      | 3,3,3       | 1.50 | 0        |  |
| 3     | ACT  | A     | 306 | -     | 3,3,3  | 1.56     | 1 (33%)      | 3,3,3       | 1.39 | 0        |  |
| 4     | GOL  | A     | 310 | -     | 5,5,5  | 1.66     | 1 (20%)      | 5,5,5       | 0.92 | 0        |  |
| 3     | ACT  | A     | 307 | -     | 3,3,3  | 0.93     | 0            | 3,3,3       | 1.57 | 0        |  |
| 4     | GOL  | A     | 308 | _     | 5,5,5  | 1.64     | 1 (20%)      | 5,5,5       | 1.70 | 2 (40%)  |  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | $\operatorname{Res}$ | Link | Chirals | Torsions | Rings |
|-----|------|-------|----------------------|------|---------|----------|-------|
| 4   | GOL  | A     | 308                  | -    | -       | 3/4/4/4  | -     |
| 4   | GOL  | A     | 310                  | -    | -       | 3/4/4/4  | -     |
| 2   | ASP  | A     | 301                  | _    | -       | 2/5/6/8  | -     |

The worst 5 of 7 bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | $\mathbf{Z}$ | $\operatorname{Observed}(\text{\AA})$ | Ideal(Å) |
|-----|-------|-----|------|-------|--------------|---------------------------------------|----------|
| 4   | A     | 310 | GOL  | C3-C2 | 3.42         | 1.65                                  | 1.51     |
| 4   | A     | 308 | GOL  | C1-C2 | 3.21         | 1.64                                  | 1.51     |
| 3   | A     | 305 | ACT  | СН3-С | 2.54         | 1.59                                  | 1.49     |
| 3   | A     | 302 | ACT  | СН3-С | 2.39         | 1.59                                  | 1.49     |
| 3   | A     | 303 | ACT  | СН3-С | 2.30         | 1.58                                  | 1.49     |

All (4) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    | $\mathbf{Z}$ | $\mathbf{Observed}(^o)$ | $\operatorname{Ideal}({}^o)$ |
|-----|-------|-----|------|----------|--------------|-------------------------|------------------------------|
| 4   | A     | 308 | GOL  | O2-C2-C1 | 2.91         | 121.96                  | 109.12                       |
| 3   | A     | 309 | ACT  | OXT-C-O  | 2.30         | 130.52                  | 122.05                       |

Continued on next page...



Continued from previous page...

| Mol | Chain | $\operatorname{Res}$ | Type | Atoms    | $\mathbf{Z}$ | $\mathbf{Observed}(^o)$ | $\operatorname{Ideal}({}^o)$ |
|-----|-------|----------------------|------|----------|--------------|-------------------------|------------------------------|
| 4   | A     | 308                  | GOL  | O2-C2-C3 | 2.25         | 119.05                  | 109.12                       |
| 3   | A     | 309                  | ACT  | O-C-CH3  | -2.18        | 113.85                  | 122.33                       |

There are no chirality outliers.

5 of 8 torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms        |
|-----|-------|-----|------|--------------|
| 4   | A     | 308 | GOL  | O2-C2-C3-O3  |
| 4   | A     | 308 | GOL  | O1-C1-C2-C3  |
| 4   | A     | 308 | GOL  | C1-C2-C3-O3  |
| 4   | A     | 310 | GOL  | C1-C2-C3-O3  |
| 2   | A     | 301 | ASP  | CA-CB-CG-OD1 |

There are no ring outliers.

No monomer is involved in short contacts.

#### 4.7 Other polymers (i)

There are no such residues in this entry.

#### 4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 5 Fit of model and data (i)

#### 5.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

#### 5.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

#### 5.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

#### 5.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

## 5.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

