

wwPDB EM Validation Summary Report (i)

Mar 31, 2022 – 07:46 pm BST

PDB ID : 7PSA EMDB ID : EMD-13611 Title : The acetogenin-bound complex I of Mus musculus resolved to 3.4 angstroms Authors Grba, D.; Hirst, J. : Deposited on 2021-09-22 : 3.40 Å(reported) Resolution : Based on initial model 6ZR2 •

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	$0.0.0 \mathrm{dev}97$
Mogul	:	1.8.4, CSD as 541 be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.27

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ranks	Value
Ramachandran outliers		0
Sidechain outliers		0.1%
Worse		Better
Percentile relation	ve to all structures	
Percentile relati	ve to all EM structures	
Metric	Whole archive $(#Entries)$	EM structures (#Entries)

154571

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

4023

3826

Mol	Chain	Length	Quality of chain	
			57%	
1	А	115	100%	
			13%	
2	В	224	69%	30%
			18%	
3	C	263	79%	21%
			22%	
4	D	463	92%	7%
			40%	
5	E	248	85%	15%
			38%	
6	F	464	92%	8%
			37%	
7	G	727	94%	5%
			43%	
8	Н	318	100%	
			12%	
9	Ι	212	84%	16%

Conti	nued fron	n previous p	page	
Mol	Chain	Length	Quality of chain	
			55%	
10	J	172	99%	
	τ.	0.0	46%	
	K	98	99%	•
10	т	607	48%	
12	L	007	100%	
13	М	159	1000/	
10	111	405	46%	
14	Ν	345	99%	
		010	36%	
15	Ο	355	90%	10%
			33%	
16	Р	377	91%	9%
			26%	
17	Q	175	71%	29%
	-		22%	
18	R	116	81%	19%
10	a	00	56%	
19	S	99	84%	16%
20	T	150	42%	
20	1	190	48% • 51	.%
20	TT	156	55%	450/
20	0	100	52%	45%
21	V	116	98%	
	•		42%	
22	W	131	87%	13%
			43%	
23	Х	172	99%	
			63%	
24	Y	143	98%	•
~~	7	1 4 4	41%	
25	Z	144	98%	•
26		70	30%	
20	a	70	45%	•
27	h	84	05%	5.0/
	D	04	42%	0,6
28	с	76	63%	37%
			42%	
29	d	120	100%	
<u> </u>			42%	
30	е	106	99%	·
			60%	
31	f	57	93%	7%
			34%	
32	g	151	66%	33%
9.0	1	100	31%	
აპ	n	189	73%	27%

Mol	Chain	Length	Quality of chair	n
			42%	
34	i	128	73%	27%
	•	105	37%	
35	J	105	58% •	41%
26	1.	104	46%	
- 50	K	104	72%	28%
37	1	186	930/	1 70/
	1	100	51%	1770
38	m	129	98%	·
			51%	
39	n	179	98%	••
			51%	
40	0	137	80%	• 19%
41		170	41%	
41	р	170	96%	•
49	a	145	31 76	•
42	q	140	40%	••
43	r	113	86%	• 12%
	-		16%	- 1270
44	s	104	39%	61%

Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
55	EHZ	Т	201	Х	-	-	-
55	EHZ	U	201	Х	-	-	-

2 Entry composition (i)

There are 55 unique types of molecules in this entry. The entry contains 134755 atoms, of which 67673 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called NADH-ubiquinone oxidoreductase chain 3.

Mol	Chain	Residues			AltConf	Trace				
1	А	115	Total 1902	C 633	Н 969	N 133	O 160	${f S}{7}$	0	0

• Molecule 2 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
2	В	156	Total 2502	C 796	Н 1255	N 223	0 214	S 14	0	0

• Molecule 3 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
3	С	207	Total 3402	C 1111	H 1681	N 296	0 311	${ m S} { m 3}$	0	0

• Molecule 4 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
4	D	430	Total 6878	C 2215	Н 3414	N 595	O 630	S 24	0	0

• Molecule 5 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
5	Е	212	Total 3287	C 1048	H 1639	N 277	0 312	S 11	0	0

• Molecule 6 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
6	F	428	Total	С	Η	Ν	0	\mathbf{S}	0	0
0	T,	420	6559	2080	3259	589	609	22	0	0

• Molecule 7 is a protein called NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial.

Mol	Chain	Residues			Atom	ıs			AltConf	Trace
7	С	699	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
1	G	000	10618	3321	5322	919	1015	41	0	0

• Molecule 8 is a protein called NADH-ubiquinone oxidoreductase chain 1.

Mol	Chain	Residues			AltConf	Trace				
8	Н	318	Total 5166	C 1706	Н 2626	N 384	0 428	S 22	0	0

• Molecule 9 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
9	Ι	178	Total 2812	C 898	Н 1381	N 245	0 276	S 12	0	0

• Molecule 10 is a protein called NADH-ubiquinone oxidoreductase chain 6.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
10	J	171	Total 2615	C 874	Н 1315	N 185	O 226	S 15	0	0

• Molecule 11 is a protein called NADH-ubiquinone oxidoreductase chain 4L.

Mol	Chain	Residues			Ator	ns			AltConf	Trace
11	К	98	Total 1505	С 477	Н 768	N 112	0 137	S 11	0	0

• Molecule 12 is a protein called NADH-ubiquinone oxidoreductase chain 5.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
12	L	606	Total 9785	C 3182	Н 4985	N 746	0 827	$\begin{array}{c} \mathrm{S} \\ 45 \end{array}$	0	0

• Molecule 13 is a protein called NADH-ubiquinone oxidoreductase chain 4.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
13	М	459	Total 7485	C 2408	Н 3853	N 567	O 617	S 40	0	0

• Molecule 14 is a protein called NADH-ubiquinone oxidoreductase chain 2.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
14	Ν	344	Total	C	Н	N	0	S	0	0
		_	5591	1791	2895	416	452	37	-	_

• Molecule 15 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial.

Mol	Chain	Residues			Atom	.S			AltConf	Trace
15	0	320	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
10	U	520	5171	1674	2564	431	492	10	0	0

• Molecule 16 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial.

Mol	Chain	Residues			Atom	5			AltConf	Trace
16	Р	342	Total 5514	C 1777	Н 2766	N 483	0 481	${ m S} 7$	0	0

• Molecule 17 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
17	Q	125	Total 2031	C 642	Н 1016	N 179	O 190	${S \atop 4}$	0	0

• Molecule 18 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
18	R	94	Total 1453	C 458	Н 715	N 135	0 142	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2.

Mol	Chain	Residues			Atom	ıs			AltConf	Trace
19	S	83	Total 1353	C 419	Н 686	N 126	0 119	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called Acyl carrier protein, mitochondrial.

Mol	Chain	Residues			Atom	ıs			AltConf	Trace
20	т	76	Total	С	Н	Ν	0	\mathbf{S}	0	0
20	L	10	1213	392	602	90	124	5	0	0
20	II	86	Total	С	Н	Ν	0	S	0	0
20	U	00	1378	446	686	102	139	5		0

• Molecule 21 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
21	V	114	Total 1895	C 604	Н 968	N 154	0 166	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6.

Mol	Chain	Residues			ns		AltConf	Trace		
22	W	114	Total 1961	C 619	Н 991	N 180	0 165	S 6	0	0

• Molecule 23 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8.

Mol	Chain	Residues			Atom	ıs			AltConf	Trace
23	Х	171	Total 2773	C 889	Н 1377	N 250	O 247	S 10	0	0

• Molecule 24 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11.

Mol	Chain	Residues			Atom	S			AltConf	Trace
24	Y	140	Total 2062	C 662	Н 1025	N 175	0 192	S 8	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Y	-2	MET	-	variant	UNP Q9D8B4
Y	-1	ALA	-	variant	UNP Q9D8B4
Y	39	SER	ARG	conflict	UNP Q9D8B4

• Molecule 25 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
25	Z	141	Total 2333	C 750	Н 1166	N 207	O 202	S 8	0	0

• Molecule 26 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
26	a	68	Total 1124	C 360	Н 568	N 99	O 93	$\frac{S}{4}$	0	0

• Molecule 27 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3.

Mol	Chain	Residues			AltConf	Trace				
27	b	80	Total 1256	C 414	Н 628	N 99	0 111	${S \atop 4}$	0	0

• Molecule 28 is a protein called NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochondrial.

Mol	Chain	Residues		A	Atoms	5			AltConf	Trace
28	с	48	Total 797	C 261	Н 399	N 69	O 67	S 1	0	0

• Molecule 29 is a protein called NADH dehydrogenase [ubiquinone] 1 subunit C2.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
29	d	120	Total 1997	C 651	Н 1001	N 171	0 165	S 9	0	0

• Molecule 30 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 5.

Mol	Chain	Residues			AltConf	Trace				
30	е	105	Total 1746	$\begin{array}{c} \mathrm{C} \\ 555 \end{array}$	Н 869	N 162	0 152	S 8	0	0

• Molecule 31 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1.

Mol	Chain	Residues		A	AltConf	Trace				
31	f	53	Total 908	C 295	Н 452	N 82	O 77	${S \over 2}$	0	0

• Molecule 32 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
32	g	101	Total 1633	C 549	Н 783	N 136	0 161	$\frac{S}{4}$	0	0

• Molecule 33 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
33	h	138	Total 2325	C 762	Н 1163	N 194	O 203	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6.

Mol	Chain	Residues			AltConf	Trace				
34	i	94	Total 1578	C 513	Н 794	N 134	0 134	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial.

Mol	Chain	Residues		A	AltConf	Trace				
35	j	62	Total 1033	$\begin{array}{c} \mathrm{C} \\ 355 \end{array}$	Н 496	N 88	O 93	S 1	0	0

• Molecule 36 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3.

Mol	Chain	Residues			AltConf	Trace				
36	k	75	Total 1213	C 404	Н 604	N 103	O 100	${ m S} { m 2}$	0	0

• Molecule 37 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
37	1	154	Total 2481	C 834	Н 1187	N 215	0 234	S 11	0	0

• Molecule 38 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4.

Mol	Chain	Residues		A	AltConf	Trace			
38	m	126	Total 2111	C 676	Н 1061	N 189	0 185	0	0

• Molecule 39 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
20	n	177	Total	С	Η	Ν	0	\mathbf{S}	0	0
- 39	11	111	2998	981	1464	275	267	11	0	0

• Molecule 40 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7.

Mol	Chain	Residues			AltConf	Trace				
40	О	111	Total 1894	C 605	Н 937	N 176	0 168	S 8	0	0

• Molecule 41 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10.

Mol	Chain	Residues			AltConf	Trace				
41	n	169	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
TI	Р	105	2832	901	1399	257	267	8	0	0

• Molecule 42 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12.

Mol	Chain	Residues	Atoms						AltConf	Trace
42	q	144	Total 2361	C 773	Н 1158	N 213	0 212	${ m S}{ m 5}$	0	0

• Molecule 43 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7.

Mol	Chain	Residues	Atoms						AltConf	Trace
43	r	100	Total 1638	C 507	Н 836	N 149	0 143	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	s	41	Total 668	C 215	Н 324	N 61	O 68	0	0

• Molecule 45 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	AltConf
45	В	1	Total Fe S 8 4 4	0
45	F	1	TotalFeS844	0
45	G	1	TotalFeS1688	0
45	G	1	TotalFeS1688	0
45	Ι	1	TotalFeS1688	0
45	Ι	1	TotalFeS1688	0

• Molecule 46 is 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE (three-letter code: PC1) (formula: $C_{44}H_{88}NO_8P$).

Mol	Chain	Residues		I	Atom	s			AltConf
46	В	1	Total	С	Η	Ν	Ο	Р	0
40	D	1	191	58	113	2	16	2	0
46	В	1	Total	С	Η	Ν	Ο	Р	0
40	D	1	191	58	113	2	16	2	0
46	т	1	Total	С	Η	Ν	Ο	Р	0
40	J	1	104	32	62	1	8	1	0
46	7	1	Total	С	Η	Ν	Ο	Р	0
40	2	1	113	35	68	1	8	1	0

• Molecule 47 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	AltConf
47	Ε	1	TotalFeS422	0
47	G	1	TotalFeS422	0

• Molecule 48 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula: $C_{17}H_{21}N_4O_9P$).

Mol	Chain	Residues		AltConf					
48	F	1	Total	С	Η	Ν	0	Р	0
40	T	I	50	17	19	4	9	1	0

• Molecule 49 is 1,2-Distearoyl-sn-glycerophosphoethanolamine (three-letter code: 3PE) (formula: $C_{41}H_{82}NO_8P$).

Mol	Chain	Residues	Atoms	AltConf
40	TT	1	Total C H N O P	0
49	п	1	244 75 149 2 16 2	0
40	и	1	Total C H N O P	0
49	п	1	244 75 149 2 16 2	0
40	K	1	Total C H N O P	0
49	Γ	1	77 23 44 1 8 1	0
40	т	1	Total C H N O P	0
49	L	1	357 110 217 3 24 3	0
40	T	1	Total C H N O P	0
43	Ľ	T	357 110 217 3 24 3	0
/0	T.	1	Total C H N O P	0
45	Ľ	1	357 110 217 3 24 3	0
49	М	1	Total C H N O P	0
-10	111	I	194 59 115 2 16 2	0
49	М	1	Total C H N O P	0
-15	1/1	1	194 59 115 2 16 2	0
49	V	1	Total C H N O P	0
10	1		101 31 60 1 8 1	

• Molecule 50 is (3 {S},5 {S})-5-methyl-3-[(13 {R})-13-oxidanyl-13-[(2 {R},5 {R})-5-[(2 { R},5 {R})-5-[(1 {R})-1-oxidanylundecyl]oxolan-2-yl]oxolan-2-yl]tridecyl]oxolan-2-one (three-letter code: 88I) (formula: $C_{37}H_{68}O_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	I	AltConf			
50	Н	1	Total 109	C 37	Н 66	O 6	0

- Molecule 51 is CARDIOLIPIN (three-letter code: CDL) (formula: $C_{81}H_{156}O_{17}P_2$).

Mol	Chain	Residues	Atoms AltConf
51	т	1	Total C H O P
51	L	1	$174 55 100 17 2 \qquad 0$
51	N	1	Total C H O P
51	IN	1	$148 46 83 17 2 \qquad 0$
51	v	1	Total C H O P
51	Λ	1	$154 48 87 17 2 \qquad 0$

Mol	Chain	Residues	Atoms	AltConf
51	d	1	Total C H O P	0
51	u	1	274 85 152 33 4	0
51	d	1	Total C H O P	0
51	u	1	274 85 152 33 4	0
51	;	1	Total C H O P	0
51	1	1	163 51 93 17 2	0
51	r	1	Total C H O P	0
51	L	1	123 38 66 17 2	0

Continued from previous page...

• Molecule 52 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		AltConf					
59	0	1	Total	С	Η	Ν	Ο	Р	0
52	0	T	43	10	12	5	13	3	0

• Molecule 53 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NDP) (formula: C₂₁H₃₀N₇O₁₇P₃).

Mol	Chain	Residues	Atoms					AltConf	
52	р	1	Total	С	Η	Ν	Ο	Р	0
00	Ľ		74	21	26	7	17	3	U

• Molecule 54 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
54	R	1	Total Zn 1 1	0

• Molecule 55 is {S}-[2-[3-[[(2 {R})-3,3-dimethyl-2-oxidanyl-4-phosphonooxy-butanoyl]ami no]propanoylamino]ethyl] (3 {S})-3-oxidanyltetradecanethioate (three-letter code: EHZ) (formula: $C_{25}H_{49}N_2O_9PS$).

Mol	Chain	Residues	Atoms					AltConf		
55	Т	1	Total	С	Η	Ν	Ο	Р	S	0
	1	1	84	25	47	2	8	1	1	0
55	II	1	Total	С	Η	Ν	Ο	Р	S	0
00	U		84	25	47	2	8	1	1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NADH-ubiquinone oxidoreductase chain 3

• Molecule 4: NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial

AG90 A690 V691 T692 GLV ALA ALA ALA ALA ALA ALA ALA CLU GLU GLU CLU SER ILE

• Molecule 8: NADH-ubiquinone oxidoreductase chain 1

L266 • M173 R273 • 11174 • 1174 • 1174 • 1177 L286 • A178 • 1187 • 1187 • 1187 • 1187 • 1187 • 1187 • 1187 • 1187 • 1187 • 1187 • 1187 • 1187 • 1187 • 1187 • 1184 • 118

• Molecule 9: NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial

E46 E77 E97 A98 E99 E99 E147 E147 E147 E147 E147 E147

 \bullet Molecule 10: NADH-ubiquinone oxidore
ductase chain 6

• Molecule 11: NADH-ubiquinone oxidoreductase chain 4L

Chain L:

100%

WORLDWIDE PROTEIN DATA BANK

• Molecule 16: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial

• Molecule 29: NADH dehydrogenase [ubiquinone] 1 subunit C2

L68 F69 A70 V71 V71 H73 H73 H73 H77 L75 L75 N77 M78 M78 F80

• Molecule 34: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6

Chain i:	42 /0	73%	27%
S1 62 74 P5 B6	K8 L9 L14 R15 E16 L17 K23	E26 L27 S28 P29 R30 E31 P32 V33	L34 P35 P35 P36 P36 P36 ARG ARG ARC CLU CLU ARC ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS
*****	• • •• •	• • •• ••	••••

• Molecule 35: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial

11443 12443 1248 11446 1154 1154 11446 1151 1154 11456 1154 1154 1155 1156 1156 1156 1176 1176 1156 1176 1176 1156 1176 1176 1116 1176 1176 1116 1176 1176 1116 1176 1176 1116 1176 1176 1117 1117 1117 1116 1116 1116 1117 1117 1117 1116 1116 1116 1117 1117 1117 1117 1117 1117 1117 1117 1117 1117 1116 11137 1118 11136 11136 1117 11137 11136 1118 11136 11136 1118 11136 11136 1118 11136 11366 1118 1136

• Molecule 38: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4

• Molecule 40: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7

96%

Chain p:

•••

• Molecule 42: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12

99%

Chain	q:
-------	----

37%

• Molecule 43: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7

• Molecule 44: NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	15754	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	2700	Depositor
Magnification	130000	Depositor
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	0.265	Depositor
Minimum map value	-0.084	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.008	Depositor
Recommended contour level	0.035	Depositor
Map size (Å)	469.35, 469.35, 469.35	wwPDB
Map dimensions	450, 450, 450	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.043, 1.043, 1.043	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 88I, 3PE, ZN, EHZ, 2MR, CDL, AYA, SF4, AME, FME, FES, FMN, NDP, PC1, ATP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.32	0/949	0.46	0/1297	
2	В	0.43	0/1278	0.58	1/1730~(0.1%)	
3	С	0.40	0/1771	0.56	0/2412	
4	D	0.38	0/3540	0.53	0/4795	
5	Е	0.32	0/1688	0.51	0/2300	
6	F	0.33	0/3374	0.54	0/4557	
7	G	0.34	1/5383~(0.0%)	0.53	0/7293	
8	Н	0.34	0/2607	0.48	0/3564	
9	Ι	0.42	0/1461	0.56	0/1974	
10	J	0.33	0/1322	0.46	0/1799	
11	Κ	0.30	0/738	0.48	0/1002	
12	L	0.31	0/4913	0.48	2/6686~(0.0%)	
13	М	0.31	0/3709	0.48	0/5052	
14	Ν	0.31	0/2748	0.50	3/3741~(0.1%)	
15	0	0.34	0/2674	0.48	0/3626	
16	Р	0.33	0/2823	0.53	0/3828	
17	Q	0.32	0/1038	0.53	0/1401	
18	R	0.37	0/751	0.53	0/1011	
19	S	0.29	0/678	0.57	0/915	
20	Т	0.26	0/620	0.45	0/836	
20	U	0.31	0/704	0.46	0/951	
21	V	0.30	0/949	0.47	0/1286	
22	W	0.32	0/993	0.54	0/1335	
23	Х	0.31	0/1434	0.53	0/1937	
24	Y	0.29	0/1061	0.47	0/1439	
25	Ζ	0.32	0/1198	0.57	0/1616	
26	a	0.33	0/569	0.53	0/766	
27	b	0.31	0/651	0.44	0/895	
28	с	0.29	0/409	0.46	0/555	
29	d	0.35	0/1028	0.51	0/1387	
30	е	0.31	0/900	0.50	0/1199	
31	f	0.29	0/468	0.51	0/630	

Mal	Chain	Bo	nd lengths	Bo	Bond angles		
	WIOI Cham		$ RMSZ \qquad \# Z > 5$		# Z > 5		
32	g	0.34	0/878	0.48	0/1196		
33	h	0.36	0/1197	0.50	0/1621		
34	i	0.32	0/810	0.50	0/1102		
35	j	0.32	0/561	0.53	1/768~(0.1%)		
36	k	0.29	0/629	0.49	0/851		
37	1	0.34	0/1348	0.51	0/1840		
38	m	0.32	0/1079	0.55	0/1463		
39	n	0.31	0/1589	0.51	0/2152		
40	0	0.31	0/982	0.54	0/1320		
41	р	0.33	0/1466	0.53	0/1981		
42	q	0.38	0/1234	0.53	0/1681		
43	r	0.33	0/812	0.62	1/1098~(0.1%)		
44	s	0.31	0/353	0.50	0/479		
All	All	0.33	1/67367~(0.0%)	0.51	8/91367~(0.0%)		

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
42	q	0	1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
7	G	52	CYS	CB-SG	-5.68	1.72	1.81

The worst 5 of 8 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
12	L	247	LEU	CB-CG-CD2	7.43	123.63	111.00
14	N	254	LEU	CB-CG-CD2	6.87	122.67	111.00
2	В	65	CYS	CA-CB-SG	6.77	126.19	114.00
43	r	76	VAL	CG1-CB-CG2	6.73	121.66	110.90
14	N	15	LEU	CB-CG-CD2	5.76	120.80	111.00

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
42	q	1	AME	Mainchain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	113/115~(98%)	107~(95%)	6 (5%)	0	100	100
2	В	154/224~(69%)	142 (92%)	12 (8%)	0	100	100
3	С	205/263~(78%)	191 (93%)	14 (7%)	0	100	100
4	D	427/463~(92%)	398 (93%)	29 (7%)	0	100	100
5	Е	210/248~(85%)	191 (91%)	19 (9%)	0	100	100
6	F	426/464 (92%)	392 (92%)	34 (8%)	0	100	100
7	G	686/727~(94%)	629 (92%)	57 (8%)	0	100	100
8	Н	316/318~(99%)	296 (94%)	20 (6%)	0	100	100
9	Ι	176/212~(83%)	164 (93%)	12 (7%)	0	100	100
10	J	169/172~(98%)	158 (94%)	11 (6%)	0	100	100
11	K	96/98~(98%)	89 (93%)	7 (7%)	0	100	100
12	L	604/607~(100%)	559 (92%)	45 (8%)	0	100	100
13	М	457/459~(100%)	440 (96%)	17 (4%)	0	100	100
14	Ν	342/345~(99%)	324 (95%)	18 (5%)	0	100	100
15	Ο	318/355~(90%)	306 (96%)	12 (4%)	0	100	100
16	Р	340/377~(90%)	302 (89%)	38 (11%)	0	100	100
17	Q	123/175 (70%)	116 (94%)	7 (6%)	0	100	100
18	R	92/116~(79%)	90 (98%)	2 (2%)	0	100	100

Mol	Chain	Analysed	Analysed Favoured Allowed		Outliers	Percentiles	
19	S	81/99~(82%)	68~(84%)	13~(16%)	0	100	100
20	Т	74/156~(47%)	69~(93%)	5(7%)	0	100	100
20	U	84/156~(54%)	78~(93%)	6~(7%)	0	100	100
21	V	112/116~(97%)	103~(92%)	9~(8%)	0	100	100
22	W	112/131~(86%)	107~(96%)	5(4%)	0	100	100
23	Х	169/172~(98%)	159~(94%)	10 (6%)	0	100	100
24	Y	138/143~(96%)	132~(96%)	6 (4%)	0	100	100
25	Ζ	139/144~(96%)	132~(95%)	7 (5%)	0	100	100
26	a	66/70~(94%)	65~(98%)	1 (2%)	0	100	100
27	b	78/84~(93%)	73 (94%)	5 (6%)	0	100	100
28	с	46/76~(60%)	43 (94%)	3~(6%)	0	100	100
29	d	118/120 (98%)	112 (95%)	6(5%)	0	100	100
30	е	103/106~(97%)	95~(92%)	8 (8%)	0	100	100
31	f	51/57~(90%)	48 (94%)	3~(6%)	0	100	100
32	g	99/151~(66%)	91 (92%)	8 (8%)	0	100	100
33	h	136/189~(72%)	129 (95%)	7 (5%)	0	100	100
34	i	90/128~(70%)	84 (93%)	6 (7%)	0	100	100
35	j	60/105~(57%)	58~(97%)	2(3%)	0	100	100
36	k	73/104 (70%)	72 (99%)	1 (1%)	0	100	100
37	1	152/186~(82%)	133 (88%)	19 (12%)	0	100	100
38	m	124/129~(96%)	115 (93%)	9~(7%)	0	100	100
39	n	175/179~(98%)	166 (95%)	9~(5%)	0	100	100
40	О	109/137~(80%)	97~(89%)	12 (11%)	0	100	100
41	р	167/176~(95%)	157 (94%)	10 (6%)	0	100	100
42	q	142/145~(98%)	136 (96%)	6 (4%)	0	100	100
43	r	96/113~(85%)	86 (90%)	10 (10%)	0	100	100
44	S	39/104~(38%)	36 (92%)	3 (8%)	0	100	100
All	All	8087/9214 (88%)	7538 (93%)	549 (7%)	0	100	100

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	103/103~(100%)	103 (100%)	0	100	100
2	В	132/185~(71%)	132 (100%)	0	100	100
3	С	189/227~(83%)	189 (100%)	0	100	100
4	D	370/394~(94%)	369 (100%)	1 (0%)	92	97
5	Е	183/206~(89%)	182 (100%)	1 (0%)	88	94
6	F	343/370~(93%)	343 (100%)	0	100	100
7	G	580/610~(95%)	580 (100%)	0	100	100
8	Н	279/279~(100%)	279 (100%)	0	100	100
9	Ι	152/178~(85%)	152 (100%)	0	100	100
10	J	136/137~(99%)	136 (100%)	0	100	100
11	K	87/87 (100%)	87 (100%)	0	100	100
12	L	548/549~(100%)	547 (100%)	1 (0%)	93	98
13	М	414/414 (100%)	414 (100%)	0	100	100
14	Ν	306/307~(100%)	306 (100%)	0	100	100
15	Ο	284/309~(92%)	283 (100%)	1 (0%)	91	95
16	Р	299/325~(92%)	299 (100%)	0	100	100
17	Q	112/153~(73%)	112 (100%)	0	100	100
18	R	79/96~(82%)	79 (100%)	0	100	100
19	S	74/80~(92%)	74 (100%)	0	100	100
20	Т	70/135~(52%)	69 (99%)	1 (1%)	67	83
20	U	79/135~(58%)	79 (100%)	0	100	100
21	V	101/102 (99%)	101 (100%)	0	100	100
22	W	108/114~(95%)	108 (100%)	0	100	100
23	Х	153/154~(99%)	153 (100%)	0	100	100
24	Y	105/107~(98%)	105 (100%)	0	100	100
25	Z	122/123~(99%)	122 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	Percentiles	
26	a	58/60~(97%)	58 (100%)	0	100	100	
27	b	71/73~(97%)	71 (100%)	0	100	100	
28	с	42/67~(63%)	42 (100%)	0	100	100	
29	d	107/107~(100%)	107~(100%)	0	100	100	
30	е	93/94~(99%)	93~(100%)	0	100	100	
31	f	49/53~(92%)	49 (100%)	0	100	100	
32	g	92/129~(71%)	91~(99%)	1 (1%)	73	86	
33	h	123/162~(76%)	123~(100%)	0	100	100	
34	i	89/120~(74%)	89 (100%)	0	100	100	
35	j	58/87~(67%)	58 (100%)	0	100	100	
36	k	58/78~(74%)	58 (100%)	0	100	100	
37	1	139/161~(86%)	139 (100%)	0	100	100	
38	m	112/114~(98%)	112 (100%)	0	100	100	
39	n	162/164~(99%)	161 (99%)	1 (1%)	86	94	
40	О	104/121~(86%)	103~(99%)	1 (1%)	76	88	
41	р	154/158~(98%)	154 (100%)	0	100	100	
42	q	129/130~(99%)	129 (100%)	0	100	100	
43	r	89/96~(93%)	88 (99%)	1 (1%)	73	86	
44	s	40/95~(42%)	40 (100%)	0	100	100	
All	All	7177/7948 (90%)	7168 (100%)	9 (0%)	93	98	

Continued from previous page...

5 of 9 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
40	0	111	LYS
43	r	56	ARG
15	0	250	LYS
20	Т	20	LYS
32	g	55	ASN

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 8 such side chains are listed below:

Mol	Chain	Res	Type
42	q	123	GLN

Continued from previous page...

Mol	Chain	Res	Type
33	h	86	ASN
30	е	96	HIS
13	М	48	ASN
33	h	44	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

10 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	E	ond ang	gles
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
43	AYA	r	1	43	6,7,8	1.79	2 (33%)	5,8,10	1.34	1 (20%)
12	FME	L	1	12	8,9,10	0.94	0	7,9,11	0.75	0
13	FME	М	1	13	8,9,10	0.97	0	7,9,11	0.82	0
14	FME	N	1	14	8,9,10	0.95	0	7,9,11	0.77	0
11	FME	К	1	11	8,9,10	0.96	0	7,9,11	1.42	1 (14%)
8	FME	Н	1	8	8,9,10	0.84	0	7,9,11	1.42	1 (14%)
1	FME	А	1	1	8,9,10	0.96	0	7,9,11	0.96	0
42	AME	q	1	42	9,10,11	1.48	1 (11%)	9,11,13	1.56	3 (33%)
10	FME	J	1	10	8,9,10	0.88	0	7,9,11	0.92	0
4	2MR	D	85	4	10,12,13	2.37	2 (20%)	5,13,15	1.25	1 (20%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
43	AYA	r	1	43	-	0/4/6/8	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
12	FME	L	1	12	-	5/7/9/11	-
13	FME	М	1	13	-	2/7/9/11	-
14	FME	N	1	14	-	1/7/9/11	-
11	FME	К	1	11	-	4/7/9/11	-
8	FME	Н	1	8	-	4/7/9/11	-
1	FME	А	1	1	-	3/7/9/11	-
42	AME	q	1	42	-	3/9/10/12	-
10	FME	J	1	10	-	2/7/9/11	-
4	2MR	D	85	4	-	0/10/13/15	-

Continued from previous page...

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
4	D	85	2MR	CZ-NE	5.02	1.45	1.34
4	D	85	2MR	CZ-NH2	4.75	1.43	1.33
42	q	1	AME	CT1-N	3.34	1.45	1.34
43	r	1	AYA	CT-N	3.17	1.45	1.34
43	r	1	AYA	OT-CT	-2.02	1.18	1.23

The worst 5 of 7 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	Н	1	FME	C-CA-N	3.17	115.45	109.73
11	Κ	1	FME	C-CA-N	2.86	114.89	109.73
42	q	1	AME	CE-SD-CG	2.63	109.45	100.40
4	D	85	2MR	CD-NE-CZ	2.62	128.31	123.41
42	q	1	AME	O-C-CA	-2.32	118.70	124.78

There are no chirality outliers.

5 of 24 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	А	1	FME	N-CA-CB-CG
1	А	1	FME	C-CA-CB-CG
8	Н	1	FME	CB-CA-N-CN
8	Н	1	FME	N-CA-CB-CG
8	Н	1	FME	C-CA-CB-CG

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 35 ligands modelled in this entry, 1 is monoatomic - leaving 34 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bond lengths			Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
51	CDL	r	201	-	56, 56, 99	1.15	8 (14%)	$62,\!68,\!111$	1.17	4 (6%)
51	CDL	d	202	-	62,62,99	1.08	8 (12%)	68,74,111	1.15	4 (5%)
55	EHZ	Т	201	20	29,36,37	1.66	5 (17%)	35,44,47	1.41	3 (8%)
49	3PE	К	201	-	32,32,50	1.06	4 (12%)	35,37,55	1.20	2 (5%)
46	PC1	В	203	-	42,42,53	1.04	4 (9%)	48,50,61	1.05	2 (4%)
49	3PE	Y	401	-	40,40,50	0.96	4 (10%)	43,45,55	1.05	2 (4%)
46	PC1	В	202	-	34,34,53	1.15	4 (11%)	40,42,61	1.06	2 (5%)
45	SF4	F	501	6	0,12,12	-	-	-		
49	3PE	Н	401	-	50,50,50	0.86	4 (8%)	$53,\!55,\!55$	1.07	2 (3%)
52	ATP	0	401	-	26,33,33	0.62	0	31,52,52	1.06	3 (9%)
49	3PE	Н	403	-	43,43,50	0.91	4 (9%)	46,48,55	1.14	2 (4%)
51	CDL	Х	201	-	66,66,99	1.05	8 (12%)	72,78,111	1.15	4 (5%)
46	PC1	Ζ	201	-	44,44,53	1.04	4 (9%)	50,52,61	1.03	2 (4%)
46	PC1	J	201	-	41,41,53	1.05	4 (9%)	47,49,61	1.06	2 (4%)
51	CDL	Ν	401	-	64,64,99	1.08	7 (10%)	70,76,111	1.14	4 (5%)
47	FES	Е	301	5	0,4,4	-	-	-		
45	SF4	Ι	201	9	0,12,12	-	-	-		
48	FMN	F	502	-	31,33,33	1.36	5 (16%)	$40,\!50,\!50$	1.57	6(15%)
49	3PE	М	501	-	36, 36, 50	1.01	3 (8%)	$39,\!41,\!55$	1.12	2 (5%)
45	SF4	G	803	7	0,12,12	-	-	-		
50	88I	Н	402	-	45,45,45	1.93	9 (20%)	56, 56, 56	1.70	13 (23%)
55	EHZ	U	201	20	29,36,37	1.68	5 (17%)	$3\overline{5,44,47}$	1.65	8 (22%)
45	SF4	В	201	2	0,12,12	-	-	-		

Mal	Turne	Chain	Dec	Tink	Bond lengths			В	ond ang	les
WIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
49	3PE	L	702	-	41,41,50	0.95	4 (9%)	44,46,55	1.15	2 (4%)
45	SF4	G	801	7	$0,\!12,\!12$	-	-	-		
49	3PE	М	502	-	41,41,50	0.94	3 (7%)	44,46,55	1.10	2 (4%)
51	CDL	i	201	-	69,69,99	1.02	7 (10%)	75,81,111	1.17	5 (6%)
49	3PE	L	704	-	48,48,50	0.88	3 (6%)	51,53,55	1.06	2 (3%)
47	FES	G	802	7	0,4,4	-	-	-		
51	CDL	L	703	-	73,73,99	1.00	8 (10%)	79,85,111	1.13	4 (5%)
53	NDP	Р	501	-	45,52,52	2.09	4 (8%)	53,80,80	1.76	12 (22%)
49	3PE	L	701	-	48,48,50	0.88	4 (8%)	51,53,55	1.11	2 (3%)
51	CDL	d	201	-	58,58,99	1.02	6 (10%)	63,69,111	1.05	3 (4%)
45	SF4	Ι	202	9	0,12,12	-	-	-		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
51	CDL	r	201	-	-	27/67/67/110	-
51	CDL	d	202	-	-	31/73/73/110	-
55	EHZ	Т	201	20	1/1/9/9	17/42/44/45	-
49	3PE	K	201	-	-	15/36/36/54	-
46	PC1	В	203	-	-	13/46/46/57	-
49	3PE	Y	401	-	-	14/44/44/54	-
46	PC1	В	202	-	-	14/38/38/57	-
45	SF4	F	501	6	-	-	0/6/5/5
49	3PE	Н	401	-	-	20/54/54/54	-
52	ATP	Ο	401	-	-	6/18/38/38	0/3/3/3
49	3PE	Н	403	-	-	20/47/47/54	-
51	CDL	Х	201	-	-	36/77/77/110	-
46	PC1	Z	201	-	-	18/48/48/57	-
46	PC1	J	201	-	-	16/45/45/57	-
51	CDL	N	401	-	-	37/75/75/110	-
47	FES	Е	301	5	-	-	0/1/1/1
48	FMN	F	502	-	-	11/18/18/18	0/3/3/3
49	3PE	М	501	-	-	15/40/40/54	-
45	SF4	Ι	201	9	-	-	0/6/5/5

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
45	SF4	G	803	7	-	-	0/6/5/5
50	88I	Н	402	-	-	17/37/67/67	0/3/3/3
55	EHZ	U	201	20	1/1/9/9	15/42/44/45	-
45	SF4	В	201	2	-	-	0/6/5/5
49	3PE	L	702	-	-	16/45/45/54	-
45	SF4	G	801	7	-	-	0/6/5/5
49	3PE	М	502	-	-	13/45/45/54	-
51	CDL	i	201	-	-	32/80/80/110	-
49	3PE	L	704	-	-	24/52/52/54	-
47	FES	G	802	7	-	-	0/1/1/1
51	CDL	L	703	-	-	33/84/84/110	-
53	NDP	Р	501	-	-	8/30/77/77	0/5/5/5
49	3PE	L	701	-	-	16/52/52/54	-
51	CDL	d	201	-	-	30/67/67/110	-
45	SF4	Ι	202	9	-	-	0/6/5/5

Continued from previous page...

The worst 5 of 129 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
53	Р	501	NDP	P2B-O2B	11.26	1.80	1.59
50	Н	402	88I	C4-C5	-9.71	1.32	1.54
55	U	201	EHZ	C15-N2	5.48	1.45	1.33
55	Т	201	EHZ	C15-N2	5.33	1.45	1.33
55	U	201	EHZ	C12-N1	5.18	1.45	1.33

The worst 5 of 99 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
53	Р	501	NDP	PN-O3-PA	-7.43	107.34	132.83
55	Т	201	EHZ	C8-C9-S1	6.07	121.14	113.63
48	F	502	FMN	C1'-N10-C9A	5.52	122.64	118.29
55	U	201	EHZ	C8-C9-S1	5.46	120.38	113.63
50	Н	402	88I	C29-C28-C5'	-5.42	105.27	114.18

All (2) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
55	Т	201	EHZ	C16
55	U	201	EHZ	C16

Mol	Chain	\mathbf{Res}	Type	Atoms
46	В	202	PC1	C11-O13-P-O12
46	В	202	PC1	C11-O13-P-O14
46	В	202	PC1	C1-O11-P-O13
46	В	202	PC1	O13-C11-C12-N
46	В	203	PC1	O13-C11-C12-N

5 of 514 torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-13611. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 225

Y Index: 225

Z Index: 225

6.2.2 Raw map

X Index: 225

Y Index: 225

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 240

Y Index: 235

Z Index: 297

6.3.2 Raw map

X Index: 240

Y Index: 235

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.035. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{13611}_{msk}_{1.map}$ (i) 6.5.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 306 $\rm nm^3;$ this corresponds to an approximate mass of 276 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.294 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.294 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estim	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	3.40	-	-		
Author-provided FSC curve	3.37	4.01	3.47		
Unmasked-calculated*	5.66	8.76	6.60		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 5.66 differs from the reported value 3.4 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13611 and PDB model 7PSA. Per-residue inclusion information can be found in section 3 on page 20.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.035 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 77% of all backbone atoms, 67% of all non-hydrogen atoms, are inside the map.

