

Apr 18, 2024 – 03:04 pm BST

PDB ID 8PW7 : EMDB ID : EMD-17991 Title : A respirasome from murine liver Authors : Vercellino, I.; Sazanov, L.A. Deposited on 2023-07-19 : Resolution 3.50 Å(reported) : Based on initial models 6g2j, 7o3c :

> This is a Full wwPDB EM Validation Report for a publicly released PDB entry. We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at

https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ranks	Value
Ramachandran outliers		0.0%
Sidechain outliers		0.2%
W	rse	Better
E i	ercentile relative to all structures	
01	ercentile relative to all EM structures	
Metric	Whole archive	EM structures

Metric	(# Entries)	(#Entries)
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
		•

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	n	514	99%	·
2	О	227	99%	·
3	р	261	99%	
4	q	169	81%	• 18%
5	r	146	71%	29%
6	S	128	73%	27%
7	\mathbf{t}	97	77%	23%
8	u	86	90%	• 8%
9	v	76	93%	7%
10	х	80	61%	39%

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
11	у	63	75%	25%
12	Z	70	61%	39%
13	w	83	67% .	31%
14	А	480	92%	• 7%
14	L	480	93%	7%
15	В	453	93%	7%
15	М	453	93%	7%
16	С	381	98%	
16	N	381	98%	·
17	D	325	73% .	26%
17	Ο	325	74%	26%
18	Е	274	72%	28%
18	Р	274	71% •	28%
18	Т	274	28% 72%	
19	F	111	90%	• 9%
19	Q	111	92%	8%
20	G	82	94%	6%
20	R	82	91%	• 6%
21	Н	89	74%	26%
21	S	89	76%	24%
22	J	64	94%	6%
22	U	64	94%	6%
23	K	56	93%	7%
23	V	56	95%	5%
24	6	224	70%	30%

Conti	inued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
25	C1	263	79%	21%
26	D1	463	92%	7%
27	2	248	85%	• 14%
28	1	464	93%	7%
29	3	727	95%	5%
30	9	212	83%	• 16%
31	P1	377	90%	• 9%
32	Q1	175	72%	28%
33	7	116	82%	17%
34	S1	99	84%	• 15%
35	T1	156	51% 49%	
35	U1	156	56% 44%	
36	V1	116	97%	•
37	W1	131	87%	13%
38	q1	145	100%	
39	r1	113	87%	• 12%
40	s1	104	39% • 60%	
41	A1	115	97%	•
42	H1	318	99%	·
43	J1	172	100%	
44	K1	98	98%	•
45	L1	607	100%	
46	M1	459	99%	•
47	N1	345	100%	
48	01	355	90%	10%

Mol	Chain	Length	Quality of chain								
49	X1	172	99%	·							
50	Y1	141	99%	99% •							
51	Z1	144	97%	•••							
52	a1	70	100%								
53	b1	84	96%	•••							
54	c1	76	63%	37%							
55	d1	120	99%	•							
56	e1	106	99%								
57	f1	57	91%	• 7%							
58	g1	151	67%	33%							
59	h1	189	74%	26%							
60	i1	128	81%	•• 17%							
61	j1	105	62%	38%							
62	k1	104	73% •	26%							
63	11	186	84%	16%							
64	m1	129	98%	•							
65	nl	179	99%								
66	o1	137	85%	• 14%							
67	p1	176	97%	•							

Continued from previous page...

2 Entry composition (i)

There are 86 unique types of molecules in this entry. The entry contains 115528 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Cytochrome c oxidase subunit 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	n	514	Total 4021	C 2691	N 623	O 675	S 32	0	0

• Molecule 2 is a protein called Cytochrome c oxidase subunit 2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	О	227	Total 1817	C 1180	N 282	O 336	S 19	0	0

• Molecule 3 is a protein called Cytochrome c oxidase subunit 3.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	р	260	Total 2118	C 1418	N 339	0 351	S 10	0	0

• Molecule 4 is a protein called Cytochrome c oxidase subunit 4 isoform 1, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	q	139	Total 1156	C 745	N 192	0 212	${f S}7$	0	0

• Molecule 5 is a protein called Cytochrome c oxidase subunit 5A, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	r	104	Total 842	C 538	N 141	0 161	${ m S} { m 2}$	0	0

• Molecule 6 is a protein called Cytochrome c oxidase subunit 5B, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	S	94	Total 721	C 449	N 126	0 138	S 8	0	0

• Molecule 7 is a protein called Cytochrome c oxidase subunit 6A2, mitochondrial.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
7	t	75	Total 605	C 392	N 114	O 96	${ m S} { m 3}$	0	0

• Molecule 8 is a protein called Cytochrome c oxidase subunit 6B1.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	u	79	Total 654	C 416	N 116	0 117	${ m S}{ m 5}$	0	0

• Molecule 9 is a protein called Cytochrome c oxidase subunit 6C.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
9	V	71	Total 567	C 369	N 102	O 93	${f S}\ 3$	0	0

• Molecule 10 is a protein called Cytochrome c oxidase subunit 7B, mitochondrial.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
10	x	49	Total	С	Ν	0	\mathbf{S}	0	0
10	A	10	383	248	65	68	2	0	0

• Molecule 11 is a protein called Cytochrome c oxidase subunit 7C, mitochondrial.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
11	У	47	Total 386	C 256	N 65	O 63	${S \over 2}$	0	0

• Molecule 12 is a protein called Cytochrome c oxidase subunit 8B, mitochondrial.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
12	Z	43	Total 311	C 203	N 51	O 56	S 1	0	0

• Molecule 13 is a protein called Cytochrome c oxidase subunit 7A2, mitochondrial.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
13	W	57	Total 435	C 283	N 71	0 78	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called Cytochrome b-c1 complex subunit 1, mitochondrial.

Mol	Chain	Residues		At		AltConf	Trace		
14	Δ	445	Total	С	Ν	Ο	\mathbf{S}	0	0
14	Π	440	3459	2163	610	669	17	0	0
14	T	445	Total	С	Ν	Ο	\mathbf{S}	0	0
14		644	3460	2163	610	670	17	U	U

• Molecule 15 is a protein called Cytochrome b-c1 complex subunit 2, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
15	В	420	Total	С	Ν	0	\mathbf{S}	0	0
10	D	420	3154	1980	555	610	9	0	0
15	М	420	Total	С	Ν	0	S	0	0
10	111	420	3154	1980	555	610	9	0	0

• Molecule 16 is a protein called Cytochrome b.

Mol	Chain	Residues		At	oms		AltConf	Trace	
16	С	380	Total 3046	C 2052	N 473	0 499	S 22	0	0
16	Ν	380	Total 3046	C 2052	N 473	0 499	S 22	0	0

• Molecule 17 is a protein called Cytochrome c1, heme protein, mitochondrial.

Mol	Chain	Residues		At	\mathbf{oms}		AltConf	Trace	
17	D	240	Total 1909	C 1218	N 327	O 350	S 14	0	0
17	Ο	240	Total 1909	C 1218	N 327	O 350	S 14	0	0

• Molecule 18 is a protein called Cytochrome b-c1 complex subunit Rieske, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	F	106	Total	С	Ν	Ο	\mathbf{S}	0	0
10	Ľ	190	1164	702	219	237	6	0	0
18	D	106	Total	С	Ν	Ο	\mathbf{S}	0	0
10	1	190	1164	702	219	237	6	0	0
1.0	Т	79	Total	С	Ν	Ο	S	0	0
10	L	10	554	352	103	97	2	0	0

• Molecule 19 is a protein called Cytochrome b-c1 complex subunit 7.

Mol	Chain	Residues		At	oms		AltConf	Trace	
10	F	101	Total	С	Ν	0	S	0	0
19	Г	101	894	572	159	160	3	0	0
10	0	102	Total	С	Ν	0	S	0	0
19	Q	102	900	575	160	162	3	0	0

• Molecule 20 is a protein called Cytochrome b-c1 complex subunit 8.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	C	77	Total	С	Ν	0	S	0	0
20	G	11	654	424	120	109	1	0	0
20	D	77	Total	С	Ν	0	S	0	0
20	n	11	654	424	120	109	1	0	0

• Molecule 21 is a protein called Cytochrome b-c1 complex subunit 6, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
21	Н	66	Total 545	C 333	N 101	0 106	${ m S}{ m 5}$	0	0
21	S	68	Total 563	C 343	N 103	0 112	${S \atop 5}$	0	0

• Molecule 22 is a protein called Cytochrome b-c1 complex subunit 9.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
22	T	60	Total	С	Ν	0	0	0
22	0	00	495	323	86	86	0	0
22	II	60	Total	С	Ν	0	0	0
	U	00	495	323	86	86	0	0

• Molecule 23 is a protein called Cytochrome b-c1 complex subunit 10.

Mol	Chain	Residues		Atc	\mathbf{ms}		AltConf	Trace	
23	K	59	Total	С	Ν	Ο	S	0	0
20	IX	52	430	287	76	66	1	0	0
23	V	53	Total	С	Ν	Ο	\mathbf{S}	0	0
20	v		438	292	77	67	2	0	0

• Molecule 24 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial.

Mol	Chain	Residues		A	toms		AltConf	Trace	
24	6	157	Total 1258	C 802	N 227	0 215	S 14	0	0

• Molecule 25 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial.

Mol	Chain	Residues		At		AltConf	Trace		
25	C1	208	Total 1730	C 1116	N 297	0 314	${ m S} { m 3}$	0	0

• Molecule 26 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
26	D1	430	Total 3464	C 2215	N 595	O 630	S 24	0	0

• Molecule 27 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	2	214	Total 1660	C 1056	N 279	0 314	S 11	0	0

• Molecule 28 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
28	1	430	Total 3321	C 2092	N 596	0 611	S 22	0	0

• Molecule 29 is a protein called NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial.

Mol	Chain	Residues		A		AltConf	Trace		
29	3	690	Total 5305	C 3326	N 921	0 1017	S 41	0	0

• Molecule 30 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
30	9	178	Total 1431	C 898	N 245	О 276	S 12	0	0

• Molecule 31 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
31	P1	342	Total 2748	C 1777	N 483	0 481	${ m S} 7$	0	0

• Molecule 32 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
30	01	126	Total	С	Ν	Ο	\mathbf{S}	0	0
52	Q1	120	1022	646	180	192	4	0	0

• Molecule 33 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	7	96	Total 758	C 470	N 141	0 144	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	S1	84	Total 671	C 421	N 127	O 120	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called Acyl carrier protein, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
35	Т1	79	Total	С	Ν	Ο	\mathbf{S}	0	0
- 55	11	19	637	410	95	127	5	0	0
35	TT1	88	Total	С	Ν	Ο	\mathbf{S}	0	0
00		00	706	453	104	144	5		

• Molecule 36 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	V1	113	Total 923	C 602	N 153	0 165	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	W1	114	Total 970	C 619	N 180	0 165	S 6	0	0

• Molecule 38 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	q1	145	Total 1209	C 777	N 215	O 212	${ m S}{ m 5}$	0	0

• Molecule 39 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	r1	99	Total 796	C 504	N 148	0 141	${ m S} { m 3}$	0	0

• Molecule 40 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
40	s1	42	Total 351	C 219	N 62	O 70	0	0

• Molecule 41 is a protein called NADH-ubiquinone oxidoreductase chain 3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	A1	115	Total 932	C 633	N 132	0 160	S 7	0	0

• Molecule 42 is a protein called NADH-ubiquinone oxidoreductase chain 1.

Mol	Chain	Residues		At	AltConf	Trace			
42	H1	318	Total 2540	C 1706	N 384	0 428	S 22	0	0

• Molecule 43 is a protein called NADH-ubiquinone oxidoreductase chain 6.

Mol	Chain	Residues		A	AltConf	Trace			
43	J1	172	Total 1308	C 878	N 186	O 229	S 15	0	0

• Molecule 44 is a protein called NADH-ubiquinone oxidoreductase chain 4L.

Mol	Chain	Residues		A	AltConf	Trace			
44	K1	98	Total 737	C 477	N 112	O 137	S 11	0	0

• Molecule 45 is a protein called NADH-ubiquinone oxidoreductase chain 5.

Mol	Chain	Residues	Atoms					AltConf	Trace
45	L1	606	Total 4800	C 3182	N 746	O 827	$\begin{array}{c} \mathrm{S} \\ 45 \end{array}$	0	0

• Molecule 46 is a protein called NADH-ubiquinone oxidoreductase chain 4.

Mol	Chain	Residues		At	AltConf	Trace			
46	M1	459	Total 3632	C 2408	N 567	0 617	S 40	0	0

• Molecule 47 is a protein called NADH-ubiquinone oxidoreductase chain 2.

Mol	Chain	Residues	Atoms					AltConf	Trace
47	N1	345	Total 2703	C 1795	N 417	0 454	S 37	0	0

• Molecule 48 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial.

Mol	Chain	Residues		At		AltConf	Trace		
48	01	320	Total 2607	C 1674	N 431	O 492	S 10	0	0

• Molecule 49 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8.

Mol	Chain	Residues		A	toms			AltConf	Trace
49	X1	171	Total 1396	C 889	N 250	O 247	S 10	0	0

• Molecule 50 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	Y1	140	Total 1037	C 662	N 175	O 192	S 8	0	0

• Molecule 51 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex sub-

unit 13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
51	Z1	141	Total	C 750	N 207	0	S °	0	0
			1107	750	207	202	8		

• Molecule 52 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
52	a1	70	Total 572	C 370	N 101	O 97	${S \over 4}$	0	0

• Molecule 53 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	b1	83	Total 651	С 427	N 105	0 115	$\frac{S}{4}$	0	0

• Molecule 54 is a protein called NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochondrial.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
54	c1	48	Total 398	C 261	N 69	O 67	S 1	0	0

• Molecule 55 is a protein called NADH dehydrogenase [ubiquinone] 1 subunit C2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
55	d1	120	Total 996	C 651	N 171	0 165	S 9	0	0

• Molecule 56 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 5.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
56	e1	105	Total 877	C 555	N 162	0 152	S 8	0	0

• Molecule 57 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
57	f1	53	Total 456	C 295	N 82	0 77	${ m S} { m 2}$	0	0

• Molecule 58 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
58	g1	101	Total 850	C 549	N 136	O 161	$\frac{S}{4}$	0	0

• Molecule 59 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
59	h1	139	Total 1166	C 764	N 195	O 204	${ m S} { m 3}$	0	0

• Molecule 60 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
60	i1	106	Total 897	C 584	N 157	0 152	${S \atop 4}$	0	0

• Molecule 61 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
61	j1	65	Total 562	C 370	N 93	O 98	S 1	0	0

• Molecule 62 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3.

\mathbf{Mol}	Chain	Residues		At	\mathbf{oms}		AltConf	Trace	
62	k1	77	Total 626	C 414	N 106	0 104	${ m S} { m 2}$	0	0

• Molecule 63 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
63	11	157	Total 1323	C 855	N 220	O 237	S 11	0	0

• Molecule 64 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
64	m1	196	Total	С	N	O	0	0
04	1111	120	1050	676	189	185	0	0

• Molecule 65 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9.

Mol	Chain	Residues		A	toms			AltConf	Trace
65	n1	178	Total 1541	C 985	N 276	O 269	S 11	0	0

• Molecule 66 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7.

Mol	Chain	Residues	Atoms					AltConf	Trace
66 o1	01	118	Total	С	Ν	0	\mathbf{S}	0	0
	01	110	1014	639	190	177	8	0	0

• Molecule 67 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10.

Mol	Chain	Residues	Atoms					AltConf	Trace
67	p1	170	Total 1438	C 903	N 258	O 269	S 8	0	0

• Molecule 68 is COPPER (II) ION (three-letter code: CU) (formula: Cu).

Mol	Chain	Residues	Atoms	AltConf
68	n	1	Total Cu 1 1	0

• Molecule 69 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	AltConf
69	n	1	Total Na 1 1	0

• Molecule 70 is HEME-A (three-letter code: HEA) (formula: $C_{49}H_{56}FeN_4O_6$).

Mol	Chain	Residues	Atoms				AltConf	
70	n	1	Total	С	Fe	Ν	Ο	0
			60	49	1	4	6	0
70) n	n 1	Total	С	Fe	Ν	Ο	0
70			60	49	1	4	6	0

• Molecule 71 is 1,2-Distearoyl-sn-glycerophosphoethanolamine (three-letter code: 3PE) (formula: $C_{41}H_{82}NO_8P$).

Mol	Chain	Residues		Ato	oms			AltConf
71	n	1	Total	С	Ν	0	Р	0
(1	п	1	34	24	1	8	1	0
71	n	1	Total	С	Ν	Ο	Р	0
11	11	1	28	18	1	8	1	0
71	n	1	Total	С	Ν	Ο	Р	0
11	11	Ĩ	27	17	1	8	1	0
71	0	1	Total	С	Ν	Ο	Р	0
		1	29	19	1	8	1	0
71	p	1	Total	С	Ν	0	Р	0
	P	-	45	35	1	8	1	Ŭ
71	t	1	Total	С	Ν	O	Р	0
		_	25	15	1	8	1	
71	v	1	Total	C	N	0	Р	0
			28	18	1	8	1	
71	А	1	Total	C	N	0	Р	0
			23	13	1	8	1 	
71	С	1	Total	C	N 1	0	Р 1	0
			35	$\frac{25}{C}$	1	8	1 	
71	С	1	Total	C	N 1	0	Р 1	0
			31	21	1 	8	1 	
71	Ε	1	Total	C	IN 1	0	Р 1	0
			32 Tatal	22	1 N	8	1 D	
71	G	1	10tai 51	41	1N 1	0 o	Г 1	0
			Total	$\frac{41}{C}$	I N	0	1 D	
71	L	1	10tai 93	13	1 1	8	1	0
			 Total	$\frac{10}{C}$	N	$\overline{0}$	P	
71	Ν	1	34	$\frac{0}{24}$	1	8	1	0
			Total	$\frac{21}{C}$	N	0	P	
71	Ν	1	37	27	1	8	1	0
			Total	<u> </u>	N	0	P	
71	0	1	33	23	1	8	1	0
			Total	C	N	0	P	
71	R	1	30	20	1	8	1	0
	6		Total	C	Ν	0	Р	6
71	6	1	32	22	1	8	1	0
P 1			Total	С	Ν	0	Р	0
(1		1	51	41	1	8	1	U
71	1	1	Total	С	Ν	0	Р	0
(1	r1		46	36	1	8	1	U
71	Λ 1	1	Total	С	Ν	0	Р	0
(1	AI	L	43	33	1	8	1	U
71	Ц 1	1	Total	С	Ν	0	Р	0
(1	пі		51	41	1	8	1	U

Mol	Chain	Residues		Ato	oms			AltConf
71	K1	1	Total	С	Ν	Ο	Р	0
(1	K1	L	41	31	1	8	1	0
71	Τ1	1	Total	С	Ν	Ο	Р	0
(1		L	51	41	1	8	1	0
71	71 M1	1	Total	С	Ν	0	Р	0
11	IVII	L	51	41	1	8	1	0
71	М1	1	Total	С	Ν	0	Р	0
11	IVII	L	51	41	1	8	1	0
71	М1	1	Total	С	Ν	0	Р	0
11	IVII	L	36	26	1	8	1	0
71	N1	1	Total	С	Ν	0	Р	0
11	111	T	38	28	1	8	1	0
71	V1	1	Total	С	Ν	0	Р	0
11	11	T	28	18	1	8	1	0
71	V1	1	Total	С	Ν	Ο	Р	0
11	11	T	42	32	1	8	1	0
71	d1	1	Total	С	Ν	Ο	Р	0
11	uı	T	31	21	1	8	1	0
71	d1	1	Total	С	Ν	0	Р	0
(1	aı	d1 1	32	22	1	8	1	U
71	;1 1	Total	С	Ν	0	Р	0	
71	11		42	32	1	8	1	U

Continued from previous page...

 $\bullet\,$ Molecule 72 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
72	О	1	Total Mg 1 1	0
72	01	1	Total Mg 1 1	0

• Molecule 73 is DINUCLEAR COPPER ION (three-letter code: CUA) (formula: Cu_2).

Mol	Chain	Residues	Atoms	AltConf
73	О	1	Total Cu 2 2	0

• Molecule 74 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
74	s	1	Total Zn 1 1	0
74	7	1	Total Zn 1 1	0

• Molecule 75 is TRISTEAROYLGLYCEROL (three-letter code: TGL) (formula: $C_{57}H_{110}O_6$).

Mol	Chain	Residues	Atoms	AltConf
75	У	1	Total C O 37 31 6	0

• Molecule 76 is CARDIOLIPIN (three-letter code: CDL) (formula: $C_{81}H_{156}O_{17}P_2$).

Mol	Chain	Residues	A	Aton	ns		AltConf
76	Λ	1	Total	С	0	Р	0
10	A	1	46	27	17	2	0
76	С	1	Total	С	Ο	Р	0
10	U	T	42	23	17	2	0
76	C	1	Total	С	Ο	Р	0
10	G	T	56	37	17	2	0
76	Ν	1	Total	С	Ο	Р	0
10	11	1	46	27	17	2	0
76	0	1	Total	С	Ο	Р	0
10	U	1	57	38	17	2	0
76	В	1	Total	С	Ο	Р	0
10	10	1	41	22	17	2	0
76	B	1	Total	\mathbf{C}	Ο	Р	0
10	п	1	57	38	17	2	0
76	B	1	Total	\mathbf{C}	Ο	Р	0
10	10	1	72	53	17	2	0
76	H1	1	Total	\mathbf{C}	Ο	Р	0
10	111	1	51	33	16	2	0
76	L1	1	Total	\mathbf{C}	Ο	Р	0
	1/1	1	78	59	17	2	0
76	L1	1	Total	C	Ō	Р	0
		L	46	27	17	2	

Continued from	<i>i</i> previous	page

Mol	Chain	Residues	A	AltConf			
76	N1	1	Total	С	0	Р	0
10	111	1	90	71	17	2	0
76	V1	1	Total	С	0	Р	0
10	11	1	94	75	17	2	0
76		1	Total	С	0	Р	0
10	aı	1	57	38	17	2	0
76	d1	1	Total	С	0	Р	0
10	ui	1	67	48	17	2	0
76	h1	1	Total	С	0	Р	0
10	111		70	51	17	2	0

• Molecule 77 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: $C_{34}H_{32}FeN_4O_4$).

Mol	Chain	Residues		Atoms				
77	C	1	Total	С	Fe	Ν	0	0
	U	1	43	34	1	4	4	0
77	C	1	Total	С	Fe	Ν	0	0
	U	1	43	34	1	4	4	0
77	N	1	Total	С	Fe	Ν	0	0
	IN	1	43	34	1	4	4	0
77	N	1	Total	С	Fe	Ν	Ο	0
	IN	1	43	34	1	4	4	0

• Molecule 78 is HEME C (three-letter code: HEC) (formula: $C_{34}H_{34}FeN_4O_4$).

Mol	Chain	Residues	Atoms					AltConf
78	Л	1	Total	С	Fe	Ν	Ο	0
10	D	L	43	34	1	4	4	0
79	0	1	Total	С	Fe	Ν	Ο	0
10	0	L	43	34	1	4	4	0

• Molecule 79 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	AltConf
79	Ε	1	TotalFeS422	0
79	Р	1	TotalFeS422	0

Mol	Chain	Residues	Atoms	AltConf
70	0	1	Total Fe S	0
19	Δ	1	4 2 2	0
70	2	1	Total Fe S	0
19	ა		4 2 2	0

• Molecule 80 is 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE (three-letter code: PC1) (formula: $C_{44}H_{88}NO_8P$).

Mol	Chain	Residues	Atoms	AltConf
80	т	1	Total C N O P	0
00	J	I	35 25 1 8 1	0
80	K	1	Total C N O P	0
00	17	T	28 18 1 8 1	0
80	T	1	Total C N O P	0
00		T	24 14 1 8 1	0
80	V	1	Total C N O P	0
00	v	I	28 18 1 8 1	0
80	6	1	Total C N O P	0
00	0	I	43 33 1 8 1	0
80	q	1	Total C N O P	0
00	5	I	54 44 1 8 1	0
80	Q	1	Total C N O P	0
00	5	I	47 37 1 8 1	0
80	0 P1	1	Total C N O P	0
	11	1	31 21 1 8 1	U
80	V1	1	Total C N O P	0
	11	1	54 44 1 8 1	0

• Molecule 81 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	AltConf
81	6	1	Total Fe S 8 4 4	0
81	1	1	TotalFeS844	0
81	3	1	TotalFeS844	0
81	3	1	TotalFeS844	0
81	9	1	TotalFeS844	0
81	9	1	TotalFeS844	0

• Molecule 82 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula: $C_{17}H_{21}N_4O_9P$).

Mol	Chain	Residues	Atoms					AltConf
82	1	1	Total 31	C 17	N 4	0 9	Р 1	0

• Molecule 83 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
83	3	1	Total K 1 1	0

• Molecule 84 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NDP) (formula: $C_{21}H_{30}N_7O_{17}P_3$).

Mol	Chain	Residues	Atoms					AltConf
01	D1	1	Total	С	Ν	Ο	Р	0
04	ГІ	L	48	21	7	17	3	0

• Molecule 85 is S-[2-({N-[(2S)-2-hydroxy-3,3-dimethyl-4-(phosphonooxy)butanoyl]-beta-alan yl}amino)ethyl] tetradecanethioate (three-letter code: ZMP) (formula: $C_{25}H_{49}N_2O_8PS$).

Mol	Chain	Residues	Atoms			AltConf				
95	W1	1	Total	С	Ν	0	Р	S	0	
0.0		VV 1	VV 1	1	34	23	2	7	1	1
95	n1	1	Total	С	Ν	0	Р	S	0	
00	111	1	32	21	2	$\overline{7}$	1	1	0	

• Molecule 86 is 2'-DEOXYGUANOSINE-5'-TRIPHOSPHATE (three-letter code: DGT) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues	Atoms				AltConf	
96	01	1	Total	С	Ν	Ο	Р	0
80	01	L	31	10	5	13	3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Cytochrome c oxidase subunit 1

Chain n:	99%	
M1 1196 1209 1236 1283 1283 1383 1435 1435 1435		
• Molecule 2: Cytoc	chrome c oxidase subunit 2	
Chain o:	99%	
M1 L73 L73 L73 L73 L73 L73 L73		
• Molecule 3: Cytoc	throme c oxidase subunit 3	
Chain p:	99%	
MET 12 L151 S261		
• Molecule 4: Cytoc	hrome c oxidase subunit 4 isofor	m 1, mitochondrial
Chain q:	81%	• 18%
MET LIEU ALA ALA ARG ARG CIEU CIEU CIEU CIEU CIE CIE CIE CIE CIE CIE CIE CIE CIE CIE	SER THR SER VAL CYS CYS CYS LEU ARG ALA ALA ALA ALA ALA ALA CYS CS CS CS CS CS CS CS CS CS CS CS CS CS	
• Molecule 5: Cytoc	chrome c oxidase subunit 5A, mit	tochondrial
Chain r:	71%	29%
NET LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ARG GLY LEEU LEEU LEEU HTS PHO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALS CLY SER HIS E6 V109
• Molecule 6: Cytoc	hrome c oxidase subunit 5B, mit	tochondrial
Chain s:	73%	• 27%

• Molecule 7: Cytochrome c oxidase subunit 6A2, mitochondrial

Chain t:	77%	23%	_
MET ALA LEU PRO LEU LYS VAL LEU SER	ARG SER MET ALA ALA ALA ALA ALA ALA ALA CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY		
• Molecule 8	8: Cytochrome c oxidase subunit 6B1		
Chain u:	90%	•	8%
MET ALA ALA GLU ASP ILE LYS LYS THR THR T18			
• Molecule §	9: Cytochrome c oxidase subunit 6C		
Chain v:	93%		7%
MET SER SER GLY ALA L5 K75			
• Molecule 1	10: Cytochrome c oxidase subunit 7B, mitochondrial		
Chain x:	61% 39%		
MET LEU PRO LEU ALA LYS ASN ALA LEU	SER LEU ARC CLIN ARC CLIN ARC CLIN VAL ARC CLIN VAL CLIN CLIN CLIN ARC ARC CLIN CLIN CLIN CLIN CLIN CLIN CLIN CLI		
• Molecule 1	11: Cytochrome c oxidase subunit 7C, mitochondrial		
Chain y:	75%	25%	
MET LEU GLY GLN SER ILE ARG ARG PHE	THR SER VAL ARG ARG K47		
• Molecule 1	12: Cytochrome c oxidase subunit 8B, mitochondrial		
Chain z:	61% 39%		
MET PRO ARG LEU PRO TLE LEU ARG	LEU CLEU CLEU ALA ALA ALA FRO FRO FRO FRO FRO FRO FRO FRO FRO FRO		
• Molecule 1	13: Cytochrome c oxidase subunit 7A2, mitochondria	ıl	
Chain w:	67% · 31	%	_

• Molecule 17: Cytochrome c1, heme protein, mitochondrial

Chain O:	74%	26%
MET ALA ALA ALA ALA ALA ALA SER ELEU ARG ARG	VALL VALL LEU LEU ARG ARG ARG ALY CLY CLY CLY CLY CLY CLY CLY CLY CLY C	PLEU PLEU LEU PLRO PLRO PLRO PLRO PLRO PLRO PLV PLO PLV PLV PLV PLV PLV PLV PLV PLV PLV PLV
LEU SER ALA ALA LEU GLY MET LEU ALA ALA GLY	ALM ALM CITY LEU ALA ALA ALA ALA SER SER ALA S1 LYS LYS	
• Molecule 18:	Cytochrome b-c1 complex subuni	t Rieske, mitochondrial
Chain E:	72%	28%
MET LEU VAL ALA ALA ALA ARG SER GLY PRO	ALA ALA PRO LEU VAL LEU SER ALA ALA ALA ALA CLU ALA ALA ALA ALA ALA ALA ALA	ALA SER GLU PRO PRO PRO LEU VAL LEV ARG CLV SER ARG CLV SER GLU SER GLV ALA
ALA ARG PRO PRO LEU VAL ALA THR VAL CEU	VAL PRO ALLA ALLA ALLA VAL ARG SI SI C196	
• Molecule 18:	Cytochrome b-c1 complex subuni	t Rieske, mitochondrial
Chain P:	71%	• 28%
MET LEU VAL ALA ALA ALA ARG SER GLY PRO	ALA PRO LEU VAL SER ALA ALA ALA ALA CLEU CLEU CLN GLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ALA SER GLU PRO PRO PRO LEU VAL LEV ARG PHE CYS SER RCYS SER ARG GLU SER GLU ALA
ALA ARG PRO LLEU VAL ALA ALA ACA	VAL VAL SER SER ARG ARG B9 B9 C196 C196	
• Molecule 18:	Cytochrome b-c1 complex subuni	t Rieske, mitochondrial
Chain T:	28%	72%
M1 F78 SER HIS ASP VAL LYS VAL	APHE PHE ASP ASP ARG ARG ARG ALA CUU CVAL LYS SER SER SER SER SER SER SER SER SER SE	CLY PHE SER SER SER SER LEU VAL THR THR THR THR THR VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA
PHE VAL SER SER MET SER ALA ALA ALA ALA	LIA MITA MITA MITA SER SER LIYS CIU CIU CIU CIU CIU CIU CIU CIU CIU CIU	LYS LYS PHE PHE PHE ARG LEV ARG CYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS
ARG ASP PRO GLN HIS ASP ASP ASP ASP ASP VAL	LED PRO OLU TRP OLU TRP ILEU ILEU ILEU ILEU ILEU CYS CYS CYS CYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	GLY TYR TYR TYR CYS PRO CYS PRO CYS FIS HIS HIS HIS HIS ALA ASP ALA SER ALA SER ALA SIR ALA ARG CLY THIS CYS ASP ASP ASP ASP ASP ASP ASP ASP ASP AS
LEU ASN GLU GLU PRO ALA ALA GLU GLU THE	ASP ASP VAL VAL VAL GLY	

• Molecule 19: Cytochrome b-c1 complex subunit 7

Chain F:	90% .	9%
MET ALA GLY ARG SER ALA VAL	ALA SER	
• Molecule	e 19: Cytochrome b-c1 complex subunit 7	
Chain Q:	92%	8%
MET ALA GLY ARG SER ALA VAL	SER SSER	
• Molecule	e 20: Cytochrome b-c1 complex subunit 8	
Chain G:	94%	6%
MET GLY E78 ASN ASP	LYS	
• Molecule	e 20: Cytochrome b-c1 complex subunit 8	
Chain R:	91%	• 6%
MET GLY R2 N6 K72	E78 ASP LYS	
• Molecule	e 21: Cytochrome b-c1 complex subunit 6, mitochondrial	
Chain H: '	74% 26%	
MET GLY LEU GLU ASP GLU ARG	MET LEU GLU ASP PRO GLU GLU GLU GLU GLU GLU GLU	
• Molecule	e 21: Cytochrome b-c1 complex subunit 6, mitochondrial	
Chain S:	76% 24%	
MET GLY LEU GLU ASP GLU ARG	RIYS RHT ARSP ARSP ARSP ARSP ARSP ARSP ARSP ARSP	
• Molecule	e 22: Cytochrome b-c1 complex subunit 9	
Chain J:	94%	6%
MET SER S2 S2 N61 LYS GLU		

 \bullet Molecule 22: Cytochrome b-c1 complex subunit 9

Chain U:	94%	6%
MET SER S2 S2 C C V G LV GLU		
• Molecule 2	23: Cytochrome b-c1 complex subunit 10	
Chain K:	93%	7%
MET L2 K53 LYS ASP ASP		
• Molecule 2	23: Cytochrome b-c1 complex subunit 10	
Chain V:	95%	5%
M1 K53 ASP ASP		
• Molecule 2	4: NADH dehydrogenase [ubiquinone] iron-sulfur protein 7,	mitochondrial
Chain 6:	70% 30%	_
MET ALA ALA ALA ALA PRO GLY LEU	SER LEU VAL ARG LEU LEU CLEU CLEU CLEU CLEU CLEU CLEU C	ALA GLY ALA GLY GLY ALA VAL VAL
PRO LYS LEU SER HIS LEU PRO R33		
• Molecule 2	25: NADH dehydrogenase [ubiquinone] iron-sulfur protein 3,	mitochondrial
Chain C1:	79% 21%	_
MET ALA ALA ALA ALA ALA ARG VAL TRP	CYS CYS LEU LEU LEU LEU CLEU CLEU CLEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	ASP LYS LYS LYS PRO GLU CHR LYS
• Molecule 2	26: NADH dehydrogenase [ubiquinone] iron-sulfur protein 2,	mitochondrial
Chain D1:	92%	7%
MET ALA ALA ALA LEU ARG ARG CYS	LEU ARG CLY CLY ALA ALA ALA CLY ALA CLY ALA CLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	
• Molecule 2	7: NADH dehydrogenase [ubiquinone] flavoprotein 2, mitoc	hondrial
Chain 2:	85% · 14%	_
MET PHE SER SER LEU ALA ALA ARG ARG	ALA GLY ALA ALA ALA ALA ALA CLN GLY ASN CLN ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	

L D W I D E

• Molecule 28: NADH dehydrogenase	e [ubiquinone] flavoprotein 1,	mitochondrial
Chain 1:	93%	7%
MET LEU ALA ALA ALA ARG HIS PHE GLY GLY GLY GLY CLEU CLEU CLEU CLEU VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL	K9 K436 ALA TRP GLN ALA ALA SER	
• Molecule 29: NADH-ubiquinone ox	idoreductase 75 kDa subunit	, mitochondrial
Chain 3:	95%	5%
MET LEU LEU LLE TLE PRO TLE LYS ARG ALA SER SER SER SER SER CLY CLYS CLY CLY SER ALA ALA	A5 K444 GE94 ALA ALA ALA ALA ALA CU CU SER ILE SER CYS	
• Molecule 30: NADH dehydrogenase	e [ubiquinone] iron-sulfur pro	tein 8, mitochondrial
Chain 9: 83	% .	16%
MET TYR ARG LEU LEU SER SER SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	SER SER SER ALA ALA ALA ALA ALA B15 B11 B114 B114 B114 B114 B114 B114 B	
• Molecule 31: NADH dehydrogena drial	ase [ubiquinone] 1 alpha sub	ocomplex subunit 9, mitochon-
Chain P1:	90%	• 9%
MET ALA ALA ALA ALA ARA ARG VAL VAL VAL VAL CALA ALA ALA ALA ALA ALA ALA ALA ALA	PHE CPHE GLY SER SER HIS GLN CLI CL96 CL1 CL96 CL1 CL27 CL27 CL27 CL27 CL27 CL27 CL27 CL27	
• Molecule 32: NADH dehydrogenase	e [ubiquinone] iron-sulfur pro	tein 4, mitochondrial
Chain Q1: 72%		28%
MET ALA ALA ALA ALA ALA SER SER SER SER SER CLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	CYS ARG VAL VAL SER ARG SER THR THR THR THR THR THR THR THR THR ASP ASP ASP	
• Molecule 33: NADH dehydrogenase	e [ubiquinone] iron-sulfur pro	tein 6, mitochondrial
Chain 7: 829	6 ·	17%
MET ALA ALA ALA ALA THR PHE ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL		
• Molecule 34: NADH dehydrogenase	e [ubiquinone] 1 alpha subcor	nplex subunit 2
Chain S1:	34%	• 15%
MET ALA ALA ALA ALA ALA ALA CLY CLY CLY ALA CLY CLY ALA ALA ALA ALA		

WORLDWIDE PROTEIN DATA BANK

• Molecule 35: Acyl carrier protein, mitochondrial
Chain T1: 51% 49%
MET MET ALA ALA ALA ALA ALA ALA CYS CYS CYS CYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
VAL HIS LHIS CTS CTS CTS CTS CTS CTS ASP PRO PRO CTS CTS CTS CTS CTS CTS CTS CTS CTS CTS
• Molecule 35: Acyl carrier protein, mitochondrial
Chain U1: 56% 44%
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
VAL THR LEU CYS CAR GLN TTR E88
\bullet Molecule 36: NADH dehydrogen ase [ubiquinone] 1 alpha subcomplex subunit 5
Chain V1: 97% ·
MET ALA GLY LIS 115
\bullet Molecule 37: NADH dehydrogen ase [ubiquinone] 1 alpha subcomplex subunit 6
Chain W1: 87% 13%
MET ALLA ALLA ALLA ALLA CLUY CLUY CLUY CLUA CLUA ALLA ALLA ALLA ALLA ALLA ALLA
\bullet Molecule 38: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12
Chain q1: 100%
There are no outlier residues recorded for this chain.
\bullet Molecule 39: NADH dehydrogen ase [ubiquinone] 1 alpha subcomplex subunit 7
Chain r1: 87% • 12%
MET VTA SER SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA CO CO CO CO CO CO CO CO CO CO CO CO CO
\bullet Molecule 40: NADH dehydrogenase [ubiquinone] flavo protein 3, mitochondrial
Chain s1: 39% • 60%

• Molecule 41: NADH-ubiquinone oxidoreductase chain 3

Chain A1:	97%	•
M1 L67 L98 C198 E115		
• Molecule 42: NADH-u	ıbiquinone oxidoreductase chain 1	
Chain H1:	99%	·
M1 L85 L233 L233 S276 M318		
• Molecule 43: NADH-u	ıbiquinone oxidoreductase chain 6	
Chain J1:	100%	
There are no outlier resi	idues recorded for this chain.	
• Molecule 44: NADH-u	ıbiquinone oxidoreductase chain 4L	
Chain K1:	98%	•
<mark>M1 200 200 200 200 200 200 200 200 200 20</mark>		
• Molecule 45: NADH-u	ıbiquinone oxidoreductase chain 5	
Chain L1:	100%	
M1 L606 GLU		
• Molecule 46: NADH-u	ıbiquinone oxidoreductase chain 4	
Chain M1:	99%	·
M1 L115 L174 L174 M459 M459		
• Molecule 47: NADH-u	ıbiquinone oxidoreductase chain 2	
Chain N1:	100%	

M1 L232 T345

 \bullet Molecule 48: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial

Chain O1:	90%	10%
MET ALA LEU ARG LEU LEU ARG LEU	PAL PAL ALA ALA ALA ALA ALA ALA ALA ALA	
• Molecule	49: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex s	subunit 8
Chain X1:	99%	
MET P1 V171		
• Molecule	50: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex s	subunit 11
Chain Y1:	99%	·
MET V1 V140		
• Molecule	51: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex s	subunit 13
Chain Z1:	97%	
MET ALA ALA S3 R26 T143		
• Molecule	52: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex s	subunit 1
Chain a1:	100%	_
There are r	no outlier residues recorded for this chain.	
• Molecule	53: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex s	subunit 3
Chain b1:	96%	
MET A1 D59 L83		
• Molecule	54: NADH dehydrogenase [ubiquinone] 1 subunit C1, mitoch	ondrial
Chain c1:	63% 37%	_

E-	Α		ч	ч	Ц	D	5	ч	ы	Я	5	D	D	Α	0	A	5	D	0	Я	S	Ч	Ч	ч	3	щ		8
띮.	1	R.	12	A	A	띡.	H	EN.	H	E.	E	9	띡	H	R.	H	H	띡	R	E.	2	12	12	E	E	EN.	크	4
~	-	-	01	~	-	-	-	01	н	01	-	н	-	-	н	-	-	-	н	01	0	01	01	-	-	01	121	-

• Molecule 55: NADH dehydrogenase [ubiquinone] 1 subunit C2

Chain d1: 99%

• Molecule 56: NADH dehydrogenase [ubiquinone] iron-sulfur protein 5

Chain e1:	99%	

MET P1 P105

• Molecule 57: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1

Chain f1:	91%	·	7%
MET THR PHEU PHEU KS7			

• Molecule 58: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, mitochondrial

Chain g1:	67%	33%
MET ALA ALA ALA ALA LEU LEU LEU LEU TYR GLY ARG CYS	SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PRO- SER SER CLY VAL LYS CLU ARG ARG ARG ARG ARG CLU PRO PRO PRO PRO ASP

 \bullet Molecule 59: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial

Chain h1:	74%	26%
MET ALA ALA ALA ALA EEU LEU CLEU CLEU CLEU ARG ARG ARG ARG SER VAL	ALA LILU THR ALA ALA CYS CYS CYS CYS ARG ALA ARG ALA ARG CLY VAL ARG CLY VAL ARG CLY THR PRO SER ARG CLY VAL ARG CLY VAL ARG ARG CLY VAL ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	TTI VAL VAL PRO PRO PRO PRO PRO PRO CIY CIY ARC CIY ARC CIY CIY CIY CIY CIY CIY CIY CIY CIY CI

• Molecule 60: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6

Chain i1:	81%	••	17%
121 121 121 122 122 122 122 122 122 122			

 \bullet Molecule 61: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial

Chain j1:	62%	38%	
MET SER SER ALA LEU THR ARG CLEU PRO PHE GLY ARG	VAL VAL GLY GLY CLEU LEU LEU LEU LEU LEU ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	GLY GLY D69 ASP GLU ASP ASP	
• Molecule 62: 1	NADH dehydrogenase [ubiquino	ne] 1 beta subcomplex subu	nit 3
Chain k1:	73%	• 26%	
MET ALA ALA ALA GLY HIS GLV HIS GLV HIS GLY	HIS GLY HIS HIS HIS CLY CLY SER CLN ASN GLY ASN CLN HIS HIS HIS		
• Molecule 63: drial	NADH dehydrogenase [ubiqu	inone] 1 beta subcomplex s	subunit 8, mitochon-
Chain l1:	84%	16%	
MET ALA ALA ALA ALA ALA ALA ALA CLY CLY CLY ALA CLY	TRP LEU GLN GLN THR THR THR ARG GLY VAL VAL VAL VAL VAL VAL ARG ARG ARG ARG ALA ALA ALA ALA		
• Molecule 64: 1	NADH dehydrogenase [ubiquino	ne] 1 beta subcomplex subu	nit 4
Chain m1:	98%		
MET SER GLY S3 Y128 Y128			
• Molecule 65: 1	NADH dehydrogenase [ubiquino	ne] 1 beta subcomplex subu	nit 9
Chain n1:	99%		I
MET A1 T178			
• Molecule 66: 1	NADH dehydrogenase [ubiquino	ne] 1 beta subcomplex subu	nit 7
Chain o1:	85%	• 14%	
MET G1 D56 E118 ALA ALA ALA ALA GLN GLN	GLN GLY GLY GLU GLU VAL GLU SLU VAL ALA LLZU		
• Molecule 67: 1	NADH dehydrogenase [ubiquino	ne] 1 beta subcomplex subu	nit 10
Chain p1:	97%		I
MET PRO D2 D2 D2 G17 G17 G17 A1A A1A A1A A1A			

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	57506	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	80	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	81000	Depositor
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, 2MR, FMN, NA, HEC, SF4, 3PE, CU, CUA, ZMP, HEM, DGT, TGL, FES, FME, K, ZN, SAC, HEA, CDL, PC1, AYA, NDP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles			
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	n	0.32	0/4162	0.65	6/5686~(0.1%)		
2	0	0.31	0/1863	0.75	3/2542~(0.1%)		
3	р	0.31	0/2202	0.68	1/3010~(0.0%)		
4	q	0.31	0/1190	0.67	2/1609~(0.1%)		
5	r	0.30	0/860	0.67	0/1167		
6	s	0.29	0/738	0.67	1/1001~(0.1%)		
7	t	0.27	0/632	0.62	0/866		
8	u	0.33	0/674	0.67	1/910~(0.1%)		
9	V	0.33	0/579	0.76	0/771		
10	Х	0.29	0/396	0.60	0/541		
11	У	0.30	0/399	0.62	0/535		
12	Z	0.28	0/318	0.63	0/433		
13	W	0.27	0/444	0.62	0/598		
14	А	0.27	0/3529	0.56	2/4793~(0.0%)		
14	L	0.28	0/3530	0.56	0/4793		
15	В	0.27	0/3205	0.53	0/4332		
15	М	0.27	0/3205	0.51	0/4332		
16	С	0.29	0/3147	0.57	3/4297~(0.1%)		
16	Ν	0.29	0/3147	0.56	4/4297~(0.1%)		
17	D	0.28	0/1968	0.55	1/2674~(0.0%)		
17	0	0.28	0/1968	0.55	0/2674		
18	Ε	0.28	0/1173	0.52	0/1605		
18	Р	0.28	0/1173	0.51	1/1605~(0.1%)		
18	Т	0.29	0/565	0.64	0/772		
19	F	0.26	0/916	0.61	1/1226~(0.1%)		
19	Q	0.27	0/922	0.54	0/1234		
20	G	0.34	0/673	0.67	0/909		
20	R	0.33	0/673	0.60	0/909		
21	Н	0.32	0/552	0.69	0/739		
21	S	0.30	0/570	0.67	0/763		
22	J	0.28	0/509	0.56	0/687		

Mal	Chain	Bond	lengths	Bond angles			
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5		
22	U	0.27	0/509	0.50	0/687		
23	Κ	0.27	0/446	0.63	0/609		
23	V	0.25	0/454	0.59	0/619		
24	6	0.35	0/1289	0.67	0/1744		
25	C1	0.29	0/1780	0.56	1/2424~(0.0%)		
26	D1	0.29	0/3540	0.54	1/4795~(0.0%)		
27	2	0.29	0/1700	0.54	0/2316		
28	1	0.29	0/3396	0.57	0/4586		
29	3	0.28	0/5392	0.54	0/7305		
30	9	0.30	0/1461	0.59	2/1974~(0.1%)		
31	P1	0.28	0/2823	0.59	2/3828~(0.1%)		
32	Q1	0.27	0/1045	0.55	0/1411		
33	7	0.28	0/773	0.51	0/1041		
34	S1	0.28	0/682	0.64	1/920~(0.1%)		
35	T1	0.30	0/646	0.62	0/869		
35	U1	0.30	0/718	0.53	0/970		
36	V1	0.26	0/945	0.44	0/1281		
37	W1	0.29	0/993	0.60	0/1335		
38	q1	0.29	0/1251	0.58	0/1702		
39	r1	0.28	0/806	0.57	0/1090		
40	s1	0.26	0/360	0.54	0/489		
41	A1	0.31	0/948	0.66	2/1295~(0.2%)		
42	H1	0.34	0/2607	0.70	4/3564~(0.1%)		
43	J1	0.33	0/1330	0.60	0/1810		
44	K1	0.31	0/738	0.66	2/1002~(0.2%)		
45	L1	0.31	0/4913	0.57	0/6686		
46	M1	0.30	0/3709	0.62	2/5052~(0.0%)		
47	N1	0.30	0/2755	0.60	1/3751~(0.0%)		
48	01	0.28	0/2674	0.51	0/3626		
49	X1	0.29	0/1434	0.55	0/1937		
50	Y1	0.30	0/1061	0.58	0/1439		
51	Z1	0.28	0/1198	0.61	0/1616		
52	a1	0.29	0/585	0.63	0/788		
53	b1	0.29	0/666	0.58	1/914~(0.1%)		
54	c1	0.31	0/409	0.55	0/555		
55	d1	0.29	0/1028	0.61	$\overline{1/1387}~(0.1\%)$		
56	e1	0.27	0/900	0.53	0/1199		
57	f1	0.29	0/468	0.60	0/630		
58	g1	0.28	0/878	0.52	0/1196		
59	h1	0.30	0/1201	0.55	0/1626		
60	i1	0.28	0/917	0.54	1/1243~(0.1%)		
61	j1	0.27	0/587	0.51	0/804		
62	k1	0.27	0/646	0.52	0/873		

Mal	Chain	Bond lengths		Bond angles		
IVIOI		RMSZ	# Z > 5	RMSZ	# Z > 5	
63	l1	0.28	0/1379	0.54	0/1882	
64	m1	0.30	0/1079	0.59	0/1463	
65	n1	0.28	0/1596	0.55	0/2162	
66	o1	0.33	0/1039	0.65	1/1394~(0.1%)	
67	p1	0.28	0/1471	0.53	0/1988	
All	All	0.29	0/115107	0.58	$48/156187 \ (0.0\%)$	

There are no bond length outliers.

All (48)	bond	angle	outliers	are	listed	below:
----------	------	-------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	n	195	LEU	CA-CB-CG	11.02	140.66	115.30
41	A1	98	LEU	CA-CB-CG	8.11	133.96	115.30
16	С	332	LEU	CA-CB-CG	8.05	133.81	115.30
6	s	46	ASP	CB-CG-OD1	7.98	125.48	118.30
44	K1	38	LEU	CA-CB-CG	7.77	133.18	115.30
31	P1	272	LEU	CA-CB-CG	7.62	132.82	115.30
2	0	78	LEU	CA-CB-CG	7.25	131.98	115.30
42	H1	233	LEU	CB-CG-CD1	-7.03	99.06	111.00
2	0	68	LEU	CA-CB-CG	6.96	131.32	115.30
66	o1	56	ASP	CB-CG-OD1	6.76	124.39	118.30
46	M1	174	LEU	CA-CB-CG	6.36	129.94	115.30
16	Ν	252	ASP	CB-CG-OD1	6.31	123.98	118.30
18	Р	9	ASP	CB-CG-OD1	6.08	123.78	118.30
53	b1	59	ASP	CB-CG-OD1	6.02	123.72	118.30
16	Ν	58	ASP	CB-CG-OD1	5.95	123.65	118.30
47	N1	232	LEU	CA-CB-CG	5.92	128.91	115.30
14	А	20	ASP	CB-CG-OD1	5.90	123.61	118.30
1	n	209	LEU	CA-CB-CG	5.87	128.81	115.30
17	D	211	MET	CG-SD-CE	5.87	109.60	100.20
16	С	149	LEU	CA-CB-CG	5.86	128.79	115.30
60	i1	59	MET	CA-CB-CG	5.83	123.22	113.30
41	A1	67	LEU	CB-CG-CD2	-5.72	101.27	111.00
31	P1	196	LEU	CA-CB-CG	5.69	128.39	115.30
26	D1	83	LEU	CA-CB-CG	5.67	128.33	115.30
19	F	53	ASP	CB-CG-OD1	5.60	123.34	118.30
1	n	435	GLY	C-N-CA	-5.59	107.71	121.70
30	9	15	ASP	CB-CG-OD1	5.59	123.33	118.30
3	р	151	LEU	CA-CB-CG	5.59	128.15	115.30
55	d1	28	ASP	CB-CG-OD1	5.58	123.33	118.30
1	n	246	LEU	CA-CB-CG	5.57	128.10	115.30
4	q	58	GLN	CA-CB-CG	5.56	125.64	113.40

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
16	N	149	LEU	CA-CB-CG	5.55	128.07	115.30
14	А	327	ASP	CB-CG-OD1	5.51	123.26	118.30
8	u	8	ILE	CG1-CB-CG2	-5.42	99.47	111.40
42	H1	276	SER	C-N-CA	-5.40	108.21	121.70
1	n	283	LEU	CA-CB-CG	5.39	127.70	115.30
42	H1	251	LEU	CA-CB-CG	5.35	127.60	115.30
30	9	114	ASP	CB-CG-OD1	5.35	123.11	118.30
25	C1	77	ASP	CB-CG-OD1	5.34	123.10	118.30
34	S1	78	LEU	CA-CB-CG	5.22	127.31	115.30
16	N	303	LEU	CA-CB-CG	5.21	127.29	115.30
42	H1	85	LEU	CA-CB-CG	5.18	127.21	115.30
4	q	59	LEU	CA-CB-CG	5.13	127.11	115.30
16	С	58	ASP	CB-CG-OD1	5.12	122.91	118.30
2	0	73	LEU	CA-CB-CG	5.12	127.07	115.30
44	K1	38	LEU	CB-CG-CD1	-5.07	102.38	111.00
1	n	195	LEU	CB-CG-CD2	5.06	119.60	111.00
46	M1	115	LEU	CA-CB-CG	5.05	126.91	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	n	512/514~(100%)	490 (96%)	22 (4%)	0	100	100
2	О	225/227~(99%)	215~(96%)	10 (4%)	0	100	100
3	р	258/261~(99%)	248~(96%)	10 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	q	137/169~(81%)	128 (93%)	9 (7%)	0	100	100
5	r	102/146~(70%)	98 (96%)	4 (4%)	0	100	100
6	S	92/128~(72%)	86 (94%)	6 (6%)	0	100	100
7	t	73/97~(75%)	68 (93%)	5 (7%)	0	100	100
8	u	77/86~(90%)	75 (97%)	2 (3%)	0	100	100
9	V	69/76~(91%)	65 (94%)	4 (6%)	0	100	100
10	х	47/80~(59%)	46 (98%)	1 (2%)	0	100	100
11	у	45/63~(71%)	43 (96%)	2 (4%)	0	100	100
12	Z	41/70~(59%)	39 (95%)	2 (5%)	0	100	100
13	W	55/83~(66%)	54 (98%)	1 (2%)	0	100	100
14	А	443/480~(92%)	431 (97%)	12 (3%)	0	100	100
14	L	443/480~(92%)	431 (97%)	12 (3%)	0	100	100
15	В	418/453~(92%)	408 (98%)	10 (2%)	0	100	100
15	М	418/453~(92%)	399 (96%)	19 (4%)	0	100	100
16	С	378/381~(99%)	369 (98%)	9 (2%)	0	100	100
16	Ν	378/381~(99%)	369 (98%)	9 (2%)	0	100	100
17	D	238/325~(73%)	231 (97%)	7 (3%)	0	100	100
17	Ο	238/325~(73%)	226 (95%)	12 (5%)	0	100	100
18	Е	194/274~(71%)	184 (95%)	10 (5%)	0	100	100
18	Р	194/274~(71%)	185 (95%)	9 (5%)	0	100	100
18	Т	76/274~(28%)	72 (95%)	4 (5%)	0	100	100
19	F	99/111~(89%)	97 (98%)	2 (2%)	0	100	100
19	Q	100/111~(90%)	100 (100%)	0	0	100	100
20	G	75/82~(92%)	73 (97%)	2 (3%)	0	100	100
20	R	75/82~(92%)	71 (95%)	4 (5%)	0	100	100
21	Н	64/89~(72%)	64 (100%)	0	0	100	100
21	S	$66/\overline{89}\ (74\%)$	64 (97%)	2(3%)	0	100	100
22	J	58/64~(91%)	57 (98%)	1 (2%)	0	100	100
22	U	58/64~(91%)	57 (98%)	1 (2%)	0	100	100
23	K	50/56~(89%)	47 (94%)	3 (6%)	0	100	100
23	V	51/56~(91%)	50 (98%)	1 (2%)	0	100	100

Continued	from	previous	page
Continucu	JIONI	pretious	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
24	6	155/224~(69%)	149 (96%)	6 (4%)	0	100	100
25	C1	206/263~(78%)	197 (96%)	9 (4%)	0	100	100
26	D1	427/463~(92%)	413 (97%)	14 (3%)	0	100	100
27	2	212/248~(86%)	202 (95%)	9 (4%)	1 (0%)	29	68
28	1	428/464~(92%)	412 (96%)	16 (4%)	0	100	100
29	3	688/727~(95%)	659 (96%)	29 (4%)	0	100	100
30	9	176/212~(83%)	172 (98%)	4 (2%)	0	100	100
31	P1	340/377~(90%)	327 (96%)	13 (4%)	0	100	100
32	Q1	124/175~(71%)	119 (96%)	5 (4%)	0	100	100
33	7	94/116 (81%)	92 (98%)	2 (2%)	0	100	100
34	S1	82/99~(83%)	75 (92%)	7 (8%)	0	100	100
35	T1	77/156~(49%)	77 (100%)	0	0	100	100
35	U1	86/156~(55%)	85 (99%)	1 (1%)	0	100	100
36	V1	111/116~(96%)	110 (99%)	1 (1%)	0	100	100
37	W1	112/131~(86%)	106 (95%)	6 (5%)	0	100	100
38	q1	143/145~(99%)	138 (96%)	5 (4%)	0	100	100
39	r1	95/113 (84%)	93 (98%)	2 (2%)	0	100	100
40	s1	40/104~(38%)	40 (100%)	0	0	100	100
41	A1	113/115~(98%)	110 (97%)	3 (3%)	0	100	100
42	H1	316/318~(99%)	299 (95%)	17 (5%)	0	100	100
43	J1	170/172~(99%)	160 (94%)	10 (6%)	0	100	100
44	K1	96/98~(98%)	95 (99%)	1 (1%)	0	100	100
45	L1	604/607~(100%)	566 (94%)	38 (6%)	0	100	100
46	M1	457/459~(100%)	442 (97%)	15 (3%)	0	100	100
47	N1	343/345~(99%)	330 (96%)	13 (4%)	0	100	100
48	O1	318/355~(90%)	298 (94%)	20 (6%)	0	100	100
49	X1	169/172~(98%)	163 (96%)	6 (4%)	0	100	100
50	Y1	138/141~(98%)	136 (99%)	2 (1%)	0	100	100
51	Z1	139/144~(96%)	132 (95%)	7 (5%)	0	100	100
52	a1	68/70~(97%)	67 (98%)	1 (2%)	0	100	100
53	b1	81/84~(96%)	76 (94%)	5 (6%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
54	c1	46/76~(60%)	46 (100%)	0	0	100	100
55	d1	118/120~(98%)	114 (97%)	4 (3%)	0	100	100
56	e1	103/106~(97%)	98~(95%)	5(5%)	0	100	100
57	f1	51/57~(90%)	51 (100%)	0	0	100	100
58	g1	99/151~(66%)	96~(97%)	3 (3%)	0	100	100
59	h1	137/189~(72%)	131 (96%)	6 (4%)	0	100	100
60	i1	102/128~(80%)	98~(96%)	3 (3%)	1 (1%)	15	54
61	j1	63/105~(60%)	58~(92%)	5 (8%)	0	100	100
62	k1	75/104 (72%)	73~(97%)	2(3%)	0	100	100
63	l1	155/186~(83%)	153 (99%)	2 (1%)	0	100	100
64	m1	124/129~(96%)	122 (98%)	2 (2%)	0	100	100
65	n1	176/179~(98%)	171 (97%)	5 (3%)	0	100	100
66	o1	116/137~(85%)	109 (94%)	7 (6%)	0	100	100
67	p1	168/176~(96%)	166 (99%)	2 (1%)	0	100	100
All	All	13988/16116 (87%)	13466 (96%)	520 (4%)	2(0%)	100	100

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
27	2	183	LYS
60	i1	59	MET

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percen	tiles
1	n	425/425~(100%)	425 (100%)	0	100	100
2	О	210/210~(100%)	210 (100%)	0	100	100
3	р	226/227~(100%)	226 (100%)	0	100	100
4	q	122/146~(84%)	122 (100%)	0	100	100

$\alpha \cdot \cdot \cdot$	ſ		
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
5	r	91/118~(77%)	91~(100%)	0	100	100
6	s	80/101~(79%)	80 (100%)	0	100	100
7	t	62/78~(80%)	62~(100%)	0	100	100
8	u	70/76~(92%)	69~(99%)	1 (1%)	67	85
9	V	54/57~(95%)	54 (100%)	0	100	100
10	х	39/67~(58%)	39 (100%)	0	100	100
11	у	40/55~(73%)	40 (100%)	0	100	100
12	Z	33/55~(60%)	33 (100%)	0	100	100
13	W	43/67~(64%)	42 (98%)	1 (2%)	50	77
14	А	372/398~(94%)	371 (100%)	1 (0%)	92	97
14	L	372/398~(94%)	372 (100%)	0	100	100
15	В	330/356~(93%)	330 (100%)	0	100	100
15	М	330/356~(93%)	330 (100%)	0	100	100
16	С	332/333~(100%)	330 (99%)	2 (1%)	86	94
16	Ν	332/333~(100%)	331 (100%)	1 (0%)	92	97
17	D	205/260~(79%)	204 (100%)	1 (0%)	88	94
17	О	205/260~(79%)	205 (100%)	0	100	100
18	Е	68/224~(30%)	68 (100%)	0	100	100
18	Р	68/224~(30%)	67~(98%)	1 (2%)	65	84
18	Т	58/224~(26%)	58 (100%)	0	100	100
19	F	93/99~(94%)	93 (100%)	0	100	100
19	Q	94/99~(95%)	94 (100%)	0	100	100
20	G	70/74~(95%)	70 (100%)	0	100	100
20	R	70/74~(95%)	68~(97%)	2 (3%)	42	71
21	Н	63/83~(76%)	63 (100%)	0	100	100
21	S	65/83~(78%)	65 (100%)	0	100	100
22	J	51/55~(93%)	51 (100%)	0	100	100
22	U	51/55~(93%)	51 (100%)	0	100	100
23	К	42/46~(91%)	42 (100%)	0	100	100
23	V	43/46~(94%)	43 (100%)	0	100	100
24	6	133/185~(72%)	132 (99%)	1 (1%)	81	91

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
25	C1	190/227~(84%)	190 (100%)	0	100	100
26	D1	370/394~(94%)	370~(100%)	0	100	100
27	2	184/206~(89%)	183 (100%)	1 (0%)	88	94
28	1	345/370~(93%)	345 (100%)	0	100	100
29	3	580/610~(95%)	579~(100%)	1 (0%)	93	98
30	9	152/178~(85%)	152 (100%)	0	100	100
31	P1	299/325~(92%)	299 (100%)	0	100	100
32	Q1	113/153~(74%)	113 (100%)	0	100	100
33	7	81/96~(84%)	80 (99%)	1 (1%)	71	87
34	S1	74/80~(92%)	74 (100%)	0	100	100
35	T1	73/135~(54%)	73 (100%)	0	100	100
35	U1	81/135~(60%)	81 (100%)	0	100	100
36	V1	101/102~(99%)	101 (100%)	0	100	100
37	W1	108/114~(95%)	108 (100%)	0	100	100
38	q1	131/131~(100%)	131 (100%)	0	100	100
39	r1	88/96~(92%)	88 (100%)	0	100	100
40	s1	41/95~(43%)	40 (98%)	1 (2%)	49	76
41	A1	103/103~(100%)	102~(99%)	1 (1%)	76	88
42	H1	279/279~(100%)	279~(100%)	0	100	100
43	J1	137/137~(100%)	137~(100%)	0	100	100
44	K1	87/87~(100%)	87~(100%)	0	100	100
45	L1	548/549~(100%)	548 (100%)	0	100	100
46	M1	414/414~(100%)	413 (100%)	1 (0%)	93	98
47	N1	307/307~(100%)	307 (100%)	0	100	100
48	01	284/309~(92%)	283~(100%)	1 (0%)	91	96
49	X1	153/154~(99%)	153 (100%)	0	100	100
50	Y1	$105/\overline{106}~(99\%)$	105 (100%)	0	100	100
51	Z1	122/123~(99%)	121 (99%)	1 (1%)	81	91
52	al	60/60~(100%)	60 (100%)	0	100	100
53	b1	72/73~(99%)	72 (100%)	0	100	100
54	c1	$42/\overline{67~(63\%)}$	42 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers Perce		ntiles
55	d1	107/107~(100%)	107 (100%)	0	100	100
56	e1	93/94~(99%)	93 (100%)	0	100	100
57	f1	49/53~(92%)	48 (98%)	1 (2%)	55	79
58	g1	92/129~(71%)	92 (100%)	0	100	100
59	h1	123/162~(76%)	123 (100%)	0	100	100
60	i1	99/119~(83%)	99 (100%)	0	100	100
61	j1	61/87~(70%)	61 (100%)	0	100	100
62	k1	60/78~(77%)	59~(98%)	1 (2%)	60	82
63	l1	142/161~(88%)	142 (100%)	0	100	100
64	m1	112/114~(98%)	112 (100%)	0	100	100
65	n1	163/164~(99%)	163 (100%)	0	100	100
66	o1	109/121~(90%)	109 (100%)	0	100	100
67	p1	155/158~(98%)	155 (100%)	0	100	100
All	All	12031/13709~(88%)	12010 (100%)	21 (0%)	93	98

All (21) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
8	u	57	ARG
13	W	13	GLN
14	А	53	ASN
16	С	80	ARG
16	С	183	PHE
17	D	144	ARG
16	N	1	MET
18	Р	53	ASN
20	R	6	ASN
20	R	72	LYS
24	6	33	ARG
27	2	37	ASN
29	3	444	LYS
33	7	36	ASN
40	s1	49	ASN
41	A1	108	GLN
46	M1	421	ASN
48	01	271	ASN
51	Z1	26	ARG

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
57	f1	10	HIS
62	k1	25	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (15) such sidechains are listed below:

Mol	Chain	Res	Type
1	n	80	ASN
1	n	451	ASN
6	s	67	ASN
7	t	38	HIS
11	У	10	ASN
14	А	339	GLN
15	В	153	GLN
31	P1	136	ASN
41	A1	108	GLN
46	M1	421	ASN
59	h1	44	ASN
59	h1	108	GLN
63	l1	131	GLN
67	p1	106	GLN
67	p1	123	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

11 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Chain	Dec	Tink	Link Bond lengths				Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
26	2MR	D1	85	26	10,12,13	2.60	2 (20%)	5,13,15	2.77	2 (40%)

Mal	Turne	Chain	Dec	Tiple	Bo	ond leng	$_{\rm sths}$	B	ond ang	gles
WIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
53	AYA	b1	1	53	6,7,8	1.22	1 (16%)	5,8,10	1.30	1 (20%)
46	FME	M1	1	46	8,9,10	0.95	0	7,9,11	0.77	0
60	SAC	i1	1	60	$7,\!8,\!9$	1.02	0	8,9,11	0.85	1 (12%)
45	FME	L1	1	45	8,9,10	0.92	0	7,9,11	0.96	0
47	FME	N1	1	47	8,9,10	0.93	0	7,9,11	0.90	0
42	FME	H1	1	42	8,9,10	0.95	0	7,9,11	0.89	0
41	FME	A1	1	41	8,9,10	0.94	0	7,9,11	0.82	0
39	AYA	r1	1	39	6,7,8	1.27	1 (16%)	5,8,10	1.40	1 (20%)
44	FME	K1	1	44	8,9,10	0.88	0	7,9,11	2.22	2 (28%)
43	FME	J1	1	43	8,9,10	0.91	0	7,9,11	0.88	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
26	2MR	D1	85	26	-	2/10/13/15	-
53	AYA	b1	1	53	-	0/4/6/8	-
46	FME	M1	1	46	-	1/7/9/11	-
60	SAC	i1	1	60	-	2/7/8/10	-
45	FME	L1	1	45	-	4/7/9/11	-
47	FME	N1	1	47	-	4/7/9/11	-
42	FME	H1	1	42	-	2/7/9/11	-
41	FME	A1	1	41	-	1/7/9/11	-
39	AYA	r1	1	39	-	0/4/6/8	-
44	FME	K1	1	44	_	4/7/9/11	_
43	FME	J1	1	43	-	4/7/9/11	-

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
26	D1	85	2MR	CZ-NE	5.93	1.47	1.34
26	D1	85	2MR	CZ-NH2	5.15	1.44	1.33
39	r1	1	AYA	CA-N	-2.43	1.44	1.46
53	b1	1	AYA	CA-N	-2.23	1.44	1.46

All (7) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\operatorname{Ideal}(^{o})$
44	K1	1	FME	C-CA-N	4.96	118.69	109.73
26	D1	85	2MR	CD-NE-CZ	4.81	132.41	123.41
26	D1	85	2MR	NE-CZ-NH2	-3.53	116.24	119.48
39	r1	1	AYA	CB-CA-N	2.96	112.90	109.61
53	b1	1	AYA	CB-CA-N	2.70	112.61	109.61
44	K1	1	FME	O-C-CA	-2.31	118.72	124.78
60	i1	1	SAC	OG-CB-CA	-2.08	105.67	110.97

There are no chirality outliers.

Mol	Chain	\mathbf{Res}	Type	Atoms
42	H1	1	FME	N-CA-CB-CG
43	J1	1	FME	C-CA-CB-CG
43	J1	1	FME	O-C-CA-CB
44	K1	1	FME	O1-CN-N-CA
44	K1	1	FME	N-CA-CB-CG
44	K1	1	FME	CA-CB-CG-SD
45	L1	1	FME	N-CA-CB-CG
47	N1	1	FME	C-CA-CB-CG
60	i1	1	SAC	C-CA-CB-OG
26	D1	85	2MR	NE-CD-CG-CB
44	K1	1	FME	CB-CG-SD-CE
60	i1	1	SAC	N-CA-CB-OG
43	J1	1	FME	N-CA-CB-CG
47	N1	1	FME	N-CA-CB-CG
47	N1	1	FME	CB-CG-SD-CE
45	L1	1	FME	CB-CG-SD-CE
43	J1	1	FME	CA-CB-CG-SD
41	A1	1	FME	N-CA-CB-CG
26	D1	85	2MR	CA-CB-CG-CD
42	H1	1	FME	C-CA-CB-CG
45	L1	1	FME	C-CA-CB-CG
46	M1	1	FME	N-CA-CB-CG
45	L1	1	FME	CB-CA-N-CN
47	N1	1	FME	CB-CA-N-CN

All (24) torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 90 ligands modelled in this entry, 7 are monoatomic - leaving 83 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Chain Res		Dog	Link	Bo	Bond lengths			Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
71	3PE	M1	501	-	50,50,50	0.30	0	$53,\!55,\!55$	0.30	0	
71	3PE	r1	201	-	45,45,50	0.32	0	48,50,55	0.28	0	
80	PC1	P1	502	-	30,30,53	0.40	0	36,38,61	0.56	0	
71	3PE	Y1	203	-	27,27,50	0.40	0	30,32,55	0.34	0	
80	PC1	V	101	-	27,27,53	0.40	0	33,35,61	0.34	0	
71	3PE	Ν	401	-	33,33,50	0.36	0	36, 38, 55	0.34	0	
76	CDL	h1	201	-	69,69,99	0.36	0	75,81,111	0.43	0	
71	3PE	K1	201	-	40,40,50	0.34	0	$43,\!45,\!55$	0.29	0	
77	HEM	С	402	16	41,50,50	1.47	4 (9%)	45,82,82	1.60	9 (20%)	
75	TGL	У	601	-	36,36,62	0.23	0	39,39,65	0.18	0	
71	3PE	n	605	-	33,33,50	0.38	0	$36,\!38,\!55$	0.55	1 (2%)	
70	HEA	n	603	1	57,67,67	1.45	8 (14%)	61,103,103	2.36	22 (36%)	
76	CDL	А	502	-	45,45,99	0.43	0	51,57,111	0.36	0	
76	CDL	Ν	405	-	45,45,99	0.44	0	51,57,111	0.51	0	
70	HEA	n	604	1	57,67,67	1.48	8 (14%)	61,103,103	2.52	22 (36%)	
85	ZMP	W1	201	-	27,33,36	0.66	1 (3%)	$32,\!40,\!45$	1.03	2 (6%)	
76	CDL	0	301	-	56,56,99	0.38	0	62,68,111	0.33	0	
71	3PE	M1	503	-	$35,\!35,\!50$	0.36	0	$38,\!40,\!55$	0.30	0	
76	CDL	R	102	-	56, 56, 99	0.39	0	62,68,111	0.47	1 (1%)	
76	CDL	N1	401	-	89,89,99	0.32	0	95,101,111	0.40	1 (1%)	
71	3PE	0	302	-	28,28,50	0.39	0	31,33,55	0.38	0	
71	3PE	N	404	-	36,36,50	0.35	0	39,41,55	0.31	0	
81	SF4	1	502	28	0,12,12	-	-	-			
71	3PE	V	101	-	27,27,50	0.39	0	30,32,55	0.34	0	
71	3PE	n	607	-	26, 26, 50	0.40	0	29,31,55	0.34	0	
71	3PE	d1	202	-	30,30,50	0.37	0	$33,\!35,\!55$	0.33	0	

3.4.1	—		D	T 1.	Bo	ond leng	ths	Bo	Bond angles			
IVIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2		
84	NDP	P1	501	-	45,52,52	0.52	0	53,80,80	0.59	1 (1%)		
79	FES	Е	201	18	0,4,4	-	-	-				
86	DGT	01	401	72	26,33,33	0.79	1 (3%)	32,52,52	0.47	0		
81	SF4	9	201	30	0,12,12	-	-	-				
76	CDL	G	101	-	55,55,99	0.39	0	61,67,111	0.32	0		
71	3PE	0	302	_	32,32,50	0.37	0	$35,\!37,\!55$	0.35	0		
81	SF4	3	802	29	0,12,12	-	-	-				
71	3PE	D1	501	-	50,50,50	0.31	0	$53,\!55,\!55$	0.29	0		
71	3PE	i1	201	-	41,41,50	0.32	0	$44,\!46,\!55$	0.31	0		
71	3PE	р	301	-	44,44,50	0.33	0	$47,\!49,\!55$	0.30	0		
80	PC1	J	101	-	34,34,53	0.35	0	40,42,61	0.33	0		
71	3PE	Y1	204	-	41,41,50	0.33	0	$44,\!46,\!55$	0.32	0		
81	SF4	9	202	30	0,12,12	-	-	-				
76	CDL	R	103	-	71,71,99	0.36	0	$77,\!83,\!111$	0.42	1 (1%)		
73	CUA	0	303	2	0,1,1	-	-	-				
80	PC1	6	203	-	42,42,53	0.34	0	48,50,61	0.49	0		
71	3PE	M1	502	-	50,50,50	0.30	0	$53,\!55,\!55$	0.27	0		
80	PC1	9	203	-	53,53,53	0.29	0	$59,\!61,\!61$	0.44	0		
71	3PE	N1	402	-	37,37,50	0.35	0	$40,\!42,\!55$	0.34	0		
71	3PE	С	403	-	34,34,50	0.36	0	$37,\!39,\!55$	0.33	0		
76	CDL	С	404	-	41,41,99	0.45	0	$47,\!53,\!111$	0.36	0		
80	PC1	L	502	-	23,23,53	0.44	0	29,31,61	0.61	0		
71	3PE	L	501	-	22,22,50	0.44	0	$25,\!27,\!55$	0.36	0		
79	FES	Р	201	18	0,4,4	-	-	-				
77	HEM	Ν	403	16	41,50,50	1.45	4 (9%)	$45,\!82,\!82$	1.56	<mark>8 (17%)</mark>		
82	FMN	1	501	-	33,33,33	0.26	0	48,50,50	0.46	1 (2%)		
76	CDL	H1	402	-	50,50,99	0.42	0	55,61,111	0.36	0		
81	SF4	3	801	29	0,12,12	-	-	-				
76	CDL	Y1	202	-	93,93,99	0.31	0	99,105,111	0.27	0		
80	PC1	Y1	201	-	53,53,53	0.30	0	59,61,61	0.32	0		
85	ZMP	n1	201	-	25,31,36	0.73	1 (4%)	30,38,45	0.96	1 (3%)		
71	3PE	A	501	_	22,22,50	0.45	0	25,27,55	0.65	0		
77	HEM	N	402	16	41,50,50	1.43	3 (7%)	45,82,82	1.59	10 (22%)		
80	PC1	K	101	_	27.27.53	0.40	0	33.35.61	0.37	0		
76	CDL	R	101	_	40.40.99	0.46	0	46.52.111	0.54	0		
79	FES	2	301	27	0,4,4	-	_	-				
71	3PE	С	405	_	30,30,50	0.38	0	33,35,55	0.35	0		
76	CDL	d1	201	-	66,66,99	0.36	0	72,78,111	0.31	0		
71	3PE	R	104	-	29,29,50	0.38	0	32,34,55	0.32	0		
76	CDL	a1	101	-	56,56,99	0.40	0	62,68,111	0.46	0		
71	3PE	t	101	-	24,24,50	0.43	0	$27,\!29,\!55$	0.63	0		

Mol	Type	Chain	Dog	Link	Bo	Bond lengths			Bond angles			
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2		
78	HEC	Ο	303	17	$32,\!50,\!50$	2.19	3 (9%)	$24,\!82,\!82$	1.60	4 (16%)		
71	3PE	G	102	-	50,50,50	0.30	0	$53,\!55,\!55$	0.28	0		
71	3PE	n	606	-	27,27,50	0.40	0	30, 32, 55	0.44	0		
78	HEC	D	301	17	32,50,50	2.19	4 (12%)	24,82,82	1.57	3 (12%)		
71	3PE	d1	203	-	31,31,50	0.37	0	$34,\!36,\!55$	0.35	0		
76	CDL	L1	702	-	77,77,99	0.34	0	83,89,111	0.29	0		
80	PC1	9	204	-	46,46,53	0.31	0	52,54,61	0.28	0		
77	HEM	С	401	16	41,50,50	1.42	3 (7%)	45,82,82	1.52	9 (20%)		
71	3PE	6	202	-	31,31,50	0.37	0	$34,\!36,\!55$	0.32	0		
76	CDL	L1	703	-	45,45,99	0.42	0	51,57,111	0.35	0		
79	FES	3	803	29	0,4,4	-	-	-				
71	3PE	L1	701	-	50,50,50	0.31	0	$53,\!55,\!55$	0.47	0		
71	3PE	A1	201	-	42,42,50	0.32	0	$45,\!47,\!55$	0.33	0		
71	3PE	Е	202	-	31,31,50	0.37	0	34, 36, 55	0.35	0		
81	SF4	6	201	24	0,12,12	-	-	-				
71	3PE	H1	401	-	50,50,50	0.31	0	$53,\!55,\!55$	0.47	0		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
71	3PE	M1	501	-	-	12/54/54/54	-
71	3PE	r1	201	-	-	6/49/49/54	-
80	PC1	P1	502	-	-	16/34/34/57	-
71	3PE	Y1	203	-	-	7/31/31/54	-
80	PC1	V	101	-	-	4/31/31/57	-
71	3PE	Ν	401	-	-	5/37/37/54	-
76	CDL	h1	201	-	-	21/80/80/110	-
71	3PE	K1	201	-	-	10/44/44/54	-
77	HEM	С	402	16	-	2/12/54/54	-
75	TGL	У	601	-	-	2/39/39/65	-
71	3PE	n	605	-	-	9/37/37/54	-
70	HEA	n	603	1	-	10/32/76/76	-
76	CDL	А	502	-	-	21/56/56/110	-
76	CDL	N	405	-	-	10/56/56/110	-
70	HEA	n	604	1	-	7/32/76/76	-

naca ji o	ne proceee	page	•••			
Type	Chain	Res	Link	Chirals	Torsions	Rings
ZMP	W1	201	-	-	6/38/40/43	-
CDL	О	301	-	-	14/67/67/110	-
3PE	M1	503	-	-	9/39/39/54	-
CDL	R	102	-	-	20/67/67/110	-
CDL	N1	401	-	-	18/100/100/110	_
3PE	0	302	-	-	9/32/32/54	-
3PE	N	404	-	-	5/40/40/54	-
SF4	1	502	28	-	-	0/6/5/5
3PE	V	101	-	-	10/31/31/54	-
3PE	n	607	-	-	5/30/30/54	-
3PE	d1	202	-	-	8/34/34/54	_
FES	Е	201	18	-	-	0/1/1/1
DGT	O1	401	72	-	7/18/34/34	0/3/3/3
SF4	9	201	30	-	-	0/6/5/5
CDL	G	101	-	-	14/66/66/110	-
3PE	0	302	-	-	6/36/36/54	-
SF4	3	802	29	-	-	0/6/5/5
3PE	D1	501	-	-	9/54/54/54	-
3PE	i1	201	-	-	6/45/45/54	-
3PE	р	301	-	-	8/48/48/54	-
PC1	J	101	-	-	7/38/38/57	-
3PE	Y1	204	-	-	8/45/45/54	-
SF4	9	202	30	-	-	0/6/5/5
CDL	R	103	-	-	17/82/82/110	-
PC1	6	203	-	-	11/46/46/57	-
3PE	M1	502	-	-	12/54/54/54	-
PC1	9	203	-	-	10/57/57/57	-
3PE	N1	402	-	-	7/41/41/54	-
3PE	С	403	-	-	11/38/38/54	-
CDL	С	404	-	_	13/52/52/110	_
PC1	L	502	-	-	7/27/27/57	_
3PE	L	501	_	-	7/26/26/54	-
FES	Р	201	18	-	-	0/1/1/1
HEM	N	403	16	-	4/12/54/54	-
FMN	1	501	-	-	5/18/18/18	0/3/3/3
	Type ZMP ZMP CDL 3PE CDL 3PE 3PE	TypeChainZMPW1CDLO3PEM1CDLRCDLR3PE03PENSF413PE013PE013PE013PE01SF49CDLG3PE01SF49CDLG3PED13PED13PED13PE113PE113PEP13PEP13PEN13PEM1PC163PEN13PEN13PEN13PECDGD1G3PEN13PELPC1L3PELFESPHEMNFMN1	TypeChainResZMPW1201CDLO3013PEM1503CDLR102CDLR4013PEO3023PEN404SF415023PEN404SF415023PEN404SF415023PEN404SF41502GTO1401SF49201CDLG101SF49201CDLG302SF438023PED15013PEP12013PE112013PEP1201SF43802SF43802SF43802SF43802SPED15013PEP1201SF49202SF49202SF492033PEM1502QCDLR103SF49203SF49203SF49203SF49203SF49203SF49203SF49203SF49203SF49203SF49203SF49203 <t< td=""><td>ParticularTypeChainResLinkZMPW1201-CDLO301-3PEM1503-CDLR102-CDLN1401-3PEO302-3PEN404-3PEN404-3PEN404-3PEN404-3PEN607-3PEN607-3PEO201303PEO302-3PEO302-SF4920130CDLG302-3PED1501-3PED1501-3PED1501-3PEP301-3PED1204-3PED1501-3PEP301-3PEP30-3PEP30-3PEM150230CDLR103-3PEM1502-3PEN1403-3PEN1403-3PEN1502-3PEC403-3PEN1502-3PEN1502-3PEN1502-3PE<</td><td>TypeChainResLinkChiralsZMPW1201CDLO3013PEM1503CDLR102CDLR1023PEO3023PEN4013PEN4043PEN4043PEN4043PEN4043PEN4043PEN4043PEN4043PEN4043PEN20218-3PEO302SF4920130-3PEO30229-3PEO30229-3PED15013PEI120110-3PE112043PEN1203I-3PEQ20330-3PEM15023PEM15023PEN14033PEN15023PEN15023PEN1502</td><td>Type Chain Res Link Chirals Torsions ZMP W1 201 - - 6/38/40/43 CDL O 301 - - 14/67/67/110 3PE M1 503 - 20/67/67/110 CDL R 102 - 20/67/67/110 CDL N1 401 - 9/32/32/54 3PE 0 302 - 9/32/32/54 3PE N 404 - 9/32/32/54 3PE N 404 - 9/32/32/54 3PE N 404 - 5/40/40/54 SF4 1 502 28 - - SF4 1 502 28 - - SF4 1 202 1 - - DGT O1 401 72 - - DGT O1 300 - - - <t< td=""></t<></td></t<>	ParticularTypeChainResLinkZMPW1201-CDLO301-3PEM1503-CDLR102-CDLN1401-3PEO302-3PEN404-3PEN404-3PEN404-3PEN404-3PEN607-3PEN607-3PEO201303PEO302-3PEO302-SF4920130CDLG302-3PED1501-3PED1501-3PED1501-3PEP301-3PED1204-3PED1501-3PEP301-3PEP30-3PEP30-3PEM150230CDLR103-3PEM1502-3PEN1403-3PEN1403-3PEN1502-3PEC403-3PEN1502-3PEN1502-3PEN1502-3PE<	TypeChainResLinkChiralsZMPW1201CDLO3013PEM1503CDLR102CDLR1023PEO3023PEN4013PEN4043PEN4043PEN4043PEN4043PEN4043PEN4043PEN4043PEN4043PEN20218-3PEO302SF4920130-3PEO30229-3PEO30229-3PED15013PEI120110-3PE112043PEN1203I-3PEQ20330-3PEM15023PEM15023PEN14033PEN15023PEN15023PEN1502	Type Chain Res Link Chirals Torsions ZMP W1 201 - - 6/38/40/43 CDL O 301 - - 14/67/67/110 3PE M1 503 - 20/67/67/110 CDL R 102 - 20/67/67/110 CDL N1 401 - 9/32/32/54 3PE 0 302 - 9/32/32/54 3PE N 404 - 9/32/32/54 3PE N 404 - 9/32/32/54 3PE N 404 - 5/40/40/54 SF4 1 502 28 - - SF4 1 502 28 - - SF4 1 202 1 - - DGT O1 401 72 - - DGT O1 300 - - - <t< td=""></t<>

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
76	CDL	H1	402	-	-	12/59/59/110	-
81	SF4	3	801	29	-	-	0/6/5/5
76	CDL	Y1	202	-	-	16/104/104/110	-
80	PC1	Y1	201	-	-	14/57/57/57	-
85	ZMP	n1	201	-	-	17/36/38/43	-
71	3PE	А	501	-	-	9/26/26/54	-
77	HEM	N	402	16	-	1/12/54/54	-
80	PC1	К	101	-	-	9/31/31/57	-
76	CDL	R	101	-	-	11/51/51/110	-
79	FES	2	301	27	-	-	0/1/1/1
71	3PE	С	405	-	-	6/34/34/54	-
76	CDL	d1	201	-	-	14/77/77/110	-
71	3PE	R	104	-	-	9/33/33/54	-
76	CDL	al	101	-	-	13/67/67/110	-
71	3PE	t	101	-	-	6/28/28/54	-
78	HEC	0	303	17	-	0/10/54/54	-
71	3PE	G	102	-	-	10/54/54/54	-
71	3PE	n	606	-	-	13/31/31/54	-
78	HEC	D	301	17	-	2/10/54/54	-
71	3PE	d1	203	-	-	6/35/35/54	-
76	CDL	L1	702	-	-	20/88/88/110	-
80	PC1	9	204	-	-	11/50/50/57	-
77	HEM	С	401	16	-	3/12/54/54	-
71	3PE	6	202	-	-	6/35/35/54	-
76	CDL	L1	703	-	-	8/56/56/110	-
79	FES	3	803	29	-	-	0/1/1/1
71	3PE	L1	701	-	-	7/54/54/54	-
71	3PE	H1	401	-	-	10/54/54/54	-
71	3PE	A1	201	-	-	9/46/46/54	-
71	3PE	Е	202	-	-	6/35/35/54	-
81	SF4	6	201	24	-	-	0/6/5/5
84	NDP	P1	501	_	_	8/30/77/77	0/5/5/5

All (40) bond length outliers are listed below:

Conti	nuea jron	a previ	ous page	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
					r.	0	
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)
78	Ο	303	HEC	C2B-C3B	-6.40	1.34	1.40
78	0	303	HEC	C3C-C2C	-6.30	1.34	1.40
78	D	301	HEC	C3C-C2C	-6.27	1.34	1.40
78	D	301	HEC	C2B-C3B	-6.14	1.34	1.40
78	D	301	HEC	C3D-C2D	5.44	1.53	1.37
78	0	303	HEC	C3D-C2D	5.41	1.53	1.37
70	n	604	HEA	C3D-C2D	4.64	1.46	1.36
70	n	603	HEA	C3B-C2B	4.45	1.44	1.34
70	n	604	HEA	C3B-C2B	4.17	1.44	1.34
70	n	603	HEA	C3D-C2D	3.98	1.45	1.36
77	Ν	403	HEM	C3C-CAC	3.96	1.55	1.47
77	С	401	HEM	C3C-CAC	3.94	1.55	1.47
77	С	402	HEM	C3C-CAC	3.92	1.55	1.47
77	N	402	HEM	C3C-C2C	-3.89	1.35	1.40
77	N	402	HEM	C3C-CAC	3.75	1.55	1.47
77	С	401	HEM	C3C-C2C	-3.62	1.35	1.40
70	n	604	HEA	C3A-C2A	3.56	1.45	1.40
77	С	402	HEM	C3C-C2C	-3.52	1.35	1.40
70	n	603	HEA	C3C-C2C	3.51	1.45	1.40
77	N	403	HEM	C3C-C2C	-3.51	1.35	1.40
70	n	603	HEA	C3A-C2A	3.47	1.45	1.40
70	n	604	HEA	C3C-C2C	3.44	1.45	1.40
70	n	603	HEA	C4B-C3B	3.18	1.50	1.44
77	С	401	HEM	CAB-C3B	3.13	1.56	1.47
77	N	402	HEM	CAB-C3B	3.07	1.55	1.47
77	N	403	HEM	CAB-C3B	3.01	1.55	1.47
77	С	402	HEM	CAB-C3B	2.98	1.55	1.47
70	n	604	HEA	C4B-C3B	2.78	1.49	1.44
77	С	402	HEM	FE-NB	2.71	2.10	1.96
70	n	604	HEA	C2A-C1A	2.68	1.48	1.42
70	n	603	HEA	C2A-C1A	2.55	1.48	1.42
70	n	604	HEA	C1D-C2D	2.55	1.49	1.44
70	n	603	HEA	C1D-ND	-2.47	1.36	1.40
78	D	301	HEC	C4D-ND	2.45	1.41	1.36
85	n1	201	ZMP	C9-C10	2.40	1.53	1.50
85	W1	201	ZMP	C9-C10	2.23	1.53	1.50
70	n	604	HEA	C1D-ND	-2.17	1.36	1.40
77	N	403	HEM	FE-NB	2.13	2.07	1.96
86	01	401	DGT	C5-C6	-2.13	1.43	1.47
70	n	603	HEA	C4D-C3D	2.02	1.48	1.45

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
70	n	604	HEA	CMC-C2C-C3C	7.86	139.38	124.68
70	n	603	HEA	CMC-C2C-C3C	7.15	138.06	124.68
70	n	604	HEA	CMC-C2C-C1C	-7.13	117.50	128.46
70	n	603	HEA	CMC-C2C-C1C	-6.56	118.39	128.46
70	n	604	HEA	C3D-C4D-ND	5.38	115.57	110.36
70	n	604	HEA	C13-C12-C11	-4.74	107.23	114.35
70	n	603	HEA	C3D-C4D-ND	4.63	114.84	110.36
70	n	603	HEA	CMD-C2D-C1D	-4.53	118.14	125.04
70	n	604	HEA	CMD-C2D-C1D	-4.41	118.32	125.04
70	n	604	HEA	CHA-C4D-C3D	-4.41	118.36	124.84
70	n	603	HEA	CMB-C2B-C1B	-4.27	118.53	125.04
70	n	604	HEA	CMB-C2B-C1B	-4.26	118.55	125.04
70	n	604	HEA	C4D-C3D-C2D	-3.85	101.28	106.90
70	n	603	HEA	C4D-C3D-C2D	-3.83	101.31	106.90
77	Ν	402	HEM	C3B-C2B-C1B	3.80	109.31	106.49
70	n	603	HEA	CHA-C4D-C3D	-3.70	119.41	124.84
70	n	603	HEA	C13-C12-C11	-3.67	108.83	114.35
78	0	303	HEC	CMC-C2C-C1C	-3.64	122.87	128.46
70	n	604	HEA	CMD-C2D-C3D	3.47	135.55	126.12
77	С	401	HEM	C3B-C2B-C1B	3.35	108.97	106.49
70	n	604	HEA	CAD-C3D-C2D	3.33	134.08	127.88
77	С	402	HEM	C4D-ND-C1D	3.31	108.49	105.07
70	n	603	HEA	CMD-C2D-C3D	3.30	135.09	126.12
78	D	301	HEC	CMC-C2C-C1C	-3.26	123.45	128.46
77	С	401	HEM	CMC-C2C-C3C	3.26	130.78	124.68
77	Ν	403	HEM	C3B-C2B-C1B	3.13	108.81	106.49
70	n	604	HEA	C26-C15-C16	3.11	120.51	115.27
70	n	603	HEA	CMB-C2B-C3B	3.11	136.26	130.34
70	n	603	HEA	C13-C14-C15	-3.10	120.20	127.66
77	Ν	402	HEM	CMC-C2C-C3C	3.07	130.43	124.68
77	С	402	HEM	C3B-C2B-C1B	3.04	108.74	106.49
77	N	403	HEM	C4D-ND-C1D	3.02	108.19	105.07
78	D	301	HEC	CBD-CAD-C3D	-3.02	107.47	112.62
70	n	603	HEA	CAA-CBA-CGA	-3.00	105.34	113.76
70	n	603	HEA	CHB-C1B-C2B	-3.00	120.30	124.98
77	Ν	403	HEM	C1B-NB-C4B	2.98	108.15	105.07
77	С	402	HEM	CMC-C2C-C3C	2.93	130.16	124.68
77	Ν	403	HEM	CMC-C2C-C3C	2.91	130.13	124.68
77	Ν	403	HEM	C4B-CHC-C1C	2.89	126.37	122.56
77	С	401	HEM	C4D-ND-C1D	2.85	108.02	105.07
77	Ν	402	HEM	C4C-CHD-C1D	2.83	126.29	122.56
77	N	402	HEM	CMB-C2B-C1B	-2.78	120.81	125.04

All (96) bond angle outliers are listed below:

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
70	n	604	HEA	C13-C14-C15	-2.78	120.97	127.66
70	n	604	HEA	CAA-CBA-CGA	-2.76	106.02	113.76
70	n	604	HEA	C27-C19-C20	2.75	119.90	115.27
77	Ν	402	HEM	C4D-ND-C1D	2.75	107.91	105.07
77	С	401	HEM	C4C-CHD-C1D	2.73	126.17	122.56
77	С	402	HEM	CBA-CAA-C2A	-2.73	107.97	112.62
85	W1	201	ZMP	O1-C10-C9	-2.69	120.81	123.99
70	n	604	HEA	C3B-C4B-NB	2.68	113.02	109.84
77	N	403	HEM	CHC-C4B-C3B	2.67	128.65	124.57
70	n	604	HEA	C4B-C3B-C2B	-2.65	102.88	107.41
70	n	604	HEA	C25-C23-C24	2.63	120.42	114.60
70	n	604	HEA	CMB-C2B-C3B	2.63	135.35	130.34
77	Ν	403	HEM	CBA-CAA-C2A	-2.62	108.15	112.62
70	n	604	HEA	CHB-C1B-C2B	-2.61	120.90	124.98
77	С	402	HEM	CHC-C4B-C3B	2.61	128.56	124.57
77	С	402	HEM	C1B-NB-C4B	2.61	107.77	105.07
70	n	603	HEA	CAD-C3D-C4D	2.60	129.20	124.66
70	n	603	HEA	C17-C18-C19	-2.59	121.43	127.66
78	0	303	HEC	C1D-C2D-C3D	-2.58	105.20	107.00
77	С	402	HEM	C4B-CHC-C1C	2.58	125.96	122.56
85	n1	201	ZMP	O1-C10-C9	-2.54	120.98	123.99
78	0	303	HEC	CMB-C2B-C1B	-2.51	124.61	128.46
78	D	301	HEC	CMB-C2B-C1B	-2.51	124.61	128.46
77	С	402	HEM	C3D-C4D-ND	-2.50	107.39	110.17
77	С	401	HEM	CAD-CBD-CGD	-2.49	108.24	113.60
70	n	603	HEA	CAD-CBD-CGD	-2.41	108.42	113.60
70	n	603	HEA	C2B-C1B-NB	2.39	112.75	109.88
70	n	603	HEA	C26-C15-C16	2.36	119.23	115.27
84	P1	501	NDP	C5A-C6A-N6A	2.35	123.92	120.35
77	Ν	402	HEM	CHB-C1B-NB	2.34	127.27	124.38
77	С	401	HEM	C1B-NB-C4B	2.33	107.48	105.07
70	n	604	HEA	C17-C18-C19	-2.33	122.06	127.66
70	n	603	HEA	CHB-C1B-NB	2.32	126.96	124.43
70	n	604	HEA	CHB-C1B-NB	2.32	126.95	124.43
70	n	603	HEA	C25-C23-C24	2.30	119.69	114.60
70	n	604	HEA	CAD-CBD-CGD	-2.26	108.73	113.60
85	W1	201	ZMP	C15-C14-C13	-2.20	108.69	112.36
77	Ν	403	HEM	C3D-C4D-ND	-2.20	107.72	110.17
77	С	401	HEM	C3D-C4D-ND	-2.18	107.74	110.17
78	0	303	HEC	CBD-CAD-C3D	-2.16	108.93	112.62
77	N	402	HEM	C3D-C4D-ND	-2.15	$1\overline{07.78}$	110.17
77	N	402	HEM	CAD-CBD-CGD	-2.14	108.99	113.60

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
77	N	402	HEM	C1B-NB-C4B	2.13	107.27	105.07
82	1	501	FMN	P-O5'-C5'	2.11	124.11	118.30
77	С	401	HEM	C4B-CHC-C1C	2.10	125.33	122.56
70	n	603	HEA	C4B-C3B-C2B	-2.09	103.84	107.41
77	С	402	HEM	CAB-C3B-C2B	-2.09	121.73	128.60
71	n	605	3PE	C2-O21-C21	2.08	122.92	117.79
70	n	603	HEA	C27-C19-C20	2.08	118.76	115.27
76	R	103	CDL	CA4-OA6-CA5	2.07	122.89	117.79
77	N	402	HEM	CBA-CAA-C2A	-2.05	109.12	112.62
76	R	102	CDL	CA4-OA6-CA5	2.04	122.80	117.79
77	С	401	HEM	CHD-C1D-ND	2.02	126.62	124.43
76	N1	401	CDL	CB4-OB6-CB5	2.00	122.72	117.79

There are no chirality outliers.

All (671) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
70	n	603	HEA	C15-C16-C17-C18
70	n	604	HEA	C2D-C3D-CAD-CBD
70	n	604	HEA	C15-C16-C17-C18
71	n	605	3PE	C11-O13-P-O12
71	n	605	3PE	C11-O13-P-O14
71	n	605	3PE	O13-C11-C12-N
71	n	606	3PE	C1-O11-P-O12
71	n	606	3PE	C1-O11-P-O14
71	n	606	3PE	O13-C11-C12-N
71	n	606	3PE	O11-C1-C2-O21
71	n	607	3PE	O13-C11-C12-N
71	0	302	3PE	C1-O11-P-O13
71	0	302	3PE	C1-O11-P-O14
71	0	302	3PE	O13-C11-C12-N
71	р	301	3PE	C1-O11-P-O12
71	р	301	3PE	C11-O13-P-O14
71	р	301	3PE	O13-C11-C12-N
71	t	101	3PE	C11-O13-P-O12
71	V	101	3PE	C1-O11-P-O12
71	V	101	3PE	C11-O13-P-O14
71	v	101	3PE	O13-C11-C12-N
71	А	501	3PE	C1-O11-P-O12
71	А	501	3PE	C1-O11-P-O13
71	А	501	3PE	C1-O11-P-O14
71	А	501	3PE	C11-O13-P-O11

Mol	Chain	Res	Type	Atoms
71	А	501	3PE	C11-O13-P-O12
71	А	501	3PE	C11-O13-P-O14
71	А	501	3PE	O13-C11-C12-N
71	С	403	3PE	C1-O11-P-O12
71	С	403	3PE	C1-O11-P-O14
71	С	403	3PE	C11-O13-P-O14
71	С	403	3PE	O13-C11-C12-N
71	Е	202	3PE	O13-C11-C12-N
71	Е	202	3PE	O21-C2-C3-O31
71	G	102	3PE	C1-O11-P-O14
71	G	102	3PE	O13-C11-C12-N
71	L	501	3PE	C11-O13-P-O12
71	L	501	3PE	C11-O13-P-O14
71	L	501	3PE	O13-C11-C12-N
71	Ν	404	3PE	C11-O13-P-O12
71	N	404	3PE	C11-O13-P-O14
71	Ν	404	3PE	O13-C11-C12-N
71	0	302	3PE	C11-O13-P-O11
71	0	302	3PE	C11-O13-P-O12
71	0	302	3 PE	C11-O13-P-O14
71	0	302	3 PE	O13-C11-C12-N
71	R	104	3PE	C1-O11-P-O14
71	R	104	3 PE	C11-O13-P-O11
71	R	104	3PE	C11-O13-P-O12
71	R	104	3 PE	C11-O13-P-O14
71	R	104	3PE	O13-C11-C12-N
71	6	202	3PE	C1-O11-P-O14
71	D1	501	3PE	C1-O11-P-O12
71	D1	501	3PE	O13-C11-C12-N
71	r1	201	3PE	C1-O11-P-O12
71	r1	201	3PE	C1-O11-P-O13
71	r1	201	3PE	C1-O11-P-O14
71	A1	201	3PE	C1-O11-P-O14
71	A1	201	3PE	C11-O13-P-O14
71	H1	401	3PE	C11-O13-P-O12
71	H1	401	3PE	O13-C11-C12-N
71	K1	201	3PE	C1-O11-P-O12
71	K1	201	3PE	C1-O11-P-O13
71	K1	201	3PE	C1-O11-P-O14
71	K1	201	3PE	O13-C11-C12-N
71	L1	701	3PE	C1-O11-P-O14
71	L1	701	3PE	O13-C11-C12-N

EMD-17991,	8PW7
------------	------

Mol	Chain	Res	Type	Atoms
71	M1	501	3PE	C11-O13-P-O12
71	M1	501	3PE	C12-C11-O13-P
71	M1	501	3PE	O13-C11-C12-N
71	M1	502	3PE	C11-O13-P-O11
71	M1	502	3PE	C11-O13-P-O12
71	M1	503	3PE	C1-O11-P-O14
71	M1	503	3PE	C11-O13-P-O12
71	M1	503	3PE	C11-O13-P-O14
71	N1	402	3PE	C1-O11-P-O12
71	N1	402	3PE	C1-O11-P-O14
71	Y1	203	3PE	C1-O11-P-O14
71	Y1	203	3PE	O13-C11-C12-N
71	Y1	204	3PE	C11-O13-P-O11
71	Y1	204	3PE	C11-O13-P-O12
71	Y1	204	3PE	C11-O13-P-O14
71	d1	202	3PE	C11-O13-P-O12
71	d1	202	3PE	O13-C11-C12-N
71	d1	203	3PE	C1-O11-P-O14
71	d1	203	3PE	O13-C11-C12-N
71	i1	201	3PE	C11-O13-P-O11
71	i1	201	3PE	C11-O13-P-O12
71	i1	201	3PE	C11-O13-P-O14
76	А	502	CDL	CA2-OA2-PA1-OA3
76	А	502	CDL	CA3-OA5-PA1-OA3
76	А	502	CDL	CB2-OB2-PB2-OB3
76	А	502	CDL	CB2-OB2-PB2-OB4
76	А	502	CDL	CB2-OB2-PB2-OB5
76	С	404	CDL	CA2-OA2-PA1-OA4
76	С	404	CDL	CB2-OB2-PB2-OB3
76	С	404	CDL	CB2-OB2-PB2-OB4
76	С	404	CDL	CB3-OB5-PB2-OB4
76	С	404	CDL	OB5-CB3-CB4-OB6
76	G	101	CDL	C1-CB2-OB2-PB2
76	G	101	CDL	CB2-OB2-PB2-OB4
76	N	405	CDL	CA3-OA5-PA1-OA3
76	0	301	CDL	CA2-OA2-PA1-OA3
76	0	301	CDL	CA2-OA2-PA1-OA4
76	0	301	CDL	CA2-OA2-PA1-OA5
76	0	301	CDL	CA3-OA5-PA1-OA2
76	0	301	CDL	CA3-OA5-PA1-OA3
76	0	301	CDL	CB2-OB2-PB2-OB3
76	0	301	CDL	CB3-OB5-PB2-OB3

Continued from previous page...

Mol	Chain	Res	Type	Atoms
76	0	301	CDL	CB3-OB5-PB2-OB4
76	0	301	CDL	OB5-CB3-CB4-OB6
76	R	101	CDL	CA2-OA2-PA1-OA3
76	R	101	CDL	CA2-OA2-PA1-OA4
76	R	101	CDL	CB2-OB2-PB2-OB3
76	R	102	CDL	CA2-OA2-PA1-OA4
76	R	102	CDL	CB3-OB5-PB2-OB4
76	R	103	CDL	CA2-OA2-PA1-OA3
76	R	103	CDL	CA2-OA2-PA1-OA5
76	R	103	CDL	CA3-OA5-PA1-OA2
76	R	103	CDL	CA3-OA5-PA1-OA3
76	R	103	CDL	CB2-OB2-PB2-OB3
76	R	103	CDL	CB2-OB2-PB2-OB4
76	R	103	CDL	CB2-OB2-PB2-OB5
76	R	103	CDL	CB3-OB5-PB2-OB2
76	R	103	CDL	CB3-OB5-PB2-OB3
76	R	103	CDL	CB3-OB5-PB2-OB4
76	H1	402	CDL	CA2-OA2-PA1-OA3
76	H1	402	CDL	CA2-OA2-PA1-OA4
76	H1	402	CDL	CA2-OA2-PA1-OA5
76	H1	402	CDL	CB2-OB2-PB2-OB4
76	L1	702	CDL	CA2-OA2-PA1-OA3
76	L1	702	CDL	CA2-OA2-PA1-OA4
76	L1	702	CDL	CA3-OA5-PA1-OA3
76	L1	702	CDL	CB2-OB2-PB2-OB3
76	L1	702	CDL	CB2-OB2-PB2-OB4
76	L1	702	CDL	CB2-OB2-PB2-OB5
76	L1	702	CDL	CB3-OB5-PB2-OB2
76	L1	702	CDL	CB3-OB5-PB2-OB3
76	L1	702	CDL	CB3-OB5-PB2-OB4
76	L1	703	CDL	CA2-OA2-PA1-OA3
76	L1	703	CDL	CA2-OA2-PA1-OA4
76	N1	401	CDL	CA2-OA2-PA1-OA3
76	N1	401	CDL	CA3-OA5-PA1-OA3
76	N1	401	CDL	OA6-CA4-CA6-OA8
76	N1	401	CDL	CB2-OB2-PB2-OB3
76	N1	401	CDL	CB2-OB2-PB2-OB4
76	Y1	202	CDL	CA2-OA2-PA1-OA3
76	Y1	202	CDL	CA2-OA2-PA1-OA4
76	Y1	202	CDL	CB3-OB5-PB2-OB2
76	Y1	202	CDL	CB3-OB5-PB2-OB3
76	Y1	202	CDL	CB3-OB5-PB2-OB4

Continued from previous page...

EMD-17991,	8PW7
------------	------

Mol	Chain	Res	Type	Atoms
76	al	101	CDL	CA2-OA2-PA1-OA3
76	al	101	CDL	CA2-OA2-PA1-OA4
76	d1	201	CDL	CA3-OA5-PA1-OA3
76	h1	201	CDL	CA2-OA2-PA1-OA3
76	h1	201	CDL	CB2-OB2-PB2-OB3
76	h1	201	CDL	CB2-OB2-PB2-OB4
76	h1	201	CDL	CB2-OB2-PB2-OB5
76	h1	201	CDL	CB3-OB5-PB2-OB4
77	С	401	HEM	C2A-CAA-CBA-CGA
80	J	101	PC1	C1-O11-P-O12
80	J	101	PC1	C1-O11-P-O14
80	J	101	PC1	C1-O11-P-O13
80	K	101	PC1	C1-O11-P-O14
80	L	502	PC1	C11-O13-P-O12
80	L	502	PC1	C1-O11-P-O12
80	L	502	PC1	C1-O11-P-O13
80	6	203	PC1	C1-O11-P-O12
80	6	203	PC1	C1-O11-P-O14
80	9	203	PC1	C11-O13-P-O11
80	9	203	PC1	C1-O11-P-O12
80	9	203	PC1	C1-O11-P-O14
80	9	203	PC1	C1-O11-P-O13
80	P1	502	PC1	C1-O11-P-O12
80	P1	502	PC1	C1-O11-P-O14
80	P1	502	PC1	C1-O11-P-O13
80	Y1	201	PC1	C11-O13-P-O12
80	Y1	201	PC1	C11-O13-P-O14
80	Y1	201	PC1	C11-O13-P-O11
82	1	501	FMN	N10-C1'-C2'-O2'
82	1	501	FMN	N10-C1'-C2'-C3'
82	1	501	FMN	C5'-O5'-P-O1P
82	1	501	FMN	C5'-O5'-P-O2P
82	1	501	FMN	C5'-O5'-P-O3P
84	P1	501	NDP	C5B-O5B-PA-O3
85	W1	201	ZMP	01-C10-S1-C11
85	W1	201	ZMP	C9-C10-S1-C11
85	n1	201	ZMP	C17-C18-C21-O5
85	n1	201	ZMP	O4-C17-C18-C21
85	n1	201	ZMP	C16-C17-C18-C21
85	n1	201	ZMP	O4-C17-C18-C19
85	n1	201	ZMP	C16-C17-C18-C20
85	n1	201	ZMP	03-C16-C17-O4

Mol	Chain	Res	Type	Atoms
85	n1	201	ZMP	C17-C16-N2-C15
85	n1	201	ZMP	C13-C14-C15-N2
86	01	401	DGT	PB-O3B-PG-O1G
86	01	401	DGT	C5'-O5'-PA-O3A
70	n	604	HEA	C4D-C3D-CAD-CBD
85	n1	201	ZMP	O3-C16-N2-C15
76	L1	702	CDL	O1-C1-CB2-OB2
76	L1	702	CDL	CA5-C11-C12-C13
77	Ν	402	HEM	C2A-CAA-CBA-CGA
71	M1	501	3PE	C31-C32-C33-C34
71	р	301	3PE	C2-C1-O11-P
80	Κ	101	PC1	C11-C12-N-C13
70	n	603	HEA	C19-C20-C21-C22
71	M1	502	3PE	C27-C28-C29-C2A
71	n	605	3PE	C1-O11-P-O13
71	n	605	3PE	C11-O13-P-O11
71	n	606	3PE	C1-O11-P-O13
71	n	607	3PE	C1-O11-P-O13
71	0	302	3PE	C11-O13-P-O11
71	р	301	3PE	C1-O11-P-O13
71	V	101	3PE	C11-O13-P-O11
71	С	403	3PE	C1-O11-P-O13
71	С	403	3PE	C11-O13-P-O11
71	G	102	3PE	C1-O11-P-O13
71	L	501	3PE	C11-O13-P-O11
71	N	401	3PE	C11-O13-P-O11
71	Ν	404	3PE	C11-O13-P-O11
71	D1	501	3PE	C1-O11-P-O13
71	K1	201	3PE	C11-O13-P-O11
71	L1	701	3PE	C1-O11-P-O13
71	M1	501	3PE	C11-O13-P-O11
71	M1	503	3PE	C1-O11-P-O13
71	M1	503	3PE	C11-O13-P-O11
71	N1	402	3PE	C1-O11-P-O13
71	Y1	203	3PE	C1-O11-P-O13
71	d1	202	3PE	C1-O11-P-O13
71	d1	202	3PE	C11-O13-P-O11
71	d1	203	3PE	C1-O11-P-O13
76	А	502	CDL	CA3-OA5-PA1-OA2
76	A	502	CDL	CB3-OB5-PB2-OB2
76	С	404	CDL	CB2-OB2-PB2-OB5
76	С	404	CDL	CB3-OB5-PB2-OB2

EMD-17991,	8PW7
------------	------

Mol	Chain	Res	Type	Atoms
76	G	101	CDL	CB2-OB2-PB2-OB5
76	G	101	CDL	CB3-OB5-PB2-OB2
76	N	405	CDL	CA3-OA5-PA1-OA2
76	0	301	CDL	CB3-OB5-PB2-OB2
76	R	101	CDL	CA2-OA2-PA1-OA5
76	R	102	CDL	CA3-OA5-PA1-OA2
76	R	102	CDL	CB2-OB2-PB2-OB5
76	R	102	CDL	CB3-OB5-PB2-OB2
76	L1	702	CDL	CA2-OA2-PA1-OA5
76	L1	702	CDL	CA3-OA5-PA1-OA2
76	L1	703	CDL	CA2-OA2-PA1-OA5
76	L1	703	CDL	CB2-OB2-PB2-OB5
76	N1	401	CDL	CB2-OB2-PB2-OB5
76	Y1	202	CDL	CA2-OA2-PA1-OA5
76	a1	101	CDL	CA2-OA2-PA1-OA5
76	a1	101	CDL	CA3-OA5-PA1-OA2
76	d1	201	CDL	CB2-OB2-PB2-OB5
76	h1	201	CDL	CA2-OA2-PA1-OA5
76	h1	201	CDL	CB3-OB5-PB2-OB2
80	J	101	PC1	C11-O13-P-O11
80	Κ	101	PC1	C11-O13-P-O11
80	Κ	101	PC1	C1-O11-P-O13
80	L	502	PC1	C11-O13-P-O11
80	6	203	PC1	C11-O13-P-O11
80	6	203	PC1	C1-O11-P-O13
80	P1	502	PC1	C11-O13-P-O11
70	n	604	HEA	C26-C15-C16-C17
80	Κ	101	PC1	C11-C12-N-C15
71	G	102	3PE	C32-C33-C34-C35
71	G	102	3PE	C37-C38-C39-C3A
76	N1	401	CDL	C81-C82-C83-C84
80	Y1	201	PC1	C34-C35-C36-C37
85	n1	201	ZMP	C19-C18-C21-O5
71	D1	501	3PE	C38-C39-C3A-C3B
80	Y1	201	PC1	C28-C29-C2A-C2B
85	n1	201	ZMP	C6-C7-C8-C9
71	M1	502	3PE	C28-C29-C2A-C2B
71	n	607	3PE	C2-C1-O11-P
76	R	103	CDL	OB5-CB3-CB4-OB6
80	9	204	PC1	C2A-C2B-C2C-C2D
71	M1	501	3PE	C36-C37-C38-C39
76	d1	201	CDL	C63-C64-C65-C66

Continued from previous page...

Mol	Chain	Res	Type	Atoms
80	Y1	201	PC1	C37-C38-C39-C3A
80	V	101	PC1	C11-C12-N-C13
80	6	203	PC1	C11-C12-N-C14
71	A1	201	3PE	C3A-C3B-C3C-C3D
71	M1	501	3PE	C23-C24-C25-C26
77	С	402	HEM	C2A-CAA-CBA-CGA
77	Ν	403	HEM	C2A-CAA-CBA-CGA
85	W1	201	ZMP	S1-C11-C12-N1
76	Y1	202	CDL	C73-C74-C75-C76
85	n1	201	ZMP	C5-C6-C7-C8
71	N1	402	3PE	C36-C37-C38-C39
76	d1	201	CDL	C55-C56-C57-C58
80	9	204	PC1	C11-C12-N-C15
80	P1	502	PC1	C11-C12-N-C15
71	H1	401	3PE	C21-C22-C23-C24
71	n	606	3PE	C21-C22-C23-C24
71	L1	701	3PE	C21-C22-C23-C24
76	G	101	CDL	OB5-CB3-CB4-OB6
76	d1	201	CDL	OB5-CB3-CB4-OB6
80	К	101	PC1	C11-C12-N-C14
80	V	101	PC1	C11-C12-N-C15
80	6	203	PC1	C11-C12-N-C13
71	D1	501	3PE	C32-C33-C34-C35
70	n	604	HEA	C14-C15-C16-C17
71	р	301	3PE	C11-O13-P-O11
71	\mathbf{t}	101	3PE	C11-O13-P-O11
76	С	404	CDL	CA2-OA2-PA1-OA5
76	H1	402	CDL	CB2-OB2-PB2-OB5
76	N1	401	CDL	CA2-OA2-PA1-OA5
76	d1	201	CDL	CA3-OA5-PA1-OA2
80	P1	502	PC1	C21-C22-C23-C24
76	H1	402	CDL	C1-CB2-OB2-PB2
71	n	606	3PE	O11-C1-C2-C3
76	С	404	CDL	OB5-CB3-CB4-CB6
76	G	101	CDL	OB5-CB3-CB4-CB6
76	0	301	CDL	OB5-CB3-CB4-CB6
76	a1	101	CDL	OB5-CB3-CB4-CB6
76	d1	201	CDL	OB5-CB3-CB4-CB6
76	G	101	CDL	C74-C75-C76-C77
80	V	101	PC1	C11-C12-N-C14
80	6	203	PC1	C11-C12-N-C15
71	Е	202	3PE	C1-C2-C3-O31

Continued from previous page...

EMD-17991,	8PW7
------------	------

Mol	Chain	Res	Type	Atoms
76	R	103	CDL	CB3-CB4-CB6-OB8
80	9	204	PC1	C34-C35-C36-C37
85	n1	201	ZMP	C20-C18-C21-O5
71	N	404	3PE	C25-C26-C27-C28
76	Y1	202	CDL	C24-C25-C26-C27
70	n	603	HEA	C11-C12-C13-C14
80	Y1	201	PC1	O11-C1-C2-O21
80	9	204	PC1	C11-C12-N-C14
80	P1	502	PC1	C11-C12-N-C14
76	a1	101	CDL	O1-C1-CA2-OA2
76	Y1	202	CDL	C82-C83-C84-C85
85	n1	201	ZMP	O4-C17-C18-C20
80	9	204	PC1	C11-C12-N-C13
76	А	502	CDL	OB5-CB3-CB4-CB6
76	R	103	CDL	OB5-CB3-CB4-CB6
71	t	101	3PE	O13-C11-C12-N
70	n	603	HEA	C27-C19-C20-C21
70	n	603	HEA	C18-C19-C20-C21
80	J	101	PC1	C2-C1-O11-P
71	L	501	3PE	C32-C33-C34-C35
71	n	606	3PE	C1-C2-C3-O31
76	N1	401	CDL	CA3-CA4-CA6-OA8
71	R	104	3PE	C1-O11-P-O13
71	A1	201	3PE	C1-O11-P-O13
71	A1	201	3PE	C11-O13-P-O11
71	H1	401	3PE	C11-O13-P-O11
76	А	502	CDL	CA2-OA2-PA1-OA5
76	R	102	CDL	CA2-OA2-PA1-OA5
71	0	302	3PE	O11-C1-C2-O21
71	H1	401	3PE	O11-C1-C2-O21
76	R	101	CDL	OB5-CB3-CB4-OB6
76	L1	702	CDL	OB5-CB3-CB4-OB6
80	P1	502	PC1	O11-C1-C2-O21
71	D1	501	3PE	C31-C32-C33-C34
76	R	103	CDL	OB6-CB4-CB6-OB8
76	h1	201	CDL	OB6-CB4-CB6-OB8
76	a1	101	CDL	CB2-C1-CA2-OA2
71	n	606	3PE	C2-C1-O11-P
71	M1	503	3PE	C2-C1-O11-P
71	i1	201	3PE	C2-C1-O11-P
76	G	101	CDL	C1-CA2-OA2-PA1
76	N1	401	CDL	C1-CA2-OA2-PA1

Continued from previous page...

Mol	Chain	Res	Type	Atoms
80	P1	502	PC1	O21-C21-C22-C23
76	R	103	CDL	CA5-C11-C12-C13
76	N1	401	CDL	C51-C52-C53-C54
76	Y1	202	CDL	OB5-CB3-CB4-CB6
76	h1	201	CDL	OB5-CB3-CB4-CB6
80	9	203	PC1	C29-C2A-C2B-C2C
76	R	102	CDL	C31-C32-C33-C34
80	P1	502	PC1	C11-C12-N-C13
71	K1	201	3PE	C2-C1-O11-P
76	h1	201	CDL	CA4-CA3-OA5-PA1
76	h1	201	CDL	CB3-CB4-CB6-OB8
80	V	101	PC1	C2-C1-O11-P
71	L	501	3PE	O11-C1-C2-O21
76	А	502	CDL	OB5-CB3-CB4-OB6
77	С	402	HEM	C4B-C3B-CAB-CBB
77	Ν	403	HEM	C4B-C3B-CAB-CBB
85	n1	201	ZMP	C16-C17-C18-C19
71	n	606	3PE	O21-C2-C3-O31
80	Y1	201	PC1	C3A-C3B-C3C-C3D
84	P1	501	NDP	PN-O3-PA-O2A
86	01	401	DGT	PB-O3A-PA-O1A
80	9	204	PC1	C35-C36-C37-C38
76	Ν	405	CDL	CA2-OA2-PA1-OA5
76	R	101	CDL	CB2-OB2-PB2-OB5
76	N1	401	CDL	CA3-OA5-PA1-OA2
71	t	101	3PE	C2-C1-O11-P
71	Y1	203	3PE	C2-C1-O11-P
76	С	404	CDL	C1-CA2-OA2-PA1
76	0	301	CDL	CB4-CB3-OB5-PB2
76	R	101	CDL	CA4-CA3-OA5-PA1
76	H1	402	CDL	C1-CA2-OA2-PA1
76	L1	703	CDL	C1-CA2-OA2-PA1
71	n	605	3PE	C1-O11-P-O12
71	n	605	3PE	C1-O11-P-O14
71	n	607	3PE	C1-O11-P-O14
71	0	302	3PE	C11-013-P-014
71	р	301	3PE	C11-O13-P-O12
71	t	101	3PE	C11-013-P-014
71	V	101	3PE	C1-O11-P-O14
71	V	101	3PE	C11-O13-P-O12
71	C	403	3PE	C11-O13-P-O12
71	G	102	3PE	C1-O11-P-O12

Continued from previous page...

Mol	Chain	Res	Type	Atoms
71	N	401	3PE	C11-O13-P-O12
71	N	401	3PE	C11-O13-P-O14
71	H1	401	3PE	C11-O13-P-O14
71	K1	201	3PE	C11-O13-P-O14
71	L1	701	3PE	C1-O11-P-O12
71	M1	502	3PE	C11-O13-P-O14
71	M1	503	3PE	C1-O11-P-O12
71	Y1	203	3PE	C1-O11-P-O12
71	d1	202	3PE	C1-O11-P-O12
71	d1	202	3PE	C1-O11-P-O14
71	d1	202	3PE	C11-O13-P-O14
71	d1	203	3PE	C1-O11-P-O12
76	А	502	CDL	CA3-OA5-PA1-OA4
76	А	502	CDL	CB3-OB5-PB2-OB3
76	А	502	CDL	CB3-OB5-PB2-OB4
76	С	404	CDL	CA2-OA2-PA1-OA3
76	G	101	CDL	CB3-OB5-PB2-OB4
76	N	405	CDL	CA3-OA5-PA1-OA4
76	0	301	CDL	CB2-OB2-PB2-OB4
76	R	102	CDL	CA2-OA2-PA1-OA3
76	R	102	CDL	CA3-OA5-PA1-OA3
76	R	102	CDL	CB2-OB2-PB2-OB3
76	H1	402	CDL	CB2-OB2-PB2-OB3
76	L1	702	CDL	CA3-OA5-PA1-OA4
76	L1	703	CDL	CB2-OB2-PB2-OB3
76	N1	401	CDL	CA2-OA2-PA1-OA4
76	d1	201	CDL	CB2-OB2-PB2-OB3
76	h1	201	CDL	CA2-OA2-PA1-OA4
80	J	101	PC1	C11-O13-P-O14
80	K	101	PC1	C11-O13-P-O12
80	K	101	PC1	C11-O13-P-O14
80	K	101	PC1	C1-O11-P-O12
80	L	502	PC1	C1-O11-P-O14
80	6	203	PC1	C11-O13-P-O12
80	6	203	PC1	C11-O13-P-O14
80	9	203	PC1	C11-O13-P-O12
80	P1	502	PC1	C11-O13-P-O14
86	01	401	DGT	C5'-O5'-PA-O1A
71	H1	401	3PE	O11-C1-C2-C3
76	R	101	CDL	OB5-CB3-CB4-CB6
71	6	202	3PE	O13-C11-C12-N
71	M1	502	3PE	O13-C11-C12-N

Continued from previous page...

EMD-17991,	8PW7
------------	------

Mol	Chain	Res	Type	Atoms
80	Y1	201	PC1	C29-C2A-C2B-C2C
71	N	401	3PE	C12-C11-O13-P
80	P1	502	PC1	C12-C11-O13-P
76	al	101	CDL	C52-C51-CB5-OB6
76	Y1	202	CDL	OB5-CB3-CB4-OB6
76	a1	101	CDL	OB5-CB3-CB4-OB6
76	h1	201	CDL	OB5-CB3-CB4-OB6
71	р	301	3PE	C23-C24-C25-C26
84	P1	501	NDP	C2D-C1D-N1N-C6N
80	J	101	PC1	O13-C11-C12-N
80	L	502	PC1	O13-C11-C12-N
80	9	203	PC1	O13-C11-C12-N
80	Y1	201	PC1	O13-C11-C12-N
76	d1	201	CDL	C59-C60-C61-C62
76	G	101	CDL	CB4-CB3-OB5-PB2
76	N	405	CDL	CB4-CB3-OB5-PB2
80	9	203	PC1	C35-C36-C37-C38
71	d1	203	3PE	C21-C22-C23-C24
71	M1	501	3PE	C3D-C3E-C3F-C3G
76	L1	702	CDL	OB5-CB3-CB4-CB6
80	Y1	201	PC1	O11-C1-C2-C3
71	0	302	3PE	C2-C1-O11-P
76	А	502	CDL	C1-CA2-OA2-PA1
76	h1	201	CDL	C1-CA2-OA2-PA1
71	R	104	3PE	O11-C1-C2-O21
71	r1	201	3PE	O31-C31-C32-C33
84	P1	501	NDP	O4D-C1D-N1N-C6N
75	У	601	TGL	CC1-CC2-CC3-CC4
71	n	606	3PE	C11-O13-P-O11
71	G	102	3PE	C11-O13-P-O11
71	Ν	401	3PE	C1-O11-P-O13
71	6	202	3PE	C1-O11-P-O13
71	6	202	3PE	C11-O13-P-O11
71	r1	201	3PE	C11-O13-P-O11
71	M1	502	3PE	C1-O11-P-O13
71	N1	402	3PE	C11-O13-P-O11
76	H1	402	CDL	CB3-OB5-PB2-OB2
76	al	101	CDL	CB2-OB2-PB2-OB5
71	d1	202	3PE	C1-C2-C3-O31
71	d1	203	3PE	O21-C21-C22-C23
71	M1	501	3PE	C37-C38-C39-C3A
76	А	502	CDL	C52-C51-CB5-OB6

Continued from previous page...

Mol	Chain	Res	Type	Atoms
80	9	204	PC1	C2B-C2C-C2D-C2E
76	А	502	CDL	CB4-CB3-OB5-PB2
76	L1	702	CDL	C1-CB2-OB2-PB2
71	Е	202	3PE	C21-C22-C23-C24
70	n	604	HEA	CAA-CBA-CGA-O1A
71	n	607	3PE	O21-C2-C3-O31
76	Y1	202	CDL	CB3-CB4-CB6-OB8
76	d1	201	CDL	CA3-CA4-CA6-OA8
70	n	603	HEA	CAA-CBA-CGA-O1A
70	n	603	HEA	CAD-CBD-CGD-O1D
85	W1	201	ZMP	C19-C18-C21-O5
85	W1	201	ZMP	C20-C18-C21-O5
71	Е	202	3PE	C32-C33-C34-C35
70	n	604	HEA	CAA-CBA-CGA-O2A
71	A1	201	3PE	C38-C39-C3A-C3B
80	9	203	PC1	C3-C2-O21-C21
71	A1	201	3PE	C23-C24-C25-C26
76	Y1	202	CDL	C80-C81-C82-C83
71	V	101	3PE	C1-O11-P-O13
71	Y1	203	3PE	C11-O13-P-O11
80	9	204	PC1	C21-C22-C23-C24
76	А	502	CDL	C52-C51-CB5-OB7
71	R	104	3PE	O11-C1-C2-C3
85	n1	201	ZMP	C12-C11-S1-C10
71	N1	402	3PE	O21-C2-C3-O31
76	Y1	202	CDL	OB6-CB4-CB6-OB8
76	d1	201	CDL	OA6-CA4-CA6-OA8
76	G	101	CDL	CB2-C1-CA2-OA2
76	L1	702	CDL	CA2-C1-CB2-OB2
70	n	603	HEA	CAA-CBA-CGA-O2A
77	N	403	HEM	CAD-CBD-CGD-O2D
70	n	603	HEA	CAD-CBD-CGD-O2D
71	D1	501	3PE	O21-C21-C22-C23
71	N1	402	3PE	C1-C2-C3-O31
71	Y1	204	3PE	C1-C2-C3-O31
71	D1	501	3PE	$C3D-C3E-C3F-C3\overline{G}$
76	N1	401	CDL	C80-C81-C82-C83
71	M1	502	3PE	C23-C24-C25-C26
71	L	501	3PE	O11-C1-C2-C3
71	С	405	3PE	O13-C11-C12-N
71	M1	502	3PE	C2C-C2D-C2E-C2F
76	А	502	CDL	C72-C71-CB7-OB8

Continued from previous page...

EMD-17991,	8PW7
------------	------

Mol	Chain	Res	Type	Atoms
76	R	101	CDL	C12-C11-CA5-OA6
76	R	101	CDL	C72-C71-CB7-OB8
71	С	405	3PE	O31-C31-C32-C33
71	L1	701	3PE	C2-C1-O11-P
80	Y1	201	PC1	C33-C34-C35-C36
85	n1	201	ZMP	N2-C16-C17-O4
77	N	403	HEM	CAD-CBD-CGD-O1D
84	P1	501	NDP	C2D-C1D-N1N-C2N
71	V	101	3PE	O32-C31-C32-C33
76	С	404	CDL	C72-C71-CB7-OB9
71	С	405	3PE	O21-C21-C22-C23
71	0	302	3PE	O21-C21-C22-C23
76	Y1	202	CDL	CB7-C71-C72-C73
76	G	101	CDL	C52-C51-CB5-OB6
76	R	102	CDL	C12-C11-CA5-OA6
71	t	101	3PE	C3-C2-O21-C21
76	a1	101	CDL	CA3-CA4-OA6-CA5
76	h1	201	CDL	CB6-CB4-OB6-CB5
80	6	203	PC1	C3-C2-O21-C21
80	Y1	201	PC1	C35-C36-C37-C38
84	P1	501	NDP	O4D-C1D-N1N-C2N
78	D	301	HEC	CAD-CBD-CGD-O2D
71	K1	201	3PE	O31-C31-C32-C33
76	R	102	CDL	C52-C51-CB5-OB6
71	H1	401	3PE	C2A-C2B-C2C-C2D
76	R	102	CDL	C32-C31-CA7-OA8
76	L1	702	CDL	C72-C71-CB7-OB8
71	D1	501	3PE	C39-C3A-C3B-C3C
76	R	102	CDL	OA5-CA3-CA4-OA6
76	А	502	CDL	C32-C31-CA7-OA8
71	i1	201	3PE	C2B-C2C-C2D-C2E
86	01	401	DGT	PB-O3B-PG-O2G
71	M1	503	3PE	O21-C21-C22-C23
71	M1	502	3PE	O11-C1-C2-C3
76	h1	201	CDL	C32-C31-CA7-OA8
71	Y1	204	3PE	O21-C2-C3-O31
76	R	101	CDL	C72-C71-CB7-OB9
76	d1	201	CDL	C14-C15-C16-C17
76	h1	201	CDL	C12-C11-CA5-OA6
71	С	403	3PE	O21-C21-C22-C23
71	M1	501	3PE	O21-C21-C22-C23
76	R	102	CDL	C72-C71-CB7-OB8

Continued from previous page...

Mol	Chain	Res	Type	Atoms
76	h1	201	CDL	C72-C71-CB7-OB8
71	v	101	3PE	O31-C31-C32-C33
76	С	404	CDL	C72-C71-CB7-OB8
76	N	405	CDL	C52-C51-CB5-OB6
76	L1	703	CDL	C72-C71-CB7-OB8
76	H1	402	CDL	C12-C13-C14-C15
76	d1	201	CDL	C57-C58-C59-C60
71	6	202	3PE	O21-C21-C22-C23
80	9	204	PC1	O31-C31-C32-C33
84	P1	501	NDP	PN-O3-PA-O1A
78	D	301	HEC	CAD-CBD-CGD-O1D
71	Y1	204	3PE	C23-C24-C25-C26
71	С	403	3PE	O31-C31-C32-C33
76	R	102	CDL	C52-C51-CB5-OB7
71	K1	201	3PE	O32-C31-C32-C33
76	G	101	CDL	C52-C51-CB5-OB7
76	R	102	CDL	C32-C31-CA7-OA9
76	Ν	405	CDL	C52-C51-CB5-OB7
76	L1	703	CDL	C72-C71-CB7-OB9
71	С	405	3PE	O22-C21-C22-C23
76	А	502	CDL	C32-C31-CA7-OA9
71	0	302	3PE	C1-C2-C3-O31
71	G	102	3PE	O21-C21-C22-C23
76	0	301	CDL	CB2-OB2-PB2-OB5
80	Y1	201	PC1	C3B-C3C-C3D-C3E
71	С	405	3PE	O32-C31-C32-C33
71	Е	202	3PE	C33-C34-C35-C36
71	K1	201	3PE	O21-C21-C22-C23
71	H1	401	3PE	C2-C1-O11-P
80	6	203	PC1	C21-C22-C23-C24
71	0	302	3PE	O22-C21-C22-C23
80	9	204	PC1	O32-C31-C32-C33
71	n	606	3PE	C11-O13-P-O14
71	G	102	3PE	C11-O13-P-O14
71	r1	201	3PE	C11-O13-P-O14
76	R	102	CDL	CA3-OA5-PA1-OA4
76	N1	401	CDL	CB3-OB5-PB2-OB3
76	a1	101	CDL	CA3-OA5-PA1-OA3
76	a1	101	CDL	CB2-OB2-PB2-OB3
84	P1	501	NDP	C5B-O5B-PA-O2A
86	01	401	DGT	C5'-O5'-PA-O2A
71	M1	503	3PE	O22-C21-C22-C23

Continued from previous page...

EMD-17991,	8PW7
------------	------

Mol	Chain	Res	Type	Atoms
80	P1	502	PC1	O22-C21-C22-C23
71	0	302	3PE	O11-C1-C2-C3
77	С	401	HEM	CAA-CBA-CGA-O2A
76	L1	702	CDL	C72-C71-CB7-OB9
76	h1	201	CDL	C72-C71-CB7-OB9
86	01	401	DGT	PB-O3B-PG-O3G
70	n	603	HEA	O11-C11-C12-C13
85	W1	201	ZMP	C2-C1-C22-C23
76	h1	201	CDL	C52-C51-CB5-OB6
71	n	605	3PE	C1-C2-O21-C21
71	n	606	3PE	C12-C11-O13-P
71	V	101	3PE	C12-C11-O13-P
71	А	501	3PE	C1-C2-O21-C21
71	С	405	3PE	C12-C11-O13-P
71	R	104	3PE	C12-C11-O13-P
71	H1	401	3PE	C3-C2-O21-C21
71	L1	701	3PE	C3-C2-O21-C21
76	Ν	405	CDL	CB6-CB4-OB6-CB5
76	R	102	CDL	CA6-CA4-OA6-CA5
76	R	103	CDL	CA3-CA4-OA6-CA5
76	N1	401	CDL	CB3-CB4-OB6-CB5
76	N1	401	CDL	CB6-CB4-OB6-CB5
80	L	502	PC1	C1-C2-O21-C21
80	9	204	PC1	C12-C11-O13-P
80	P1	502	PC1	C3-C2-O21-C21
71	С	403	3PE	O22-C21-C22-C23
71	M1	501	3PE	O22-C21-C22-C23
76	Y1	202	CDL	C13-C14-C15-C16
71	A1	201	3PE	O31-C31-C32-C33
76	R	102	CDL	C72-C71-CB7-OB9
71	n	605	3PE	O21-C21-C22-C23
71	A1	201	3PE	O21-C21-C22-C23
71	M1	501	3PE	O31-C31-C32-C33
76	R	103	CDL	C72-C73-C74-C75
71	M1	502	3PE	O31-C31-C32-C33
80	P1	502	PC1	O31-C31-C32-C33
71	С	403	3PE	O32-C31-C32-C33
71	M1	502	3PE	O32-C31-C32-C33
76	Ν	405	CDL	C12-C11-CA5-OA7
77	С	401	HEM	CAA-CBA-CGA-O1A
71	Y1	204	3PE	O31-C31-C32-C33
75	у	601	TGL	OG1-CA1-CA2-CA3

Continued from previous page...

Mol	Chain	Res	Type	Atoms
76	А	502	CDL	C12-C11-CA5-OA6
76	Ν	405	CDL	C12-C11-CA5-OA6
76	N1	401	CDL	C52-C51-CB5-OB6
76	d1	201	CDL	C72-C71-CB7-OB8
71	i1	201	3PE	C24-C25-C26-C27
71	G	102	3PE	O22-C21-C22-C23
71	6	202	3PE	O22-C21-C22-C23
80	P1	502	PC1	O32-C31-C32-C33
76	G	101	CDL	C72-C73-C74-C75
71	Y1	203	3PE	O31-C31-C32-C33
76	H1	402	CDL	C12-C11-CA5-OA6
76	h1	201	CDL	C32-C31-CA7-OA9
80	9	203	PC1	C2D-C2E-C2F-C2G
71	А	501	3PE	O31-C31-C32-C33
71	Y1	204	3PE	O32-C31-C32-C33
76	H1	402	CDL	C13-C14-C15-C16

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-17991. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal standard-deviation projections (False-color) (i)

This section was not generated.

6.5 Orthogonal surface views (i)

This section was not generated.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

