

Full wwPDB X-ray Structure Validation Report (i)

May 27, 2024 – 10:13 am BST

PDB ID	:	8PWU
Title	:	PfRH5 bound to monoclonal antibody MAD10-255
Authors	:	Farrell, B.; Higgins, M.K.
Deposited on	:	2023-07-21
Resolution	:	3.15 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity		4.02b-467
	·	4.020-401
Xtriage (Phenix)	:	1.13
EDS	:	2.36.2
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.15 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$		
R_{free}	130704	1626 (3.18-3.10)		
Clashscore	141614	1735 (3.18-3.10)		
Ramachandran outliers	138981	1677 (3.18-3.10)		
Sidechain outliers	138945	1677 (3.18-3.10)		
RSRZ outliers	127900	1588 (3.18-3.10)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
			10%					
1	А	338	68%	17% • 15%				
			10%					
1	С	338	66%	17% • 15%				
			11%					
1	Ε	338	67%	17% • 15%				
			9%					
1	G	338	70%	14% • 15%				
			23%					
1	Ι	338	67%	16% • 15%				

Conti	nueu fron	i previous	page					
Mol	Chain	Length	Quality of chain					
			44%					
1	Κ	338	69%	15%	• 15%			
			4%					
2	В	250	63%	23%	• 11%			
			5%					
2	D	250	67%	21%	• 10%			
			2%					
2	F	250	65%	24%	• 10%			
			3%					
2	Н	250	64%	23%	• 10%			
			44%					
2	J	250	66%	20%	• 11%			

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 23363 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	200	Total	С	Ν	0	S	0	0	0
	A	200	2443	1575	411	442	15	0	0	0
1	C	200	Total	С	Ν	0	S	0	0	0
		200	2443	1575	411	442	15	0	0	0
1	F	287	Total	С	Ν	0	S	0	0	0
		201	2435	1571	409	440	15	0	0	0
1	C	286	Total	С	Ν	0	S	0	0	0
	G	280	2424	1562	408	439	15		0	0
1	т	000	Total	С	Ν	0	S	0	0	0
	1	200	2443	1575	411	442	15	0	0	0
1	V	200	Total	С	Ν	0	S	0	0	0
		288	2443	1575	411	442	15	0	0	

• Molecule 1 is a protein called Reticulocyte-binding protein homolog 5.

There are 18 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	203	TYR	CYS	conflict	UNP Q8IFM5
А	216	ALA	THR	conflict	UNP Q8IFM5
А	299	ALA	THR	conflict	UNP Q8IFM5
С	203	TYR	CYS	conflict	UNP Q8IFM5
С	216	ALA	THR	conflict	UNP Q8IFM5
С	299	ALA	THR	conflict	UNP Q8IFM5
E	203	TYR	CYS	conflict	UNP Q8IFM5
E	216	ALA	THR	conflict	UNP Q8IFM5
E	299	ALA	THR	conflict	UNP Q8IFM5
G	203	TYR	CYS	conflict	UNP Q8IFM5
G	216	ALA	THR	conflict	UNP Q8IFM5
G	299	ALA	THR	conflict	UNP Q8IFM5
Ι	203	TYR	CYS	conflict	UNP Q8IFM5
Ι	216	ALA	THR	conflict	UNP Q8IFM5
Ι	299	ALA	THR	conflict	UNP Q8IFM5
K	203	TYR	CYS	conflict	UNP Q8IFM5
K	216	ALA	THR	conflict	UNP Q8IFM5

Chain	Residue	Modelled	Actual	Comment	Reference
Κ	299	ALA	THR	$\operatorname{conflict}$	UNP Q8IFM5

• Molecule 2 is a protein called monoclonal antibody MAD10-255.

Mol	Chain	Residues		Atoms					AltConf	Trace
9	В	003	Total	С	Ν	Ο	\mathbf{S}	0	1	0
	D	220	1736	1099	288	343	6	0	T	0
9	П	226	Total	С	Ν	Ο	\mathbf{S}	0	1	0
	D	220	1756	1109	291	350	6	0	1	0
9	F	226	Total	С	Ν	0	\mathbf{S}	0	1	0
	I.		1756	1109	291	350	6			
0	ц	226	Total	С	Ν	0	S	0	1	0
		220	1756	1109	291	350	6	0	L	0
0	т	222	Total	С	Ν	0	S	0	1	0
	Z J	222	1728	1093	287	342	6	0	1	U

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Reticulocyte-binding protein homolog 5

• Molecule 1: Reticulocyte-binding protein homolog 5

Chain E: 67% 17% • 15%

PRO LEU THR GLN

• Molecule 1: Reticulocyte-binding protein homolog 5

• Molecule 1: Reticulocyte-binding protein homolog 5

• Molecule 2: monoclonal antibody MAD10-255

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	115.31Å 134.52Å 198.67Å	Depositor
a, b, c, α , β , γ	90.00° 93.56° 90.00°	Depositor
Bosolution (Å)	87.45 - 3.15	Depositor
Resolution (A)	87.45 - 3.15	EDS
% Data completeness	99.8 (87.45-3.15)	Depositor
(in resolution range)	99.8 (87.45-3.15)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.03 (at 3.13 \text{\AA})$	Xtriage
Refinement program	BUSTER 2.10.4 (20-OCT-2021)	Depositor
B B.	0.242 , 0.264	Depositor
Π, Π_{free}	0.245 , 0.265	DCC
R_{free} test set	5254 reflections $(5.01%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	102.5	Xtriage
Anisotropy	0.159	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.34 , 101.3	EDS
L-test for $twinning^2$	$ < L > = 0.46, < L^2 > = 0.29$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	23363	wwPDB-VP
Average B, all atoms $(Å^2)$	136.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.82% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
IVIOI	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.44	0/2493	0.59	0/3342	
1	С	0.44	0/2493	0.60	0/3342	
1	Е	0.44	0/2485	0.61	0/3331	
1	G	0.44	0/2473	0.59	0/3315	
1	Ι	0.33	0/2493	0.56	0/3342	
1	Κ	0.32	0/2493	0.54	0/3342	
2	В	0.51	0/1781	0.72	0/2426	
2	D	0.51	0/1801	0.72	0/2453	
2	F	0.49	0/1801	0.71	0/2453	
2	H	0.49	0/1801	0.71	0/2453	
2	J	0.34	0/1773	0.62	0/2415	
All	All	0.43	0/23887	0.63	0/32214	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2443	0	2465	44	0
1	С	2443	0	2465	41	0
1	Е	2435	0	2459	41	0
1	G	2424	0	2450	41	0
1	Ι	2443	0	2465	36	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
10101	Onam	1 ton 11	II(IIIouel)	II(dadada)	Clashes	Symmetasites
1	Κ	2443	0	2465	30	0
2	В	1736	0	1690	35	0
2	D	1756	0	1704	29	0
2	F	1756	0	1704	32	0
2	Н	1756	0	1704	31	0
2	J	1728	0	1679	32	0
All	All	23363	0	23250	353	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (353) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:163:ILE:HG23	53:ILE:HG23 1:G:171:LEU:HD21		1.10
2:D:29:ILE:HG23	2:D:34:TRP:NE1	1.83	0.93
1:E:196:LYS:NZ	1:E:198:SER:HB3	1.83	0.93
2:F:29:ILE:HG23	2:F:34:TRP:NE1	1.83	0.92
2:H:29:ILE:HG23	2:H:34:TRP:NE1	1.86	0.91
1:E:196:LYS:HZ2	1:E:198:SER:HB3	1.36	0.91
1:I:446:ILE:HG23	1:I:447:TRP:CD1	2.06	0.91
1:C:503:MET:HA	1:E:400:LYS:NZ	1.86	0.91
1:K:446:ILE:HG23	1:K:447:TRP:CD1	2.06	0.90
1:G:446:ILE:HG23	1:G:447:TRP:CD1	2.07	0.90
1:C:446:ILE:HG23	1:C:447:TRP:CD1	2.07	0.90
1:E:446:ILE:HG23	1:E:447:TRP:CD1	2.07	0.89
1:A:503:MET:HA	1:G:400:LYS:NZ	1.88	0.89
1:A:446:ILE:HG23	1:A:447:TRP:CD1	2.07	0.88
1:G:196:LYS:NZ	1:G:198:SER:HB3	1.88	0.88
1:G:196:LYS:HZ2	1:G:198:SER:HB3	1.41	0.84
1:A:392:LEU:HG	1:I:358:TYR:CD2	2.13	0.83
1:C:207:ASP:O	1:C:211:LYS:HD2	1.79	0.83
1:C:393:LEU:HD12	1:E:495:HIS:CD2	2.14	0.82
2:B:8:GLY:HA3	2:B:20:LEU:HD23	1.62	0.82
2:B:29:ILE:HG23	2:B:34:TRP:NE1	1.95	0.82
1:A:400:LYS:NZ	1:G:503:MET:HG2	1.94	0.82
2:B:75:ARG:HG2	2:B:77:ARG:HD2	1.63	0.80
1:A:392:LEU:HG	1:I:358:TYR:CE2	2.18	0.79
1:A:400:LYS:HZ3	1:G:503:MET:HG2	1.45	0.78
2:B:191:GLY:HA3	1:C:347:ASN:HB2	1.66	0.77
1:A:503:MET:HA	1:G:400:LYS:HZ3	1.50	0.77

Interatomic Clash						
Atom-1	Atom-2	distance (Å)	overlap (Å)			
1:C:503:MET:HA	1:E:400:LYS:HZ3	1.48	0.76			
1:A:393:LEU:HD12	1:G:495:HIS:HD2	1.54	0.72			
1:G:163:ILE:CG2	1:G:171:LEU:HD21	2.13	0.72			
1:K:500:VAL:HA	1:K:503:MET:HG3	1.74	0.69			
1:E:165:GLN:HG3	1:E:171:LEU:HD23	1.75	0.69			
1:I:500:VAL:O	1:I:504:LYS:HG2	1.94	0.68			
2:H:8:GLY:HA3	2:H:20:LEU:HD23	1.77	0.67			
2:B:212:LEU:HD21	2:B:238:LEU:HD21	1.76	0.67			
2:D:212:LEU:HD21	2:D:238:LEU:HD21	1.78	0.66			
2:D:171:GLN:HB2	2:D:181:LEU:HD11	1.78	0.66			
2:H:212:LEU:HD21	2:H:238:LEU:HD21	1.77	0.65			
2:F:8:GLY:HA3	2:F:20:LEU:HD23	1.77	0.65			
2:D:60:ASN:HB3	2:D:63:LEU:HD23	1.78	0.65			
2:F:191:GLY:HA3	1:G:347:ASN:HB2	1.79	0.65			
1:C:498:ILE:HG12	1:E:498:ILE:HG12	1.80	0.64			
2:F:212:LEU:HD21	2:F:238:LEU:HD21	1.78	0.64			
2:J:212:LEU:HD21	2:J:238:LEU:HD21	1.79	0.64			
2:D:90:THR:HG23	2:D:116:THR:HG22	1.78	0.64			
1:G:239:GLU:HG2	1:G:413:ILE:HD11	1.80	0.64			
1:C:501:LEU:HB3	1:E:501:LEU:HD23	1.80	0.63			
2:D:8:GLY:HA3	2:D:20:LEU:HD23	1.80	0.63			
1:I:165:GLN:HG3	1:I:171:LEU:HD23	1.81	0.63			
2:J:29:ILE:HG23	2:J:34:TRP:NE1	2.14	0.62			
1:A:347:ASN:HB2	2:D:191:GLY:HA3	1.81	0.62			
2:J:90:THR:HG23	2:J:116:THR:HG22	1.82	0.62			
1:A:165:GLN:HG3	1:A:171:LEU:HD23	1.81	0.62			
1:A:393:LEU:HD12	1:G:495:HIS:CD2	2.33	0.62			
1:A:388:GLN:HG2	1:I:197:SER:HB2	1.82	0.62			
1:C:175:ILE:HG22	1:C:177:PRO:HD2	1.81	0.62			
1:C:393:LEU:HD12	1:E:495:HIS:HD2	1.64	0.62			
2:J:8:GLY:HA3	2:J:20:LEU:HD23	1.81	0.62			
1:E:347:ASN:HB2	2:H:191:GLY:HA3	1.81	0.62			
1:K:165:GLN:HG3	1:K:171:LEU:HD23	1.81	0.62			
2:B:189:GLU:O	2:B:192:VAL:HG12	2.00	0.61			
1:C:220:VAL:HA	1:C:223:LYS:HE3	1.83	0.61			
1:E:196:LYS:HZ3	1:E:198:SER:HB3	1.65	0.61			
1:E:239:GLU:HG2	1:E:413:ILE:HD11	1.84	0.60			
1:A:239:GLU:HG2	1:A:413:ILE:HD11	1.83	0.60			
1:I:239:GLU:HG2	1:I:413:ILE:HD11	1.83	0.60			
1:K:239:GLU:HG2	1:K:413:ILE:HD11	1.84	0.60			
1:A:454:GLU:O	1:A:458:ARG:HG2	2.02	0.60			

		Interatomic Clash			
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:G:165:GLN:HG3	1:G:171:LEU:HD23	1.83	0.59		
2:H:197:SER:HB2	2:H:208:THR:HG23	1.84	0.59		
2:F:141:SER:HB2	2:F:142:PRO:HD3	1.84	0.58		
2:J:141:SER:HB2	2:J:142:PRO:HD3	1.85	0.58		
1:A:503:MET:HA	1:G:400:LYS:HZ2	1.67	0.58		
1:C:239:GLU:HG2	1:C:413:ILE:HD11	1.85	0.58		
2:H:217:ILE:HG23	2:H:239:GLU:HA	1.85	0.58		
2:J:197:SER:HB2	2:J:208:THR:HG23	1.86	0.58		
1:E:213:ILE:HD13	2:F:102:ILE:HG13	1.86	0.57		
2:B:197:SEB:HB2	2:B:208:THB:HG23	1.85	0.57		
1:G:196:LYS:HZ3	1:G:198:SER:HB3	1.68	0.57		
2:B:72:ASP:OD2	2:B:75:ABG:HB2	2.03	0.57		
2:B:58:ASP:HB3	2:B:228:LEU:HD11	1.87	0.56		
2:H:189:GLU:O	2:H:192:VAL:HG12	2.05	0.56		
2:F:197:SEB:HB2	2:F:208:THB:HG23	1.87	0.56		
1.G.397.LEU.HD23	$1 \cdot G \cdot 407 \cdot ILE \cdot HG22$	1.87	0.56		
1:A:397:LEU:HD23	1:A:407:ILE:HG22	1.87	0.56		
2:J:97:ABG:NH1	2:J:108:TYR:HE2	2.04	0.55		
1:E:427:HIS:HA	1:E:430:ILE:HD12	1.88	0.55		
2:J:163:ILE:HG23	2:J:226:HIS:HB2	1.87	0.55		
2:B:29:ILE:HG23	2:B:34:TRP:CD1	2.42	0.55		
2:F:158:GLN:NE2	2:F:204:ASP:OD1	2.32	0.54		
2:B:60:ASN:HB3	2:B:63:LEU:HD23	1.90	0.54		
2:H:66:ARG:NH2	2:H:89:ASP:OD2	2.42	0.53		
1:I:315:ILE:HG22	1:I:319:LYS:HE2	1.90	0.53		
1:A:315:ILE:HG22	1:A:319:LYS:HE2	1.89	0.53		
2:F:60:ASN:HB3	2:F:63:LEU:HD23	1.90	0.53		
1:I:393:LEU:HD22	1:I:494:PHE:CE1	2.44	0.53		
1:E:330:MET:CE	2:F:31:THR:HG21	2.39	0.53		
1:C:395:THR:HG21	1:K:200:TYR:HB3	1.91	0.53		
1:E:397:LEU:HD23	1:E:407:ILE:HG22	1.90	0.53		
2:F:105:TYR:HD1	2:F:180:VAL:HG21	1.74	0.53		
2:F:189:GLU:O	2:F:192:VAL:HG12	2.09	0.53		
1:A:448:ARG:NH1	1:A:450:PHE:CD1	2.77	0.52		
1:E:211:LYS:O	1:E:215:GLU:HG3	2.09	0.52		
2:H:60:ASN:HB3	2:H:63:LEU:HD23	1.90	0.52		
2:D:90:THR:CG2	2:D:116:THR:HG22	2.39	0.52		
1:E:383:MET:HE3	1:E:484:TYR:HE2	1.74	0.52		
1:K:315:ILE:HG22	1:K:319:LYS:HE2	1.91	0.52		
1:I:397:LEU:HD23	1:I:407:ILE:HG22	1.92	0.52		
2:J:189:GLU:O	2:J:192:VAL:HG12	2.10	0.52		

	lo uo puge	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:164:LEU:HD22	1:A:478:MET:HB3	1.93	0.51	
1:C:505:PHE:HZ	1:E:504:LYS:HB2	1.73	0.51	
2:D:29:ILE:HG23	2:D:34:TRP:CD1	2.46	0.51	
1:E:315:ILE:HG22	1:E:319:LYS:HE2	1.92	0.51	
1:E:164:LEU:HD22	1:E:478:MET:HB3	1.93	0.51	
2:F:20:LEU:HD12	2:F:80:LEU:HD23	1.93	0.51	
2:B:169:TRP:CE2	2:B:207:PHE:HB2	2.46	0.51	
2:B:35:SER:HB3	2:B:50:TYR:HB3	1.92	0.51	
1:K:397:LEU:HD23	1:K:407:ILE:HG22	1.93	0.51	
1:K:491:ASN:HA	1:K:494:PHE:HB2	1.93	0.51	
1:I:199:THR:HG23	1:I:202:LYS:HB3	1.92	0.51	
1:G:315:ILE:HG22	1:G:319:LYS:HE2	1.91	0.51	
1:C:380:LEU:HD13	1:C:425:GLU:HG3	1.93	0.50	
1:E:394:LEU:HD23	1:E:410:ILE:HG22	1.93	0.50	
1:K:164:LEU:HD22	1:K:478:MET:HB3	1.93	0.50	
2:H:163:ILE:HD13	2:H:226:HIS:HB3	1.93	0.50	
1:I:404:TYR:HE1	1:I:504:LYS:HE3	1.76	0.50	
1:A:400:LYS:HZ3	1:G:503:MET:CG	2.22	0.50	
1:G:164:LEU:HD22	1:G:478:MET:HB3	1.92	0.50	
1:K:394:LEU:HD23	1:K:410:ILE:HG22	1.93	0.50	
2:B:152:ARG:NH1	2:F:150:GLY:O	2.43	0.50	
1:C:498:ILE:HG21	1:E:393:LEU:HD11	1.92	0.50	
2:D:39:GLN:HB2	2:D:45:LEU:HD23	1.93	0.50	
1:C:176:ILE:HD12	1:C:475:LEU:HD13	1.94	0.50	
1:I:394:LEU:HD23	1:I:410:ILE:HG22	1.93	0.50	
2:J:97:ARG:NH1	2:J:108:TYR:CE2	2.79	0.50	
2:B:63:LEU:O	2:B:66:ARG:HG2	2.11	0.49	
1:A:347:ASN:O	1:A:348:ASN:HB2	2.11	0.49	
1:G:448:ARG:NH1	1:G:450:PHE:CD1	2.80	0.49	
2:H:142:PRO:HD2	2:H:155:ILE:HG23	1.94	0.49	
1:I:494:PHE:O	1:I:498:ILE:HG13	2.12	0.49	
2:J:90:THR:CG2	2:J:116:THR:HG22	2.42	0.49	
1:I:164:LEU:HD22	1:I:478:MET:HB3	1.93	0.49	
1:E:347:ASN:O	1:E:348:ASN:HB2	2.12	0.49	
1:I:227:ILE:HD12	1:I:227:ILE:H	1.77	0.49	
2:J:20:LEU:HD12	2:J:80:LEU:HD23	1.94	0.49	
1:E:227:ILE:HD12	1:E:227:ILE:H	1.77	0.49	
2:D:141:SER:HB2	2:D:156:THR:OG1	2.11	0.49	
1:I:448:ARG:NH1	1:I:450:PHE:CD1	2.81	0.49	
2:B:39:GLN:HB2	2:B:45:LEU:HD23	1.95	0.49	
2:H:20:LEU:HD12	2:H:80:LEU:HD23	1.93	0.49	

	ti a	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:H:29:ILE:HG23	2:H:34:TRP:CD1	2.46	0.49	
2:J:60:ASN:HB3	2:J:63:LEU:HD23	1.94	0.49	
1:C:227:ILE:HD12	1:C:227:ILE:H	1.78	0.49	
1:C:494:PHE:O	1:C:498:ILE:HG13	2.13	0.49	
1:C:448:ARG:NH1	1:C:450:PHE:CD1	2.81	0.48	
1:G:227:ILE:HD12	1:G:227:ILE:H	1.78	0.48	
1:G:347:ASN:O	1:G:348:ASN:HB2	2.13	0.48	
1:K:494:PHE:O	1:K:498:ILE:HG13	2.13	0.48	
1:C:394:LEU:HD23	1:C:410:ILE:HG22	1.95	0.48	
2:F:29:ILE:HG23	2:F:34:TRP:CD1	2.47	0.48	
2:F:142:PRO:HD2	2:F:155:ILE:HG23	1.94	0.48	
1:A:388:GLN:HG2	1:I:197:SER:CB	2.42	0.48	
1:C:347:ASN:O	1:C:348:ASN:HB2	2.14	0.48	
1:K:448:ARG:NH1	1:K:450:PHE:CD1	2.81	0.48	
1:I:410:ILE:HD11	1:I:493:ILE:HB	1.95	0.48	
1:A:227:ILE:H	1:A:227:ILE:HD12	1.79	0.48	
2:F:39:GLN:HB2	2:F:45:LEU:HD23	1.95	0.48	
1:G:188:LEU:HD11	1:G:460:LEU:HD23	1.96	0.48	
1:K:195:HIS:CD2	1:K:343:LEU:CD1	2.97	0.48	
1:A:394:LEU:HD23	1:A:410:ILE:HG22	1.96	0.48	
2:B:136:ILE:HD13	2:B:227:TYR:HB2	1.95	0.48	
1:C:448:ARG:HH11	1:C:448:ARG:HB3	1.79	0.48	
1:G:163:ILE:HD13	1:G:311:LYS:HE3	1.96	0.48	
2:H:39:GLN:HB2	2:H:45:LEU:HD23	1.95	0.48	
2:J:78:PHE:CZ	2:J:95:CYS:SG	3.06	0.48	
2:D:66:ARG:NH2	2:D:89:ASP:OD2	2.47	0.48	
1:G:434:LYS:HE2	1:G:468:LEU:HD12	1.96	0.48	
1:I:347:ASN:O	1:I:348:ASN:HB2	2.14	0.48	
2:J:39:GLN:HB2	2:J:45:LEU:HD23	1.96	0.48	
1:A:400:LYS:NZ	1:G:503:MET:CG	2.71	0.47	
2:D:105:TYR:HD1	2:D:180:VAL:HG21	1.78	0.47	
1:G:442:ILE:HG13	1:G:446:ILE:HD12	1.96	0.47	
1:K:227:ILE:H	1:K:227:ILE:HD12	1.78	0.47	
2:B:78:PHE:CZ	2:B:95:CYS:SG	3.08	0.47	
2:D:20:LEU:HD12	2:D:80:LEU:HD23	1.95	0.47	
2:B:33:TYR:CE2	2:B:101:MET:HG2	2.49	0.47	
2:D:63:LEU:O	2:D:66:ARG:HG2	2.14	0.47	
1:A:488:LYS:HE2	1:A:492:ASN:HD21	1.80	0.47	
1:C:442:ILE:HG13	1:C:446:ILE:HD12	1.96	0.47	
1:E:442:ILE:HG13	1:E:446:ILE:HD12	1.97	0.47	
1:A:442:ILE:HG13	1:A:446:ILE:HD12	1.96	0.47	

	lo uo puge	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:448:ARG:HD3	1:C:450:PHE:CZ	2.50	0.47	
2:D:195:ARG:NH1	2:D:216:ASP:OD1	2.43	0.47	
2:J:34:TRP:CZ3	2:J:97:ARG:HB2	2.50	0.47	
2:J:82:LEU:HD12	2:J:85:VAL:HG12	1.97	0.47	
2:H:195:ARG:HG3	2:H:209:ILE:HG23	1.97	0.47	
1:I:343:LEU:O	1:I:452:LYS:HE3	2.14	0.47	
1:A:188:LEU:HD11	1:A:460:LEU:HD23	1.95	0.47	
1:C:431:ILE:HD11	1:C:473:ASP:HA	1.97	0.47	
1:I:442:ILE:HG13	1:I:446:ILE:HD12	1.96	0.47	
2:J:29:ILE:HG23	2:J:34:TRP:CD1	2.50	0.47	
1:C:188:LEU:HD11	1:C:460:LEU:HD23	1.97	0.46	
1:E:431:ILE:HD11	1:E:473:ASP:HA	1.97	0.46	
1:A:448:ARG:HD3	1:A:450:PHE:CZ	2.50	0.46	
1:C:165:GLN:HG3	1:C:171:LEU:HD23	1.96	0.46	
1:C:434:LYS:HE2	1:C:468:LEU:HD12	1.98	0.46	
1:E:494:PHE:O	1:E:498:ILE:HG13	2.15	0.46	
2:J:4:LEU:HD21	2:J:34:TRP:HZ3	1.80	0.46	
1:K:343:LEU:O	1:K:452:LYS:HE3	2.16	0.46	
2:D:18:LEU:HD13	2:D:115:VAL:HG11	1.97	0.46	
1:G:394:LEU:HD23	1:G:410:ILE:HG22	1.97	0.46	
1:G:454:GLU:O	1:G:458:ARG:HG2	2.16	0.46	
2:D:141:SER:HB2	2:D:142:PRO:HD3	1.97	0.46	
1:I:404:TYR:CE1	1:I:504:LYS:HE3	2.50	0.46	
1:E:434:LYS:HE2	1:E:468:LEU:HD12	1.98	0.45	
2:F:90:THR:HG23	2:F:116:THR:HA	1.99	0.45	
1:G:448:ARG:HD3	1:G:450:PHE:CZ	2.51	0.45	
1:K:442:ILE:HG13	1:K:446:ILE:HD12	1.97	0.45	
1:E:383:MET:HE3	1:E:484:TYR:CE2	2.51	0.45	
1:G:175:ILE:HG22	1:G:177:PRO:HD2	1.98	0.45	
2:B:171:GLN:HG3	2:B:220:TYR:CE2	2.51	0.45	
1:C:399:LYS:HG3	1:C:400:LYS:HG3	1.98	0.45	
1:E:330:MET:HE2	2:F:31:THR:HG21	1.99	0.45	
1:G:448:ARG:HH11	1:G:448:ARG:HB3	1.81	0.45	
2:H:63:LEU:HD12	2:H:82:LEU:HD11	1.98	0.45	
1:I:454:GLU:O	1:I:458:ARG:HG2	2.17	0.45	
1:K:188:LEU:HD11	1:K:460:LEU:HD23	1.98	0.45	
1:K:454:GLU:O	1:K:458:ARG:HG2	2.16	0.45	
1:I:175:ILE:HG22	1:I:177:PRO:HD2	1.97	0.45	
1:I:448:ARG:HH11	1:I:448:ARG:HB3	1.82	0.45	
1:A:400:LYS:HZ1	1:G:503:MET:HG2	1.81	0.45	
2:H:66:ARG:HH22	2:H:89:ASP:CG	2.19	0.45	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:I:188:LEU:HD11	1:I:460:LEU:HD23	1.98	0.45	
2:J:18:LEU:HD13	2:J:115:VAL:HG11	1.99	0.45	
1:A:175:ILE:HG22	1:A:177:PRO:HD2	1.99	0.45	
2:B:18:LEU:HD13	2:B:115:VAL:HG11	1.97	0.45	
2:B:195:ARG:HG3	2:B:209:ILE:HG23	1.99	0.45	
1:C:478:MET:O	1:C:482:THR:HG23	2.17	0.45	
2:D:195:ARG:NH1	2:D:216:ASP:OD2	2.50	0.45	
1:E:175:ILE:HG22	1:E:177:PRO:HD2	1.99	0.45	
1:A:431:ILE:HD11	1:A:473:ASP:HA	1.99	0.45	
2:J:195:ARG:HG3	2:J:209:ILE:HG23	1.99	0.45	
2:B:6:GLU:OE1	2:B:95:CYS:HB3	2.17	0.44	
2:H:141:SER:HB2	2:H:142:PRO:HD3	1.98	0.44	
1:A:478:MET:O	1:A:482:THR:HG23	2.17	0.44	
2:B:68:THR:OG1	2:B:83:ARG:NH2	2.50	0.44	
1:E:454:GLU:O	1:E:458:ARG:HG2	2.17	0.44	
2:F:38:ARG:HG2	2:F:48:LEU:HD21	1.99	0.44	
1:I:489:HIS:O	1:I:493:ILE:HG13	2.17	0.44	
1:K:175:ILE:HG22	1:K:177:PRO:HD2	1.99	0.44	
1:E:500:VAL:O	1:E:504:LYS:HG2	2.18	0.44	
2:H:38:ARG:HG2	2:H:48:LEU:HD21	1.98	0.44	
1:I:431:ILE:HD11	1:I:473:ASP:HA	1.98	0.44	
1:E:188:LEU:HD11	1:E:460:LEU:HD23	1.99	0.44	
1:G:163:ILE:HG23	1:G:171:LEU:CD2	2.16	0.44	
1:K:202:LYS:HG3	1:K:202:LYS:O	2.18	0.44	
1:C:433:ASP:HA	1:C:436:LYS:HD2	1.99	0.44	
2:F:18:LEU:HD13	2:F:115:VAL:HG11	2.00	0.44	
2:J:114:LEU:HD11	2:J:116:THR:HG23	1.98	0.44	
1:K:448:ARG:HD3	1:K:450:PHE:CZ	2.52	0.44	
1:E:478:MET:O	1:E:482:THR:HG23	2.18	0.44	
2:F:63:LEU:HD12	2:F:82:LEU:HD11	2.00	0.44	
1:A:393:LEU:CD1	1:G:495:HIS:CD2	2.99	0.44	
2:D:68:THR:OG1	2:D:83:ARG:NH2	2.50	0.44	
2:F:29:ILE:HG23	2:F:34:TRP:HE1	1.74	0.44	
2:F:195:ARG:NH1	2:F:216:ASP:OD2	2.47	0.44	
2:J:33:TYR:CE2	2:J:101:MET:HG2	2.52	0.44	
1:K:431:ILE:HD11	1:K:473:ASP:HA	1.98	0.44	
2:B:142:PRO:O	2:B:236:THR:HG23	2.18	0.44	
2:B:90:THR:HG23	2:B:116:THR:HA	1.99	0.44	
2:H:220:TYR:O	2:H:235:GLY:HA2	2.18	0.44	
1:K:448:ARG:HH11	1:K:448:ARG:HB3	1.82	0.44	
1:A:448:ARG:HB3	1:A:448:ARG:HH11	1.82	0.43	

Interatomic Clash						
Atom-1	Atom-2	distance (Å)	overlap (Å)			
1:A:434:LYS:HE2	1:A:468:LEU:HD12	1.99	0.43			
2:D:29:ILE:HG23	2:D:34:TRP:HE1	1.74	0.43			
2:J:105:TYR:HD1	2:J:180:VAL:HG21	1.83	0.43			
1:G:330:MET:CE	2:H:31:THR:HG21	2.48	0.43			
2:J:38:ARG:HG2	2:J:48:LEU:HD21	2.00	0.43			
1:I:448:ARG:HD3	1:I:450:PHE:CZ	2.53	0.43			
1:K:195:HIS:CD2	1:K:343:LEU:HD11	2.53	0.43			
2:B:35:SER:HB3	2:B:47:TRP:HE1	1.83	0.43			
1:E:330:MET:HE3	2:F:31:THR:HG21	2.00	0.43			
1:G:431:ILE:HD11	1:G:473:ASP:HA	1.98	0.43			
1:I:327:LYS:HG2	2:J:53:HIS:HE1	1.83	0.43			
2:F:195:ARG:HG3	2:F:209:ILE:HG23	2.01	0.43			
2:H:18:LEU:HD13	2:H:115:VAL:HG11	2.00	0.43			
2:D:63:LEU:HD12	2:D:82:LEU:HD11	2.00	0.43			
2:H:29:ILE:HG23	2:H:34:TRP:HE1	1.76	0.43			
1:I:478:MET:O	1:I:482:THR:HG23	2.18	0.43			
2:D:38:ARG:HG2	2:D:48:LEU:HD21	2.00	0.43			
2:H:78:PHE:CZ	2:H:95:CYS:SG	3.11	0.43			
2:J:50:TYR:CE1	2:J:58:ASP:HB2	2.54	0.43			
1:K:478:MET:O	1:K:482:THR:HG23	2.18	0.43			
1:C:164:LEU:HD22	1:C:478:MET:HB3	1.99	0.43			
2:D:170:TYR:CE2	2:D:180:VAL:HG22	2.54	0.43			
1:G:478:MET:O	1:G:482:THR:HG23	2.19	0.43			
1:K:181:PHE:CZ	1:K:333:LYS:HB2	2.54	0.43			
1:A:343:LEU:O	1:A:452:LYS:HE3	2.18	0.42			
2:B:141:SER:HB2	2:B:156:THR:OG1	2.19	0.42			
1:I:434:LYS:HE2	1:I:468:LEU:HD12	2.01	0.42			
1:K:393:LEU:HD22	1:K:494:PHE:CE1	2.54	0.42			
2:D:90:THR:HG23	2:D:116:THR:HA	2.01	0.42			
2:B:29:ILE:HA	2:B:34:TRP:CZ2	2.55	0.42			
1:C:396:ASN:HA	1:C:399:LYS:HG2	2.02	0.42			
2:H:90:THR:HG23	2:H:116:THR:HA	2.01	0.42			
2:B:38:ARG:HG2	2:B:48:LEU:HD21	2.01	0.42			
2:F:142:PRO:HG2	2:F:155:ILE:HA	2.01	0.42			
2:H:98:SER:HB3	2:H:104:GLN:HE21	1.84	0.42			
1:K:496:HIS:ND1	1:K:497:LEU:HD23	2.34	0.42			
1:E:347:ASN:HD22	1:E:349:ASN:HB2	1.84	0.42			
2:D:142:PRO:HD2	2:D:155:ILE:HG23	2.02	0.42			
2:F:29:ILE:HG23	2:F:34:TRP:CE2	2.52	0.42			
1:G:181:PHE:CZ	1:G:333:LYS:HB2	2.55	0.42			
2:J:97:ARG:HD2	2:J:108:TYR:HD2	1.85	0.42			

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:B:212:LEU:HD22	2:B:212:LEU:HA	1.96	0.41	
1:I:181:PHE:CZ	1:I:333:LYS:HB2	2.54	0.41	
2:J:171:GLN:HB2	2:J:181:LEU:HD11	2.01	0.41	
1:C:174:VAL:HG11	1:C:475:LEU:HD21	2.03	0.41	
1:E:166:GLU:HG2	1:E:482:THR:HG22	2.01	0.41	
1:C:393:LEU:CD1	1:E:495:HIS:CD2	2.96	0.41	
2:F:136:ILE:HD13	2:F:227:TYR:HB2	2.01	0.41	
2:H:63:LEU:O	2:H:66:ARG:HG2	2.20	0.41	
2:H:136:ILE:HD13	2:H:227:TYR:HB2	2.01	0.41	
1:A:181:PHE:CZ	1:A:333:LYS:HB2	2.56	0.41	
2:B:220:TYR:O	2:B:235:GLY:HA2	2.20	0.41	
1:C:193:ILE:HG22	1:C:202:LYS:HD3	2.01	0.41	
1:A:330:MET:HB3	2:B:53:HIS:CE1	2.56	0.41	
1:A:434:LYS:HD3	1:A:437:ILE:HD12	2.02	0.41	
2:H:68:THR:OG1	2:H:83:ARG:NH2	2.54	0.41	
2:B:178:PRO:O	2:B:179:LYS:HD3	2.21	0.41	
1:C:176:ILE:HD12	1:C:475:LEU:CD1	2.50	0.41	
1:A:434:LYS:HD3	1:A:434:LYS:HA	1.92	0.41	
2:B:191:GLY:HA3	1:C:347:ASN:CB	2.46	0.41	
2:D:220:TYR:O	2:D:235:GLY:HA2	2.21	0.41	
2:H:141:SER:HB2	2:H:156:THR:OG1	2.21	0.41	
2:J:63:LEU:HD12	2:J:82:LEU:HD21	2.03	0.41	
2:J:90:THR:HG23	2:J:116:THR:HA	2.03	0.41	
1:A:176:ILE:HB	1:A:177:PRO:HD3	2.03	0.40	
1:C:423:ARG:NH1	1:C:426:TYR:CD2	2.89	0.40	
2:D:173:LYS:HE2	2:D:218:ALA:HB2	2.03	0.40	
2:F:29:ILE:HA	2:F:34:TRP:CZ2	2.56	0.40	
2:F:167:LEU:HD11	2:F:222:CYS:HB2	2.02	0.40	
2:J:90:THR:HG23	2:J:116:THR:CG2	2.51	0.40	
1:K:434:LYS:HE2	1:K:468:LEU:HD12	2.02	0.40	
1:C:454:GLU:O	1:C:458:ARG:HG2	2.22	0.40	
1:A:503:MET:SD	1:G:400:LYS:NZ	2.88	0.40	
2:D:29:ILE:HA	2:D:34:TRP:CZ2	2.55	0.40	
1:A:429:LYS:HE2	1:A:429:LYS:HB3	1.88	0.40	
2:F:68:THR:OG1	2:F:83:ARG:NH2	2.54	0.40	
2:H:105:TYR:CD1	2:H:180:VAL:HG21	2.56	0.40	
1:I:404:TYR:OH	1:I:501:LEU:HA	2.22	0.40	
1:I:410:ILE:HG21	1:I:494:PHE:HE1	1.85	0.40	
1:K:429:LYS:HE2	1:K:429:LYS:HB3	1.86	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	284/338~(84%)	269~(95%)	15~(5%)	0	100	100
1	С	284/338~(84%)	268 (94%)	16 (6%)	0	100	100
1	Е	283/338~(84%)	271 (96%)	12 (4%)	0	100	100
1	G	282/338~(83%)	265~(94%)	17 (6%)	0	100	100
1	Ι	284/338~(84%)	264 (93%)	20 (7%)	0	100	100
1	Κ	284/338~(84%)	267 (94%)	17 (6%)	0	100	100
2	В	220/250~(88%)	201 (91%)	19 (9%)	0	100	100
2	D	223/250~(89%)	206 (92%)	17 (8%)	0	100	100
2	F	223/250~(89%)	202 (91%)	21 (9%)	0	100	100
2	Н	223/250~(89%)	203 (91%)	20 (9%)	0	100	100
2	J	219/250 (88%)	202 (92%)	17 (8%)	0	100	100
All	All	2809/3278~(86%)	2618 (93%)	191 (7%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentile	
1	А	278/327~(85%)	262 (94%)	16 (6%)	20	49
1	С	278/327~(85%)	259~(93%)	19 (7%)	16	43
1	Ε	277/327~(85%)	263~(95%)	14~(5%)	24	54

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	G	276/327~(84%)	262~(95%)	14 (5%)	24	54
1	Ι	278/327~(85%)	262 (94%)	16 (6%)	20	49
1	Κ	278/327~(85%)	262 (94%)	16 (6%)	20	49
2	В	195/208~(94%)	176 (90%)	19 (10%)	8	28
2	D	198/208~(95%)	171 (86%)	27~(14%)	3	15
2	F	198/208~(95%)	171 (86%)	27 (14%)	3	15
2	Н	198/208~(95%)	173 (87%)	25~(13%)	4	17
2	J	194/208~(93%)	176 (91%)	18 (9%)	9	31
All	All	2648/3002 (88%)	2437 (92%)	211 (8%)	12	37

All (211) residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	191	ASN
1	А	197	SER
1	А	230	ASP
1	А	333	LYS
1	А	357	ARG
1	А	391	GLU
1	А	392	LEU
1	А	449	THR
1	А	455	LEU
1	А	465	GLU
1	А	476	ARG
1	А	482	THR
1	А	487	GLU
1	А	497	LEU
1	А	498	ILE
1	А	505	PHE
2	В	11	LEU
2	В	35	SER
2	В	50	TYR
2	В	66	ARG
2	В	74	SER
2	В	95	CYS
2	В	97	ARG
2	В	99	THR
2	В	143	SER
2	В	152	ARG

Mol	Chain	Res	Type
2	В	156	THR
2	В	157	CYS
2	В	167	LEU
2	В	187	ASN
2	В	199	SER
2	В	208	THR
2	В	212	LEU
2	В	213	GLN
2	В	215	GLU
1	С	191	ASN
1	С	193	ILE
1	С	211	LYS
1	С	230	ASP
1	С	302	LYS
1	С	333	LYS
1	С	343	LEU
1	С	366	LYS
1	С	391	GLU
1	С	423	ARG
1	С	449	THR
1	С	455	LEU
1	С	465	GLU
1	С	476	ARG
1	С	482	THR
1	С	487	GLU
1	С	496	HIS
1	С	501	LEU
1	С	505	PHE
2	D	11	LEU
2	D	21	THR
2	D	35	SER
2	D	50	TYR
2	D	57	THR
2	D	66	ARG
2	D	74	SER
2	D	79	SER
2	D	95	CYS
2	D	97	ARG
2	D	107	ASP
2	D	116	THR
2	D	135	ASP
2	D	140	GLN

Mol	Chain	Res	Type
2	D	152	ARG
2	D	156	THR
2	D	157	CYS
2	D	167	LEU
2	D	173	LYS
2	D	179	LYS
2	D	189	GLU
2	D	194	SER
2	D	195	ARG
2	D	208	THR
2	D	212	LEU
2	D	215	GLU
2	D	239	GLU
1	Е	191	ASN
1	Е	196	LYS
1	Е	230	ASP
1	Е	333	LYS
1	Е	344	SER
1	Е	357	ARG
1	Е	397	LEU
1	Е	449	THR
1	Е	455	LEU
1	Е	465	GLU
1	Е	476	ARG
1	Е	482	THR
1	Е	487	GLU
1	Е	505	PHE
2	F	11	LEU
2	F	21	THR
2	F	35	SER
2	F	50	TYR
2	F	74	SER
2	F	79	SER
2	F	95	CYS
2	F	97	ARG
2	F	107	ASP
2	F	135	ASP
2	F	136	ILE
2	F	140	GLN
2	F	143	SER
2	F	152	ARG
2	F	157	CYS

Mol	Chain	Res	Type
2	F	163	ILE
2	F	167	LEU
2	F	173	LYS
2	F	179	LYS
2	F	189	GLU
2	F	199	SER
2	F	208	THR
2	F	212	LEU
2	F	213	GLN
2	F	215	GLU
2	F	228	LEU
2	F	241	LYS
1	G	191	ASN
1	G	196	LYS
1	G	230	ASP
1	G	333	LYS
1	G	345	CYS
1	G	357	ARG
1	G	385	ASN
1	G	397	LEU
1	G	449	THR
1	G	455	LEU
1	G	465	GLU
1	G	476	ARG
1	G	482	THR
1	G	487	GLU
2	Н	5	GLN
2	Н	11	LEU
2	Н	21	THR
2	Н	35	SER
2	Н	50	TYR
2	Н	66	ARG
2	Н	74	SER
2	Н	79	SER
2	Н	95	CYS
2	Н	97	ARG
2	Н	105	TYR
2	Н	137	GLN
2	Н	143	SER
2	Н	152	ARG
2	Н	156	THR
2	Н	157	CYS

Mol	Chain	Res	Type
2	Н	167	LEU
2	Н	179	LYS
2	Н	180	VAL
2	Н	189	GLU
2	Н	199	SER
2	Н	208	THR
2	Н	212	LEU
2	Н	213	GLN
2	Н	215	GLU
1	Ι	191	ASN
1	Ι	200	TYR
1	Ι	230	ASP
1	Ι	333	LYS
1	Ι	343	LEU
1	Ι	345	CYS
1	Ι	357	ARG
1	Ι	393	LEU
1	Ι	449	THR
1	Ι	455	LEU
1	Ι	465	GLU
1	Ι	476	ARG
1	Ι	482	THR
1	Ι	487	GLU
1	Ι	494	PHE
1	Ι	497	LEU
2	J	11	LEU
2	J	21	THR
2	J	35	SER
2	J	50	TYR
2	J	66	ARG
2	J	74	SER
2	J	79	SER
2	J	95	CYS
2	J	116	THR
2	J	152	ARG
2	J	156	THR
2	J	157	CYS
2	J	167	LEU
2	J	189	GLU
2	J	199	SER
2	J	208	THR
2	J	212	LEU

Mol	Chain	Res	Type
2	J	228	LEU
1	Κ	203	TYR
1	Κ	230	ASP
1	Κ	303	MET
1	Κ	304	MET
1	K	333	LYS
1	Κ	343	LEU
1	Κ	345	CYS
1	Κ	396	ASN
1	K	397	LEU
1	Κ	449	THR
1	Κ	455	LEU
1	Κ	465	GLU
1	K	476	ARG
1	K	482	THR
1	Κ	487	GLU
1	K	494	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (7) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	165	GLN
1	А	492	ASN
1	А	495	HIS
1	G	165	GLN
1	G	388	GLN
1	Ι	165	GLN
1	К	165	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	288/338~(85%)	0.96	35 (12%) 4 1	73, 111, 167, 193	0
1	С	288/338~(85%)	0.84	34 (11%) 4 2	78, 119, 171, 190	0
1	Е	287/338~(84%)	0.91	38 (13%) 3 1	79, 123, 185, 212	0
1	G	286/338~(84%)	0.89	29 (10%) 7 2	72, 110, 184, 218	0
1	Ι	288/338~(85%)	1.49	79~(27%) 0 0	149, 177, 208, 225	0
1	K	288/338~(85%)	2.46	148 (51%) 0 0	173, 202, 226, 235	0
2	В	223/250~(89%)	0.71	11 (4%) 29 14	73, 103, 135, 149	0
2	D	226/250~(90%)	0.75	13 (5%) 23 10	79, 103, 125, 136	0
2	F	226/250~(90%)	0.69	6 (2%) 54 32	79, 103, 126, 138	0
2	Н	226/250~(90%)	0.72	7 (3%) 49 27	75, 104, 133, 145	0
2	J	222/250~(88%)	2.37	110 (49%) 0 0	190, 208, 223, 227	0
All	All	2848/3278 (86%)	1.17	510 (17%) 1 0	72, 124, 214, 235	0

All (510) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Ι	404	TYR	16.1
1	Κ	404	TYR	10.8
2	J	149	LEU	10.5
1	Ι	438	ILE	9.4
2	J	41	PRO	9.4
2	J	170	TYR	9.2
1	Κ	200	TYR	8.9
2	J	70	SER	8.4
2	J	35	SER	8.1
2	J	115	VAL	8.0
2	J	212	LEU	7.9
1	Κ	343	LEU	7.9

Continued from previous page						
Mol	Chain	Res	Type	RSRZ		
2	J	36	TRP	7.9		
1	K	390	SER	7.6		
1	K	329	CYS	7.4		
1	K	232	ILE	7.4		
1	K	504	LYS	7.3		
2	J	48	LEU	7.3		
2	J	238	LEU	7.3		
2	J	109	TRP	7.2		
2	J	78	PHE	7.2		
1	Ι	400	LYS	7.1		
1	К	307	TYR	7.1		
2	J	153	VAL	7.1		
1	Κ	405	ILE	6.9		
1	K	228	LYS	6.9		
1	Ι	403	SER	6.8		
1	K	400	LYS	6.8		
1	K	178	HIS	6.8		
1	K	339	LEU	6.7		
1	K	386	ILE	6.7		
2	J	171	GLN	6.7		
2	J	37	ILE	6.6		
2	J	154[A]	THR	6.6		
1	K	495	HIS	6.5		
1	K	383	MET	6.5		
2	J	38	ARG	6.5		
1	Κ	332	MET	6.4		
1	Ι	505	PHE	6.3		
2	J	81	ARG	6.3		
1	K	410	ILE	6.3		
1	Ι	442	ILE	6.2		
1	K	336	GLY	6.0		
1	K	456	LEU	6.0		
2	J	46	GLU	6.0		
1	K	398	ASN	5.9		
2	J	198	GLY	5.9		
1	K	196	LYS	5.9		
1	K	164	LEU	5.8		
1	Ι	390	SER	5.8		
1	K	344	SER	5.8		
2	J	63	LEU	5.7		
1	Ι	459	ILE	5.7		
1	Κ	340	PHE	5.5		

340PHE5.5Continued on next page...

Mol	Chain	Res	Type	RSRZ
2	J	148	SER	5.5
2	J	169	TRP	5.5
2	J	93	TYR	5.5
1	K	413	ILE	5.5
1	K	393	LEU	5.4
1	K	173	PHE	5.4
1	Ι	401	MET	5.4
1	K	197	SER	5.3
2	J	80	LEU	5.3
1	K	185	TYR	5.2
2	J	155	ILE	5.2
1	K	194	TYR	5.2
1	G	404	TYR	5.1
2	J	207	PHE	5.1
1	С	238	LEU	5.1
1	K	399	LYS	5.1
2	J	139	THR	5.1
2	J	62	SER	5.1
1	Ι	353	THR	5.1
1	G	387	LEU	5.0
1	K	380	LEU	5.0
1	K	412	PHE	5.0
1	K	493	ILE	5.0
1	K	174	VAL	4.9
1	Ι	399	LYS	4.9
1	K	175	ILE	4.9
2	J	168	ASN	4.9
1	K	334	ASN	4.9
2	J	69	ILE	4.8
1	K	202	LYS	4.8
2	В	91	ALA	4.8
2	J	94	TYR	4.8
1	Ι	463	SER	4.7
1	Κ	417	MET	4.7
1	K	238	LEU	4.7
1	Е	240	HIS	4.7
1	K	181	PHE	4.7
1	А	404	TYR	4.6
1	K	406	TYR	4.6
2	J	96	ALA	4.6
1	Ι	332	MET	4.6
1	Κ	471	THR	4.6

ntin Jfa α

Continued from previous page					
Mol	Chain	Res	Type	RSRZ	
1	K	163	ILE	4.6	
1	K	239	GLU	4.5	
1	Ε	404	TYR	4.5	
2	J	60	ASN	4.5	
1	K	460	LEU	4.5	
1	А	496	HIS	4.5	
2	J	82	LEU	4.4	
2	J	205	PHE	4.4	
1	K	391	GLU	4.4	
1	С	307	TYR	4.4	
1	K	327	LYS	4.4	
1	K	387	LEU	4.4	
1	Е	495	HIS	4.4	
1	K	240	HIS	4.4	
2	D	1	GLN	4.3	
1	K	376	LEU	4.3	
2	J	146	SER	4.3	
1	Е	499	TYR	4.3	
1	Ι	338	ASN	4.2	
1	Ι	434	LYS	4.2	
1	K	468	LEU	4.2	
2	J	18	LEU	4.2	
1	K	318	ILE	4.2	
1	K	191	ASN	4.2	
1	K	171	LEU	4.1	
1	K	162	ASP	4.1	
2	J	47	TRP	4.1	
2	J	219	THR	4.1	
2	J	50	TYR	4.1	
2	J	84	SER	4.1	
1	Ι	409	THR	4.1	
1	K	469	PHE	4.0	
1	Ι	456	LEU	4.0	
1	Е	163	ILE	4.0	
2	J	116	THR	4.0	
1	G	414	HIS	4.0	
1	K	235	ILE	4.0	
2	J	106	PHE	3.9	
1	K	168	GLU	3.9	
1	С	393	LEU	3.9	
2	J	90	THR	3.9	

SER Continued on next page...

3.9

79

2

J

Mol	Chain	Res	Type	RSRZ
2	J	101	MET	3.8
2	J	152	ARG	3.8
1	Κ	443	LYS	3.8
1	K	416	GLU	3.8
1	K	445	ASN	3.8
1	Ι	499	TYR	3.7
1	А	498	ILE	3.7
1	Ι	387	LEU	3.7
1	Κ	311	LYS	3.7
2	J	45	LEU	3.7
1	Ι	358	TYR	3.7
1	С	404	TYR	3.7
1	Ι	489	HIS	3.7
1	K	177	PRO	3.7
1	K	432	ASN	3.7
1	K	170	HIS	3.7
1	А	394	LEU	3.7
1	С	401	MET	3.6
1	Е	314	LEU	3.6
1	Ι	501	LEU	3.6
1	Κ	503	MET	3.6
1	Ι	200	TYR	3.6
2	J	222	CYS	3.6
1	Κ	409	THR	3.6
1	Ι	494	PHE	3.6
1	Κ	182	LEU	3.6
1	Ι	483	PHE	3.6
2	J	9	PRO	3.6
1	А	398	ASN	3.6
2	J	10	GLY	3.6
1	Е	406	TYR	3.5
1	K	160	SER	3.5
1	K	237	LYS	3.5
2	J	61	PRO	3.5
1	Ι	311	LYS	3.5
1	Κ	166	GLU	3.5
1	K	397	LEU	3.5
1	Ι	190	TYR	3.5
1	K	440	ASP	3.5
1	А	161	ILE	3.5
2	J	232	PHE	3.5
1	K	497	LEU	3.5

Mol	Chain	Res	Type	RSRZ
2	J	44	GLY	3.5
2	D	78	PHE	3.5
2	J	34	TRP	3.5
1	Ι	427	HIS	3.5
1	Ι	405	ILE	3.4
1	Ι	339	LEU	3.4
1	K	161	ILE	3.4
1	K	230	ASP	3.4
1	Ι	372	LYS	3.4
2	J	140	GLN	3.4
1	С	505	PHE	3.4
2	J	64	GLU	3.4
1	Κ	210	ILE	3.3
1	K	502	GLN	3.3
2	J	20	LEU	3.3
1	K	434	LYS	3.3
1	Ι	368	ILE	3.3
2	J	104	GLN	3.3
1	Κ	506	ASN	3.3
1	K	325	PHE	3.3
2	J	16	GLU	3.3
1	Ι	187	HIS	3.3
1	К	303	MET	3.3
1	А	307	TYR	3.3
2	J	204	ASP	3.3
1	K	459	ILE	3.2
2	J	228	LEU	3.2
1	G	228	LYS	3.2
1	Е	170	HIS	3.2
1	Е	328	ILE	3.2
1	Е	497	LEU	3.2
2	J	83	ARG	3.2
2	J	156	THR	3.2
2	J	40	PRO	3.1
2	J	161	GLN	3.1
1	G	498	ILE	3.1
1	Е	500	VAL	3.1
1	Ι	210	ILE	3.1
2	J	202	GLY	3.1
1	A	238	LEU	3.1
1	С	386	ILE	3.1
2	J	182	ILE	3.1

Mol	Chain	Res	Type	RSRZ
1	K	195	HIS	3.1
1	K	438	ILE	3.1
1	K	323	ASN	3.1
1	Ι	446	ILE	3.1
1	K	176	ILE	3.1
1	K	338	ASN	3.0
2	J	4	LEU	3.0
1	G	394	LEU	3.0
2	J	114	LEU	3.0
1	K	309	THR	3.0
1	Ι	431	ILE	3.0
2	В	80	LEU	3.0
1	С	390	SER	3.0
1	K	492	ASN	3.0
1	С	235	ILE	3.0
2	J	67	VAL	3.0
2	J	178	PRO	3.0
1	K	441	LYS	3.0
1	Ι	369	LEU	3.0
1	G	163	ILE	3.0
1	G	421	PHE	2.9
1	K	225	ASN	2.9
1	Ι	170	HIS	2.9
1	K	501	LEU	2.9
1	K	431	ILE	2.9
1	Κ	330	MET	2.9
1	С	494	PHE	2.9
1	K	320	ASN	2.9
2	В	155	ILE	2.9
1	С	483	PHE	2.9
1	Ι	502	GLN	2.9
1	С	495	HIS	2.9
1	С	501	LEU	2.9
1	G	161	ILE	2.8
1	Ι	184	TYR	2.8
1	С	498	ILE	2.8
1	K	167	LYS	2.8
1	K	396	ASN	2.8
1	Ι	444	LEU	2.8
2	J	162	GLY	2.8
1	G	502	GLN	2.8
2	J	223	GLN	2.8

8PWU

Mol	Chain	Res	Type	RSRZ
1	Ι	397	LEU	2.8
1	Е	493	ILE	2.8
1	Ι	406	TYR	2.8
1	K	199	THR	2.8
2	D	207	PHE	2.8
1	K	233	ALA	2.8
1	G	307	TYR	2.8
1	K	165	GLN	2.8
1	Κ	371	VAL	2.8
1	Ι	329	CYS	2.8
1	Ι	356	ILE	2.8
1	G	401	MET	2.8
1	Ι	504	LYS	2.8
1	А	376	LEU	2.8
1	K	414	HIS	2.8
2	J	227	TYR	2.8
1	G	173	PHE	2.8
1	А	387	LEU	2.8
1	G	410	ILE	2.7
2	J	163	ILE	2.7
1	G	398	ASN	2.7
1	Ι	492	ASN	2.7
1	А	165	GLN	2.7
1	Κ	401	MET	2.7
1	Κ	475	LEU	2.7
1	Е	435	THR	2.7
1	Κ	226	ASP	2.7
1	С	424	ILE	2.7
1	Ι	342	GLN	2.7
1	Ι	371	VAL	2.7
1	A	396	ASN	2.7
2	J	113	THR	2.7
1	Ι	506	ASN	2.7
2	D	169	TRP	2.7
1	Е	420	ILE	2.7
1	E	498	ILE	2.7
2	В	69	ILE	2.7
1	А	189	SER	2.6
1	Ι	455	LEU	2.6
2	D	85	VAL	2.6
1	G	489	HIS	2.6
1	Κ	355	GLY	2.6

Mol	Chain	Res	Type	RSRZ
1	Е	424	ILE	2.6
1	Κ	190	TYR	2.6
2	J	49	GLY	2.6
2	J	224	GLN	2.6
2	J	74	SER	2.6
1	Е	227	ILE	2.6
2	J	73	THR	2.6
2	J	85	VAL	2.6
1	Κ	331	ASP	2.6
2	В	147	ALA	2.6
2	J	24	VAL	2.6
2	J	150	GLY	2.6
1	Е	213	ILE	2.6
2	J	59	TYR	2.6
1	А	237	LYS	2.6
1	Ι	420	ILE	2.6
1	Κ	403	SER	2.6
2	J	240	ILE	2.6
1	Κ	484	TYR	2.6
1	Ι	194	TYR	2.5
1	Κ	426	TYR	2.5
1	Κ	428	THR	2.5
1	Ι	161	ILE	2.5
1	А	493	ILE	2.5
1	Κ	214	ASN	2.5
2	В	93	TYR	2.5
1	G	237	LYS	2.5
1	Κ	189	SER	2.5
1	А	410	ILE	2.5
1	Κ	234	THR	2.5
1	K	415	LYS	2.5
2	J	193	PRO	2.5
1	Κ	342	GLN	2.5
1	K	395	THR	2.5
1	Κ	379	ASP	2.5
1	Κ	457	LYS	2.5
1	Ι	169	GLY	2.5
1	Κ	449	THR	2.5
1	Κ	341	GLU	2.5
1	Е	231	LEU	2.4
2	J	19	SER	2.4
1	А	164	LEU	2.4

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Res	Type	RSRZ
1	G	376	LEU	2.4
1	Е	398	ASN	2.4
1	С	410	ILE	2.4
1	Е	496	HIS	2.4
2	J	221	TYR	2.4
1	K	337	THR	2.4
1	K	430	ILE	2.4
1	K	324	ASP	2.4
1	K	498	ILE	2.4
1	Ι	182	LEU	2.4
1	Ι	238	LEU	2.4
1	А	413	ILE	2.4
1	А	334	ASN	2.4
2	J	99	THR	2.4
1	С	213	ILE	2.4
1	Ι	472	SER	2.4
1	Ι	496	HIS	2.4
1	Ι	498	ILE	2.4
1	Е	502	GLN	2.4
2	F	78	PHE	2.4
2	D	82	LEU	2.4
2	J	141	SER	2.4
1	G	311	LYS	2.4
1	K	187	HIS	2.4
1	А	232	ILE	2.4
1	K	216	ALA	2.4
2	Н	155	ILE	2.4
2	J	151	ASP	2.3
1	Е	160	SER	2.3
1	С	328	ILE	2.3
1	С	413	ILE	2.3
1	I	213	ILE	2.3
1	Ι	326	ASN	2.3
1	C	325	PHE	2.3
1	K	453	ASP	2.3
1	G	399	LYS	2.3
2	J	231	THR	2.3
1	E	501	LEU	2.3
2	H	147	ALA	2.3
2	J	209	ILE	2.3
1	C	500	VAL	2.3
1	С	417	MET	2.3

Continued on next page...

Ŵ

8 PW	/U
------	----

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	G	191	ASN	2.3
1	А	397	LEU	2.3
2	D	36	TRP	2.3
1	Е	490	LEU	2.3
1	А	191	ASN	2.3
1	G	162	ASP	2.3
1	Ι	183	ASP	2.3
1	Ι	424	ILE	2.3
1	Ι	376	LEU	2.3
2	D	69	ILE	2.3
1	Е	494	PHE	2.3
2	J	233	GLY	2.3
1	Е	403	SER	2.3
2	J	196	PHE	2.3
1	С	302	LYS	2.3
1	Е	161	ILE	2.3
1	G	483	PHE	2.3
1	Ι	217	TYR	2.3
1	Ι	486	LYS	2.3
1	Е	459	ILE	2.3
1	С	421	PHE	2.3
1	С	488	LYS	2.3
1	K	203	TYR	2.3
2	F	82	LEU	2.3
1	Е	468	LEU	2.2
2	D	238	LEU	2.2
1	Е	177	PRO	2.2
1	А	173	PHE	2.2
1	А	446	ILE	2.2
1	K	304	MET	2.2
1	K	444	LEU	2.2
2	J	11	LEU	2.2
1	A	482	THR	2.2
1	С	435	THR	2.2
2	J	145	LEU	2.2
2	J	181	LEU	2.2
1	Ι	469	PHE	2.2
2	F	67	VAL	2.2
1	Ι	240	HIS	2.2
2	J	58	ASP	2.2
2	J	71	VAL	2.2
2	D	193	PRO	2.2

8PWU	J

Continued from previous page						
Mol	Chain	Res	Type	RSRZ		
2	J	208	THR	2.2		
1	С	161	ILE	2.2		
1	Ι	325	PHE	2.2		
1	G	380	LEU	2.2		
1	К	455	LEU	2.2		
2	В	37	ILE	2.2		
1	А	416	GLU	2.2		
2	Н	93	TYR	2.2		
2	F	228	LEU	2.2		
1	А	504	LYS	2.2		
1	С	411	LYS	2.2		
1	G	189	SER	2.2		
2	Н	228	LEU	2.2		
1	K	179	TYR	2.2		
2	Н	181	LEU	2.2		
1	Е	405	ILE	2.2		
1	Ι	410	ILE	2.2		
1	K	220	VAL	2.2		
1	K	356	ILE	2.2		
1	G	497	LEU	2.2		
1	K	483	PHE	2.2		
1	С	405	ILE	2.2		
1	Е	446	ILE	2.2		
1	G	235	ILE	2.2		
1	С	455	LEU	2.1		
1	Е	479	LEU	2.1		
1	А	239	GLU	2.1		
1	С	303	MET	2.1		
1	А	484	TYR	2.1		
1	K	505	PHE	2.1		
2	D	163	ILE	2.1		
1	Е	393	LEU	2.1		
1	K	353	THR	2.1		
1	Ι	460	LEU	2.1		
2	J	167	LEU	2.1		
1	K	419	HIS	2.1		
1	K	361	ASP	2.1		
2	J	32	TYR	2.1		
1	G	383	MET	2.1		
2	В	238	LEU	2.1		
1	Ι	412	PHE	2.1		
2	В	32	TYR	2.1		

Mol	Chain	Res	Type	RSRZ
1	А	428	THR	2.1
1	С	368	ILE	2.1
1	Ι	407	ILE	2.1
1	Κ	221	LYS	2.1
1	Κ	494	PHE	2.1
2	J	201	SER	2.1
2	F	69	ILE	2.1
1	А	502	GLN	2.1
1	С	497	LEU	2.1
2	J	206	THR	2.1
1	Ι	160	SER	2.1
1	K	212	LYS	2.1
2	D	24	VAL	2.1
1	С	502	GLN	2.1
1	Ι	393	LEU	2.1
2	Н	45	LEU	2.1
2	D	67	VAL	2.1
1	Е	303	MET	2.1
1	Ι	414	HIS	2.1
1	G	164	LEU	2.1
2	F	212	LEU	2.1
1	А	500	VAL	2.0
2	J	2	VAL	2.0
1	А	231	LEU	2.0
1	Ι	344	SER	2.0
1	K	462	MET	2.0
2	J	105	TYR	2.0
2	В	230	LEU	2.0
1	А	445	ASN	2.0
2	Н	38	ARG	2.0
1	Е	394	LEU	2.0
1	Е	486	LYS	2.0
2	В	96	ALA	2.0
1	А	390	SER	2.0
1	Ι	474	HIS	2.0
2	J	12	VAL	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

