

wwPDB EM Validation Summary Report (i)

Aug 19, 2024 – 01:13 pm BST

PDB ID	:	8Q87
EMDB ID	:	EMD-18169
Title	:	Structure of the G. gallus 80S rotated ribosome in complex with eEF2 and SERBP1
Authors	:	Nurullina, L.; Jenner, L.; Yusupov, M.
Deposited on	:	2023-08-18
Resolution	:	2.40 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	B5	4441	9% 68% 14%	18%
2	B8	157	<mark>6%</mark> 85%	15%
3	B7	119	92%	8%
4	Az	25	12%	
5	ВА	257	96%	•
6	BB	403	99%	
7	BC	421	86%	14%
8	BD	297	8%100%	

Mol	Chain	Length	Quality of chain	
9	BE	298	76%	24%
10	BF	246	95%	5%
11	BG	266	9%	21%
12	BH	192	100%	
13	BI	214	5% 99%	
14	BJ	178	95%	
15	BL	211	<mark>6%</mark> 98%	
16	BM	131	99%	·
17	BN	204	100%	
18	ВО	203	99%	·
19	BP	184	84%	• 16%
20	BQ	187	100%	
21	BR	196	85%	15%
22	BS	176	100%	
23	BT	160	99%	·
24	BU	128	78%	22%
25	BV	140	99%	
26	BW	157	3 9% 61%	
27	BX	155	77%	23%
28	BY	145	92%	8%
29	BZ	136	99%	·
30	Ba	148	99%	·
31	Bb	71	99%	·
32	Bc	115	83%	17%
33	Bd	176	60% 40%	, 2

Continued from previous page...

Contr	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
34	Be	135	96%	·
35	Bf	110	100%	
36	Bg	117	• 92%	8%
37	Bh	123	99%	
38	Bi	105	• 95%	5%
39	Bj	97	89%	11%
40	Bk	70	99%	
41	Bl	51	98%	·
42	Bm	128	41% 59%	
43	Во	105	100%	
44	Bp	92	8%	
45	Br	138	90%	10%
46	A2	1823	9%	16% 7%
47			9%	
	Aa	264	80%	19%
48	Aa	264 84	80% 14% 99%	19%
48 49	Aa AA AB	264 84 69	80% 14% 99% 20% 88%	19% 12%
48 49 50	Aa AA AB Ab	264 84 69 264	80% 14% 99% 20% 88% 88%	19% 12% 17%
48 49 50 51	Aa AA AB Ab AC	$ \begin{array}{r} 264 \\ 84 \\ 69 \\ 264 \\ 156 \\ \end{array} $	80% 14% 99% 20% 88% 88% 15% 40% • 60%	19% • 12% 17%
48 49 50 51 52	Aa AA AB Ab AC Ac	$ \begin{array}{r} 264 \\ 84 \\ 69 \\ 264 \\ 156 \\ 243 \\ \end{array} $	80% 14% 99% 20% 88% 83% 15% 40% 60% 6% 93%	19%
48 49 50 51 52 53	Aa AA AB Ab AC Ac Ad	264 84 69 264 156 243 263	80% 14% 99% 20% 88% 88% 60% 6% 93% 10%	19%
48 49 50 51 52 53 54	Aa AA AB Ab AC Ac Ad AD	264 84 69 264 156 243 263 133	80% 14% 99% 20% 88% 83% 15% 40% 60% 6% 93% 10% 57%	19% 12% 17% 7%
$ \begin{array}{r} 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ \end{array} $	Aa AA AB Ab AC Ac Ad AD AE	264 84 69 264 156 243 263 133 115	80% 14% 99% 20% 88% 83% 15% 40% 60% 6% 93% 6% 93% 10% 57% 8% 86%	19%
$ \begin{array}{r} 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ \end{array} $	Aa AA AB Ab AC AC Ad AD AE Ae	$ \begin{array}{r} 264 \\ 84 \\ 69 \\ 264 \\ 156 \\ 243 \\ 263 \\ 133 \\ 115 \\ 204 \\ \end{array} $	80% 14% 99% 20% 88% 83% 15% 40% 60% 6% 93% 57% 8% 86% 86% 20%	19%
$ \begin{array}{r} 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ \end{array} $	Aa AA AB Ab AC AC AC AC AC AC AC AC AC AC AC AC AC	$ \begin{array}{r} 264 \\ 84 \\ 69 \\ 264 \\ 156 \\ 243 \\ 263 \\ 133 \\ 115 \\ 204 \\ 249 \\ \end{array} $	80% 14% 99% 20% 88% 83% 15% 40% 60% 6% 93% 93% 57% 8% 86% 93% 9% 9% 9%	19%

Mol	Chain	Length	Quality of chain	
59	Ag	194	21%	·
60	AG	171	32% 68%	
61	Ah	207	9%	·
62	Ai	194	• 92%	• 8%
63	Aj	165	58% 429	⁄₀
64	Ak	158	94%	• 5%
65	Al	132	30%	• 16%
66	Am	151	6% 99%	·
67	An	151	11%	• 10%
68	Ao	145	88%	12%
69	Aq	135	95%	• ••
70	Ar	152	95%	5%
71	As	145	98%	••
72	At	119	87%	13%
73	Au	83	99%	·
74	Av	130	99%	·
75	Aw	143	99%	
76	Ax	131	95%	5%
77	Ау	125	• 55% • 44%	
78	AZ	296	70%	30%
79	Ар	146	97%	•
80	V	76	80%	20%
81	S	404	1 0% 90%	
82	A	858	32%	
83	Bs	316	63%	37%

Continued from previous page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
			91%	
84	Bt	165	92%	8%
			99%	
85	Bv	217	98%	••

2 Entry composition (i)

There are 89 unique types of molecules in this entry. The entry contains 228127 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 28S rRNA.

Mol	Chain	Residues			AltConf	Trace			
1	B5	3638	Total 78070	C 34789	N 14272	0 25371	Р 3638	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
B5	3295	UY1	U	conflict	GB KT445934.2

• Molecule 2 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	B8	157	Total 3338	C 1490	N 588	O 1103	Р 157	0	0

• Molecule 3 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	B7	119	Total 2536	C 1130	N 449	0 838	P 119	0	0

• Molecule 4 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
4	Az	25	Total	С	N	0	S	0	0
			239	145	64	2'	3		

• Molecule 5 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
5	ВА	246	Total 1887	C 1185	N 385	0 311	${ m S}{ m 6}$	0	0

• Molecule 6 is a protein called Ribosomal protein uL3.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	BB	398	Total 3209	C 2042	N 603	O 550	S 14	0	0

• Molecule 7 is a protein called 60S ribosomal protein L4 C-terminal domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
7	BC	361	Total 2888	C 1816	N 574	O 484	S 14	0	0

• Molecule 8 is a protein called Large ribosomal subunit protein uL18.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
8	BD	296	Total 2388	C 1506	N 437	0 433	S 12	0	0

• Molecule 9 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
9	BE	225	Total 1820	C 1167	N 355	O 296	${ m S} { m 2}$	0	0

• Molecule 10 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	BF	234	Total 1939	C 1245	N 377	O 309	S 8	0	0

• Molecule 11 is a protein called Large ribosomal subunit protein eL8.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	BG	210	Total 1704	C 1089	N 326	0 284	${ m S}{ m 5}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	BH	192	Total 1533	C 962	N 288	0 277	${f S}{6}$	0	0

• Molecule 13 is a protein called Ribosomal protein uL16,Large ribosomal subunit protein uL16,Large ribosomal subunit protein uL16.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	BI	213	Total 1710	C 1082	N 334	O 279	S 15	0	0

• Molecule 14 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	BJ	170	Total 1362	C 861	N 255	0 241	${f S}{5}$	0	0

• Molecule 15 is a protein called Large ribosomal subunit protein eL13.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	BL	208	Total 1691	C 1060	N 350	0 276	$\frac{S}{5}$	0	0

• Molecule 16 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	BM	130	Total	C	N 200	0	S	0	0
			1077	688	209	172	8		

• Molecule 17 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		At	AltConf	Trace			
17	BN	203	Total 1700	C 1071	N 359	O 266	${S \atop 4}$	0	0

• Molecule 18 is a protein called Ribosomal protein uL13.

Mol	Chain	Residues		At	AltConf	Trace			
18	BO	201	Total 1642	C 1058	N 321	O 258	${ m S}{ m 5}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	BP	155	Total 1259	C 788	N 244	0 218	S 9	0	0

• Molecule 20 is a protein called Ribosomal protein eL18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	BQ	187	Total 1502	C 939	N 314	0 244	${f S}{5}$	0	0

• Molecule 21 is a protein called Ribosomal protein L19.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms	AltConf	Trace		
21	BR	166	Total 1378	C 856	N 295	0 217	S 10	0	0

• Molecule 22 is a protein called Ribosomal protein eL20.

Mol	Chain	Residues		A	toms	AltConf	Trace		
22	BS	176	Total 1463	C 931	N 286	O 235	S 11	0	0

• Molecule 23 is a protein called 60S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	BT	159	Total 1299	C 825	N 252	O 216	S 6	0	0

• Molecule 24 is a protein called Large ribosomal subunit protein eL22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	BU	100	Total 817	C 523	N 143	0 149	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 25 is a protein called Ribosomal protei uL14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	BV	139	Total 1033	C 648	N 199	0 181	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called Ribosomal protein L24.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	BW	62	Total 519	C 332	N 101	O 83	${f S}\ 3$	0	0

• Molecule 27 is a protein called Ribosomal protein uL23.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	BX	119	Total 976	C 624	N 183	O 168	S 1	0	0

• Molecule 28 is a protein called Ribosomal protein L26 like 1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	BY	133	Total 1106	C 694	N 224	0 185	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein eL27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	BZ	135	Total 1107	С 714	N 208	0 182	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called Ribosomal protein uL15.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	Ba	147	Total 1179	C 748	N 240	0 187	${S \atop 4}$	0	0

• Molecule 31 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
31	Bb	70	Total 582	C 360	N 126	0 94	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 32 is a protein called Large ribosomal subunit protein eL30.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	Bc	95	Total 738	C 468	N 131	0 133	S 6	0	0

• Molecule 33 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	Bd	105	Total 867	C 549	N 168	0 148	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 34 is a protein called Ribosomal protein L32.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	Be	130	Total 1074	C 681	N 219	O 169	${ m S}{ m 5}$	0	0

• Molecule 35 is a protein called Ribosomal protein eL33.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	Bf	110	Total 886	$\begin{array}{c} \mathrm{C} \\ 559 \end{array}$	N 178	0 144	${f S}{5}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	Bg	108	Total 860	С 540	N 178	0 137	${ m S}{ m 5}$	0	0

• Molecule 37 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues		At	oms		AltConf	Trace	
37	Bh	122	Total 1023	C 646	N 208	0 168	S 1	1	0

• Molecule 38 is a protein called Large ribosomal subunit protein eL36.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	Bi	100	Total 821	C 515	N 173	O 127	S 6	0	0

• Molecule 39 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	Bj	86	Total 704	C 432	N 155	0 112	${ m S}{ m 5}$	0	0

• Molecule 40 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
40	Bk	69	Total 569	C 366	N 103	O 99	S 1	0	0

• Molecule 41 is a protein called Large ribosomal subunit protein eL39.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
41	Bl	50	Total 442	C 281	N 96	O 64	S 1	0	0

• Molecule 42 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
42	Bm	52	Total 429	C 266	N 90	O 67	S 6	0	0

• Molecule 43 is a protein called Ribosomal protein L36a like.

Mol	Chain	Residues		At	AltConf	Trace			
43	Bo	105	Total 861	C 540	N 177	0 138	S 6	0	0

• Molecule 44 is a protein called Large ribosomal subunit protein eL43.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
44	Вр	91	Total 706	C 445	N 134	O 120	S 7	0	0

• Molecule 45 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
45	Br	124	Total 1007	C 624	N 213	0 167	${ m S} { m 3}$	0	0

• Molecule 46 is a RNA chain called 18S rRNA.

Mol	Chain	Residues		1	AltConf	Trace			
46	A2	1697	Total 36242	C 16199	N 6484	O 11862	Р 1697	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A2	1206	B8N	U	conflict	GB KT445934.2
A2	1295	4AC	С	conflict	GB KT445934.2
A2	1796	4AC	С	conflict	GB KT445934.2

• Molecule 47 is a protein called Ribosomal protein eS1.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	Aa	213	Total 1730	C 1098	N 309	O 309	S 14	0	0

• Molecule 48 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	AA	83	Total 657	C 410	N 125	0 115	${f S}{7}$	0	0

• Molecule 49 is a protein called 40S ribosomal protein S28.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
49	AB	61	Total 476	C 290	N 93	O 91	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 50 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		At	AltConf	Trace			
50	Ab	219	Total 1698	C 1099	N 291	O 299	S 9	0	0

• Molecule 51 is a protein called Ubiquitin.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
51	AC	63	Total 516	C 325	N 98	O 86	S 7	0	0

• Molecule 52 is a protein called DNA-(apurinic or apyrimidinic site) lyase.

Mol	Chain	Residues		Ate	\mathbf{oms}			AltConf	Trace
52	Ac	225	Total 1752	C 1117	N 315	0 313	${f S}{7}$	0	0

• Molecule 53 is a protein called Small ribosomal subunit protein eS4.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
53	Ad	262	Total 2076	C 1324	N 387	O 357	S 8	0	0

• Molecule 54 is a protein called Ribosomal protein eS30.

Mol	Chain	Residues		Atoms					Trace
54	AD	57	Total 452	C 279	N 99	O 73	S 1	0	0

• Molecule 55 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
55	AE	99	Total 793	C 492	N 165	0 131	${f S}{5}$	0	0

• Molecule 56 is a protein called Ribosomal protein S5.

Mol	Chain	Residues		At	oms			AltConf	Trace
56	Ae	191	Total 1508	C 943	N 286	0 272	${f S}{7}$	0	0

• Molecule 57 is a protein called Small ribosomal subunit protein eS6.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
57	Af	227	Total 1838	C 1144	N 367	O 320	${ m S} 7$	0	0

• Molecule 58 is a protein called Small ribosomal subunit protein RACK1.

Mol	Chain	Residues		At	oms			AltConf	Trace
58	AF	311	Total 2420	C 1526	N 422	O 460	S 12	0	0

• Molecule 59 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
59	Ag	187	Total 1500	C 956	N 276	O 267	S 1	0	0

• Molecule 60 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
60	AG	55	Total 459	C 286	N 94	0 74	${f S}{5}$	0	0

• Molecule 61 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
61	Ah	203	Total 1669	C 1050	N 328	O 286	${ m S}{ m 5}$	1	0

• Molecule 62 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues		Atoms					Trace
62	Ai	179	Total 1495	C 953	N 299	0 241	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 63 is a protein called Ribosomal protein S10.

Mol	Chain	Residues		At	AltConf	Trace			
63	Aj	96	Total 812	C 532	N 143	0 131	S 6	0	0

• Molecule 64 is a protein called 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
64	Ak	150	Total 1218	C 773	N 229	O 210	S 6	0	0

• Molecule 65 is a protein called Small ribosomal subunit protein eS12.

Mol	Chain	Residues		At	AltConf	Trace			
65	Al	111	Total 860	C 540	N 151	0 161	S 8	0	0

• Molecule 66 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
66	Am	150	Total 1208	С 773	N 229	O 205	S 1	0	0

• Molecule 67 is a protein called Ribosomal protein S14.

Mol	Chain	Residues		At	AltConf	Trace			
67	An	136	Total 1016	C 621	N 199	0 190	S 6	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
An	138	IAS	ASP	conflict	UNP Q5ZHW8

• Molecule 68 is a protein called Small ribosomal subunit protein uS19.

Mol	Chain	Residues		At	AltConf	Trace			
68	Ao	128	Total 1050	C 666	N 198	0 179	${f S}7$	0	0

• Molecule 69 is a protein called Small ribosomal subunit protein eS17.

Mol	Chain	Residues		At	AltConf	Trace			
69	Aq	133	Total 1073	C 673	N 200	O 196	$\frac{S}{4}$	0	0

• Molecule 70 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	Ar	144	Total 1191	C 748	N 241	0 201	S 1	0	0

• Molecule 71 is a protein called Ribosomal protein eS19.

Mol	Chain	Residues		At	AltConf	Trace			
71	As	143	Total 1115	C 698	N 216	O 199	$\frac{S}{2}$	0	0

• Molecule 72 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
72	At	103	Total 815	C 511	N 154	0 146	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 73 is a protein called Ribosomal protein eS21.

Mol	Chain	Residues		At	AltConf	Trace			
73	Au	83	Total 640	C 394	N 118	0 124	${S \atop 4}$	0	0

• Molecule 74 is a protein called 40S ribosomal protein S15a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
74	Av	129	Total 1035	$\begin{array}{c} \mathrm{C} \\ 659 \end{array}$	N 193	O 177	S 6	0	0

• Molecule 75 is a protein called Ribosomal protein uS12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
75	Aw	142	Total 1104	C 696	N 220	0 185	${f S} {f 3}$	0	0

• Molecule 76 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
76	Ax	125	Total 1015	C 642	N 199	0 169	${ m S}{ m 5}$	0	0

• Molecule 77 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
77	Δ.	70	Total	С	Ν	Ο	S	0	0
	Лу	10	555	357	101	96	1	0	0

• Molecule 78 is a protein called Small ribosomal subunit protein uS2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
78	AZ	206	Total 1626	C 1036	N 287	O 295	S 8	0	0

• Molecule 79 is a protein called Ribosomal protein S16.

Mol	Chain	Residues		At	oms		Atoms					
79	Ap	141	Total 1123	C 715	N 212	O 193	${ m S} { m 3}$	0	0			

• Molecule 80 is a RNA chain called Phe tRNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
80	V	76	Total 1628	C 727	N 302	0 524	Р 75	0	0

• Molecule 81 is a protein called SERPINE1 mRNA binding protein 1.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
81	S	42	Total 325	C 190	N 69	O 66	0	0

• Molecule 82 is a protein called Elongation factor 2.

Mol	Chain	Residues		Α	AltConf	Trace			
82	А	857	Total 6690	C 4244	N 1151	0 1249	S 46	0	0

• Molecule 83 is a protein called Large ribosomal subunit protein uL10.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
83	Bs	199	Total 1527	C 972	N 266	O 279	S 10	0	0

• Molecule 84 is a protein called 60S ribosomal protein L12.

Mol	Chain	Residues		At	oms		AltConf	Trace	
84	Bt	152	Total 1135	C 704	N 210	0 217	${f S}$ 4	0	0

• Molecule 85 is a protein called Ribosomal protein.

Mol	Chain	Residues		Ate	AltConf	Trace			
85	Bv	215	Total 1722	C 1107	N 303	O 305	${ m S} 7$	0	0

• Molecule 86 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
86	B5	337	Total Mg 337 337	0
86	B8	8	Total Mg 8 8	0
86	Β7	6	Total Mg 6 6	0
86	ВА	3	Total Mg 3 3	0
86	BB	1	Total Mg 1 1	0
86	BH	1	Total Mg 1 1	0

Mol	Chain	Residues	Ato	ms	AltConf
86	DI	1	Total	Mg	0
80	BI	1	1	1	0
86	PN	2	Total	Mg	0
80	DN	2	2	2	0
86	RP	9	Total	Mg	0
00			2	2	0
86	BV	1	Total	Mg	0
	2,	-	1	1	
86	Ba	1	Total	Mg	0
			1	1	
86	Bb	2	Total	Mg	0
			2	2	
86	Be	2	Total	Mg	0
			Z	2	
86	Bf	1		nig 1	0
			Total	1 Ma	
86	Bg	1	100	nig 1	0
			Total	Mo	
86	Bo	1	1	1	0
			Total	Mg	
86	A2	116	116	116	0
	10		Total	Mg	0
86	AG	1	1	1	0
96	A 1-	1	Total	Mg	0
80	АК	1	1	1	0
86	An	1	Total	Mg	0
80	All	T	1	1	0
86	Δς	1	Total	Mg	0
00	110	1	1	1	0
86	At	1	Total	Mg	0
		*	1	1	
86	А	1	Total	Mg	0
		_	1	1	

Continued from previous page...

• Molecule 87 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
87	Bg	1	Total Zn 1 1	0
87	Bj	1	Total Zn 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
87	Bm	1	Total Zn 1 1	0
87	Во	1	Total Zn 1 1	0
87	Вр	1	Total Zn 1 1	0
87	AC	1	Total Zn 1 1	0
87	AE	1	Total Zn 1 1	0
87	AG	1	Total Zn 1 1	0

• Molecule 88 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $C_{10}H_{15}N_5O_{11}P_2$).

Mol	Chain	Residues		Ate	oms			AltConf
00	Δ	1	Total	С	Ν	0	Р	0
00	A	1	28	10	5	11	2	0

• Molecule 89 is water.

Mol	Chain	Residues	Atoms	AltConf
89	B5	2982	Total O 2982 2982	0
89	B8	81	Total O 81 81	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
89	B7	69	Total O 69 69	0
89	Az	1	Total O 1 1	0
89	ВА	18	Total O 18 18	0
89	BB	21	Total O 21 21	0
89	BC	30	Total O 30 30	0
89	BD	25	TotalO2525	0
89	BE	10	Total O 10 10	0
89	BF	9	Total O 9 9	0
89	BG	1	Total O 1 1	0
89	BH	11	Total O 11 11	0
89	BI	21	Total O 21 21	0
89	BL	24	Total O 24 24	0
89	BM	10	Total O 10 10	0
89	BN	32	TotalO3232	0
89	BO	24	TotalO2424	0
89	BP	22	TotalO2222	0
89	BQ	28	TotalO2828	0
89	BR	8	Total O 8 8	0
89	BS	14	Total O 14 14	0
89	BT	16	Total O 16 16	0
89	BV	7	Total O 7 7	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
89	BW	3	Total O 3 3	0
89	BX	6	Total O 6 6	0
89	BY	10	Total O 10 10	0
89	Ba	25	Total O 25 25	0
89	Bb	7	Total O 7 7	0
89	Bc	1	Total O 1 1	0
89	Bd	5	Total O 5 5	0
89	Be	29	TotalO2929	0
89	Bf	24	Total O 24 24	0
89	Bg	14	Total O 14 14	0
89	Bh	7	Total O 7 7	0
89	Bi	12	Total O 12 12	0
89	Bj	9	Total O 9 9	0
89	Bl	4	Total O 4 4	0
89	Bm	12	Total O 12 12	0
89	Во	15	Total O 15 15	0
89	Вр	9	Total O 9 9	0
89	Br	7	Total O 7 7	0
89	A2	197	Total O 197 197	0
89	Ab	8	Total O 8 8	0
89	Ad	1	Total O 1 1	0

Mol	Chain	Residues	Atoms	AltConf
89	AE	2	Total O 2 2	0
89	Ae	1	Total O 1 1	0
89	AG	1	Total O 1 1	0
89	Ak	1	Total O 1 1	0
89	Am	1	Total O 1 1	0
89	An	1	Total O 1 1	0
89	Ar	2	Total O 2 2	0
89	As	1	Total O 1 1	0
89	Au	1	Total O 1 1	0
89	Av	2	Total O 2 2	0
89	Ax	1	Total O 1 1	0
89	AZ	1	Total O 1 1	0
89	V	9	Total O 9 9	0
89	А	2	Total O 2 2	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 28S rRNA

THR LYS LYS GLU LYS LYS

• Molecule 5: 60S ribosomal protein L8 Chain BA: 96% GLY THR LYS LYS THR VAL GLU GLU CGLU CGLU • Molecule 6: Ribosomal protein uL3 Chain BB: 99% GLU GLU ALA • Molecule 7: 60S ribosomal protein L4 C-terminal domain-containing protein Chain BC: 86% 14% PRO ALA LYS ALA ALA PRO ALA CYS GLY ALA ALA • Molecule 8: Large ribosomal subunit protein uL18 Chain BD: 100% 4294 4295 • Molecule 9: 60S ribosomal protein L6 Chain BE: 76% 24%

• Molecule 10: Large ribosomal subunit protein uL30

LYS PRO GLV GLU GLU GLU ILE PHE ASP THR

Chain BF:	95%	5%
MET ALA ASP LYS GLU CYS LYS LYS FXO PRO PRO SER YAL		
• Molecule 11: La	arge ribosomal subunit protein eL8	
Chain BG:	79%	21%
MET PRO LYS LYS GLY GLYS LYS GLY CYS LYS VAL	PRLM ALA ALA VAL VAL VAL VAL VAL VAL VAL VAL	GUU LYS ALA ALA ALA CLY CLY CLYS ASP THR LYS LYS R132 C C C C C C C C C C
K223 T224 N226 N226 R229 Y230 C231 E232	1233 8249 1250 1250 1250 1253 4251 1253 41.4 1.75	
• Molecule 12: 60	OS ribosomal protein L9	
Chain BH:	100%	
M1 K50 K51 D191 E192		
• Molecule 13: H subunit protein u	Ribosomal protein uL16,Large ribosomal IL16	subunit protein uL16,Large ribosomal
Chain BI:	99%	
62 K82 S104 S104 A105 G107 A106 A108	RI10 E183	
• Molecule 14: 60	OS ribosomal protein L11	
Chain BJ:	%95%	
MET ALA GLN GLN GLN GLV GLV E28 E28	R32 E41 F41 R56 R54 K88 K88 K88 K88 K86 K88 K86 E51 K92 E53 K92 E53 K92 E34 K95 E111 H112 C116 C116 C115 C115	K118 Y119 D120 P121 S122 I123 G172 D171 G172 I175 P176 P176 C175 C177 C175 C177 C175 C177
• Molecule 15: La	arge ribosomal subunit protein eL13	
Chain BL:	98%	
MET A2 V64 K130 P131 S132 K136	N102 N200 R201 A202 A203 R203 C205 N209 N209 N209 N209 N209 N209 N209 N209	

• Molecule 16: 60S ribosomal protein L14

Chain BM: 99% .
MET V2
\bullet Molecule 17: Ribosomal protein L15
Chain BN: 100%
MET 62 R204
\bullet Molecule 18: Ribosomal protein uL13
Chain BO: 99% .
MET F1 V203
\bullet Molecule 19: 60S ribosomal protein L17
Chain BP: 84% · 16%
MET V2 V2 V2 V1156 V1156 V1156 V1155
• Molecule 20: Ribosomal protein eL18
Chain BQ: 100%
There are no outlier residues recorded for this chain.
• Molecule 21: Ribosomal protein L19
Chain BR: 85% 15%
MET S2 K149 A150 A150 A155 A155 A155 A155 A155 A159 A159 A159 A159 A159 A159 A159 A159 A159 A159 A159 A159 A156 A15
• Molecule 22: Ribosomal protein eL20
Chain BS: 100%
There are no outlier residues recorded for this chain.
\bullet Molecule 23: 60S ribosomal protein L21
Chain BT: 99% .

MET T2 K117 K120 6123 0124 M159	
\bullet Molecule 24: Large ribosomal subunit protein eL22	
Chain BU: 78%	22%
MET ALA ALA ALA PRO VAL LYS PRO CLY CLY CLYS CLYS CLYS CLYS CLYS CLYS C	V60 E64 E64 E64 E64 E64 S66 K67 S66 V76 D98 D98 D98 D98 D98 C16 A116 A116 A116 A116 A116 A116 A116
dru dru dru dru dru	
• Molecule 25: Ribosomal protei uL14	
Chain BV: 99%	
MET 85 85 810 810 810	
• Molecule 26: Ribosomal protein L24	
Chain BW: 39% 61%	6
MI K2 K2 662 662 662 662 662 662	ARG LYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
LYS LYS GLN GLN CLYS LYS LYS ALA ALA ALA ALA ALA ALA ALA ALA CYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	
• Molecule 27: Ribosomal protein uL23	
Chain BX: 77%	23%
MET PRO PRO LVS LVS LVS LVS CLV PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	
• Molecule 28: Ribosomal protein L26 like 1	
Chain BY: 92%	8%
MI E131 K132 C133 C133 C133 C133 C133 C133 C133 C	
\bullet Molecule 29: Large ribosomal subunit protein eL27	
<u>.</u>	

• Molecule 30: Ribosomal protein uL15 Chain Ba: 99% • Molecule 31: 60S ribosomal protein L29 14% Chain Bb: 99% A62 K63 Q64 A65 A65 A66 A66 Q68 K69 K70 • Molecule 32: Large ribosomal subunit protein eL30 7% Chain Bc: 83% 17% MET VAL ALA ALA ALA LYS LYS LYS LYS LYS SER SER SER CLU MET PRO GLU GLN THR SER SER CLU • Molecule 33: 60S ribosomal protein L31 Chain Bd: 60% 40% LYS LYS GLY GLY ARG SER ALA ALA ILE • Molecule 34: Ribosomal protein L32 Chain Be: 96% GLU GLU ASN GLU • Molecule 35: Ribosomal protein eL33 Chain Bf: 100%

M1 1110

• Molecule 36: 60S ribo	osomal protein L34	
Chain Bg:	92%	8%
MET V2 V104 K105 K106 K106 A109 GLN SER CLN SER SER SER SFR	SXI	
• Molecule 37: Large ri	bosomal subunit protein uL29	
Chain Bh:	99%	·
MET A2 A123		
• Molecule 38: Large ri	bosomal subunit protein eL36	
Chain Bi:	95%	5%
MET ALA ALA ILE R4 A100 A101 A102 K103 LYS ASP		
• Molecule 39: Riboson	nal protein L37	
Chain Bj:	89%	11%
MET 12 18 18 18 18 18 18 14 14 14 14 14 14 14 14 14 14 14 14 14		
• Molecule 40: 60S ribe	osomal protein L38	
Chain Bk:	99%	
MET P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	Pe2 G63 L64 A65 K67 E68 L69 K70	
• Molecule 41: Large ri	bosomal subunit protein eL39	
Chain Bl:	98%	.
82 191 191		

• Molecule 42: Ubiquitin-60S ribosomal protein L40

Chain	Bm:	419	%		59%		
MET GLN PHE	VAL LYS THR LEU THR	GLY LYS THR THR THR LEU GLU CALU CALU	ASN ASP THR THR TLE GLU ASN VAL LYS ALA	LYS LYS GLN GLN ASP GLU GLV CLY CLY PRO PRO ASP ASP	GLN ARG TLEU TLEU TLE ALA GLY GLY GLN	GLY GLY GLY ARG ARG LEU ALA ASP ASP ASN	
ILE GLN GLU	SER THR LEU HIS LEU	VAL LEU ARG LEU ARG GLY GLY K128					
• Mol	ecule 4	43: Ribosomal	protein L36	a like			
Chain	Bo:	<u>.</u>		100%			
V2 R78	1104 Q105 F106						
• Mol	ecule 4	44: Large ribo	somal subun	it protein eL43			
Chain	Bp:	870		99%			
MET A2 K3	R85 E88 T R0	K90 D91 Q92					
• Mol	ecule 4	45: 60S riboso	mal protein	L28			
Chain	Br:			90%		10%	
MET S2 P55	L124 L125 VAL	ARG LYS LYS ARG ARG ARG ALA ALA ALA ALA	GLN				
• Mol	ecule 4	46: 18S rRNA					
Chain	A2:	970	77%		16%	7%	
01 03 04 04	C17 A27	G33 (41 144 A45 A46 G56	U59 C67 A68 G71 G72 G73 C73	074 075 A77 A77 A79 A99 A103	0115 0115 0115 0126 0127 0128 0128 0128 0128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	осссс 14139 14139 1413 1411	U142
A148 G154		C167 A174 C181 G182 A183 A183 C191 C192	0193 0194 0196 0196 0196 0197 0198 0198 0198 0206	9 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	< 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		U
U U249 U258	A259 A264 C265 C266	U267 C268 C269 G270 G271 C281	C284 ← C285 ← C286 ← C287 ← C287 ← C288 ← C288 ← C288 ← C280 ←	0291 0296 0308 0323 0323 0323 0323 0329 0320 0320	1345 1345 1346 1346 1361 1361 1361 1369 1369 1370 1370	G382 G399 G399 A408 A408 A410 C411	A425
6432 C433 A434 G435	G443 C444 A445	U448 C453 C468 A469 C460 C470	(495 (496 (496 (498 (499 (1499 (1500 U501 ◆	U503 C504 G505 A506 G508 C508 G508 A516 A516	4521 4525 4525 4525 4531 4537 4537	454 4548 4550 4551 4551 4552 (553 6563	G567 U568 C569

	20%		
Chain AB:	88%	12%	I
MET ASP THR SER ARG Q7 P8	M35 M35 D36 D36 B37 B52 B63 B64 A66 A66 A66 A66 A66 A66 A66 A66 A66 A		
• Molecule 50): 40S ribosomal protein S2		
Chain Ab:	83%	17%	I
MET ALA ALA SER ARG ARG ARG OLY PRO CI Y	ARG ARG ARG ARG ARG ARG ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	HIS THR ARG VAL SER SER CAL GLN ALA ALA ALA ALA THR THR THR THR	
• Molecule 5	l: Ubiquitin		
Chain AC:	15% 40% •	60%	-
MET GLN TLE PHE VAL LYS THR LEU THR CIV	LTR THR THR CLEU CLEU CLEU CLEU CLEU CLEU PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	TLE PRO ASP ASP CLN CLEU LEU CLEU CLEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	SER ASP TYR ASN
ILE LYS LYS SER GLU GLU CSER THR LEU LEU VAI	LEU LEU LEU ARG LEU ARG GLY GLY GLY CYS LYS LYS LYS LYS LYS LYS LYS LYS THR TYR TYR TYR K89 N91 K90 K90 K90 K92 K94	R95 K97 V98 K99 K99 L100 A101 K104 E110 K113 K113 K113	L117 E124 C127 S134 N151
LYS PRO GLU ASP LYS			
• Molecule 55	2: DNA-(apurinic or apyrimidinic s	site) lyase	
Chain Ac:	93%	7%	
MET ALA V3 A30 E31 T44	Q56 N57 A92 A92 A92 C1198 E215 E215 E215 E215 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	PR0 ALA MET PR0 GLN PR0 VAL THR ALA	
• Molecule 53	3: Small ribosomal subunit protein	eS4	
Chain Ad:	99%		1
MET A2 R108 1220 Q260 €261	2303 6253 6253		
• Molecule 54	4: Ribosomal protein eS30		
Chain AD:	43%	57%	
MET GLN CLEU PHE VAL ARG ALA GLN THR	HITS THR THR CILE CILE CILE SER SER SER SER SER THR CILU CILU CILU CILU CILU CILU CILU CILU	PR0 ASP ASP CLN ASP CLN ASP CLN FHE CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	SER GLY VAL PRO
GLU PHE SER SER LEU CLU VAL ALA ALA	LEU LEU GLY GLY CAS CAS CAS CAS CAS CAS CAS CAS CAS CAS		
	V O R L PROTEIN		
• Molecule 55: 40S	ribosomal protein S26		
--	--	--	--
Chain AE:	86%	14%	
MET 12 546 447 448 851 852 855 456	PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0		
• Molecule 56: Rib	osomal protein S5		
Chain Ae:	93%	6%	
MET THR GLU GLU GLU GLU ALA ALA ALA ALA ALA ALA CLU CLU	E42 R126 1127 G128 A130 A130 A130 C131 T132 V133 R134 R134 R203		
• Molecule 57: Sma	all ribosomal subunit protein es	56	
Chain Af:	91%	9%	
MI E21 E43 E118 K119 V128 V129	R132 4 N146 4 K149 4 E150 4 D151 4 D152 4 N163 4 K164 4 K167 4 K166 4 K167 4 K168 4 K178 4 K1	R224 C225 C225 C225 C227 C227 C227 C227 C227	SER LYS SER GLU GLU CLN LYS
• Molecule 58: Sma	all ribosomal subunit protein R	ACK1	
Chain AF:	98%		
MET THR GLU Q4 D144 E260 E273 C250 V274 V274 V274	2278 2278 3278 3278 3278 3278 3278 1314 GLY THR ARG		
\bullet Molecule 59: 40S	ribosomal protein S7		
Chain Ag:	% 96%		
MET PHE SER SER S5 A6 K10 V1 N12 K10 C13 K12 K12 K12 K12 K12 K12 K12 K12 K12 K12	E14 K15 P16 D17 E18 F19 C25 C25 C25 C25 C25 C25 C25 C25 C25 C25	L40 R41 E42 E42 E42 L43 L43 E50 G55 G55 G55 G55 G55 G55 G55 C55 C55 C55	S108 8108 1110 1110 1110 1110 1110 1110
LEU			
• Molecule 60: 40S	ribosomal protein S29		
Chain AG:	32%	68%	1
ARG GLY ARG PRO FRO LEU ALA ALA ALA ALA ALA PRO CYS SER FRO CLU	LEU GLY SER ASP ASP ASP ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ARG GLN GLN ARG ARG ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PRU ARG GLU GLU
GLY GLY ARG ARG ARG ARG CYS CYS CYS SER SER SER	ARG CATS CATS CATS CATS ALA ALA ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	SER ALA CYS CYS CYS CYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	99 92 9

• Molecule 61: 40S	ribosomal protein S8	
Chain Ah:	98%	
C2 R92 K124 K125 G126 A127 K125 C126 A127 K128 C126 T130	E132 E133 E134 E135 E135 I136 I136 I137 K140 K140 K140 A168 A168 A168 A168 C18 C18 C18 C18 C18	
• Molecule 62: 40S	ribosomal protein S9	
Chain Ai:	92%	• 8%
MET MET K 130 GLY GLY GLY GLY GLY GLY GLY GLY	ASP GLU GLU ASP ASP	
• Molecule 63: Ribo	osomal protein S10	
Chain Aj:	58%	42%
M1 R96 R96 R96 ARG CLU THN ARG CLY ARG ARG CLY CLY CLY CLY CLY CLY	LEU LEU GLU GLU GLU GLU GLU GLU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	ALA ATA LYSS LYSS LYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
GLY GLY GLY GLY GLY ARG GLY GLN FRO GLN GLN		
• Molecule 64: 40S	ribosomal protein S11	
Chain Ak:	94%	• 5%
MET ALA D3 A23 A23 A23 A23 A23 C24 C26 C26 C26 C26 C26 C26 C26 C26 C27 C26 C26 C26 C27 C26 C27 C27 C27 C27 C27 C27 C27 C27 C27 C27	K30 E31 E31 F69 F160 C110 C151 C151 C151 C151 C151 C151 C15	
• Molecule 65: Sma	ll ribosomal subunit protein $eS12$	
Chain Al:	83%	• 16%
MET ALA ALA GLU GLU GLY THR ALA ALA ALA ALA ALA ALA ALA MET WAL MET WAL	A17 (118 (118 (118 A11 A11 A11 A11 A11 A11 A11	I/4 N75 D80 D81 N82 K84 K84 K83 K84 C90 C90 C90 C90 C90 C90 C90 C90 C91 C91 C92 C92 C92 C92 C92 C92 C92 C92 C92 C92
K102 V103 V103 V113 C115 K114 E117 S115 Q115 Q115 A120 X121	D122 V123 1124 E125 F128 Y127 F128 K129 LVS LVS	
• Molecule 66: Sma	ll ribosomal subunit protein uS15	
Chain Am:	99%	
MET G2 B33 B143 5144 5144 7145 A146 A146 A146		
	PROTEIN DATA BANK	

• Molecule 67	7: Ribosomal protein S14	
Chain An:	89%	• 10%
MET ALA PRO ARG LYS GLY CYS CLY LYS LYS	GLU GLU GLU GLU GLU GLU GLI GLI GLI GLI GLI GLI GLI GLI GLI GLI	
• Molecule 68	8: Small ribosomal subunit protein uS19	
Chain Ao:	88%	12%
MET ALA GLU VAL GLU GLU CLN LYS LYS LYS ARG	T11 F12 K13 K14 K14 F25 F69 F71 E71 E71 E71 E71 E71 E71 E71 E71 F130 F133 F133 F133 F133 F133 F133 F13	
• Molecule 69): Small ribosomal subunit protein eS17	
Chain Aq:	95%	• ••
MET G2 R5 K5 Q62 K63	G64 P65 V66 R67 G68 I71 G68 S70 S70 </td <td></td>	
• Molecule 70): 40S ribosomal protein S18	
Chain Ar:	95%	5%
MET SER L3 R108 R142 G143 R144	T145 V146 VAL SER LYS LYS LYS	
• Molecule 71	: Ribosomal protein eS19	
Chain As:	98%	••
MET P2 R67 R67 D1 18 K1 44 H1 S		
• Molecule 72	2: 40S ribosomal protein S20	
Chain At:	87%	13%
MET ALA PHE LYS ASP THR THR LYS ALA PRO	VAL GLU GLU A15 A117 A117 A117 ALA	
• Molecule 73	3: Ribosomal protein eS21	
Chain Au:	99%	

MET PRO LAIA GLY P6 R146			
• Molecule 80: Phe tRNA			
Chain V:	80%	20%	
G1 88 U8 49 G10 610 G13 613 G13 613 G13 613 G24 623 G25 625 G25 625 G25 625	C50 C50 C56 657 653 053 053 053 053 C57 C74 C57 C75 C75 C75 C75 C75 C75 C75 C75 C75		
• Molecule 81: SERPINE1 mRN	A binding protein 1		
Chain S: 10%	90%		
MET CYS CYS CYS ALA PRO PRO PRO CYS SER PRO CIU VAL LEU CYS SER PRO CIU CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	GLY PRO ALA ALA ALA CLN GLV ALA ASP GLV GLV CYS SER SER CYS SER CYS	THSP CVS CVS ARG ARG ARG ALA SER SER SER SER THR THR THR SER SER SER SER SER SER SER SER SER SE	84HC
LEU MET THR SER PRO PRO PRO PRO PRO CYS CYS CYS CYS CYS CYS CYS CYS CYS ARG CYS ARG CYS ARG ARG ARG ARG ARG ARG ARG ARD ARD ARD ARD ARD ART	ALA BLY PRO PRO ALA ALA ALA CLY GLY GLY GLY GLY GLY GLY ALA	LEU LEU GLY GLY GLY GLY TLE GLY ARG GLY ARG GLN C	
GL.N GL.N GL.N GL.N GL.N GL.V GL.V C.L V GL.V ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	ASP LYS PRO ALA ALA ALA ALA ALA CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	ASP ASP ASP ARG ARG ARG GLY GLY GLY ARG CLY ARG CLY ARG CLY CLY CLY CLY	АКС
61.Y ARG GLY NGT GLY GLS GLS GLS GLS GLS GLS CLS CLS CLS CLS CLS CLS CLS CLS CLS C	D228 GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	GLU GLU HTS PRO PRO PRO ALA ASP GLU GLU GLU GLU GLU	LYAL GLU GLU
GLY LYS CLU GLU GLU MET THR AET ALA ALA ALA ALA ALA ARG ALA ARG ALU CLU CLU ARG ARG ARN ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	ILE ARG LYS PRO ASN GLY GLY GLY CLNS CLN CLNS CLN VAL LYS CLN VAL LYS CLN	LLU SER SER SER SER SER GLU GLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A	012
PHE LYS PRO ARG ARA ASP ASP ASP ASP CLU CLEU CLEU CLEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	GLY GLY ARG GLY GLY GLY GLY GLY GLY ARG GLY GLY SER SER SER	ARG ARG LYS LYS LYS LUSU LEU VAL LUYS GLU GLU ASP THR THR THR THR	0110
SER SER SER SER SER SER ALA ASP PRO PLU PLU CLU CLU CLU SER SER SER			
• Molecule 82: Elongation factor	r 2		
Chain A:	100%		
MET V2 F4 F4 F5 V6 V6 07 08 R10 A11 112 A11 112 M13 K16 K16 K16	A43 A43 A43 A43 A47 A47 A47 A46 A50 A51 A50 A51 A51 A51 A51 A51 A51 A51 A51 A51 A51	R55 F56 T57 D58 R60 K61 K61 K61 C63 C63 C63 C67	E80 L81 S82 S82 E83 N84 D85 C91 C91 C91 C91 C91 C91 C91 C91 C91 C91
D94 G95 G95 G95 G124 A148 A148 G124 G126 G126 G126 G195 G196 G196 G198 G198	1205	A242 4 Q243 4 M245 4 P246 7 P246 7 P246 4 R249 4 R254 4 K252 4 K252 4 R255 4	D267 P268 A269 A269 C271 K271 F273 F274 K275 K275 S276 A277
T278 7279 7281 7283 7284 7284 7284 7303 7303 7305 7305 7305 7305 7305 7312 7305 7312 7312	K314 L315 F315 K316 K316 K318 L319 D320 K322 K322 K322 S325 S325 S325 K328 S325 K328	D329 K330 E331 G332 K333 P334 F335 K337 K337 K341 R341 R341 R341	C365 E370 E371 L371 L372 Y373 E374 P375 P377 P377 D378
E380 A381 A382 A382 A382 A382 A382 A382 C384 C384 C384 C388 C388 C388 C388 C388	6406 F410 F410 F417 F417 F417 F417 6419 G419 G424 F423 G424 F423 G424 F425 K426 K426	1429 4430 6431 P432 Y434 Y434 P435 6437 K438 K438 F440 F440	L442 Y443 L444 K445 P446 P446 Q448 R449 R449 L452 L452 L452 M453
	PROTEIN DATA BANK		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	100204	Depositor
Resolution determination method	FSC 3 SIGMA CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	300	Depositor
Maximum defocus (nm)	1500	Depositor
Magnification	96000	Depositor
Image detector	FEI FALCON IV (4k x 4k)	Depositor
Maximum map value	35.598	Depositor
Minimum map value	-17.913	Depositor
Average map value	-0.001	Depositor
Map value standard deviation	1.080	Depositor
Recommended contour level	3.0	Depositor
Map size (Å)	465.74, 465.74, 465.74	wwPDB
Map dimensions	580, 580, 580	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.803, 0.803, 0.803	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 6MZ, OMG, 5MC, DDE, OMU, HIC, 1MA, ZN, OMC, 4AC, UY1, MLZ, MG, A2M, B8N, SAC, AME, GDP, PSU, MA6, UR3, NMM, IAS

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	B5	0.38	1/85039~(0.0%)	0.79	29/132680~(0.0%)	
2	B8	0.40	1/3656~(0.0%)	0.74	1/5693~(0.0%)	
3	B7	0.36	0/2832	0.77	0/4413	
4	Az	0.22	0/240	0.68	0/305	
5	BA	0.28	0/1926	0.57	0/2582	
6	BB	0.29	0/3264	0.53	0/4363	
7	BC	0.27	0/2942	0.53	0/3950	
8	BD	0.28	0/2431	0.50	0/3255	
9	BE	0.27	0/1854	0.52	0/2477	
10	BF	0.27	0/1975	0.52	0/2634	
11	BG	0.26	0/1736	0.51	0/2342	
12	BH	0.27	0/1552	0.52	0/2086	
13	BI	0.27	0/1751	0.54	0/2342	
14	BJ	0.27	0/1385	0.54	0/1852	
15	BL	0.26	0/1723	0.55	0/2302	
16	BM	0.26	0/1097	0.50	0/1460	
17	BN	0.27	0/1745	0.56	0/2337	
18	BO	0.27	0/1674	0.52	0/2239	
19	BP	0.27	0/1285	0.51	0/1723	
20	BQ	0.28	0/1526	0.59	0/2038	
21	BR	0.24	0/1394	0.54	0/1845	
22	BS	0.29	0/1502	0.55	0/2016	
23	BT	0.28	0/1327	0.50	0/1771	
24	BU	0.25	0/831	0.49	0/1115	
25	BV	0.28	0/1047	0.53	0/1402	
26	BW	0.28	0/532	0.51	0/708	
27	BX	0.26	0/993	0.51	0/1334	
28	BY	0.28	0/1123	0.56	0/1493	
29	BZ	0.28	0/1130	0.51	0/1507	
30	Ba	0.28	0/1209	0.52	0/1615	
31	Bb	0.26	0/593	0.49	0/782	

		Bond lengths		Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
32	Bc	0.27	0/748	0.47	0/1004	
33	Bd	0.26	0/882	0.55	0/1187	
34	Be	0.27	0/1093	0.54	0/1457	
35	Bf	0.29	0/905	0.57	0/1211	
36	Bg	0.26	0/870	0.57	0/1159	
37	Bh	0.27	0/1034	0.52	0/1365	
38	Bi	0.26	0/832	0.55	0/1100	
39	Bj	0.28	0/718	0.58	0/948	
40	Bk	0.26	0/575	0.49	0/761	
41	Bl	0.25	0/452	0.54	0/596	
42	Bm	0.26	0/435	0.54	0/575	
43	Bo	0.28	0/864	0.52	0/1139	
44	Bp	0.26	0/716	0.51	0/950	
45	Br	0.26	0/1024	0.57	0/1374	
46	A2	0.36	1/39536~(0.0%)	0.78	12/61603~(0.0%)	
47	Aa	0.27	0/1757	0.50	0/2352	
48	AA	0.28	0/670	0.53	0/897	
49	AB	0.28	0/478	0.62	0/641	
50	Ab	0.28	0/1734	0.48	0/2342	
51	AC	0.29	0/526	0.55	0/696	
52	Ac	0.28	0/1780	0.52	0/2396	
53	Ad	0.32	0/2118	0.55	0/2848	
54	AD	0.26	0/458	0.54	0/602	
55	AE	0.26	0/806	0.56	0/1080	
56	Ae	0.29	0/1530	0.53	0/2059	
57	Af	0.27	0/1861	0.55	0/2481	
58	AF	0.28	0/2477	0.52	0/3372	
59	Ag	0.26	0/1522	0.51	0/2039	
60	AG	0.29	0/470	0.54	0/623	
61	Ah	0.29	0/1702	0.55	0/2273	
62	Ai	0.33	0/1520	0.56	0/2030	
63	Aj	0.29	0/836	0.48	0/1128	
64	Ak	0.31	0/1239	0.55	0/1657	
65	Al	0.25	0/868	0.48	0/1165	
66	Am	0.26	0/1232	0.50	0/1656	
67	An	0.27	0/1020	0.56	0/1366	
68	Ao	0.30	0/1071	0.53	0/1432	
69	Aq	0.27	0/1087	0.52	0/1459	
70	Ar	0.28	0/1209	0.58	0/1620	
71	As	0.28	0/1120	0.48	0/1499	
72	At	0.26	0/825	0.57	0/1108	
73	Au	0.27	0/635	0.51	0/851	
74	Av	0.30	0/1052	0.54	0/1408	

Mal	Mol Chain	Bond lengths		E	Bond angles
INIOI		RMSZ	# Z > 5	RMSZ	# Z > 5
75	Aw	0.30	0/1122	0.54	0/1498
76	Ax	0.30	0/1032	0.54	0/1371
77	Ay	0.29	0/561	0.52	0/755
78	AZ	0.29	0/1654	0.50	0/2249
79	Ap	0.29	0/1141	0.55	0/1527
80	V	0.25	0/1822	0.76	0/2841
81	S	0.25	0/331	0.55	0/436
82	А	0.26	0/6798	0.51	0/9181
83	Bs	0.25	0/1551	0.50	0/2094
84	Bt	0.24	0/1149	0.54	0/1549
85	Bv	0.25	0/1749	0.54	0/2344
All	All	0.33	3/236511~(0.0%)	0.69	$42/346015 \ (0.0\%)$

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
46	A2	1	U	OP3-P	-10.88	1.48	1.61
2	B8	1	С	OP3-P	-10.59	1.48	1.61
1	B5	1	С	OP3-P	-10.56	1.48	1.61

The worst 5 of 42 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
46	A2	194	C	C2-N1-C1'	9.27	129.00	118.80
1	B5	3250	U	C2-N1-C1'	8.71	128.15	117.70
1	B5	3095	С	C2-N1-C1'	8.69	128.36	118.80
46	A2	194	С	N1-C2-O2	8.54	124.02	118.90
1	B5	3095	С	N1-C2-O2	8.36	123.92	118.90

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	Az	23/25~(92%)	23 (100%)	0	0	100	100
5	BA	244/257~(95%)	235~(96%)	9 (4%)	0	100	100
6	BB	395/403~(98%)	387 (98%)	8 (2%)	0	100	100
7	BC	359/421~(85%)	354 (99%)	5 (1%)	0	100	100
8	BD	294/297~(99%)	282 (96%)	12 (4%)	0	100	100
9	BE	219/298~(74%)	211 (96%)	8 (4%)	0	100	100
10	BF	232/246~(94%)	225 (97%)	7 (3%)	0	100	100
11	BG	206/266~(77%)	198 (96%)	8 (4%)	0	100	100
12	BH	190/192~(99%)	188 (99%)	2 (1%)	0	100	100
13	BI	211/214~(99%)	207 (98%)	4 (2%)	0	100	100
14	BJ	168/178~(94%)	164 (98%)	4 (2%)	0	100	100
15	BL	206/211~(98%)	200 (97%)	5 (2%)	1 (0%)	29	41
16	BM	128/131~(98%)	126 (98%)	2 (2%)	0	100	100
17	BN	201/204~(98%)	197 (98%)	4 (2%)	0	100	100
18	BO	199/203~(98%)	196 (98%)	3 (2%)	0	100	100
19	BP	153/184~(83%)	150 (98%)	3 (2%)	0	100	100
20	BQ	185/187~(99%)	183 (99%)	2 (1%)	0	100	100
21	BR	164/196~(84%)	164 (100%)	0	0	100	100
22	BS	174/176~(99%)	170 (98%)	4 (2%)	0	100	100
23	BT	157/160~(98%)	154 (98%)	3 (2%)	0	100	100
24	BU	98/128~(77%)	97 (99%)	1 (1%)	0	100	100
25	BV	137/140~(98%)	136 (99%)	1 (1%)	0	100	100
26	BW	60/157~(38%)	59 (98%)	1 (2%)	0	100	100
27	BX	117/155~(76%)	114 (97%)	3 (3%)	0	100	100
28	BY	$\overline{131/145}\ (90\%)$	130 (99%)	1 (1%)	0	100	100

~	0		
Continued	from	nrevious	naae
Contentaca	110110	precoudus	pagem

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
29	BZ	133/136~(98%)	129 (97%)	4 (3%)	0	100	100
30	Ba	145/148~(98%)	140 (97%)	5 (3%)	0	100	100
31	Bb	68/71~(96%)	68 (100%)	0	0	100	100
32	Bc	93/115~(81%)	93 (100%)	0	0	100	100
33	Bd	103/176~(58%)	101 (98%)	2 (2%)	0	100	100
34	Be	128/135~(95%)	128 (100%)	0	0	100	100
35	Bf	108/110~(98%)	108 (100%)	0	0	100	100
36	Bg	106/117~(91%)	105 (99%)	1 (1%)	0	100	100
37	Bh	121/123~(98%)	120 (99%)	1 (1%)	0	100	100
38	Bi	98/105~(93%)	98 (100%)	0	0	100	100
39	Bj	84/97~(87%)	84 (100%)	0	0	100	100
40	Bk	67/70~(96%)	66 (98%)	1 (2%)	0	100	100
41	Bl	48/51~(94%)	46 (96%)	2 (4%)	0	100	100
42	Bm	50/128~(39%)	50 (100%)	0	0	100	100
43	Bo	102/105~(97%)	99 (97%)	3 (3%)	0	100	100
44	Bp	89/92~(97%)	86 (97%)	3 (3%)	0	100	100
45	Br	122/138~(88%)	119 (98%)	3 (2%)	0	100	100
47	Aa	211/264~(80%)	204 (97%)	7 (3%)	0	100	100
48	AA	81/84~(96%)	77 (95%)	4 (5%)	0	100	100
49	AB	59/69~(86%)	58 (98%)	1 (2%)	0	100	100
50	Ab	217/264~(82%)	216 (100%)	1 (0%)	0	100	100
51	AC	61/156~(39%)	58 (95%)	3(5%)	0	100	100
52	Ac	223/243~(92%)	216 (97%)	7 (3%)	0	100	100
53	Ad	260/263~(99%)	256 (98%)	4 (2%)	0	100	100
54	AD	55/133~(41%)	55 (100%)	0	0	100	100
55	AE	97/115~(84%)	97 (100%)	0	0	100	100
56	Ae	$\overline{189/204}~(93\%)$	180 (95%)	8 (4%)	1 (0%)	29	41
57	Af	$225/\overline{249}\ (90\%)$	221 (98%)	4 (2%)	0	100	100
58	AF	$\overline{309/317}~(98\%)$	290 (94%)	19 (6%)	0	100	100
59	Ag	185/194~(95%)	173 (94%)	12 (6%)	0	100	100
60	AG	53/171~(31%)	53 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
61	Ah	202/207~(98%)	194 (96%)	8 (4%)	0	100	100
62	Ai	177/194~(91%)	175 (99%)	2 (1%)	0	100	100
63	Aj	94/165~(57%)	92~(98%)	2 (2%)	0	100	100
64	Ak	148/158~(94%)	141 (95%)	7 (5%)	0	100	100
65	Al	107/132~(81%)	96 (90%)	11 (10%)	0	100	100
66	Am	148/151~(98%)	146 (99%)	2 (1%)	0	100	100
67	An	132/151~(87%)	128 (97%)	4 (3%)	0	100	100
68	Ao	126/145~(87%)	121 (96%)	5 (4%)	0	100	100
69	Aq	131/135~(97%)	122 (93%)	7 (5%)	2(2%)	10	14
70	Ar	142/152~(93%)	132 (93%)	10 (7%)	0	100	100
71	As	140/145~(97%)	137 (98%)	3 (2%)	0	100	100
72	At	101/119~(85%)	94 (93%)	7 (7%)	0	100	100
73	Au	81/83~(98%)	80 (99%)	1 (1%)	0	100	100
74	Av	127/130~(98%)	125 (98%)	2 (2%)	0	100	100
75	Aw	140/143~(98%)	137 (98%)	3 (2%)	0	100	100
76	Ax	123/131~(94%)	123 (100%)	0	0	100	100
77	Ay	68/125~(54%)	66 (97%)	2 (3%)	0	100	100
78	AZ	204/296~(69%)	201 (98%)	3 (2%)	0	100	100
79	Ap	139/146~(95%)	134 (96%)	5 (4%)	0	100	100
81	S	40/404 (10%)	37 (92%)	3 (8%)	0	100	100
82	А	854/858~(100%)	813 (95%)	41 (5%)	0	100	100
83	Bs	197/316~(62%)	194 (98%)	3 (2%)	0	100	100
84	Bt	148/165~(90%)	132 (89%)	16 (11%)	0	100	100
85	Bv	213/217~(98%)	192 (90%)	20 (9%)	1 (0%)	29	41
All	All	12523/14685~(85%)	12156 (97%)	362 (3%)	5(0%)	100	100

Continued from previous page..

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
15	BL	64	VAL
56	Ae	42	GLU
69	Aq	80	ARG
85	Bv	28	PHE
69	Aq	81	ARG

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
4	Az	24/24~(100%)	24 (100%)	0	100	100
5	BA	189/199~(95%)	189 (100%)	0	100	100
6	BB	346/349~(99%)	346 (100%)	0	100	100
7	BC	305/338~(90%)	305~(100%)	0	100	100
8	BD	248/249~(100%)	248 (100%)	0	100	100
9	BE	196/256~(77%)	196 (100%)	0	100	100
10	BF	201/211~(95%)	201 (100%)	0	100	100
11	BG	186/225~(83%)	186 (100%)	0	100	100
12	BH	171/171~(100%)	171 (100%)	0	100	100
13	BI	178/178~(100%)	177 (99%)	1 (1%)	86	94
14	BJ	142/148~(96%)	141 (99%)	1 (1%)	84	92
15	BL	175/178~(98%)	175~(100%)	0	100	100
16	BM	112/113~(99%)	112 (100%)	0	100	100
17	BN	171/172~(99%)	171 (100%)	0	100	100
18	BO	172/173~(99%)	172 (100%)	0	100	100
19	BP	136/163~(83%)	135~(99%)	1 (1%)	84	92
20	BQ	159/159~(100%)	159~(100%)	0	100	100
21	BR	147/175~(84%)	147 (100%)	0	100	100
22	BS	157/157~(100%)	157~(100%)	0	100	100
23	BT	139/140~(99%)	139 (100%)	0	100	100
24	BU	90/113~(80%)	90~(100%)	0	100	100
25	BV	106/107~(99%)	106 (100%)	0	100	100
26	BW	54/127~(42%)	54 (100%)	0	100	100
27	BX	$\overline{107/134}\ (80\%)$	107 (100%)	0	100	100
28	BY	$\overline{123/135}~(91\%)$	123 (100%)	0	100	100
29	BZ	117/118~(99%)	117 (100%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
30	Ba	121/122~(99%)	121~(100%)	0	100	100
31	Bb	61/62~(98%)	61~(100%)	0	100	100
32	Bc	80/98~(82%)	80~(100%)	0	100	100
33	Bd	95/148~(64%)	95~(100%)	0	100	100
34	Be	118/123~(96%)	118 (100%)	0	100	100
35	Bf	89/89~(100%)	89~(100%)	0	100	100
36	Bg	93/101~(92%)	93~(100%)	0	100	100
37	Bh	110/110~(100%)	110 (100%)	0	100	100
38	Bi	85/89~(96%)	85 (100%)	0	100	100
39	Bj	73/80~(91%)	73~(100%)	0	100	100
40	Bk	64/65~(98%)	64~(100%)	0	100	100
41	Bl	47/48~(98%)	47 (100%)	0	100	100
42	Bm	48/115~(42%)	48 (100%)	0	100	100
43	Bo	92/92~(100%)	92~(100%)	0	100	100
44	Bp	74/75~(99%)	74 (100%)	0	100	100
45	Br	109/118~(92%)	109 (100%)	0	100	100
47	Aa	194/228~(85%)	193~(100%)	1 (0%)	88	95
48	AA	75/76~(99%)	75~(100%)	0	100	100
49	AB	54/62~(87%)	54 (100%)	0	100	100
50	Ab	185/214~(86%)	185 (100%)	0	100	100
51	AC	56/140~(40%)	55~(98%)	1 (2%)	59	76
52	Ac	189/202~(94%)	189 (100%)	0	100	100
53	Ad	223/224~(100%)	221~(99%)	2 (1%)	78	90
54	AD	46/108~(43%)	46 (100%)	0	100	100
55	AE	87/99~(88%)	87~(100%)	0	100	100
56	Ae	161/170~(95%)	161 (100%)	0	100	100
57	Af	$\overline{199/219}~(91\%)$	199 (100%)	0	100	100
58	AF	$\overline{270/275}~(98\%)$	270 (100%)	0	100	100
59	Ag	167/174~(96%)	167 (100%)	0	100	100
60	AG	48/130 (37%)	48 (100%)	0	100	100
61	Ah	176/178~(99%)	176 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
62	Ai	160/168~(95%)	159 (99%)	1 (1%)	86	94	
63	Aj	88/136~(65%)	88 (100%)	0	100	100	
64	Ak	133/140~(95%)	132 (99%)	1 (1%)	81	91	
65	Al	94/109~(86%)	93~(99%)	1 (1%)	73	87	
66	Am	130/131~(99%)	130 (100%)	0	100	100	
67	An	105/118~(89%)	105 (100%)	0	100	100	
68	Ao	114/130~(88%)	114 (100%)	0	100	100	
69	Aq	119/121~(98%)	115 (97%)	4 (3%)	37	56	
70	Ar	125/132~(95%)	125~(100%)	0	100	100	
71	As	112/114~(98%)	112 (100%)	0	100	100	
72	At	94/106~(89%)	94~(100%)	0	100	100	
73	Au	68/68~(100%)	68 (100%)	0	100	100	
74	Av	112/113~(99%)	112 (100%)	0	100	100	
75	Aw	114/115~(99%)	113 (99%)	1 (1%)	78	90	
76	Ax	107/113~(95%)	107~(100%)	0	100	100	
77	Ay	61/102~(60%)	60~(98%)	1 (2%)	62	79	
78	AZ	171/245~(70%)	171 (100%)	0	100	100	
79	Ap	116/119~(98%)	116 (100%)	0	100	100	
81	S	33/312~(11%)	33 (100%)	0	100	100	
82	А	729/730~(100%)	728 (100%)	1 (0%)	93	98	
83	Bs	167/259~(64%)	167~(100%)	0	100	100	
84	Bt	124/137~(90%)	124 (100%)	0	100	100	
85	Bv	194/196~(99%)	192 (99%)	2 (1%)	76	88	
All	All	10910/12460~(88%)	10891 (100%)	19 (0%)	93	97	

Continued from previous page...

5 of 19 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
75	Aw	60	LYS
85	Bv	26	ARG
85	Bv	27	LYS
82	А	50	ARG
64	Ak	69	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 13 such sidechains are listed below:

Mol	Chain	Res	Type
49	AB	29	GLN
49	AB	45	ASN
85	Bv	171	HIS
83	Bs	68	HIS
83	Bs	159	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	B5	3630/4441~(81%)	562~(15%)	30~(0%)
2	B8	156/157~(99%)	19 (12%)	0
3	B7	118/119~(99%)	9~(7%)	0
46	A2	1685/1823~(92%)	277~(16%)	4(0%)
80	V	75/76~(98%)	13~(17%)	2(2%)
All	All	5664/6616~(85%)	880 (15%)	36~(0%)

5 of 880 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	B5	2	G
1	B5	25	А
1	B5	39	А
1	B5	42	А
1	B5	58	G

5 of 36 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	B5	4142	U
80	V	58	А
1	B5	4432	А
46	A2	1418	U
1	B5	1197	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

145 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul

statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain Des Link Bond lengths		Bond angles						
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	PSU	B5	4019	1	18,21,22	0.75	1(5%)	22,30,33	0.55	0
46	PSU	A2	1039	46	18,21,22	0.66	1 (5%)	$22,\!30,\!33$	0.66	0
46	OMG	A2	1286	46	18,26,27	0.92	1 (5%)	19,38,41	0.63	0
46	PSU	A2	93	46	18,21,22	0.52	0	22,30,33	0.56	0
1	PSU	B5	1769	1	18,21,22	0.50	0	22,30,33	0.59	0
46	6MZ	A2	1786	86,46	18,25,26	0.71	0	16,36,39	0.83	1 (6%)
1	OMG	B5	2173	1	18,26,27	0.97	2 (11%)	19,38,41	0.57	0
1	A2M	B5	4014	1	18,25,26	0.65	0	$18,\!36,\!39$	0.70	1 (5%)
1	OMC	B5	3899	1	19,22,23	0.30	0	26,31,34	0.40	0
46	A2M	A2	989	46	18,25,26	0.65	0	18,36,39	0.80	1 (5%)
1	OMU	B5	4063	1	19,22,23	0.33	0	26,31,34	0.67	0
1	OMG	B5	3639	1	18,26,27	0.99	3 (16%)	19,38,41	0.60	0
46	PSU	A2	647	46	18,21,22	1.50	5 (27%)	22,30,33	2.11	5 (22%)
1	PSU	B5	3742	1	18,21,22	0.53	0	22,30,33	0.57	0
46	4AC	A2	1295	46	21,24,25	0.34	0	29,34,37	0.41	0
1	OMG	B5	1241	86,1	18,26,27	1.03	3 (16%)	19,38,41	0.71	0
2	PSU	B8	55	2	18,21,22	0.49	0	22,30,33	0.60	0
1	PSU	B5	4071	1	18,21,22	0.53	0	22,30,33	0.56	0
1	PSU	B5	3736	1	18,21,22	0.53	0	22,30,33	0.57	0
1	A2M	B5	2564	1	18,25,26	0.66	0	$18,\!36,\!39$	0.70	1 (5%)
1	OMC	B5	3285	1	19,22,23	0.31	0	26,31,34	0.37	0
1	OMU	B5	3749	1	19,22,23	0.31	0	26,31,34	0.48	0
46	OMU	A2	171	46	19,22,23	0.27	0	26,31,34	0.63	0
1	PSU	B5	1652	1	$18,\!21,\!22$	0.48	0	$22,\!30,\!33$	0.58	0
1	PSU	B5	3739	1	18,21,22	0.47	0	$22,\!30,\!33$	0.62	0
1	OMG	B5	3221	1	$18,\!26,\!27$	0.96	3 (16%)	$19,\!38,\!41$	0.63	0
1	OMC	B5	3364	1	19,22,23	0.34	0	26,31,34	0.46	0
46	PSU	A2	1132	86,46	18,21,22	0.50	0	22,30,33	0.59	0
46	PSU	A2	258	46	18,21,22	0.53	0	22,30,33	0.61	0
1	OMG	B5	3104	1	$18,\!26,\!27$	0.96	3 (16%)	$19,\!38,\!41$	0.67	0
2	PSU	B8	69	86,2	18,21,22	0.54	0	22,30,33	0.63	1 (4%)
1	PSU	B5	3874	1	18,21,22	0.50	0	$22,\!30,\!33$	0.61	0
46	OMG	A2	1445	86,46	18,26,27	0.95	2 (11%)	$19,\!38,\!41$	0.57	0

3.4.1	—	Class	D	T 1.	Bo	ond leng	ths	Bond angles		
NIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	1MA	B5	1247	86,1	$16,\!25,\!26$	0.84	1 (6%)	$18,\!37,\!40$	0.62	0
43	MLZ	Bo	53	43	8,9,10	0.70	0	4,9,11	0.57	0
46	OMU	A2	121	46	19,22,23	0.31	0	26,31,34	0.49	0
46	OMU	A2	389	46	19,22,23	0.28	0	$26,\!31,\!34$	0.46	0
78	SAC	AZ	2	78	$7,\!8,\!9$	0.96	0	8,9,11	0.80	0
1	OMU	B5	3402	1	19,22,23	0.33	0	26,31,34	0.53	0
1	A2M	B5	3201	1	18,25,26	0.66	0	$18,\!36,\!39$	0.72	1 (5%)
1	A2M	B5	3966	86,1	$18,\!25,\!26$	0.67	0	$18,\!36,\!39$	0.87	1 (5%)
73	AME	Au	1	73	9,10,11	0.48	0	$9,\!11,\!13$	0.82	1 (11%)
1	PSU	B5	3397	86,1	18,21,22	0.51	0	22,30,33	0.59	0
1	OMC	B5	3346	1	$19,\!22,\!23$	0.30	0	$26,\!31,\!34$	0.41	0
6	HIC	BB	245	6	8,11,12	1.59	2 (25%)	$6,\!14,\!16$	1.03	0
46	OMC	A2	478	46	19,22,23	0.31	0	$26,\!31,\!34$	0.39	0
1	PSU	B5	3995	1	18,21,22	0.50	0	22,30,33	0.64	0
46	OMG	A2	470	86,46	$18,\!26,\!27$	0.97	3 (16%)	$19,\!38,\!41$	0.63	0
1	OMC	B5	1265	1	19,22,23	0.29	0	$26,\!31,\!34$	0.45	0
1	OMG	B5	3376	1	$18,\!26,\!27$	1.00	3 (16%)	$19,\!38,\!41$	0.68	0
46	PSU	A2	642	46	18,21,22	0.52	0	22,30,33	0.62	0
1	OMU	B5	3670	1	19,22,23	0.33	0	26,31,34	0.46	0
1	PSU	B5	3172	1	18,21,22	0.48	0	22,30,33	0.63	0
1	PSU	B5	1606	86,1	18,21,22	0.52	0	22,30,33	0.61	0
1	A2M	B5	3302	1	$18,\!25,\!26$	0.66	0	$18,\!36,\!39$	0.78	1 (5%)
1	OMG	B5	1548	86,1	$18,\!26,\!27$	0.98	2 (11%)	$19,\!38,\!41$	0.63	0
1	OMG	B5	3835	1	$18,\!26,\!27$	0.93	3 (16%)	19,38,41	0.57	0
1	OMG	B5	4061	1	$18,\!26,\!27$	0.93	3 (16%)	$19,\!38,\!41$	0.67	0
1	OMG	B5	3942	1	$18,\!26,\!27$	0.98	3 (16%)	$19,\!38,\!41$	0.63	0
1	PSU	B5	3116	1	18,21,22	0.51	0	22,30,33	0.57	0
46	PSU	A2	821	46	18,21,22	0.54	0	22,30,33	0.54	0
1	PSU	B5	2257	1	18,21,22	0.47	0	22,30,33	0.61	0
1	OMU	B5	3941	86,1	19,22,23	0.30	0	26,31,34	0.44	0
46	A2M	A2	1341	46	$18,\!25,\!26$	0.66	0	$18,\!36,\!39$	0.82	1 (5%)
46	PSU	A2	774	46	18,21,22	0.53	0	22,30,33	0.55	0
1	A2M	B5	3344	1	18,25,26	0.66	0	18,36,39	0.74	1 (5%)
1	5MC	B5	3890	86,1	18,22,23	0.36	0	$26,\!32,\!35$	0.65	0
1	OMG	B5	2625	1	18,26,27	0.94	2 (11%)	19,38,41	0.58	0
46	MA6	A2	1805	46	18,26,27	0.75	0	19,38,41	0.73	0
1	OMC	B5	2553	1	19,22,23	0.30	0	26,31,34	0.39	0
1	OMC	B5	2610	1	19,22,23	0.28	0	26,31,34	0.34	0
1	A2M	B5	1447	1	$18,\!25,\!26$	0.65	0	$18,\!36,\!39$	0.76	1 (5%)

Ъ <i>Т</i> .1	—		D	T 1.	Bo	ond leng	ths	В	Bond angles		
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
1	A2M	B5	1251	1	18,25,26	0.64	0	18,36,39	0.74	1 (5%)	
46	PSU	A2	775	46	18,21,22	0.54	0	22,30,33	0.61	0	
1	OMC	B5	3979	86,1	19,22,23	0.31	0	26,31,34	0.44	0	
1	A2M	B5	2112	86,1	18,25,26	0.65	0	$18,\!36,\!39$	0.72	1 (5%)	
1	PSU	B5	1771	1	18,21,22	0.47	0	22,30,33	0.58	0	
1	PSU	B5	3900	1	18,21,22	0.53	0	22,30,33	0.58	0	
46	A2M	A2	27	86,46	18,25,26	0.66	0	18,36,39	0.74	1 (5%)	
46	A2M	A2	165	46	18,25,26	0.66	0	18,36,39	0.90	2 (11%)	
46	A2M	A2	551	46	18,25,26	0.65	0	$18,\!36,\!39$	0.78	1 (5%)	
1	OMC	B5	3178	86,1	19,22,23	0.26	0	26,31,34	0.50	0	
1	PSU	B5	1600	86,1	18,21,22	0.85	1 (5%)	22,30,33	0.62	0	
1	PSU	B5	4116	1	18,21,22	0.52	0	22,30,33	0.57	0	
1	PSU	B5	4372	86,1	18,21,22	0.50	0	22,30,33	0.57	0	
46	PSU	A2	610	46	18,21,22	0.49	0	22,30,33	0.61	0	
1	PSU	B5	3885	1	18,21,22	0.45	0	22,30,33	0.89	0	
46	MA6	A2	1804	46	18,26,27	0.75	0	19,38,41	0.71	0	
46	OMG	A2	605	46	18,26,27	0.94	2 (11%)	19,38,41	0.72	0	
1	PSU	B5	3114	86,1	18,21,22	0.47	0	22,30,33	0.59	0	
1	A2M	B5	3307	1	18,25,26	0.66	0	18,36,39	0.78	1 (5%)	
46	PSU	A2	109	86,46	18,21,22	0.54	0	22,30,33	0.56	0	
1	OMU	B5	2586	1	19,22,23	0.33	0	26,31,34	0.55	0	
1	OMG	B5	1445	1	18,26,27	0.95	3 (16%)	19,38,41	0.63	0	
2	OMG	B8	75	2	18,26,27	0.96	3 (16%)	19,38,41	0.62	0	
1	A2M	B5	401	1	18,25,26	0.65	0	18,36,39	0.71	1 (5%)	
1	A2M	B5	1457	86,1	18,25,26	0.67	0	18,36,39	0.82	1 (5%)	
1	OMC	B5	3318	1	19,22,23	0.30	0	26,31,34	0.40	0	
46	A2M	A2	99	86,46	18,25,26	0.65	0	18,36,39	0.77	1 (5%)	
46	A2M	A2	445	46	18,25,26	0.64	0	18,36,39	0.72	1 (5%)	
1	A2M	B5	2536	1	18,25,26	0.66	0	18,36,39	0.89	1 (5%)	
1	OMG	B5	4066	1	18,26,27	0.96	3 (16%)	19,38,41	0.70	0	
1	PSU	B5	3975	1	18,21,22	0.56	0	22,30,33	0.55	0	
1	PSU	B5	1700	1	18,21,22	0.46	0	22,30,33	0.68	0	
1	OMG	B5	3937	1	18,26,27	1.00	3 (16%)	19,38,41	0.60	0	
67	IAS	An	138	67	6,7,8	1.04	0	6,8,10	1.29	1 (16%)	
1	PSU	B5	3796	1	18,21,22	0.50	0	22,30,33	0.56	0	
1	A2M	B5	1780	86,1	18,25,26	0.65	0	18,36,39	0.88	1 (5%)	
1	PSU	B5	3866	1	18,21,22	0.52	0	22,30,33	0.56	0	
1	OMC	B5	2171	86,1	19,22,23	0.31	0	26,31,34	0.45	0	

Mal	T a	Chain	Dec	T : 1-	Bo	ond leng	ths	В	Bond angles		
NIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
1	OMG	B5	4080	1	18,26,27	0.98	2 (11%)	$19,\!38,\!41$	0.62	0	
1	PSU	B5	4132	1	18,21,22	0.52	0	22,30,33	0.62	0	
1	A2M	B5	3262	1	18,25,26	0.64	0	18,36,39	0.85	1 (5%)	
46	OMU	A2	315	46	19,22,23	0.32	0	26,31,34	0.58	0	
46	OMG	A2	562	46	18,26,27	0.97	3 (16%)	19,38,41	0.59	0	
1	OMG	B5	2113	1	18,26,27	0.93	3 (16%)	19,38,41	0.64	0	
46	OMU	A2	1284	86,46	19,22,23	0.24	0	26,31,34	0.48	0	
71	NMM	As	67	71	9,11,12	1.56	1 (11%)	6,12,14	4.10	2 (33%)	
46	OMC	A2	1658	46	19,22,23	0.27	0	26,31,34	0.43	0	
1	OMG	B5	3269	1	18,26,27	0.94	2 (11%)	19,38,41	0.58	0	
46	B8N	A2	1206	46	24,29,30	0.57	0	29,42,45	0.64	0	
1	A2M	B5	3195	1	18,25,26	0.67	0	18,36,39	0.75	1 (5%)	
1	OMG	B5	3671	1	18,26,27	0.94	2 (11%)	19,38,41	0.74	0	
1	UY1	B5	3295	86,1	19,22,23	0.49	0	22,31,34	0.56	0	
1	PSU	B5	3804	1	18,21,22	0.49	0	22,30,33	0.61	0	
1	A2M	B5	399	1	18,25,26	0.65	0	18,36,39	0.74	1 (5%)	
1	PSU	B5	3964	86,1	18,21,22	0.53	0	22,30,33	0.59	0	
46	A2M	A2	629	86,46	18,25,26	0.63	0	18,36,39	0.79	1 (5%)	
1	OMG	B5	3813	1	18,26,27	0.95	3 (16%)	19,38,41	0.60	0	
46	OMU	A2	116	46	19,22,23	0.28	0	26,31,34	0.42	0	
1	PSU	B5	4343	86,1	18,21,22	0.50	0	22,30,33	0.57	0	
46	PSU	A2	782	46	18,21,22	0.63	1 (5%)	22,30,33	0.67	1 (4%)	
1	OMC	B5	2100	1	19,22,23	0.34	0	26,31,34	0.42	0	
46	4AC	A2	1796	46	21,24,25	0.30	0	29,34,37	0.30	0	
1	5MC	B5	3259	86,1	18,22,23	0.31	0	$26,\!32,\!35$	0.42	0	
1	PSU	B5	1690	1	18,21,22	0.49	0	22,30,33	0.58	0	
1	OMC	B5	1790	86,1	19,22,23	0.30	0	26,31,34	0.63	0	
1	PSU	B5	3846	1	18,21,22	0.56	0	$22,\!30,\!33$	0.61	1 (4%)	
1	6MZ	B5	3663	1	18,25,26	0.72	0	16, 36, 39	0.71	1 (6%)	
46	OMG	A2	644	46	18,26,27	0.96	3 (16%)	19,38,41	0.68	0	
1	PSU	B5	4022	1	18,21,22	0.53	0	22,30,33	0.59	0	
82	DDE	А	715	82	14,20,21	0.48	0	14,28,30	0.57	0	
1	PSU	B5	3755	1	18,21,22	0.49	0	22,30,33	0.58	0	
1	UR3	B5	3973	1	19,22,23	0.31	0	$26,\!32,\!35$	0.30	0	
1	PSU	B5	3192	1	18,21,22	0.55	0	22,30,33	0.59	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns.

'-' means no outlie	rs of that kind	were identified.
---------------------	-----------------	------------------

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	PSU	B5	4019	1	-	2/7/25/26	0/2/2/2
46	PSU	A2	1039	46	-	1/7/25/26	0/2/2/2
46	OMG	A2	1286	46	-	0/5/27/28	0/3/3/3
46	PSU	A2	93	46	-	0/7/25/26	0/2/2/2
1	PSU	B5	1769	1	-	0/7/25/26	0/2/2/2
46	6MZ	A2	1786	86,46	_	0/5/27/28	0/3/3/3
1	OMG	B5	2173	1	-	0/5/27/28	0/3/3/3
1	A2M	B5	4014	1	-	0/5/27/28	0/3/3/3
1	OMC	B5	3899	1	-	0/9/27/28	0/2/2/2
46	A2M	A2	989	46	-	0/5/27/28	0/3/3/3
1	OMU	B5	4063	1	-	0/9/27/28	0/2/2/2
1	OMG	B5	3639	1	-	1/5/27/28	0/3/3/3
46	PSU	A2	647	46	-	0/7/25/26	0/2/2/2
1	PSU	B5	3742	1	-	0/7/25/26	0/2/2/2
46	4AC	A2	1295	46	-	2/11/29/30	0/2/2/2
1	OMG	B5	1241	86,1	-	0/5/27/28	0/3/3/3
2	PSU	B8	55	2	-	0/7/25/26	0/2/2/2
1	PSU	B5	4071	1	-	0/7/25/26	0/2/2/2
1	PSU	B5	3736	1	-	0/7/25/26	0/2/2/2
1	A2M	B5	2564	1	-	0/5/27/28	0/3/3/3
1	OMC	B5	3285	1	-	0/9/27/28	0/2/2/2
1	OMU	B5	3749	1	-	0/9/27/28	0/2/2/2
46	OMU	A2	171	46	-	0/9/27/28	0/2/2/2
1	PSU	B5	1652	1	-	0/7/25/26	0/2/2/2
1	PSU	B5	3739	1	-	0/7/25/26	0/2/2/2
1	OMG	B5	3221	1	-	0/5/27/28	0/3/3/3
1	OMC	B5	3364	1	-	0/9/27/28	0/2/2/2
46	PSU	A2	1132	86,46	-	0/7/25/26	0/2/2/2
46	PSU	A2	258	46	-	2/7/25/26	0/2/2/2
1	OMG	B5	3104	1	-	0/5/27/28	0/3/3/3
2	PSU	B8	69	86,2	-	0/7/25/26	0/2/2/2
1	PSU	B5	3874	1	-	0/7/25/26	0/2/2/2
46	OMG	A2	1445	86,46	-	1/5/27/28	0/3/3/3
1	1MA	B5	1247	86,1	-	0/3/25/26	0/3/3/3
43	MLZ	Bo	53	43	-	1/7/8/10	-
46	OMU	A2	121	46	-	0/9/27/28	0/2/2/2
46	OMU	A2	389	46	-	4/9/27/28	0/2/2/2
78	SAC	AZ	2	78	-	4/7/8/10	-
1	OMU	B5	3402	1	-	0/9/27/28	0/2/2/2
1	A2M	B5	3201	1	-	1/5/27/28	0/3/3/3
1	A2M	B5	3966	86,1	-	0/5/27/28	0/3/3/3

0 0		r r r r r r r r r r r r r r r r r r r	r9				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
73	AME	Au	1	73	-	2/9/10/12	-
1	PSU	B5	3397	86,1	_	0/7/25/26	0/2/2/2
1	OMC	B5	3346	1	-	0/9/27/28	0/2/2/2
6	HIC	BB	245	6	-	0/5/6/8	0/1/1/1
46	OMC	A2	478	46	-	0/9/27/28	0/2/2/2
1	PSU	B5	3995	1	-	0/7/25/26	0/2/2/2
46	OMG	A2	470	86,46	-	1/5/27/28	0/3/3/3
1	OMC	B5	1265	1	-	0/9/27/28	0/2/2/2
1	OMG	B5	3376	1	-	0/5/27/28	0/3/3/3
46	PSU	A2	642	46	-	0/7/25/26	0/2/2/2
1	OMU	B5	3670	1	-	0/9/27/28	0/2/2/2
1	PSU	B5	3172	1	-	0/7/25/26	0/2/2/2
1	PSU	B5	1606	86,1	-	0/7/25/26	0/2/2/2
1	A2M	B5	3302	1	-	0/5/27/28	0/3/3/3
1	OMG	B5	1548	86,1	-	1/5/27/28	0/3/3/3
1	OMG	B5	3835	1	-	0/5/27/28	0/3/3/3
1	OMG	B5	4061	1	-	0/5/27/28	0/3/3/3
1	OMG	B5	3942	1	-	0/5/27/28	0/3/3/3
1	PSU	B5	3116	1	-	0/7/25/26	0/2/2/2
46	PSU	A2	821	46	-	0/7/25/26	0/2/2/2
1	PSU	B5	2257	1	-	0/7/25/26	0/2/2/2
1	OMU	B5	3941	86,1	-	0/9/27/28	0/2/2/2
46	A2M	A2	1341	46	-	0/5/27/28	0/3/3/3
46	PSU	A2	774	46	-	0/7/25/26	0/2/2/2
1	A2M	B5	3344	1	-	1/5/27/28	0/3/3/3
1	5MC	B5	3890	86,1	-	3/7/25/26	0/2/2/2
1	OMG	B5	2625	1	-	0/5/27/28	0/3/3/3
46	MA6	A2	1805	46	-	1/7/29/30	0/3/3/3
1	OMC	B5	2553	1	-	0/9/27/28	0/2/2/2
1	OMC	B5	2610	1	-	0/9/27/28	0/2/2/2
1	A2M	B5	1447	1	-	0/5/27/28	0/3/3/3
1	A2M	B5	1251	1	-	0/5/27/28	0/3/3/3
46	PSU	A2	775	46	-	2/7/25/26	0/2/2/2
1	OMC	B5	3979	86,1	_	0/9/27/28	0/2/2/2
1	A2M	B5	2112	86,1	_	1/5/27/28	0/3/3/3
1	PSU	B5	1771	1	-	0/7/25/26	0/2/2/2
1	PSU	B5	3900	1	_	0/7/25/26	0/2/2/2
46	A2M	A2	27	86,46	-	0/5/27/28	$\frac{1}{0/3/3/3}$
46	A2M	A2	165	46	-	0/5/27/28	$\frac{1}{0/3/3/3}$
46	A2M	A2	551	46	-	0/5/27/28	0/3/3/3
1	OMC	B5	3178	86.1	-	4/9/27/28	0/2/2/2

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	PSU	B5	1600	86,1	-	0/7/25/26	0/2/2/2
1	PSU	B5	4116	1	-	0/7/25/26	0/2/2/2
1	PSU	B5	4372	86,1	-	0/7/25/26	0/2/2/2
46	PSU	A2	610	46	-	0/7/25/26	0/2/2/2
1	PSU	B5	3885	1	_	0/7/25/26	0/2/2/2
46	MA6	A2	1804	46	-	0/7/29/30	0/3/3/3
46	OMG	A2	605	46	-	3/5/27/28	0/3/3/3
1	PSU	B5	3114	86,1	-	0/7/25/26	0/2/2/2
1	A2M	B5	3307	1	-	0/5/27/28	0/3/3/3
46	PSU	A2	109	86,46	-	0/7/25/26	0/2/2/2
1	OMU	B5	2586	1	-	0/9/27/28	0/2/2/2
1	OMG	B5	1445	1	-	0/5/27/28	0/3/3/3
2	OMG	B8	75	2	-	0/5/27/28	0/3/3/3
1	A2M	B5	401	1	-	0/5/27/28	0/3/3/3
1	A2M	B5	1457	86,1	-	2/5/27/28	0/3/3/3
1	OMC	B5	3318	1	-	0/9/27/28	0/2/2/2
46	A2M	A2	99	86,46	-	0/5/27/28	0/3/3/3
46	A2M	A2	445	46	-	0/5/27/28	0/3/3/3
1	A2M	B5	2536	1	-	1/5/27/28	0/3/3/3
1	OMG	B5	4066	1	-	0/5/27/28	0/3/3/3
1	PSU	B5	3975	1	-	0/7/25/26	0/2/2/2
1	PSU	B5	1700	1	-	1/7/25/26	0/2/2/2
1	OMG	B5	3937	1	-	1/5/27/28	0/3/3/3
67	IAS	An	138	67	-	2/7/7/8	-
1	PSU	B5	3796	1	-	0/7/25/26	0/2/2/2
1	A2M	B5	1780	86,1	-	0/5/27/28	0/3/3/3
1	PSU	B5	3866	1	-	0/7/25/26	0/2/2/2
1	OMC	B5	2171	86,1	-	2/9/27/28	0/2/2/2
1	OMG	B5	4080	1	-	0/5/27/28	0/3/3/3
1	PSU	B5	4132	1	-	0/7/25/26	0/2/2/2
1	A2M	B5	3262	1	-	1/5/27/28	0/3/3/3
46	OMU	A2	315	46	-	0/9/27/28	0/2/2/2
46	OMG	A2	562	46	-	0/5/27/28	0/3/3/3
1	OMG	B5	2113	1	-	2/5/27/28	0/3/3/3
46	OMU	A2	1284	86,46	-	0/9/27/28	0/2/2/2
71	NMM	As	67	71	-	4/9/11/13	-
46	OMC	A2	1658	46	-	0/9/27/28	0/2/2/2
1	OMG	B5	3269	1	-	0/5/27/28	0/3/3/3
46	B8N	A2	1206	46	-	3/16/34/35	0/2/2/2
1	A2M	B5	3195	1	-	0/5/27/28	0/3/3/3
1	OMG	B5	3671	1	-	1/5/27/28	0/3/3/3

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	UY1	B5	3295	86,1	-	2/9/27/28	0/2/2/2
1	PSU	B5	3804	1	-	0/7/25/26	0/2/2/2
1	A2M	B5	399	1	-	1/5/27/28	0/3/3/3
1	PSU	B5	3964	86,1	-	2/7/25/26	0/2/2/2
46	A2M	A2	629	86,46	-	3/5/27/28	0/3/3/3
1	OMG	B5	3813	1	-	2/5/27/28	0/3/3/3
46	OMU	A2	116	46	-	0/9/27/28	0/2/2/2
1	PSU	B5	4343	86,1	-	0/7/25/26	0/2/2/2
46	PSU	A2	782	46	-	0/7/25/26	0/2/2/2
1	OMC	B5	2100	1	-	3/9/27/28	0/2/2/2
46	4AC	A2	1796	46	-	0/11/29/30	0/2/2/2
1	5MC	B5	3259	86,1	-	0/7/25/26	0/2/2/2
1	PSU	B5	1690	1	-	0/7/25/26	0/2/2/2
1	OMC	B5	1790	86,1	-	0/9/27/28	0/2/2/2
1	PSU	B5	3846	1	-	0/7/25/26	0/2/2/2
1	6MZ	B5	3663	1	-	0/5/27/28	0/3/3/3
46	OMG	A2	644	46	-	1/5/27/28	0/3/3/3
1	PSU	B5	4022	1	-	0/7/25/26	0/2/2/2
82	DDE	A	715	82	-	6/20/21/23	0/1/1/1
1	PSU	B5	3755	1	-	0/7/25/26	0/2/2/2
1	UR3	B5	3973	1	-	0/7/25/26	0/2/2/2
1	PSU	B5	3192	1	-	2/7/25/26	0/2/2/2

Continued from previous page...

The worst 5 of 81 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
71	As	67	NMM	CZ-NH2	4.16	1.44	1.34
6	BB	245	HIC	CD2-CG	3.40	1.41	1.36
46	A2	647	PSU	C4-N3	-3.24	1.32	1.38
1	B5	1600	PSU	O4'-C1'	-3.21	1.39	1.43
1	B5	1241	OMG	C5-C6	-2.53	1.42	1.47

The worst 5 of 40 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
71	As	67	NMM	NE-CZ-NH2	-8.97	111.26	119.48
46	A2	647	PSU	N1-C2-N3	6.48	122.47	115.13
46	A2	647	PSU	C4-N3-C2	-4.44	119.95	126.34
71	As	67	NMM	NE-CZ-NH1	4.25	128.22	120.26
46	A2	647	PSU	O2-C2-N1	-3.64	118.78	122.79

There are no chirality outliers.

Mol	Chain	\mathbf{Res}	Type	Atoms
1	B5	399	A2M	C1'-C2'-O2'-CM'
1	B5	2536	A2M	C1'-C2'-O2'-CM'
1	B5	3178	OMC	C2'-C1'-N1-C6
1	B5	3192	PSU	C3'-C4'-C5'-O5'
1	B5	3201	A2M	C1'-C2'-O2'-CM'

5 of 80 torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 501 ligands modelled in this entry, 500 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol T	Turne	Chain	Res	es Link	Bo	ond leng	\mathbf{ths}	Bond angles		
	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
88	GDP	А	901	-	24,30,30	0.87	1 (4%)	30,47,47	0.89	1 (3%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
88	GDP	А	901	-	-	1/12/32/32	0/3/3/3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
88	А	901	GDP	C5-C6	-2.11	1.43	1.47

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
88	А	901	GDP	PA-O3A-PB	3.35	144.33	132.83

There are no chirality outliers.

All (1) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
88	А	901	GDP	C4'-C5'-O5'-PA

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-18169. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 290

Y Index: 290

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 270

Y Index: 298

Z Index: 348

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 3.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1075 $\rm nm^3;$ this corresponds to an approximate mass of 971 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.417 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-18169 and PDB model 8Q87. Per-residue inclusion information can be found in section 3 on page 25.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 3.0 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (3.0).

9.4 Atom inclusion (i)

At the recommended contour level, 83% of all backbone atoms, 83% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (3.0) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8320	0.6210
А	0.5550	0.5490
A2	0.8430	0.6100
AA	0.7770	0.5950
AB	0.6130	0.5490
AC	0.5290	0.4900
AD	0.6680	0.5920
AE	0.7950	0.6360
AF	0.8910	0.6120
AG	0.9460	0.6720
AZ	0.9240	0.6550
Aa	0.7530	0.5970
Ab	0.9070	0.6600
Ac	0.8050	0.6120
Ad	0.9730	0.6610
Ae	0.8900	0.6330
Af	0.7970	0.5950
Ag	0.6480	0.5430
Ah	0.8140	0.6110
Ai	0.9560	0.6540
Aj	0.9380	0.6270
Ak	0.8510	0.6340
Al	0.5210	0.4410
Am	0.8190	0.6330
An	0.7150	0.6000
Ao	0.8360	0.6320
Ap	0.9520	0.6600
Aq	0.7090	0.5810
Ar	0.8930	0.6360
As	0.9510	0.6630
At	0.8530	0.5940
Au	0.9390	0.6510
Av	0.9770	0.6730
Aw	0.8600	0.6540
Ax	0.9240	0.6420

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
Ay	0.9150	0.6300
Az	0.7250	0.6440
B5	0.8480	0.6160
B7	0.9710	0.6670
B8	0.8960	0.6430
BA	0.9500	0.6980
BB	0.9380	0.6910
BC	0.9400	0.6880
BD	0.8500	0.6400
BE	0.8610	0.6510
BF	0.9430	0.6940
BG	0.7900	0.6220
BH	0.9170	0.6810
BI	0.8870	0.6640
BJ	0.6850	0.5990
BL	0.8750	0.6540
BM	0.9460	0.6900
BN	0.9930	0.7100
BO	0.9520	0.6890
BP	0.9350	0.6860
BQ	0.9700	0.7020
BR	0.8430	0.6510
BS	0.9710	0.6970
BT	0.8890	0.6670
BU	0.5960	0.5680
BV	0.8720	0.6810
BW	0.8760	0.6750
BX	0.8990	0.6610
BY	0.9050	0.6640
BZ	0.8600	0.6500
Ba	0.9590	0.7010
Bb	0.7950	0.6340
Bc	0.8290	0.6570
Bd	0.8780	0.6650
Be	0.9620	0.6960
Bf	0.9650	0.7040
Bg	0.9220	0.6730
Bh	0.8900	0.6600
Bi	0.8690	0.6590
Bj	0.9780	0.7000
Bk	0.6550	0.5910
Bl	0.9050	0.6660

Continued on next page...

Chain	Atom inclusion	Q-score
Bm	0.9380	0.6810
Bo	0.8970	0.6760
Bp	0.8640	0.6760
Br	0.9360	0.6780
Bs	0.1530	0.4360
Bt	0.0510	0.2570
Bv	0.0170	0.2360
S	0.6620	0.6280
V	0.6090	0.5160

Continued from previous page...

