

wwPDB EM Validation Summary Report (i)

Feb 2, 2022 – 11:20 pm GMT

PDB ID 7QEP : EMDB ID EMD-13936 : Title : Cryo-EM structure of the ribosome from Encephalitozoon cuniculi Authors Nicholson, D.; Ranson, N.A.; Melnikov, S.V. : Deposited on 2021-12-03 : 2.70 Å(reported) Resolution : Based on initial models 6RM3, 4V88 :

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (i)) were used in the production of this report:

EMDB validation analysis	:	0.0.dev97
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.26

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	Quality of chain							
			97%								
1	RA	334	55%	43%	•						
2	1	2486	66%	22%	6% 7%						
3	2	119	72%	24%	•						
4	3	1300	5% 63%	28%	9%						
5	C0	96	72% 60%	24%	16%						
6	C1	156	67%	22%	• 10%						
			88%								
7	C2	134	35% 53%		12%						

Mol	Chain	Length	Quality of chain						
8	C3	148	90%	9% •					
9	C4	134	76%	18% 6%					
10	C5	148	64% 55% 23%	ő 22%					
11	C6	145	62% 74%	23% •					
12	C7	120	64%	33% •					
13	C8	153	67%	33% 8%					
14	C9	137	64%	32%					
15	D0	120	54%	• 22%					
16	D1	70	31%	27%					
17	D2	128	, , , , , , , , , , , , , , , , , , ,	0%					
18	D2	140	16%	120/					
10	D3	190	58%	12%					
19	D4	100	69% 76%	27% •					
20	D0	109	56% 24 10%	% 20%					
21	D6	105	79% 25%	16% • •					
22	D7	85	79% 74%	18% •					
23	D8	65	60% 33%	28% 12%					
24	D9	66	86%	12% •					
25	E1	152	32% 6% • 84%	52%					
26	L1	219	81%	10% • 6%					
27	L2	239	85%	12% ·					
28	L3	383	81%	14% 5%					
29	L4	335	81%	17% ·					
30	L5	287	77%	22% •					
31	L6	171	16% 60%	33% 7%					
32	L7	239	• 79%	18% •					

Continued from previous page...

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chair	1
33	L8	206	7% 62%	33% •
34	L9	183	73%	25% ••
35	M0	219	• 79%	17% •
36	M1	173	5% 64%	32% •••
37	M3	163	73%	25% ••
38	M4	106	6% 64%	34% •
39	M5	204	87%	12%
40	M6	198	• 79%	20% ·
41	Μ7	183	84%	11% 5%
42	M8	200	- 78%	15% 7%
43	M9	171	78%	21% •
44	MD	171	40% 61%	38% •
45	MS	73	56%	34% • 7%
46	N0	188	▲ 77%	16% · 5%
47	N1	160	9%	18% ••
48	N2	112	55%	28% 17%
49	N3	146	75%	17% 8%
50	N4	100	68%	18% • 11%
51	N5	105	• 81%	8% 11%
52	N6	143	81%	17% ••
53	N7	126	73%	18% • 6%
54	N8	147	82%	18% •
55	N9	57	• 81%	16% •
56	O0	108	67%	17% 17%
57	O1	111	78%	18% ••

Mol	Chain	Length	Quality of chain	
58	O2	139	73%	19% 8%
59	O3	113	84%	12% ·
60	O4	110	77%	14% 9%
61	O5	122	86%	13% •
62	O6	94	77%	23%
63	07	90	86%	10% •
64	O9	52	73%	23% •
65	P0	131	30% 8% 63%	
66	P2	104	75%	18% 7%
67	P3	89	83%	12% · ·
68	S0	252	54% 26%	19%
69	S1	239	68%	20% 13%
70	S2	242	71%	19% 10%
71	S3	216	74%	24% •
72	S4	268	79%	17% ·
73	S5	189	75%	24% ••
74	S6	217	40% 54% 38	% • 6%
75	S7	170	56% 51% 36%	• 12%
76	S8	173	76%	18% • 5%
77	$\mathbf{S9}$	184	65%	28% 7%

Continued from previous page...

2 Entry composition (i)

There are 80 unique types of molecules in this entry. The entry contains 166143 atoms, of which 31 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Guanine nucleotide binding protein beta subunit.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	RA	328	Total 2537	C 1594	N 427	O 502	S 14	0	0

• Molecule 2 is a RNA chain called 5.8S-23S ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
2	1	2319	Total 49833	C 22195	N 9045	O 16274	Р 2319	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	?	-	G	deletion	GB 13560063

• Molecule 3 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	119	Total 2550	C 1138	N 469	0 824	Р 119	0	0

• Molecule 4 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	3	1295	Total 27838	C 12399	N 5052	O 9092	Р 1295	0	0

• Molecule 5 is a protein called 40S RIBOSOMAL PROTEIN S10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	C0	81	Total 686	C 449	N 122	O 112	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called 40S RIBOSOMAL PROTEIN S11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	C1	141	Total 1126	C 718	N 206	O 194	S 8	0	0

• Molecule 7 is a protein called 40S RIBOSOMAL PROTEIN S12.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
7	C2	118	Total 879	C 548	N 154	0 166	S 11	0	0

• Molecule 8 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	C3	146	Total 1166	C 736	N 221	0 205	$\frac{S}{4}$	0	0

• Molecule 9 is a protein called 40S ribosomal protein S14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	C4	126	Total 942	C 583	N 192	O 163	${S \atop 4}$	0	0

• Molecule 10 is a protein called RIBOSOMAL PROTEIN S15.

Mol	Chain	Residues		At	AltConf	Trace			
10	C5	116	Total 903	C 576	N 167	0 154	S 6	0	0

• Molecule 11 is a protein called 40S RIBOSOMAL PROTEIN S16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	C6	141	Total 1132	С 727	N 202	O 197	S 6	0	0

• Molecule 12 is a protein called 40S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	C7	117	Total 962	C 611	N 166	0 180	${ m S}{ m 5}$	0	0

• Molecule 13 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	C8	141	Total 1121	C 692	N 220	O 203	S 6	0	0

• Molecule 14 is a protein called 40S ribosomal protein S19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	С9	135	Total 1089	C 690	N 187	O 206	S 6	0	0

• Molecule 15 is a protein called 40S RIBOSOMAL PROTEIN S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	D0	93	Total 779	C 498	N 137	0 140	S 4	0	0

• Molecule 16 is a protein called ECU11_0225 protein.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
16	D1	68	Total 518	C 323	N 89	0 103	${ m S} { m 3}$	0	0

• Molecule 17 is a protein called 40S RIBOSOMAL PROTEIN S15A (S22 in yeast).

Mol	Chain	Residues		At	oms			AltConf	Trace
17	D2	127	Total 1012	C 639	N 190	O 176	${f S}{7}$	0	0

• Molecule 18 is a protein called 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	D3	137	Total 1052	C 669	N 196	0 185	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 19 is a protein called 40S RIBOSOMAL PROTEIN S24.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	D4	127	Total 1056	C 668	N 199	0 186	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	D5	87	Total 691	C 424	N 141	O 123	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	D6	101	Total 801	C 494	N 161	0 139	${f S}7$	0	0

• Molecule 22 is a protein called 40S RIBOSOMAL PROTEIN S27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	D7	82	Total 633	C 391	N 117	0 117	S 8	0	0

• Molecule 23 is a protein called 40S RIBOSOMAL PROTEIN S28.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
22	<u>ه</u> ط	57	Total	С	Ν	Ο	\mathbf{S}	0	0
20	Do	57	446	278	84	81	3	0	0

• Molecule 24 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
24	D9	65	Total 524	C 334	N 96	O 88	S 6	0	0

• Molecule 25 is a protein called Similarity to monoubiquitin/carboxy-extension protein fusion.

Mol	Chain	Residues		Atom	ıs	AltConf	Trace	
25	E1	58	Total 276	C 168	N 58	O 50	0	0

• Molecule 26 is a protein called 60S ribosomal protein L1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
26	L1	206	Total 1016	C 604	N 206	O 206	0	0

• Molecule 27 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		At	AltConf	Trace			
27	L2	232	Total 1759	C 1098	N 328	O 324	S 9	0	0

• Molecule 28 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		At	AltConf	Trace			
28	L3	363	Total 2827	C 1781	N 539	0 491	S 16	0	0

• Molecule 29 is a protein called 60S RIBOSOMAL PROTEIN L4.

Mol	Chain	Residues		At	AltConf	Trace			
29	L4	329	Total 2596	C 1621	N 488	0 474	S 13	0	0

• Molecule 30 is a protein called 60S RIBOSOMAL PROTEIN L5.

Mol	Chain	Residues		At	AltConf	Trace			
30	L5	283	Total 2273	C 1421	N 425	0 420	${ m S} 7$	0	0

• Molecule 31 is a protein called 60S RIBOSOMAL PROTEIN L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	L6	159	Total 1279	C 811	N 220	0 241	S 7	0	0

• Molecule 32 is a protein called 60S ribosomal protein L7.

Mol	Chain	Residues		At	AltConf	Trace			
32	L7	231	Total 1903	C 1203	N 352	O 337	S 11	0	0

• Molecule 33 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues		Ate	AltConf	Trace			
33	L8	197	Total 1573	C 1015	N 269	O 282	${f S}{7}$	0	0

• Molecule 34 is a protein called 60S RIBOSOMAL PROTEIN L9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	L9	182	Total 1443	C 909	N 265	O 260	S 9	1	0

• Molecule 35 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues		Ate	AltConf	Trace			
35	M0	211	Total 1706	C 1079	N 329	0 291	${ m S} 7$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	M1	167	Total 1336	C 845	N 247	0 237	${f S}{7}$	0	0

• Molecule 37 is a protein called 60S RIBOSOMAL PROTEIN L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	M3	161	Total 1308	C 825	N 253	O 225	${ m S}{ m 5}$	0	0

• Molecule 38 is a protein called ECU06_1215 protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	M4	104	Total 848	$\begin{array}{c} \mathrm{C} \\ 537 \end{array}$	N 150	0 160	S 1	0	0

• Molecule 39 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		At	AltConf	Trace			
39	M5	203	Total 1657	C 1031	N 335	O 279	S 12	0	0

• Molecule 40 is a protein called 60S RIBOSOMAL PROTEIN L13A (L16).

Mol	Chain	Residues		At	AltConf	Trace			
40	M6	196	Total 1577	C 1001	N 291	0 276	S 9	0	0

• Molecule 41 is a protein called 60S RIBOSOMAL PROTEIN L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	M7	174	Total 1363	C 861	N 263	O 234	${ m S}{ m 5}$	0	0

• Molecule 42 is a protein called 60S RIBOSOMAL PROTEIN L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	M8	186	Total 1470	C 929	N 266	O 266	${f S}$ 9	0	0

• Molecule 43 is a protein called 60S RIBOSOMAL PROTEIN L19.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
43	M9	170	Total 1398	C 864	N 285	O 238	S 11	0	0

• Molecule 44 is a protein called Uncharacterized protein ECU01_0250.

Mol	Chain	Residues		A	toms	AltConf	Trace		
44	MD	170	Total 1349	C 848	N 230	0 260	S 11	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
MD	59	GLY	SER	variant	UNP Q8SWQ4

• Molecule 45 is a protein called ECU06_1135 protein.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
45	MS	68	Total 592	C 372	N 121	O 97	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 46 is a protein called 60S ribosomal protein L20.

Mol	Chain	Residues		At	AltConf	Trace			
46	N0	178	Total 1438	C 929	N 249	0 254	S 6	0	0

• Molecule 47 is a protein called 60S ribosomal protein L21.

Mol	Chain	Residues		At	AltConf	Trace			
47	N1	159	Total 1288	C 812	N 249	O 220	S 7	0	0

• Molecule 48 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	N2	93	Total 735	C 477	N 130	0 125	${ m S} { m 3}$	0	0

• Molecule 49 is a protein called 60S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
49	N3	135	Total 1058	C 666	N 206	0 179	S 7	0	0

• Molecule 50 is a protein called Similarity to 60S RIBOSOMAL PROTEIN L24.

Mol	Chain	Residues		At	oms			AltConf	Trace
50	N4	89	Total 709	C 443	N 136	0 126	${S \atop 4}$	0	0

• Molecule 51 is a protein called 60S RIBOSOMAL PROTEIN L23A.

Mol	Chain	Residues		At	oms			AltConf	Trace
51	N5	93	Total 720	C 460	N 123	0 134	${ m S} { m 3}$	0	0

• Molecule 52 is a protein called 60S RIBOSOMAL PROTEIN L26.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	N6	142	Total 1171	C 730	N 230	O 208	${ m S} { m 3}$	0	0

• Molecule 53 is a protein called 60S RIBOSOMAL PROTEIN L27.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	N7	118	Total 938	C 617	N 162	0 154	${f S}{5}$	0	0

• Molecule 54 is a protein called 60S ribosomal protein L27a.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	N8	146	Total 1196	C 763	N 232	0 198	${ m S} { m 3}$	0	0

• Molecule 55 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
55	N9	55	Total 437	C 272	N 90	0 74	S 1	0	0

• Molecule 56 is a protein called 60S RIBOSOMAL PROTEIN L30.

Mol	Chain	Residues		At	oms			AltConf	Trace
56	O0	90	Total 692	C 442	N 122	0 124	${S \atop 4}$	0	0

• Molecule 57 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
57	01	108	Total 879	C 559	N 164	0 153	${ m S} { m 3}$	0	0

• Molecule 58 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms			AltConf	Trace
58	O2	128	Total 1062	С 674	N 215	0 169	S 4	0	0

• Molecule 59 is a protein called 60S RIBOSOMAL PROTEIN L35A (L33).

Mol	Chain	Residues		At	oms			AltConf	Trace
59	O3	109	Total 861	C 543	N 166	0 149	${ m S} { m 3}$	0	0

• Molecule 60 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	oms			AltConf	Trace
60	O4	100	Total 807	C 493	N 177	0 131	S 6	0	0

• Molecule 61 is a protein called 60S ribosomal protein L35-1.

Mol	Chain	Residues		At	oms			AltConf	Trace
61	O5	121	Total 981	C 609	N 201	O 170	S 1	0	0

• Molecule 62 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms	AltConf	Trace		
62	O6	94	Total 735	C 461	N 147	0 125	${ m S} { m 2}$	0	0

• Molecule 63 is a protein called 60S ribosomal protein L37.

Mol	Chain	Residues		At	oms	AltConf	Trace		
63	07	86	Total 691	C 416	N 152	0 115	S 8	0	0

• Molecule 64 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
64	\bigcirc 0	50	Total	С	Ν	0	S	0	0
04	09	50	434	271	97	63	3	0	0

• Molecule 65 is a protein called UBIQUITIN/ L40 RIBOSOMAL PROTEIN FUSION.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
65	P0	49	Total 381	C 230	N 75	0 68	S 8	0	0

• Molecule 66 is a protein called 60S ribosomal protein L44.

Mol	Chain	Residues		At	oms		AltConf	Trace	
66	P2	97	Total 788	C 492	N 167	0 125	$\frac{S}{4}$	0	0

• Molecule 67 is a protein called 60S RIBOSOMAL PROTEIN L37A (L43).

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	P3	86	Total 664	C 419	N 128	0 111	S 6	0	0

• Molecule 68 is a protein called 40S ribosomal protein S0.

Mol	Chain	Residues		At	oms			AltConf	Trace
68	S0	203	Total 1584	C 1017	N 272	O 289	S 6	0	0

• Molecule 69 is a protein called 40S ribosomal protein S1.

Mol	Chain	Residues		At	AltConf	Trace			
69	S1	209	Total 1670	C 1058	N 299	O 300	S 13	0	0

• Molecule 70 is a protein called 40S RIBOSOMAL PROTEIN S2.

Mol	Chain	Residues		Ate		AltConf	Trace		
70	S2	217	Total 1636	C 1037	N 293	O 300	S 6	0	0

• Molecule 71 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues	Atoms					AltConf	Trace
71	S3	210	Total 1658	C 1057	N 295	O 298	S 8	0	0

• Molecule 72 is a protein called 40S ribosomal protein S4.

Mol	Chain	Residues		At		AltConf	Trace		
72	S4	259	Total 2045	C 1301	N 361	0 374	S 9	0	0

• Molecule 73 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		At	oms			AltConf	Trace
73	S5	188	Total 1461	C 905	N 282	O 269	${ m S}{ m 5}$	0	0

• Molecule 74 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		Ate		AltConf	Trace		
74	S6	204	Total 1680	C 1049	N 321	O 301	S 9	0	0

• Molecule 75 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
75	S7	149	Total 1173	C 745	N 212	O 208	S 8	0	0

• Molecule 76 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues	Atoms					AltConf	Trace
76	S8	164	Total 1300	C 812	N 255	O 230	${ m S} { m 3}$	0	0

• Molecule 77 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
77	$\mathbf{S9}$	171	Total 1374	C 873	N 255	0 241	${f S}{5}$	0	0

• Molecule 78 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
78	D6	1	Total Zn 1 1	0
78	D7	1	Total Zn 1 1	0
78	D9	1	Total Zn 1 1	0
78	$\mathrm{E1}$	1	Total Zn 1 1	0
78	07	1	Total Zn 1 1	0
78	P0	1	Total Zn 1 1	0
78	P2	1	Total Zn 1 1	0
78	P3	1	Total Zn 1 1	0

• Molecule 79 is ADENOSINE MONOPHOSPHATE (three-letter code: AMP) (formula: $C_{10}H_{14}N_5O_7P$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms					AltConf	
70	ΙO	1	Total	С	Η	Ν	0	Р	0
19	Ц9		35	10	12	5	7	1	U

 $\bullet\,$ Molecule 80 is SPERMIDINE (three-letter code: SPD) (formula: ${\rm C_7H_{19}N_3}).$

Mol	Chain	Residues	Atoms			AltConf	
80	NO	1	Total	С	Η	Ν	0
80	INO	1	29	7	19	3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Guanine nucleotide binding protein beta subunit

• Molecule 21: 40S ribosomal protein S26 10% Chain D6: 79% 16% • Molecule 22: 40S RIBOSOMAL PROTEIN S27 25% Chain D7: 79% 18% • Molecule 23: 40S RIBOSOMAL PROTEIN S28 74% Chain D8: 60% 28% 12% 151 152 E53 E53 L54 L55 E56 E56 C57 C57 R59 MET GLU GLU GLN q26 V27 M29 E30 L31 M32 T37 I 38 G16 G15 G20 N34 447 ARG • Molecule 24: 40S ribosomal protein S29 33% Chain D9: 86% 12% S2 F3 E4 V5 L6 F7 D8 6/ • Molecule 25: Similarity to monoubiquitin/carboxy-extension protein fusion 38% Chain E1: 6% • 62% 32% ASP ASN /AL • Molecule 26: 60S ribosomal protein L1 84% Chain L1: 81% 10% 6% •

• Molecule 35: 60S ribosomal protein L10

• Molecule 50: Simil	arity to 60S RIBOSOMAL P	ROTEIN L24
Chain N4:	68%	18% · 11%
M M 119 119 119 119 119 119 119 119 119	S63 964 964 965 966 966 868 868 868 876 772 772 773 773 773 773 773 773 773 773	G80 F81 F81 F81 F81 F82 F83 S87 S87 S87 S88 S87 S88 S88 S88 S88 S88
• Molecule 51: 60S I	RIBOSOMAL PROTEIN L23	A
Chain N5:	81%	8% 11%
MET GLU SER PRO ARG ARG ARG ARG ARG ARG ARG BRO BRO BRO BRO BRO BRO BRO BRO BRO BRO	R38 K62 K61 E65 E65 B91 A100 T104 T104 T104	
• Molecule 52: 60S I	RIBOSOMAL PROTEIN L26	i
Chain N6:	81%	17% ••
MET K2 R5 K6 D24 147 147 155 (61 661	K62 F63 D64 C65 K66 K76 R76 R76 R76 R10 F10 R121 R121 R126 R136 R136	4107 E138 E139 V140 S142 N143
• Molecule 53: 60S I	RIBOSOMAL PROTEIN L27	,
Chain N7:	73%	18% · 6%
M1 F2 I8 K25 K42 K42 F10 F10 F10 F10 F10 F10 F10 F10 F10 F10	PRD LYS W11 W14 W14 N54 R55 N56 D79 D79 D79 C180 L80 L80 A83 A83 N93 M94	E96 E96 K98 V99 V99 L100 T101 A107 A107 A111 M109 A111 K110 K113 K116 K113 K116 K116
• Molecule 54: 60S r	bosomal protein L27a	
Chain N8:	82%	18% •
MET 12 13 13 14 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	M58 R59 A76 A76 A77 L77 W77 W72 M81 M81 M81 M81 M93 P94 P94 P98 P98 P98 P98 P98 P98 P98 P98 P98 P98	F105
• Molecule 55: 60S r	ibosomal protein L29	
Chain N9:	81%	16% ·
MET A2 R14 K12 K22 K22 K28 H36 P37 T33 T33	T54 SS5 LYS LYS	
• Molecule 56: 60S I	RIBOSOMAL PROTEIN L30	1
Chain O0:	67%	170/ 170/
Chan OU.	U / 70	1/70 1/70

• Molecule 63: 60S ribosomal protein L37

Chair	n O7:		86%		10% •	1
MET S2 K3	R14 R53 T57	M66 R71 P81 P81 L82 L83 L83 L83 L83 A1A	LYS ASN			
• Mo	lecule 64	: 60S ribosoma	l protein L39			
Chair	n O9:		73%		23% •	I
MET G2 S3 R4	A7 K10 T11	k21 622 A25 M29 M30 K31 K34 K34	K49 K47 151 TYR			
• Mo	lecule 65	: UBIQUITIN/	L40 RIBOSON	IAL PROTEIN I	FUSION	
Chair	n P0:	30%	8%	63%		
MET GLN GLY GLY	VAL ARG PHE CYS GLY LYS	THK SER PHE VAL CLN ALA ALA ALA PRO CLN SER SER	VAL LEU SER LEU LYS LEU VAL VAL ARG ALA ARG CYS	GLY LEU ASP SER SER VAL VAL NET VAL LEU CLN ASN	SER ARG ILEU LEU GLU SER CILY MET ALA	GLY GLY MET
ARG THR LEU ASP	THR ILE THR ALA PRO	LEU LEU GLY GLY GLY M79 M78 M78 M78 M78 M78	K89 C94 R98 S104 K110 C111	C114 F115 L126 L126 LYS ALA MET LYS LYS LYS		
• Mo	lecule 66	: 60S ribosoma	l protein L44			
Chair	n P2:		75%		18% 7%	I
MET V2 T7	R8 K22 K53 P54	155 A60 K61 T63 L66 E71 E71	1/3 K76 K76 K76 K76 K84 K84 K85 K85 K96	R97 K888 GLY GLU ALA LEU VAL TYR		
• Mo	lecule 67	: 60S RIBOSO	MAL PROTEIN	UL37A (L43)		
Chair	n P3:		83%		12% ••	
MET GLY LYS G4	S20 K24 K36	K45 K48 K48 B59 S59 C60 C60 T173 F74	K77 K84 T88 K89 K89			
• Mo	lecule 68	: 40S ribosoma	l protein S0			
Chair	n S0:	36% 549	%	26%	19%	
MET PRO GLN ASP	ASN T6 R7 I8 S9	DIO SII SI1 I12 V(13 T14 DI6 DI6 E17	V19 K20 L21 L22 123 V24 V24 Q26 Q26 S27	129 129 33 132 132 134 135 134 135 135 135 135	F38 A39 R40 443 C44 T45 R46 P47	R48 D49 R50 R50 N52 I54 D55 D55 M57 N57
R68 A69 F70	I73 K74 I79	1303 1134 1134 1134 1134 1134 1134 1134	F96 F96 F97 A98 A101 A101 G106	E117 V118 K119 R120 V121 V121 V122 D122 D128	8130 8130 1131 1138 1138 8142 8142	P148 T149 1150 N154 T155 D156 M157

• Molecule 71: 40S ribosomal protein S3

• Molecule 72: 40S ribosomal protein S4

N61 N61 Y62 Y63 Y65 K67 N64 K67 N65 K67 K70 K71 K71 K72 K70 K82 K83 K82 K84 K82 K82 K82 K83 K83 K96 K96 K101 K101 K102 K103 K103 K103 K104 K103 K105 K103 K104 K104 K105 K103 K103 K103

 \bullet Molecule 76: 40S ribosomal protein S8

• Molecule 77: 40S ribosomal protein S9

LYS LYS ALA GLU GLU VAL CLY GLV GLU GLU

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	108005	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	2600	Depositor
Magnification	96000	Depositor
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.928	Depositor
Minimum map value	-0.411	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.017	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	440.832, 440.832, 440.832	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.861, 0.861, 0.861	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SPD, AMP, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chai		B	ond lengths	E	Bond angles		
1VIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	RA	0.39	0/2576	0.58	0/3470		
2	1	1.09	25/55780~(0.0%)	1.14	190/87016~(0.2%)		
3	2	0.91	0/2854	0.86	3/4449~(0.1%)		
4	3	1.14	6/31169~(0.0%)	1.03	51/48638~(0.1%)		
5	C0	0.40	0/701	0.55	0/943		
6	C1	0.50	0/1150	0.57	0/1543		
7	C2	0.30	0/884	0.50	0/1180		
8	C3	0.49	0/1190	0.56	0/1601		
9	C4	0.44	0/952	0.60	0/1276		
10	C5	0.41	0/923	0.53	0/1246		
11	C6	0.48	0/1150	0.55	0/1538		
12	C7	0.42	0/975	0.52	0/1306		
13	C8	0.42	0/1133	0.62	0/1516		
14	C9	0.44	0/1109	0.55	0/1490		
15	D0	0.41	0/794	0.65	2/1066~(0.2%)		
16	D1	0.40	0/522	0.49	0/701		
17	D2	0.49	0/1029	0.60	0/1375		
18	D3	0.47	0/1068	0.60	0/1430		
19	D4	0.37	0/1070	0.51	0/1426		
20	D5	0.37	0/696	0.57	0/928		
21	D6	0.47	0/813	0.57	0/1082		
22	D7	0.48	0/645	0.53	0/865		
23	D8	0.39	0/451	0.63	0/603		
24	D9	0.55	0/538	0.66	1/718~(0.1%)		
25	E1	0.26	0/275	0.65	2/375~(0.5%)		
26	L1	0.27	0/1015	0.64	7/1411~(0.5%)		
27	L2	0.42	0/1788	0.58	0/2408		
28	L3	0.42	0/2876	0.59	0/3854		
29	L4	0.40	0/2634	0.58	1/3533~(0.0%)		
30	L5	0.36	0/2315	0.47	0/3097		
31	L6	0.33	0/1299	0.48	0/1753		
32	L7	0.39	0/1936	0.51	0/2580		

Mol Chain		Bond lengths		Bond angles		
IVI01	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	L8	0.33	0/1600	0.49	1/2156~(0.0%)	
34	L9	0.36	0/1462	0.53	0/1961	
35	M0	0.40	0/1738	0.55	0/2319	
36	M1	0.32	0/1357	0.50	0/1813	
37	M3	0.41	0/1333	0.54	0/1785	
38	M4	0.33	0/857	0.48	0/1150	
39	M5	0.49	0/1684	0.58	0/2244	
40	M6	0.40	0/1602	0.50	0/2142	
41	M7	0.42	0/1389	0.56	0/1865	
42	M8	0.38	0/1494	0.51	0/2003	
43	M9	0.36	0/1413	0.48	0/1866	
44	MD	0.28	0/1368	0.51	0/1842	
45	MS	0.38	0/597	0.51	0/782	
46	N0	0.41	0/1470	0.52	0/1980	
47	N1	0.45	0/1313	0.62	1/1759~(0.1%)	
48	N2	0.29	0/748	0.49	0/1001	
49	N3	0.38	0/1074	0.60	0/1438	
50	N4	0.36	0/719	0.52	0/959	
51	N5	0.40	0/730	0.56	0/983	
52	N6	0.38	0/1187	0.52	0/1576	
53	N7	0.33	0/954	0.46	0/1279	
54	N8	0.48	0/1230	0.69	0/1648	
55	N9	0.39	0/447	0.58	0/597	
56	O0	0.34	0/701	0.49	0/939	
57	01	0.37	0/889	0.51	0/1194	
58	O2	0.43	0/1084	0.60	0/1448	
59	O3	0.40	0/876	0.58	0/1180	
60	04	0.42	0/817	0.53	0/1085	
61	O5	0.36	0/988	0.47	0/1314	
62	O6	0.33	0/742	0.46	0/988	
63	07	0.45	0/702	0.65	0/927	
64	O9	0.38	0/441	0.56	0/580	
65	P0	0.37	0/383	0.51	0/503	
66	P2	0.39	0/800	0.58	0/1056	
67	P3	0.40	0/673	0.52	0/893	
68	SO	0.36	0/1615	0.49	0/2189	
69	S1	0.44	0/1701	0.55	0/2275	
70	S2	0.43	0/1660	0.55	0/2238	
71	S3	0.41	0/1684	0.54	0/2263	
72	S4	0.43	0/2087	0.55	0/2810	
73	S5	0.39	0/1478	0.57	0/1989	
74	S6	0.40	0/1700	0.56	0/2259	
75	S7	0.36	0/1191	0.49	0/1602	

Mal	Chain	В	ond lengths	Bond angles		
IVIOI		RMSZ	# Z > 5	RMSZ	# Z > 5	
76	S8	0.47	0/1323	0.59	1/1769~(0.1%)	
77	S9	0.38	0/1397	0.52	0/1874	
All	All	0.84	31/177008~(0.0%)	0.89	260/256940~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	RA	0	1
6	C1	0	1
7	C2	0	1
14	C9	0	1
32	L7	0	1
34	L9	0	2
37	M3	0	1
43	M9	0	1
50	N4	0	2
62	O6	0	1
70	S2	0	1
72	S4	0	1
74	S6	0	1
All	All	0	15

The worst 5 of 31 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	1	2193	G	C8-N7	-6.47	1.27	1.30
2	1	816	G	C8-N7	-6.07	1.27	1.30
2	1	472	G	C8-N7	-5.88	1.27	1.30
2	1	2322	G	C8-N7	-5.55	1.27	1.30
2	1	1017	А	C8-N7	-5.54	1.27	1.31

The worst 5 of 260 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	3	451	С	N3-C2-O2	-11.03	114.18	121.90
2	1	2249	С	C6-N1-C2	-10.79	115.99	120.30
2	1	431	G	O4'-C1'-N9	9.04	115.43	108.20
4	3	451	С	N1-C2-O2	8.44	123.96	118.90
2	1	129	U	N3-C2-O2	-8.09	116.54	122.20

There are no chirality outliers.

5 of 15 planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
6	C1	36	VAL	Peptide
7	C2	104	GLY	Peptide
14	C9	113	GLU	Peptide
32	L7	227	HIS	Peptide
1	RA	95	ASP	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	RA	2537	0	2550	139	0
2	1	49833	0	24957	253	0
3	2	2550	0	1288	11	0
4	3	27838	0	13926	194	0
5	C0	686	0	730	21	0
6	C1	1126	0	1172	33	0
7	C2	879	0	937	76	0
8	C3	1166	0	1210	11	0
9	C4	942	0	1005	18	0
10	C5	903	0	945	31	0
11	C6	1132	0	1193	26	0
12	C7	962	0	987	39	0
13	C8	1121	0	1170	42	0
14	C9	1089	0	1103	38	0
15	D0	779	0	787	32	0
16	D1	518	0	526	17	0
17	D2	1012	0	1033	9	0
18	D3	1052	0	1126	12	0
19	D4	1056	0	1135	31	0
20	D5	691	0	727	22	0
21	D6	801	0	820	13	0
22	D7	633	0	621	15	0
23	D8	446	0	457	23	0
24	D9	524	0	517	7	0
25	E1	276	0	128	6	0
26	L1	1016	0	439	10	0

Continuea from previous page						
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
27	L2	1759	0	1817	21	0
28	L3	2827	0	2945	49	0
29	L4	2596	0	2669	42	0
30	L5	2273	0	2281	42	0
31	L6	1279	0	1302	63	0
32	L7	1903	0	1962	32	0
33	L8	1573	0	1682	57	0
34	L9	1443	0	1504	37	0
35	MO	1706	0	1750	29	0
36	M1	1336	0	1378	47	0
37	M3	1308	0	1374	34	0
38	M4	848	0	881	35	0
39	M5	1657	0	1719	19	0
40	M6	1577	0	1659	45	0
41	M7	1363	0	1399	14	0
42	M8	1470	0	1551	26	0
43	M9	1398	0	1483	27	0
44	MD	1349	0	1346	64	0
45	MS	592	0	661	23	0
46	NO	1438	0	1490	26	0
47	N1	1288	0	1331	32	0
48	N2	735	0	757	21	0
49	N3	1058	0	1138	22	0
50	N4	709	0	738	31	0
51	N5	720	0	757	6	0
52	N6	1171	0	1219	20	0
53	N7	938	0	1008	28	0
54	N8	1196	0	1207	26	0
55	N9	437	0	442	9	0
56	O0	692	0	736	12	0
57	01	879	0	946	19	0
58	O2	1062	0	1135	19	0
59	O3	861	0	879	12	0
60	O4	807	0	868	12	0
61	O5	981	0	1075	14	0
62	O6	735	0	796	14	0
63	07	691	0	715	9	0
64	O9	434	0	478	8	0
65	P0	381	0	394	10	0
66	P2	788	0	860	12	0
67	P3	664	0	708	10	0
68	S0	1584	0	1630	57	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
69	S1	1670	0	1705	32	0
70	S2	1636	0	1731	31	0
71	S3	1658	0	1728	37	0
72	S4	2045	0	2092	37	0
73	S5	1461	0	1523	40	0
74	S6	1680	0	1756	87	0
75	S7	1173	0	1206	66	0
76	S8	1300	0	1344	25	0
77	S9	1374	0	1435	46	0
78	D6	1	0	0	0	0
78	D7	1	0	0	0	0
78	D9	1	0	0	0	0
78	E1	1	0	0	0	0
78	07	1	0	0	0	0
78	P0	1	0	0	0	0
78	P2	1	0	0	0	0
78	P3	1	0	0	0	0
79	L9	23	12	12	0	0
80	N8	10	19	19	0	0
All	All	166112	31	128710	2343	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

The worst 5 of 2343 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
4:3:573:A:H5"	9:C4:49:ARG:HD3	1.39	1.03
75:S7:49:LYS:HB3	75:S7:83:ASN:HB3	1.44	0.99
50:N4:73:GLN:HE22	74:S6:114:ARG:HB2	1.31	0.95
2:1:2538:G:H2'	2:1:2539:U:H5"	1.48	0.95
73:S5:6:LEU:HD23	73:S5:94:LEU:HD22	1.49	0.95

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	RA	326/334~(98%)	264 (81%)	62 (19%)	0	100	100
5	C0	79/96~(82%)	72 (91%)	7 (9%)	0	100	100
6	C1	139/156~(89%)	123 (88%)	16~(12%)	0	100	100
7	C2	116/134~(87%)	102 (88%)	14~(12%)	0	100	100
8	C3	144/148~(97%)	136 (94%)	8~(6%)	0	100	100
9	C4	124/134~(92%)	113 (91%)	11 (9%)	0	100	100
10	C5	114/148~(77%)	107 (94%)	7~(6%)	0	100	100
11	C6	139/145~(96%)	124 (89%)	15 (11%)	0	100	100
12	C7	115/120~(96%)	104 (90%)	11 (10%)	0	100	100
13	C8	139/153~(91%)	126 (91%)	13 (9%)	0	100	100
14	C9	133/137~(97%)	123 (92%)	10 (8%)	0	100	100
15	D0	89/120~(74%)	81 (91%)	8 (9%)	0	100	100
16	D1	66/70~(94%)	65 (98%)	1 (2%)	0	100	100
17	D2	125/128~(98%)	122 (98%)	3(2%)	0	100	100
18	D3	135/140~(96%)	129 (96%)	6 (4%)	0	100	100
19	D4	125/131~(95%)	113 (90%)	12 (10%)	0	100	100
20	D5	85/109~(78%)	72 (85%)	13 (15%)	0	100	100
21	D6	99/105~(94%)	94 (95%)	5 (5%)	0	100	100
22	D7	80/85~(94%)	68 (85%)	12 (15%)	0	100	100
23	D8	55/65~(85%)	47 (86%)	8 (14%)	0	100	100
24	D9	63/66~(96%)	57 (90%)	6 (10%)	0	100	100
25	E1	56/152~(37%)	47 (84%)	8 (14%)	1 (2%)	8	21
26	L1	204/219~(93%)	151 (74%)	41 (20%)	12 (6%)	1	2
27	L2	230/239~(96%)	204 (89%)	26 (11%)	0	100	100
28	L3	359/383~(94%)	315 (88%)	43 (12%)	1 (0%)	41	66

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
29	L4	327/335~(98%)	293 (90%)	33~(10%)	1 (0%)	41	66
30	L5	281/287~(98%)	262~(93%)	19~(7%)	0	100	100
31	L6	157/171~(92%)	128~(82%)	28~(18%)	1 (1%)	25	50
32	L7	229/239~(96%)	213~(93%)	16 (7%)	0	100	100
33	L8	195/206~(95%)	163~(84%)	32~(16%)	0	100	100
34	L9	181/183~(99%)	154 (85%)	27~(15%)	0	100	100
35	M0	207/219~(94%)	190 (92%)	16 (8%)	1 (0%)	29	54
36	M1	165/173~(95%)	143 (87%)	21 (13%)	1 (1%)	25	50
37	M3	159/163~(98%)	144 (91%)	14 (9%)	1 (1%)	25	50
38	M4	102/106~(96%)	93 (91%)	9 (9%)	0	100	100
39	M5	201/204~(98%)	190 (94%)	11 (6%)	0	100	100
40	M6	194/198~(98%)	187~(96%)	7~(4%)	0	100	100
41	M7	172/183~(94%)	157 (91%)	15 (9%)	0	100	100
42	M8	184/200~(92%)	172 (94%)	12~(6%)	0	100	100
43	M9	168/171~(98%)	157 (94%)	11 (6%)	0	100	100
44	MD	168/171~(98%)	138 (82%)	30~(18%)	0	100	100
45	MS	66/73~(90%)	63~(96%)	3~(4%)	0	100	100
46	N0	176/188~(94%)	157 (89%)	16 (9%)	3 (2%)	9	23
47	N1	157/160~(98%)	136 (87%)	19~(12%)	2 (1%)	12	30
48	N2	89/112~(80%)	76 (85%)	13~(15%)	0	100	100
49	N3	133/146~(91%)	127~(96%)	6~(4%)	0	100	100
50	N4	87/100 (87%)	74 (85%)	12~(14%)	1 (1%)	14	34
51	N5	91/105~(87%)	83 (91%)	8 (9%)	0	100	100
52	N6	140/143~(98%)	131 (94%)	7~(5%)	2 (1%)	11	28
53	N7	114/126~(90%)	100 (88%)	14 (12%)	0	100	100
54	N8	144/147~(98%)	123 (85%)	20 (14%)	1 (1%)	22	46
55	N9	53/57~(93%)	47 (89%)	6 (11%)	0	100	100
56	O0	88/108 (82%)	83 (94%)	5 (6%)	0	100	100
57	01	$106/111 \ (96\%)$	94 (89%)	10 (9%)	2 (2%)	8	20
58	O2	126/139~(91%)	123 (98%)	3 (2%)	0	100	100
59	O3	105/113~(93%)	97~(92%)	8 (8%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
60	O4	98/110~(89%)	94 (96%)	4 (4%)	0	100	100
61	O5	119/122~(98%)	118 (99%)	1 (1%)	0	100	100
62	O6	92/94~(98%)	85 (92%)	7~(8%)	0	100	100
63	07	84/90~(93%)	81 (96%)	3~(4%)	0	100	100
64	O9	48/52~(92%)	43 (90%)	5 (10%)	0	100	100
65	P0	47/131~(36%)	42 (89%)	5 (11%)	0	100	100
66	P2	95/104 (91%)	81 (85%)	13 (14%)	1 (1%)	14	34
67	P3	84/89~(94%)	80 (95%)	4 (5%)	0	100	100
68	S0	201/252~(80%)	178 (89%)	23 (11%)	0	100	100
69	S1	205/239~(86%)	184 (90%)	21 (10%)	0	100	100
70	S2	215/242~(89%)	199~(93%)	16 (7%)	0	100	100
71	S3	208/216~(96%)	190 (91%)	18 (9%)	0	100	100
72	S4	257/268~(96%)	228 (89%)	29 (11%)	0	100	100
73	S5	186/189~(98%)	171 (92%)	14 (8%)	1 (0%)	29	54
74	S6	200/217~(92%)	182 (91%)	17 (8%)	1 (0%)	29	54
75	S7	143/170~(84%)	132 (92%)	10 (7%)	1 (1%)	22	46
76	S8	162/173~(94%)	148 (91%)	13 (8%)	1 (1%)	25	50
77	S9	169/184~(92%)	147 (87%)	22 (13%)	0	100	100
All	All	10717/11696~(92%)	9640 (90%)	1042 (10%)	35~(0%)	44	66

Continued from previous page...

5 of 35 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
26	L1	27	PRO
26	L1	37	VAL
26	L1	44	PRO
26	L1	57	PRO
26	L1	83	LEU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	RA	286/291~(98%)	285 (100%)	1 (0%)	92	98
5	C0	76/86~(88%)	76 (100%)	0	100	100
6	C1	124/138~(90%)	124 (100%)	0	100	100
7	C2	99/114~(87%)	99 (100%)	0	100	100
8	C3	127/129~(98%)	127 (100%)	0	100	100
9	C4	93/101~(92%)	93 (100%)	0	100	100
10	C5	98/125~(78%)	98 (100%)	0	100	100
11	C6	121/125~(97%)	118 (98%)	3 (2%)	47	76
12	C7	107/109~(98%)	106 (99%)	1 (1%)	78	92
13	C8	119/129~(92%)	119 (100%)	0	100	100
14	C9	119/121~(98%)	118 (99%)	1 (1%)	81	93
15	D0	88/114 (77%)	87 (99%)	1 (1%)	73	90
16	D1	55/57~(96%)	55 (100%)	0	100	100
17	D2	107/108~(99%)	107 (100%)	0	100	100
18	D3	111/114 (97%)	111 (100%)	0	100	100
19	D4	117/121~(97%)	117 (100%)	0	100	100
20	D5	73/91~(80%)	73 (100%)	0	100	100
21	D6	86/89~(97%)	85 (99%)	1 (1%)	71	88
22	D7	71/73~(97%)	71 (100%)	0	100	100
23	D8	48/56~(86%)	48 (100%)	0	100	100
24	D9	57/58~(98%)	57 (100%)	0	100	100
27	L2	192/198~(97%)	191 (100%)	1 (0%)	88	96
28	L3	298/313~(95%)	298 (100%)	0	100	100
29	L4	274/280~(98%)	271 (99%)	3 (1%)	73	90
30	L5	235/238~(99%)	234 (100%)	1 (0%)	91	97
31	L6	139/151~(92%)	139 (100%)	0	100	100
32	L7	210/216~(97%)	208 (99%)	2 (1%)	76	91
33	L8	181/190~(95%)	180 (99%)	1 (1%)	86	95
34	L9	157/157~(100%)	155 (99%)	2 (1%)	69	87
35	M0	179/184~(97%)	178 (99%)	1 (1%)	86	95
36	M1	143/149~(96%)	142 (99%)	1 (1%)	84	94

analysed, and the total number of residues.

a 1	C		
Continued	trom	previous	<i>paae</i>
• • • • • • • • • • • •	J	r · · · · · · · · · · · · · · · · · · ·	r ~g ~···

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
37	M3	139/141~(99%)	137~(99%)	2 (1%)	67	86
38	M4	93/94~(99%)	93~(100%)	0	100	100
39	M5	173/174~(99%)	173 (100%)	0	100	100
40	M6	167/168~(99%)	167~(100%)	0	100	100
41	M7	142/160~(89%)	141~(99%)	1 (1%)	84	94
42	M8	165/178~(93%)	165 (100%)	0	100	100
43	M9	147/148~(99%)	146 (99%)	1 (1%)	84	94
44	MD	158/159~(99%)	158 (100%)	0	100	100
45	MS	65/69~(94%)	63~(97%)	2(3%)	40	69
46	N0	160/169~(95%)	158 (99%)	2 (1%)	69	87
47	N1	137/140~(98%)	136 (99%)	1 (1%)	84	94
48	N2	76/94~(81%)	76 (100%)	0	100	100
49	N3	113/122 (93%)	113 (100%)	0	100	100
50	N4	78/86~(91%)	78 (100%)	0	100	100
51	N5	78/91~(86%)	78 (100%)	0	100	100
52	N6	126/127~(99%)	125 (99%)	1 (1%)	81	93
53	N7	98/110 (89%)	95~(97%)	3 (3%)	40	69
54	N8	124/125~(99%)	124 (100%)	0	100	100
55	N9	44/47~(94%)	44 (100%)	0	100	100
56	O0	77/90~(86%)	77~(100%)	0	100	100
57	O1	101/106~(95%)	101 (100%)	0	100	100
58	O2	114/125~(91%)	114 (100%)	0	100	100
59	O3	93/99~(94%)	92~(99%)	1 (1%)	73	90
60	O4	87/91~(96%)	87 (100%)	0	100	100
61	O5	102/103~(99%)	102 (100%)	0	100	100
62	O6	74/79~(94%)	73~(99%)	1 (1%)	67	86
63	07	73/76~(96%)	73 (100%)	0	100	100
64	O9	44/46~(96%)	43 (98%)	1 (2%)	50	78
65	P0	41/107~(38%)	41 (100%)	0	100	100
66	P2	84/89~(94%)	84 (100%)	0	100	100
67	P3	67/69~(97%)	65~(97%)	2(3%)	41	70

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
68	$\mathbf{S0}$	176/219~(80%)	175~(99%)	1 (1%)	86	95
69	S1	184/206~(89%)	184 (100%)	0	100	100
70	S2	177/200~(88%)	177 (100%)	0	100	100
71	S3	178/184~(97%)	177 (99%)	1 (1%)	86	95
72	S4	228/236~(97%)	228 (100%)	0	100	100
73	S5	159/160~(99%)	158 (99%)	1 (1%)	86	95
74	S6	182/194~(94%)	180 (99%)	2(1%)	73	90
75	S7	127/144~(88%)	126 (99%)	1 (1%)	81	93
76	S8	140/149~(94%)	140 (100%)	0	100	100
77	$\overline{S9}$	147/156~(94%)	147 (100%)	0	100	100
All	All	9128/9755 (94%)	9084 (100%)	44 (0%)	89	96

Continued from previous page...

5 of 44 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
47	N1	153	TYR
64	O9	4	ARG
52	N6	109	PHE
53	N7	110	LYS
67	P3	60	CYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 109 such side chains are listed below:

Mol	Chain	Res	Type
43	M9	134	HIS
55	N9	36	HIS
72	S4	245	GLN
44	MD	116	ASN
51	N5	44	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	1	2305/2486~(92%)	405 (17%)	25~(1%)
3	2	118/119~(99%)	20 (16%)	0
4	3	1292/1300~(99%)	335~(25%)	13 (1%)

Continued from previous page...

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
All	All	3715/3905~(95%)	760 (20%)	38 (1%)

5 of 760 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
2	1	24	U
2	1	25	G
2	1	32	G
2	1	39	U
2	1	49	G

5 of 38 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
4	3	133	G
4	3	891	С
4	3	199	G
4	3	523	U
4	3	1137	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 8 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tiple	Bo	ond leng	$_{\rm ths}$	В	ond ang	les
INIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
79	AMP	L9	201	-	22,25,25	0.62	0	$25,\!38,\!38$	0.72	1 (4%)
80	SPD	N8	201	-	9,9,9	0.41	0	8,8,8	1.18	1 (12%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
79	AMP	L9	201	-	-	3/6/26/26	0/3/3/3
80	SPD	N8	201	-	-	3/7/7/7	-

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
80	N8	201	SPD	C4-C5-N6	-2.63	105.03	112.14
79	L9	201	AMP	C5-C6-N6	2.13	123.59	120.35

There are no chirality outliers.

|--|

Mol	Chain	Res	Type	Atoms
79	L9	201	AMP	O4'-C4'-C5'-O5'
79	L9	201	AMP	C3'-C4'-C5'-O5'
80	N8	201	SPD	N6-C7-C8-C9
80	N8	201	SPD	C4-C5-N6-C7
80	N8	201	SPD	C2-C3-C4-C5

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and

any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-13936. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Y Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

Z Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 231

Z Index: 301

6.3.2 Raw map

X Index: 267

Y Index: 233

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

emd_13936_msk_1.map (i) 6.5.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 982 $\rm nm^3;$ this corresponds to an approximate mass of 887 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.70	-	-
Author-provided FSC curve	2.70	3.11	2.76
Unmasked-calculated*	3.09	3.95	3.13

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.09 differs from the reported value 2.7 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13936 and PDB model 7QEP. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 81% of all backbone atoms, 80% of all non-hydrogen atoms, are inside the map.

