

wwPDB EM Validation Summary Report (i)

Jun 20, 2024 – 02:17 pm BST

PDB ID	:	8QRK
EMDB ID	:	EMD-18438
Title	:	mt-SSU assembly intermediate in GTPBP8 knock-out cells, state 1
Authors	:	Valentin Gese, G.; Cipullo, M.; Rorbach, J.; Hallberg, B.M.
Deposited on	:	2023-10-09
Resolution	:	6.69 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 6.69 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chair	1	
1	0	218	89%		10%
			29%		
2	1	323	81%		15%
3	3	199	34%	65%	
4	А	955	6% 64%	30%	6%
5	В	296	<mark>6%</mark> 72%	·	24%
6	С	167	13%	15%	21%
7	Е	125	24%		

Contr	nueu jion	i previous	puye			
Mol	Chain	Length	Quality of cha	ain		
			34%			
8	F	242	81%		5%	14%
0	1	212	14%		0/0	14.70
0	п	201				
9	п	201	63%	7%	30%	
10	Ŧ	10.1	15%			
10	1	194	67%	•	29%	
			9%			
11	J	138	71%	7%	22	2%
			13%			
12	Κ	128	70%	9%	2	1%
			12%			
13	L	257	61%	6%	32%	
10		201	8%	070	J2 /0	
14	М	127			50/	1.20/
14	101	157	82%		5%	13%
1 5	N .T	100	7%			
15	Ν	130	84%		•	15%
			—			
16	Ο	258	69%	6%	25%	6
			6%			
17	Р	142	65%	•	32%	
			17%			
18	0	86	0.1%			6%
10	જ	00	5470			070
10	D	260				
19	n	- 300	76%		6%	18%
20	G	100	11%			
20	S	190	66%	5%	29%	
			12%			
21	Т	173	94%			• •
			7%			
22	U	205	80%		5%	14%
			•			
23	W	187	51%	47	10/_	
20	••	101	42%	47	70	
94	v	200			60/	1.20/
24	Λ	398	150/		6%	12%
<u>م</u> ۲	3.7	205	15%			
25	Y	395	36% •	62%		
			25%			
26	Z	106	91%			• 6%
			15%			
27	D	430	73%	5%	6 21	%
			17%			
28	G	396	710/	1.0	0/2	10%
20	J	000	35%	10	/0	LJ /0
20	V	414	5570			1.20/
29	V	414	83%		5%	13%
			61%			
30	4	689	80%		6%	15%

2 Entry composition (i)

There are 39 unique types of molecules in this entry. The entry contains 66224 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 28S ribosomal protein S34, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	0	215	Total 1787	C 1130	N 339	0 313	${S \atop 5}$	0	0

• Molecule 2 is a protein called 28S ribosomal protein S35, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
2	1	276	Total 2238	C 1419	N 381	0 427	S 11	0	0

• Molecule 3 is a protein called Aurora kinase A-interacting protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
3	3	70	Total 625	C 401	N 134	O 89	${f S}$ 1	0	0

• Molecule 4 is a RNA chain called 12S mitochondrial rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
4	Δ	055	Total	С	Ν	Ο	Р	0	0
4 A	955	20282	9098	3652	6577	955	0	0	

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	709	G	А	conflict	GB OM714795.1

• Molecule 5 is a protein called 28S ribosomal protein S2, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	В	225	Total 1828	C 1164	N 331	O 323	S 10	0	0

• Molecule 6 is a protein called 28S ribosomal protein S24, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	С	132	Total 1083	C 699	N 195	0 185	$\frac{S}{4}$	0	0

• Molecule 7 is a protein called 28S ribosomal protein S6, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	Е	122	Total 972	C 614	N 177	0 177	$\frac{S}{4}$	0	0

• Molecule 8 is a protein called 28S ribosomal protein S7, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
8	F	208	Total 1725	C 1104	N 312	0 298	S 11	0	0

• Molecule 9 is a protein called 28S ribosomal protein S10, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	Η	140	Total 1152	C 745	N 194	O 210	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called 28S ribosomal protein S11, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	Ι	137	Total 1019	C 641	N 193	0 181	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 11 is a protein called 28S ribosomal protein S12, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	J	108	Total 839	C 521	N 169	0 143	S 6	0	0

• Molecule 12 is a protein called 28S ribosomal protein S14, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	К	101	Total 862	C 537	N 179	0 141	${f S}{5}$	0	0

• Molecule 13 is a protein called 28S ribosomal protein S15, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	L	174	Total 1453	C 925	N 270	0 251	${ m S} 7$	0	0

• Molecule 14 is a protein called 28S ribosomal protein S16, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	М	119	Total 942	$\begin{array}{c} \mathrm{C} \\ 594 \end{array}$	N 185	0 157	S 6	0	0

• Molecule 15 is a protein called 28S ribosomal protein S17, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	Ν	110	Total 868	C 562	N 156	0 147	${ m S} { m 3}$	0	0

• Molecule 16 is a protein called 28S ribosomal protein S18b, mitochondrial.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
16	О	194	Total 1599	C 1019	N 295	0 278	${ m S} 7$	0	0

• Molecule 17 is a protein called 28S ribosomal protein S18c, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	Р	97	Total 781	C 501	N 134	0 138	S 8	0	0

• Molecule 18 is a protein called 28S ribosomal protein S21, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	Q	86	Total 744	C 460	N 150	O 126	S 8	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Q	50	ARG	CYS	variant	UNP P82921

• Molecule 19 is a protein called 28S ribosomal protein S22, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	R	295	Total 2409	C 1533	N 413	O 455	S 8	0	0

• Molecule 20 is a protein called 28S ribosomal protein S23, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	S	135	Total 1111	C 716	N 198	O 196	S 1	0	0

• Molecule 21 is a protein called 28S ribosomal protein S25, mitochondrial.

Mol	Chain	Residues		A	toms	AltConf	Trace		
21	Т	168	Total 1371	C 877	N 239	0 244	S 11	0	0

• Molecule 22 is a protein called 28S ribosomal protein S26, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
22	U	176	Total 1488	C 916	N 301	O 267	${S \atop 4}$	0	0

• Molecule 23 is a protein called 28S ribosomal protein S28, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	W	100	Total 789	C 498	N 141	0 146	S 4	0	0

• Molecule 24 is a protein called 28S ribosomal protein S29, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
24	Х	352	Total 2849	C 1822	N 499	0 517	S 11	0	0

• Molecule 25 is a protein called 28S ribosomal protein S31, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	Y	149	Total 1246	C 801	N 207	0 234	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called 28S ribosomal protein S33, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	Z	100	Total 839	C 534	N 153	0 148	$\frac{S}{4}$	0	0

• Molecule 27 is a protein called 28S ribosomal protein S5, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
27	D	339	Total 2695	C 1690	N 509	O 483	S 13	0	0

• Molecule 28 is a protein called 28S ribosomal protein S9, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
28	G	322	Total 2655	C 1688	N 473	O 480	S 14	0	0

• Molecule 29 is a protein called 28S ribosomal protein S27, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
29	V	362	Total 2969	C 1904	N 495	O 558	S 12	0	0

• Molecule 30 is a protein called Pentatric opeptide repeat domain-containing protein 3, mito-chondrial.

Mol	Chain	Residues	Atoms			AltConf	Trace		
30	4	588	Total 4768	C 3053	N 808	0 879	S 28	0	0

• Molecule 31 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
31	3	1	Total Mg 1 1	0
31	А	45	Total Mg 45 45	0
31	В	1	Total Mg 1 1	0
31	J	1	Total Mg 1 1	0
31	Х	1	Total Mg 1 1	0

• Molecule 32 is NICOTINAMIDE-ADENINE-DINUCLEOTIDE (three-letter code: NAD)

 $(formula: \ C_{21}H_{27}N_7O_{14}P_2).$

Mol	Chain	Residues	Atoms			AltConf		
32	А	1	Total	С	Ν	0	Р	0
	11	1	44	21	7	14	2	Ŭ

• Molecule 33 is SPERMINE (three-letter code: SPM) (formula: $C_{10}H_{26}N_4$).

Mol	Chain	Residues	Atoms	AltConf
33	А	1	Total C N 14 10 4	0

• Molecule 34 is STREPTOMYCIN (three-letter code: SRY) (formula: $C_{21}H_{39}N_7O_{12}$).

Mol	Chain	Residues	Atoms			AltConf	
34	Λ	1	Total	С	Ν	Ο	0
-04	Л	1	40	21	7	12	0

• Molecule 35 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
35	А	17	Total K 17 17	0

• Molecule 36 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
36	Ο	1	Total Zn 1 1	0

• Molecule 37 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe₂S₂).

Mol	Chain	Residues	Atoms	AltConf
27	D	1	Total Fe S	0
57	1	L	4 2 2	0
27	Т	1	Total Fe S	0
57	1	1	4 2 2	0

• Molecule 38 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues	Atoms			AltConf		
38	Х	1	Total 31	C 10	N 5	O 13	Р 3	0

• Molecule 39 is PHOSPHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER (three-letter code: GNP) (formula: $C_{10}H_{17}N_6O_{13}P_3$).

Mol	Chain	Residues	Atoms			AltConf		
30	x	1	Total	С	Ν	Ο	Р	0
03	Λ	1	32	10	6	13	3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 28S ribosomal protein S34, mitochondrial

15%				
Chain I:	67%	•	29%	
MET GLN ALA ALA ARG ASN ASN ALA ALA SER SER SER ARG CLY	ARG SER TRP TRP TRP TRP TRP RLN CLN CLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ILE CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	LYS VAL VAL GLU GLU ASN ALA ALA ALA PRO PRO SER HIS	T58 K59
Y63 E69 E70 S71 C72 L73 L73 R74 R74 T95	A102 S103 S103 E105 P106 L107 C123	L154 L154 C157 A151 S180 A161 A161 C188 C188	V172	A191
• Molecule 11: 22	8S ribosomal protein S12, i	mitochondrial		
Chain J:	71%	7%	22%	
MET SER TRP SER GLY LEU LEU LEU LEU CLY ASN ASN	SBR LEU THR CYS GLY GLY FRG FRG PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	P42 K43 R44 P45 P45 R47 K48 L49 P70 F70 K71	875 876 876 878 878 195 195 195	0117 H134 K137 K138
• Molecule 12: 28	8S ribosomal protein S14, i	mitochondrial		
Chain K:	70%	9%	21%	
MET ALA ALA ALA ALA MET DEU CLEU CLEU CLEU CLEU ARC ARC	PHE PHE MET MET VAL VAL PRO SER SER SER SER SER SER SER SER SER SER	N55 S56 L57 R58 R58 R58 R60 R60 R60 R61 R1	D72 E73 P79 P84 187 187	890 890 890 890 890 890 800 800 800 800
(399 V100 K101 R102 A115 A115 D116	M128			
• Molecule 13: 28	8S ribosomal protein S15, i	mitochondrial		
Chain L:	61%	6% 32	2%	
MET LEU ARG VAL ARG ARG TTRP ARG CTRP CLEU SER SER SER SER SER SER	TARG ARG ARA ARA ARA ARA CLN VAL CLN VAL CLN CLN CLN CLN CLN CLN CLN CLN CLN CL	PHE PRO PRO ASN ASN CLN CLN CLU PRO ANG SER SER SER SER SER SER SER SER SER SER	GLN ALA ALA ARG GLY GLY TYR VAL VAL VAL LYS LYS	PRO ALA GLN
SER ARG V76 V79 E83 B86	F111 V116 A117 A117 F123 F123 F123 F123 F123 F123 F123 F123	H152 K153 K164 K164 V175 V177 1181	C1194 1194 1195 1209 1209 1212	E216
L227 K228 A229 A230 A231 A231 A232 A233 Q234 K235	ALA LYS ARG ARG ARG ASN PR0 PR0 PR0 FLA THR THR THR THR THR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	SER		
• Molecule 14: 28	8S ribosomal protein S16, 1	mitochondrial		
Chain M:	82%		5% 13%	
MET VAL HIS THR THR THR THR LEU CYS KIO	R33 N39 W76 K85 K89 F36 F36 F36 F36 F36 F36 F36 F36 F36 F36	DI26		
• Molecule 15: 28	8S ribosomal protein S17, 1	mitochondrial		

Chain N:	84%	• 15%
MET SER V4L V3 S5 S5 S5 S7 V8 R73 P94	V95 E113 THR THR THR THR THR CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
• Molecule 16: 28S rib	oosomal protein S18b, mitochon	drial
Chain O:	69%	6% 25%
MET ALA ALA ALA ALA ALA CAL CAL VAL CLEU ARG ARG ARG ARG ARG ARG ARG LEU DEU	SER PHE PHE GLY SER SER ARG CLY VAL CVAL CLEU CLEU CTS CTS TTR TTR TTR CTS SER CTS SER CTS SER CTS SER CTS SER CTS	GLU ASP SER SER SER V46 P47 P47 P47 P47 P47 P72 P72 P72 P72 P72 P72 P72 P72 P72 P7
P138 0146 1162 1163 1163 1163 1163 1163 1163 116	E233 E233 K237 K237 M238 PR0 PR0 ALA ALA ALA ALA ALA ALA CLU CLU CLU CLU CLV CLU CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	SER ALA LEU
• Molecule 17: 28S rit	oosomal protein S18c, mitochon	drial
Chain P:	65% •	32%
MET ALA ALA ALA ALA ALA ALA CYS GLY GLY GLY GLY CYS CYS CYS CYS CYS CYS CYS CYS CYS CY	THR HIS VAL THR VAL THR ALA ALA ALA ALA ALA SER THR HIS HIS HIS THR HIS TRP CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	SER SER GLN VAL VAL SER SER B60 F61 F61 F61 F61 F61 F61 F61 F61 F61 F61
T123		
• Molecule 18: 28S rik	posomal protein S21, mitochond	rial
Chain Q:	94%	6%
A2 F7 I8 A9 A9 E16 E16 A10 E16 A12 R42 R42 R43	Y45 F46 F47 F48 R50 M66 F74 F74 F74 F74 G85 G85 C87 C87	
• Molecule 19: 28S rik	posomal protein S22, mitochond	rial
Chain R:	76%	6% 18%
MET ALA ALA PRO LEU CLY CLY LEU LEU LEU LEU LEU LEU LEU LEU SER SER	SER ALU GLV ALU GLV ALU ARG PRG PRG FIR FIR FIR GLN FIR GLN FIR GLY FIR GLY FIR GLY FIR GLY FIR GLY FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR	PLEU PLEU SER PHE PLEU MET CILY MET ALLA ARG ARG ARG ARG ARG ARG ARG ALU ALA ALA ALA ALA SER ALU SER SER SER SER SER SER SER SER SER SER
GLY PRD PRD FRD FRD FRD FRD FRD FRD FRD FRD FRD F	VI 31 VI 31 S 162 VI 63 VI 64 VI 63 VI 64 VI 63 VI 64 VI 63 VI 64 VI 64	K248 R256 L262 F275 R279 G316 G316 G316 G316 G316 G316 G316 G316
q320 4321 1328 5354 8355 4356 8357 A368 A368 A1A SER		
• Molecule 20: 28S rib	posomal protein S23, mitochond	rial

W O R L D W I D E PROTEIN DATA BANK

Chain S:	11%	66%	5%	29%	-	
MET A2 L6 L6 V24	L30 R50 G54 K55 E67 F74	775 19 18 18 18 18 18 18 18 18 18 18	K108 T112 D113 E127	1131 L132 G136 GLU ALA ARG	THR GLN GLN GLY GLY GLY GLY SER HIS VAL SER ARG SER SER	
GLU HIS LEU SER VAL ARG PRO	GLN THR ALA LEU GLU GLU GLU CLU CLU GLU GLU	VAL PRO GLN GLN HIS HIS HIS ALA ALA ALA ALA ALA SER	LYS GLY LEU PRO PRO			
• Molecul	e 21: 28S riboso	mal protein S25, m	itochondrial			
Chain T:	12%	94%		•	·	
MET P2 R11 Q63	F78 R103 E115 E115 E116 E117 E118	E119 K120 K121 Q122 L123 H25 A127 A127 N128	R132 Y133 C135 C135 S151 A169 A1A	GLN ASP		
• Molecul	e 22: 28S riboso	mal protein S26, m	itochondrial			
Chain U:	7%	80%		5% 14%	-	
MET LEU ARG ALA LEU SER ARG	LEU GLY ALA ALA ALA CLY CLY CLY CVS CVS ARG ARG ARG ARG ARG			E138 E138 R141 E145	0161 V164 R170 E173 €173	
L181	ARG ASP SER					
• Molecul	e 23: 28S riboso	mal protein S28, m	itochondrial			
Chain W:	• •	•	47	%	_	
MET ALA ALA LEU CYS ARG THR	ARG ALA VAL ALA ALA ALA GLU SER HIS PHE LEU ARG VAL	PHE LEU PHE ARG ARG PHE PHE ARG CLY CLY CLY CLY CLY SELU	GLY SER GLU SER GLV SER SER ASN ASN ALA LYS CLU	FRU LYS THR ARG ALA GLY GLY PHE ALA SFR	ALA LEU GLU HIS SER	
GLU LEU LEU GLN VAL GLU GLU	PRO LLEU GLY SER PRO LLS LLS L190 L290 L290 L290 L290 L290 L290 L290 L2	1101 F116 L147 L147 C155 T155	175 LYS ASP SER SER ARG CLU CLU HIS HIS	CLU		
• Molecul	e 24: 28S riboso	mal protein S29, m	itochondrial			
Chain X:	42%	82%		6% 12%	-	
LET LEU LEU LLF LLE HLR	LLE LLE BER RG LLE LLE LLE LLE LLE LLE LLE LLE LL VS SP LY	RIG EU LET LET LET LET LET LEN LER LER LE	LLA EU EU EU SP AL LLU LLU LLU EER	RG 47 48 49 51 51 51	153 154 155 156 159 159	
нноггад	4 J H 10 4 H H J J 4 L U	4 L I I I Z O H O 4 4 0 0 H 4	4 11 4 4 0 > 4 > 0 0 0			
D61 Q62 H63 E64 G65	Y68 P72 073 073 175 E76 E76 T77 V78	P80 H81 G82 G82 P91 K91 F94	530 103 115 5115 5115 6117 A118	P120 A121 1122 R123 Y127	K130 G133 L136 S137 S137 H140 V141	K147 Q148 D149 W150

• Molecule 30: Pentatricopeptide repeat domain-containing protein 3, mitochondrial

EMD-18438, 8QRK

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	53380	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	48	Depositor
Minimum defocus (nm)	200	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.639	Depositor
Minimum map value	-0.257	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.022	Depositor
Recommended contour level	0.15	Depositor
Map size (Å)	517.12, 517.12, 517.12	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.01, 1.01, 1.01	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FES, SPM, 5MU, MG, ZN, AYA, NAD, ATP, 5MC, SRY, B8T, MA6, K, GNP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	0	0.34	0/1834	0.45	0/2484	
2	1	0.38	0/2285	0.43	0/3090	
3	3	0.35	0/636	0.45	0/839	
4	А	0.63	0/22562	0.79	0/35124	
5	В	0.40	0/1871	0.46	0/2531	
6	С	0.49	0/1113	0.48	0/1505	
7	Е	0.36	0/989	0.47	0/1335	
8	F	0.33	0/1767	0.42	0/2373	
9	Н	0.45	0/1178	0.48	0/1598	
10	Ι	0.34	0/1039	0.45	0/1400	
11	J	0.42	0/855	0.49	0/1148	
12	К	0.45	0/880	0.48	0/1182	
13	L	0.38	0/1477	0.41	0/1974	
14	М	0.40	0/963	0.48	0/1295	
15	N	0.43	0/886	0.47	0/1199	
16	0	0.40	0/1655	0.44	0/2254	
17	Р	0.41	0/798	0.44	0/1070	
18	Q	0.41	0/748	0.47	0/994	
19	R	0.36	0/2456	0.42	0/3317	
20	S	0.37	0/1138	0.45	0/1533	
21	Т	0.41	0/1402	0.44	0/1883	
22	U	0.32	0/1510	0.41	0/2025	
23	W	0.36	0/801	0.48	0/1079	
24	Х	0.34	0/2921	0.42	0/3954	
25	Y	0.35	0/1280	0.40	0/1725	
26	Ζ	0.39	0/857	0.42	0/1141	
27	D	0.38	0/2746	0.48	0/3675	
28	G	0.37	0/2712	0.44	0/3631	
29	V	0.29	0/3030	0.39	0/4093	
30	4	0.31	0/4877	0.40	0/6598	
All	All	0.47	0/69266	0.59	0/98049	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	0	1787	0	1796	13	0
2	1	2238	0	2269	10	0
3	3	625	0	699	2	0
4	А	20282	0	10298	145	0
5	В	1828	0	1815	8	0
6	С	1083	0	1088	16	0
7	Ε	972	0	1000	3	0
8	F	1725	0	1769	14	0
9	Н	1152	0	1183	11	0
10	Ι	1019	0	1059	3	0
11	J	839	0	887	11	0
12	К	862	0	885	9	0
13	L	1453	0	1540	11	0
14	М	942	0	965	5	0
15	N	868	0	928	1	0
16	0	1599	0	1565	9	0
17	Р	781	0	806	2	0
18	Q	744	0	758	3	0
19	R	2409	0	2428	15	0
20	S	1111	0	1115	8	0
21	Т	1371	0	1393	6	0
22	U	1488	0	1499	7	0
23	W	789	0	802	4	0
24	Х	2849	0	2843	17	0
25	Y	1246	0	1197	5	0
26	Ζ	839	0	858	3	0
27	D	2695	0	2755	24	0
28	G	2655	0	2643	53	0
29	V	2969	0	2961	13	0
30	4	4768	0	4766	23	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
31	3	1	0	0	0	0
31	А	45	0	0	0	0
31	В	1	0	0	0	0
31	J	1	0	0	0	0
31	Х	1	0	0	0	0
32	А	44	0	26	7	0
33	А	14	0	26	4	0
34	А	40	0	39	11	0
35	А	17	0	0	1	0
36	0	1	0	0	0	0
37	Р	4	0	0	0	0
37	Т	4	0	0	0	0
38	Х	31	0	12	0	0
39	Х	32	0	13	0	0
All	All	66224	0	56686	348	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

The worst 5 of 348 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
4:A:882:A:OP2	28:G:51:HIS:CE1	1.63	1.51
4:A:906:C:C2	28:G:50:ARG:HG2	1.56	1.40
4:A:906:C:O2	28:G:50:ARG:HG2	1.19	1.30
4:A:906:C:O4'	28:G:50:ARG:NH1	1.75	1.18
4:A:882:A:OP2	28:G:51:HIS:NE2	1.77	1.17

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	0	213/218~(98%)	207 (97%)	6 (3%)	0	100	100
2	1	274/323~(85%)	260~(95%)	14 (5%)	0	100	100
3	3	68/199~(34%)	65~(96%)	3~(4%)	0	100	100
5	В	223/296~(75%)	212 (95%)	11 (5%)	0	100	100
6	С	130/167~(78%)	127 (98%)	3 (2%)	0	100	100
7	Е	120/125~(96%)	116 (97%)	4 (3%)	0	100	100
8	F	206/242~(85%)	202 (98%)	4 (2%)	0	100	100
9	Н	138/201~(69%)	136 (99%)	1 (1%)	1 (1%)	22	63
10	Ι	135/194 (70%)	126 (93%)	8 (6%)	1 (1%)	22	63
11	J	106/138~(77%)	100 (94%)	6 (6%)	0	100	100
12	К	99/128~(77%)	99 (100%)	0	0	100	100
13	L	172/257~(67%)	168 (98%)	4 (2%)	0	100	100
14	М	117/137~(85%)	116 (99%)	1 (1%)	0	100	100
15	Ν	108/130 (83%)	101 (94%)	7 (6%)	0	100	100
16	Ο	192/258~(74%)	184 (96%)	8 (4%)	0	100	100
17	Р	95/142~(67%)	93 (98%)	2 (2%)	0	100	100
18	Q	84/86~(98%)	83 (99%)	1 (1%)	0	100	100
19	R	293/360~(81%)	287 (98%)	6 (2%)	0	100	100
20	S	133/190 (70%)	130 (98%)	3 (2%)	0	100	100
21	Т	166/173~(96%)	164 (99%)	2 (1%)	0	100	100
22	U	174/205~(85%)	171 (98%)	3 (2%)	0	100	100
23	W	98/187~(52%)	93~(95%)	5 (5%)	0	100	100
24	Х	350/398~(88%)	345 (99%)	5 (1%)	0	100	100
25	Y	147/395~(37%)	145 (99%)	2 (1%)	0	100	100
26	Z	98/106~(92%)	94 (96%)	4 (4%)	0	100	100
27	D	335/430~(78%)	323 (96%)	12 (4%)	0	100	100
28	G	314/396~(79%)	302 (96%)	12 (4%)	0	100	100
29	V	358/414 (86%)	350 (98%)	8 (2%)	0	100	100
30	4	584/689~(85%)	563 (96%)	21 (4%)	0	100	100
All	All	5530/7184 (77%)	5362 (97%)	166 (3%)	2 (0%)	100	100

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
10	Ι	184	ASN
9	Н	126	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	0	188/190~(99%)	186 (99%)	2(1%)	73	84
2	1	254/291~(87%)	253~(100%)	1 (0%)	91	94
3	3	65/166~(39%)	65~(100%)	0	100	100
5	В	198/249~(80%)	198 (100%)	0	100	100
6	С	115/143~(80%)	115 (100%)	0	100	100
7	Е	104/107~(97%)	103 (99%)	1 (1%)	76	86
8	F	185/209~(88%)	185 (100%)	0	100	100
9	Н	130/180~(72%)	130 (100%)	0	100	100
10	Ι	105/147~(71%)	105 (100%)	0	100	100
11	J	93/118 (79%)	93 (100%)	0	100	100
12	K	91/113 (80%)	91 (100%)	0	100	100
13	L	158/226 (70%)	158 (100%)	0	100	100
14	М	97/113~(86%)	97 (100%)	0	100	100
15	Ν	96/115 (84%)	96 (100%)	0	100	100
16	О	175/230~(76%)	175 (100%)	0	100	100
17	Р	88/123 (72%)	88 (100%)	0	100	100
18	Q	78/78~(100%)	78 (100%)	0	100	100
19	R	264/318~(83%)	264 (100%)	0	100	100
20	S	116/164~(71%)	116 (100%)	0	100	100
21	Т	153/157~(98%)	153 (100%)	0	100	100
22	U	152/174~(87%)	152 (100%)	0	100	100
23	W	87/158~(55%)	87 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
24	Х	311/351~(89%)	310 (100%)	1 (0%)	92	94
25	Y	137/357~(38%)	137~(100%)	0	100	100
26	Z	90/95~(95%)	90 (100%)	0	100	100
27	D	282/357~(79%)	280~(99%)	2(1%)	84	90
28	G	281/342~(82%)	280 (100%)	1 (0%)	91	94
29	V	325/364~(89%)	324 (100%)	1 (0%)	92	94
30	4	526/609~(86%)	524 (100%)	2~(0%)	91	94
All	All	4944/6244 (79%)	4933 (100%)	11 (0%)	93	96

Continued from previous page...

5 of 11 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
28	G	389	ARG
29	V	226	TYR
30	4	577	ASN
30	4	486	TYR
24	Х	81	HIS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	Res	Type
24	Х	140	HIS
28	G	51	HIS
29	V	38	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
4	A	951/955~(99%)	281 (29%)	11 (1%)

5 of 281 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
4	А	649	А
4	А	657	G
4	А	676	G
4	А	680	U

Continued from previous page...

Mol	Chain	Res	Type
4	А	688	А

5 of 11 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
4	А	1512	А
4	А	1531	С
4	А	1557	А
4	А	1532	С
4	А	1342	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

6 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tiple	Bo	ond leng	$_{\rm sths}$	B	ond ang	gles
	туре	Unann	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	B8T	А	1486	4	19,22,23	0.89	2 (10%)	26,31,34	0.99	1 (3%)
4	MA6	А	1584	4	18,26,27	1.07	2 (11%)	19,38,41	1.33	2 (10%)
18	AYA	Q	2	18	6,7,8	1.40	1 (16%)	5,8,10	1.15	0
4	5MU	А	1076	4	19,22,23	1.13	3 (15%)	28,32,35	2.16	8 (28%)
4	MA6	А	1583	4	18,26,27	1.07	2 (11%)	19,38,41	1.39	2 (10%)
4	5MC	А	1488	4	18,22,23	1.22	2 (11%)	26,32,35	1.91	8 (30%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	B8T	А	1486	4	-	0/7/27/28	0/2/2/2
4	MA6	А	1584	4	-	1/7/29/30	0/3/3/3
18	AYA	Q	2	18	-	1/4/6/8	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings					
4	5MU	А	1076	4	-	0/7/25/26	0/2/2/2					
4	MA6	А	1583	4	-	0/7/29/30	0/3/3/3					
4	5MC	А	1488	4	-	0/7/25/26	0/2/2/2					

Continued from previous page...

The worst 5 of 12 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
18	Q	2	AYA	CA-N	-2.95	1.43	1.46
4	А	1583	MA6	C8-N7	-2.89	1.29	1.34
4	А	1584	MA6	C8-N7	-2.80	1.29	1.34
4	А	1076	5MU	C4-C5	-2.69	1.40	1.44
4	А	1488	5MC	C2-N1	-2.65	1.34	1.40

The worst 5 of 21 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	А	1076	5MU	C4-N3-C2	-5.66	120.03	127.35
4	А	1583	MA6	N3-C2-N1	-4.75	121.25	128.68
4	А	1076	5MU	N3-C2-N1	4.66	121.07	114.89
4	А	1584	MA6	N3-C2-N1	-4.64	121.42	128.68
4	А	1076	5MU	C5-C4-N3	4.39	119.06	115.31

There are no chirality outliers.

All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
18	Q	2	AYA	C-CA-N-CT
4	А	1584	MA6	C4'-C5'-O5'-P

There are no ring outliers.

3 monomers are involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	А	1584	MA6	4	0
4	А	1583	MA6	3	0
4	А	1488	5MC	1	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 74 ligands modelled in this entry, 67 are monoatomic - leaving 7 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	Bond lengths			Bond angles		
IVIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
33	SPM	А	1702	-	$13,\!13,\!13$	0.16	0	$12,\!12,\!12$	1.15	0	
32	NAD	А	1701	31	42,48,48	1.10	5 (11%)	50,73,73	1.24	5 (10%)	
37	FES	Т	201	21,14	0,4,4	-	-	-			
38	ATP	Х	402	31	26,33,33	0.90	1 (3%)	$31,\!52,\!52$	1.36	5 (16%)	
34	SRY	А	1703	-	40,42,42	0.78	2 (5%)	49,63,63	1.33	6 (12%)	
37	FES	Р	201	7,17	0,4,4	-	-	-			
39	GNP	Х	403	-	29,34,34	1.59	7 (24%)	33,54,54	2.25	6 (18%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
33	SPM	А	1702	-	-	0/11/11/11	-
32	NAD	А	1701	31	-	0/26/62/62	0/5/5/5
38	ATP	Х	402	31	-	0/18/38/38	0/3/3/3
37	FES	Т	201	21,14	-	-	0/1/1/1
34	SRY	А	1703	-	-	1/20/87/87	0/3/3/3
37	FES	Р	201	7,17	-	-	0/1/1/1
39	GNP	Х	403	-	-	5/14/38/38	0/3/3/3

The worst 5 of 15 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
39	Х	403	GNP	PB-O3A	4.24	1.64	1.59
39	Х	403	GNP	C6-N1	3.06	1.38	1.33
39	Х	403	GNP	PB-O1B	3.02	1.50	1.46
34	А	1703	SRY	CD1-N31	2.91	1.38	1.33
39	Х	403	GNP	PG-N3B	2.90	1.70	1.63

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
39	Х	403	GNP	C5-C6-N1	-8.42	111.91	123.43
39	Х	403	GNP	C2-N1-C6	5.84	125.21	115.93
34	А	1703	SRY	C12-O42-C42	-4.60	101.14	108.38
32	А	1701	NAD	N3A-C2A-N1A	-4.19	122.13	128.68
38	Х	402	ATP	N3-C2-N1	-3.66	122.95	128.68

The worst 5 of 22 bond angle outliers are listed below:

There are no chirality outliers.

5 of 6 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
39	Х	403	GNP	PG-N3B-PB-O3A
39	Х	403	GNP	PA-O3A-PB-O1B
39	Х	403	GNP	PA-O3A-PB-O2B
39	Х	403	GNP	PG-N3B-PB-O1B
34	А	1703	SRY	C13-C23-N23-CI3

There are no ring outliers.

3 monomers are involved in 22 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
33	А	1702	SPM	4	0
32	А	1701	NAD	7	0
34	А	1703	SRY	11	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-18438. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

Z Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 272

Z Index: 239

6.3.2 Raw map

X Index: 0

Y Index: 0

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.15. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

emd_18438_msk_1.map (i) 6.6.1

Х

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 732 $\rm nm^3;$ this corresponds to an approximate mass of 661 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.149 $\rm \AA^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.149 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{A}})$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	6.69	-	-	
Author-provided FSC curve	6.75	9.00	6.91	
Unmasked-calculated*	9.64	13.02	9.88	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 9.64 differs from the reported value 6.69 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-18438 and PDB model 8QRK. Per-residue inclusion information can be found in section 3 on page 13.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.15 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.15).

9.4 Atom inclusion (i)

At the recommended contour level, 78% of all backbone atoms, 66% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.15) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.6630	0.1360
0	0.6630	0.1280
1	0.5120	0.1300
3	0.5910	0.1230
4	0.2530	0.0700
А	0.8470	0.1700
В	0.7230	0.1370
С	0.6420	0.1050
D	0.6290	0.1410
Е	0.5830	0.0950
F	0.4670	0.1020
G	0.5920	0.1230
Н	0.5820	0.1190
Ι	0.6830	0.1110
J	0.6920	0.1420
K	0.6840	0.1030
L	0.6500	0.1250
М	0.7590	0.1380
N	0.7270	0.1270
0	0.7880	0.1690
Р	0.7100	0.1110
Q	0.6360	0.1360
R	0.7510	0.1590
S	0.6810	0.1400
Т	0.6770	0.1560
U	0.6790	0.1460
V	0.4930	0.0890
W	0.7550	0.1570
X	0.4200	0.1000
Y	0.4670	0.1310
Z	0.6010	0.1150

