wwPDB X-ray Structure Validation Summary Report (i) #### Sep 2, 2023 – 12:31 PM EDT PDB ID : 3R1C Title : Crystal structure of GCGGCGGC duplex Authors: Kiliszek, A.; Kierzek, R.; Krzyzosiak, W.J.; Rypniewski, W. Deposited on : 2011-03-10 Resolution : 2.05 Å(reported) This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry. We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol. The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types. The following versions of software and data (see references (1)) were used in the production of this report: MolProbity : 4.02b-467 Mogul: 1.8.5 (274361), CSD as541be (2020) Xtriage (Phenix) : 1.13 EDS : 2.35 Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019) $Refmac \quad : \quad 5.8.0158$ CCP4 : 7.0.044 (Gargrove) Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.35 # 1 Overall quality at a glance (i) The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION The reported resolution of this entry is 2.05 Å. Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based. | Metric | Whole archive | Similar resolution | |---------------|-------------------------|--| | Metric | $(\# \mathrm{Entries})$ | $(\# ext{Entries}, ext{ resolution range}(ext{Å}))$ | | R_{free} | 130704 | 2684 (2.08-2.04) | | RSRZ outliers | 127900 | 2646 (2.08-2.04) | | RNA backbone | 3102 | 1015 (2.52-1.60) | The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar. | Mol | Chain | Length | Quality of chain | |-----|-------|--------|------------------| | 1 | A | 8 | 100% | | 1 | В | 8 | 100% | | 1 | С | 8 | 100% | | 1 | D | 8 | 88% 12% | | 1 | Е | 8 | 100% | | 1 | F | 8 | 100% | | 1 | G | 8 | 100% | | 1 | Н | 8 | 100% | Continued from previous page... | Mol | Chain | Length | Quality of chain | |-----|-------|--------|------------------| | 1 | I | 8 | 100% | | 1 | J | 8 | 100% | | 1 | K | 8 | 88% 12% | | 1 | L | 8 | 100% | | 1 | M | 8 | 100% | | 1 | N | 8 | 100% | | 1 | О | 8 | 100% | | 1 | Р | 8 | 100% | | 1 | Q | 8 | 88% 12% | | 1 | R | 8 | 100% | | 1 | S | 8 | 100% | | 1 | T | 8 | | | | | | 100% | | 1 | U | 8 | 100% | | 1 | V | 8 | 100% | | 1 | W | 8 | 100% | | 1 | X | 8 | 100% | | 1 | Y | 8 | 100% | | 1 | Z | 8 | 100% | | 1 | a | 8 | 100% | | 1 | b | 8 | 100% | | 1 | С | 8 | 100% | | 1 | d | 8 | 100% | | 1 | е | 8 | 100% | | 1 | f | 8 | 100% | | 1 | g | 8 | 100% | Continued from previous page... | Mol | Chain | Length | Quality of chain | | |-----|-------|--------|------------------|--------------| | 1 | h | 8 | 88% 120 | % | | 1 | i | 8 | 100% | | | 1 | j | 8 | 100% | | # 2 Entry composition (i) There are 3 unique types of molecules in this entry. The entry contains 6865 atoms, of which 0 are hydrogens and 0 are deuteriums. In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms. • Molecule 1 is a RNA chain called RNA (5'-R(*GP*CP*GP*GP*CP*GP*CP*GP*C)-3'). | Mol | Chain | Residues | | Ato | oms | | | ZeroOcc | AltConf | Trace | |-----|----------|----------|-------|--------------|-----|----|---|---------|------------|-------| | 1 | ٨ | 0 | Total | С | N | О | Р | 0 | 0 | 0 | | 1 | A | 8 | 172 | 77 | 34 | 54 | 7 | 0 | 0 | 0 | | 1 | В | 8 | Total | С | N | О | Р | 0 | 0 | 0 | | 1 | D | \circ | 172 | 77 | 34 | 54 | 7 | 0 | 0 | 0 | | 1 | С | 8 | Total | С | N | О | Р | 0 | 0 | 0 | | 1 | C | 0 | 172 | 77 | 34 | 54 | 7 | 0 | 0 | 0 | | 1 | D | 8 | Total | С | N | О | Р | 0 | 0 | 0 | | 1 | D | 8 | 172 | 77 | 34 | 54 | 7 | 0 | U | | | 1 | E | 8 | Total | С | N | Ο | Р | 0 | 0 | 0 | | | | Ü | 172 | 77 | 34 | 54 | 7 | 0 | 0 | | | 1 | F | 8 | Total | С | N | Ο | Р | 0 | 0 | 0 | | | <u>.</u> | Ü | 172 | 77 | 34 | 54 | 7 | 0 | O | 0 | | 1 | G | 8 | Total | С | N | Ο | Р | 0 | 1 | 0 | | | | Ü | 195 | 87 | 39 | 61 | 8 | Ü | 1 | | | 1 | Н | 8 | Total | С | N | Ο | Р | 0 | 1 | 0 | | | 11 | | 195 | 87 | 39 | 61 | 8 | 0 | 1 | 0 | | 1 | I | 8 | Total | С | N | Ο | Р | 0 | 0 | 0 | | | 1 | Ŭ | 172 | 77 | 34 | 54 | 7 | | 0 | 0 | | 1 | J | 8 | Total | С | N | О | Р | 0 | 0 | 0 | | | | Ü | 172 | 77 | 34 | 54 | 7 | 0 | 0 | 0 | | 1 | K | 8 | Total | С | N | О | Р | 0 | 0 | 0 | | | 11 | Ü | 172 | 77 | 34 | 54 | 7 | 0 | 0 | 0 | | 1 | L | 8 | Total | С | N | О | Р | 0 | 0 | 0 | | | | Ü | 172 | 77 | 34 | 54 | 7 | Ů, | 0 | 0 | | 1 | M | 8 | Total | С | N | Ο | Р | 0 | 0 | 0 | | | 171 | Ü | 172 | 77 | 34 | 54 | 7 | 0 | · · | 0 | | 1 | N | 8 | Total | \mathbf{C} | N | Ο | Р | 0 | 0 | 0 | | | | Ű | 172 | 77 | 34 | 54 | 7 | | | | | 1 | O | 8 | Total | С | N | Ο | Р | 0 | 0 | 0 | | | | Ű | 172 | 77 | 34 | 54 | 7 | | | | | 1 | Р | 8 | Total | С | N | Ο | Р | 0 | 0 | 0 | | _ | * | Ű | 172 | 77 | 34 | 54 | 7 | | and on nom | | $Continued\ from\ previous\ page...$ | Mol | Chain | Residues | | At | oms | | | ZeroOcc | AltConf | Trace | |-----|-------|----------|--------------|--------------------|----------------|-------------------|-------------------|---------|---------|----------| | 1 | | | Total | С | N | О | Р | 0 | 0 | 0 | | 1 | Q | 8 | 172 | 77 | 34 | 54 | 7 | 0 | 0 | 0 | | 1 | R | 8 | Total | С | N | О | Р | 0 | 0 | 0 | | 1 | п | 0 | 172 | 77 | 34 | 54 | 7 | 0 | U | U | | 1 | S | 8 | Total | С | N | О | Р | 0 | 0 | 0 | | 1 | b | 0 | 172 | 77 | 34 | 54 | 7 | 0 | U | U | | 1 | Y | 8 | Total | С | N | О | Р | 0 | 0 | 0 | | 1 | 1 | 0 | 172 | 77 | 34 | 54 | 7 | 0 | U | U | | 1 | Т | 8 | Total | С | N | О | Р | 0 | 0 | 0 | | 1 | 1 | | 172 | 77 | 34 | 54 | 7 | 0 | U | U | | 1 | U | 8 | Total | С | Ν | Ο | Р | 0 | 0 | 0 | | | | | 172 | 77 | 34 | 54 | 7 | Ü | | <u> </u> | | 1 | W | 8 | Total | С | N | Ο | Р | 0 | 0 | 0 | | | , , | | 172 | 77 | 34 | 54 | 7 | | Ů | | | 1 | X | 8 | Total | С | N | 0 | Р | 0 | 0 | 0 | | | | _ | 172 | 77 | 34 | 54 | 7 | | _ | _ | | 1 | V | 8 | Total | С | N | O | Р | 0 | 0 | 0 | | | | | 172 | 77 | 34 | 54 | 7 | | | | | 1 | Z | 8 | Total | С | N | 0 | Р | 0 | 0 | 0 | | | | | 172 | 77 | 34 | 54 | 7 | | | | | 1 | a | 8 | Total | С | N | 0 | P | 0 | 0 | 0 | | | | | 172 | 77 | 34 | 54 | 7 | | | | | 1 | b | 8 | Total | C 77 | N | 0 | P | 0 | 0 | 0 | | | | | 172 | 77 | 34 | 54 | 7 | | | | | 1 | c | 8 | Total | C 77 | N | O | P | 0 | 0 | 0 | | | | | 172 | 77 | 34
N | 54
O | 7
P | | | | | 1 | d | 8 | Total | C 77 | | _ | | 0 | 0 | 0 | | | | | Total | 77
C | 34
N | 54
O | 7
P | | | | | 1 | е | 8 | Total
172 | 77 | 34 | 54 | | 0 | 0 | 0 | | | | | Total | $\frac{r}{C}$ | N 34 | 0 | P | | | | | 1 | f | 8 | 172 | 77 | 34 | 54 | 7 | 0 | 0 | 0 | | | | | Total | $\frac{11}{C}$ | N | 0 | P | | | | | 1 | g | 8 | 215 | 96 | 42 | 68 | г
9 | 0 | 2 | 0 | | | | | Total | - 90
C | 142
N | 00 | 9
Р | | | | | 1 | h | 8 | 195 | 87 | 39 | 61 | 8 | 0 | 1 | 0 | | | | | Total | C | $\frac{39}{N}$ | 01 | - О | | | | | 1 | i | 8 | 172 | 77 | 34 | 54 | 7 | 0 | 0 | 0 | | | | | Total | $\frac{\Gamma}{C}$ | N | 0 | P | | | | | 1 | j | 8 | 172 | 77 | 34 | 54 | 7 | 0 | 0 | 0 | | | | | 114 | - ' ' | 01 | <i>0</i> T | • | | | | \bullet Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: $\mathrm{O_4S}).$ | Mol | Chain | Residues | Atoms | | | ZeroOcc | AltConf | | |-----|-------|----------|-------|---|---|---------|---------|--| | 2 | S | 1 | Total | О | S | 0 | 0 | | | | S | 1 | 5 | 4 | 1 | U | U | | | 2 | W | 1 | Total | О | S | 0 | 1 | | | | VV | 1 | 5 | 4 | 1 | 0 | 1 | | | 2 | X | 1 | Total | О | S | 0 | 0 | | | | Λ | 1 | 5 | 4 | 1 | 0 | U | | | 2 | b | 1 | Total | О | S | 0 | 1 | | | | D | 1 | 5 | 4 | 1 | 0 | 1 | | | 2 | c | 1 | Total | О | S | 0 | 1 | | | | | 1 | 5 | 4 | 1 | 0 | 1 | | | 2 | d | 1 | Total | О | S | 0 | 0 | | | | u | 1 | 5 | 4 | 1 | | U | | | 2 | e | 1 | Total | О | S | 0 | 0 | | | | е | 1 | 5 | 4 | 1 | 0 | U | | ### • Molecule 3 is water. | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | |-----|-------|----------|------------------|---------|---------| | 3 | A | 21 | Total O
21 21 | 0 | 0 | | 3 | В | 19 | Total O
19 19 | 0 | 0 | | 3 | С | 19 | Total O
19 19 | 0 | 0 | | 3 | D | 13 | Total O
13 13 | 0 | 0 | | 3 | E | 20 | Total O
20 20 | 0 | 0 | Continued from previous page... | Mol | | $oxed{ \mathbf{Residues} \ } pa$ | Atoms | ZeroOcc | AltConf | |-----|---|----------------------------------|--------------------|---------|---------| | 3 | F | 13 | Total O
13 13 | 0 | 0 | | 3 | G | 18 | Total O
18 18 | 0 | 0 | | 3 | Н | 10 | Total O
10 10 | 0 | 1 | | 3 | I | 29 | Total O
29 29 | 0 | 0 | | 3 | J | 28 | Total O
28 28 | 0 | 0 | | 3 | K | 29 | Total O
29 29 | 0 | 0 | | 3 | L | 26 | Total O
26 26 | 0 | 0 | | 3 | M | 17 | Total O
17 17 | 0 | 0 | | 3 | N | 6 | Total O
6 6 | 0 | 0 | | 3 | О | 12 | Total O
12 12 | 0 | 0 | | 3 | Р | 12 | Total O
12 12 | 0 | 0 | | 3 | Q | 23 | Total O 23 23 | 0 | 0 | | 3 | R | 15 | Total O
15 15 | 0 | 0 | | 3 | S | 2 | Total O 2 2 | 0 | 0 | | 3 | Y | 3 | Total O | 0 | 0 | | 3 | Т | 10 | Total O 10 Total O | 0 | 0 | | 3 | U | 19 | Total O
19 19 | 0 | 0 | | 3 | W | 11 | Total O 11 11 | 0 | 0 | | 3 | X | 18 | Total O | 0 | 1 | | 3 | V | 4 | Total O 4 4 | 0 | 0 | | 3 | Z | 8 | Total O
8 8 | 0 | 0 | Continued from previous page... | Mol | Chain | Residues | Atoms | ZeroOcc | AltConf | |-----|-------|----------|------------------|---------|---------| | 3 | a | 3 | Total O
3 3 | 0 | 0 | | 3 | b | 4 | Total O
4 4 | 0 | 0 | | 3 | c | 13 | Total O
13 13 | 0 | 0 | | 3 | d | 14 | Total O
14 14 | 0 | 0 | | 3 | е | 22 | Total O
22 22 | 0 | 0 | | 3 | f | 17 | Total O
17 17 | 0 | 0 | | 3 | g | 9 | Total O
9 9 | 0 | 0 | | 3 | h | 10 | Total O
10 10 | 0 | 0 | | 3 | i | 17 | Total O
18 18 | 0 | 1 | | 3 | j | 10 | Total O
10 10 | 0 | 0 | # 3 Residue-property plots (i) These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey. | Till olio ballip | ble, but not in the model, are shown in grey. | | |---|--|-----| | • Molecule | 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | | | C1 : A - | | | | Chain A: | 100% | | | There are n | o outlier residues recorded for this chain. | | | • Molecule | 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | | | Chain B: | 100% | | | There are n | o outlier residues recorded for this chain. | | | • Molecule | 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | | | Chain C: | 100% | | | There are n | o outlier residues recorded for this chain. | | | • Molecule | 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | | | | | | | Chain D: | 88% | 12% | | Chain D: | 88% | 12% | | 01
06
07
07
08 | 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | 12% | | 01
06
07
07
08 | | 12% | | • Molecule Chain E: | 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | 12% | | • Molecule Chain E: There are n | 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | 12% | | • Molecule Chain E: There are n | 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') 100% 1000 outlier residues recorded for this chain. | 12% | | • Molecule Chain E: There are n • Molecule Chain F: | 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') 100% 1000 outlier residues recorded for this chain. 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | 12% | | • Molecule Chain E: There are n • Molecule Chain F: There are n | 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') 100% 1000 1000 1000 11: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | 12% | | • Molecule Chain E: There are n • Molecule Chain F: There are n | 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') 100% 10 outlier residues recorded for this chain. 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') 100% 100% 100% 100% 100% | 12% | | There are no outlier residues recorded for this chain. • Molecule 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | | |--|------| | Chain H: 100% | | | There are no outlier residues recorded for this chain. | | | | | | Chain I: | | | There are no outlier residues recorded for this chain. | | | • Molecule 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*C)-3') | | | | | | Chain J: 100% | | | There are no outlier residues recorded for this chain. | | | | | | Chain K: | 12% | | Chair IX. 66% | 1270 | | <mark>8 8 8</mark> | | | • Molecule 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | | | | | | Chain L: 100% | | | There are no outlier residues recorded for this chain. | | | | | | Chain M: | | | | | | There are no outlier residues recorded for this chain. | | | • Molecule 1: RNA $(5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3')$ | | | | | | Chain N: 100% | | | Chain N: 100% There are no outlier residues recorded for this chain. | | | | | | There are no outlier residues recorded for this chain. | | There are no outlier residues recorded for this chain. \bullet Molecule 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | Chain P: | 100% | | |--|-------------------------------|-----| | There are no outlier resid | lues recorded for this chain. | | | • Molecule 1: RNA (5'-R | (*GP*CP*GP*GP*CP*GP*C)-3') | | | Chain Q: | 88% | 12% | | | | | | 88 88 88 88 88 88 88 88 88 88 88 88 88 | | | | • Molecule 1: RNA (5'-R | (*GP*CP*GP*GP*CP*GP*C)-3') | | | Chain R: | 100% | | | There are no outlier resid | lues recorded for this chain. | | | | (*GP*CP*GP*GP*CP*GP*C)-3') | | | Chain S: | 100% | | | There are no outlier resid | lues recorded for this chain. | | | • Molecule 1: RNA (5'-R | (*GP*CP*GP*GP*CP*GP*C)-3') | | | Chain Y: | 100% | | | There are no outlier resid | lues recorded for this chain. | | | • Molecule 1: RNA (5'-R | (*GP*CP*GP*GP*CP*GP*C)-3') | | | Chain T: | 100% | | | There are no outlier resid | lues recorded for this chain. | | | • Molecule 1: RNA (5'-R | (*GP*CP*GP*GP*CP*GP*C)-3') | | | Chain U: | 100% | | | There are no outlier resid | lues recorded for this chain. | | | • Molecule 1: RNA (5'-R | (*GP*CP*GP*GP*CP*GP*C)-3') | | | Chain W: | 100% | | | There are no outlier resid | lues recorded for this chain. | | | • Molecule 1: RNA (5'-R | (*GP*CP*GP*GP*CP*GP*C)-3') | | | Chain X: | 100% | | | There are no outlier resid | lues recorded for this chain. | | | • Molecule 1 | : RNA (5'-R(*GP*CP*GP*GP*CP*GP*C)-3') | |--------------|--| | Chain V: | 100% | | There are no | outlier residues recorded for this chain. | | • Molecule 1 | : RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | | Chain Z: | 100% | | There are no | outlier residues recorded for this chain. | | • Molecule 1 | : RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') | | Chain a: | 100% | | There are no | outlier residues recorded for this chain. | | • Molecule 1 | : RNA (5'-R(*GP*CP*GP*GP*CP*GP*C)-3') | | Chain b: | 100% | | There are no | outlier residues recorded for this chain. | | • Molecule 1 | : RNA $(5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3')$ | | Chain c: | 100% | | There are no | outlier residues recorded for this chain. | | • Molecule 1 | : RNA $(5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3')$ | | Chain d: | 100% | | There are no | outlier residues recorded for this chain. | | • Molecule 1 | : RNA (5'-R(*GP*CP*GP*GP*CP*GP*C)-3') | | Chain e: | 100% | | There are no | outlier residues recorded for this chain. | | • Molecule 1 | : RNA (5'-R(*GP*CP*GP*GP*CP*GP*C)-3') | | Chain f: | 100% | | There are no | outlier residues recorded for this chain. | | • Molecule 1 | : RNA (5'-R(*GP*CP*GP*GP*CP*GP*C)-3') | | Chain g: | 100% | | There are no | outlier residues recorded for this chain. | | • Molecule 1: RNA | (5'-R(*GP*CP*GP*GP*CP*GP*C)-3') | | |-------------------|---------------------------------|-----| | Chain h: | 88% | 12% | | 9 | | | | • Molecule 1: RNA | (5'-R(*GP*CP*GP*GP*CP*GP*C)-3') | | | Chain i: | 100% | | There are no outlier residues recorded for this chain. \bullet Molecule 1: RNA (5'-R(*GP*CP*GP*GP*CP*GP*GP*C)-3') Chain j: 100% There are no outlier residues recorded for this chain. # 4 Data and refinement statistics (i) | Property | Value | Source | |--|---|-----------| | Space group | P 1 | Depositor | | Cell constants | 39.70Å 76.89Å 85.40Å | D | | a, b, c, α , β , γ | 89.98° 88.61° 77.29° | Depositor | | Resolution (Å) | 19.36 - 2.05 | Depositor | | Resolution (A) | 19.83 - 2.05 | EDS | | % Data completeness | 97.7 (19.36-2.05) | Depositor | | (in resolution range) | 98.1 (19.83-2.05) | EDS | | R_{merge} | (Not available) | Depositor | | R_{sum} | 0.09 | Depositor | | $< I/\sigma(I) > 1$ | 3.12 (at 2.06Å) | Xtriage | | Refinement program | PHENIX | Depositor | | рρ. | 0.216 , 0.257 | Depositor | | R, R_{free} | 0.204 , 0.246 | DCC | | R_{free} test set | 3052 reflections (5.06%) | wwPDB-VP | | Wilson B-factor (Å ²) | 28.5 | Xtriage | | Anisotropy | 0.078 | Xtriage | | Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$ | 0.32, 48.1 | EDS | | L-test for twinning ² | $< L >=0.52, < L^2>=0.35$ | Xtriage | | | 0.000 for h,h-k,-l | | | Estimated twinning fraction | 0.000 for -h,-k,l | Xtriage | | | 0.000 for -h,-h+k,-l | | | F_o, F_c correlation | 0.96 | EDS | | Total number of atoms | 6865 | wwPDB-VP | | Average B, all atoms (Å ²) | 26.0 | wwPDB-VP | Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 69.39 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 3.7299e-06. The detected translational NCS is most likely also responsible for the elevated intensity ratio. ²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets. ¹Intensities estimated from amplitudes. # 5 Model quality (i) ## 5.1 Standard geometry (i) Bond lengths and bond angles in the following residue types are not validated in this section: SO4 The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles). | Mol | Clasia. | Bond | lengths | Bond angles | | | |------|---------|------|----------|-------------|--------------|--| | MIOI | Chain | RMSZ | # Z > 5 | RMSZ | # Z > 5 | | | 1 | A | 0.60 | 0/192 | 1.14 | 0/299 | | | 1 | В | 0.61 | 0/192 | 1.17 | 0/299 | | | 1 | С | 0.51 | 0/192 | 1.07 | 0/299 | | | 1 | D | 0.60 | 0/192 | 1.14 | 1/299 (0.3%) | | | 1 | Е | 0.61 | 0/192 | 1.13 | 0/299 | | | 1 | F | 0.62 | 0/192 | 1.25 | 0/299 | | | 1 | G | 0.58 | 0/218 | 1.18 | 0/340 | | | 1 | Н | 0.46 | 0/218 | 1.04 | 0/340 | | | 1 | I | 0.66 | 0/192 | 1.18 | 0/299 | | | 1 | J | 0.64 | 0/192 | 1.08 | 0/299 | | | 1 | K | 0.70 | 0/192 | 1.26 | 1/299 (0.3%) | | | 1 | L | 0.63 | 0/192 | 1.06 | 0/299 | | | 1 | M | 0.57 | 0/192 | 1.22 | 0/299 | | | 1 | N | 0.55 | 0/192 | 1.13 | 0/299 | | | 1 | О | 0.57 | 0/192 | 1.07 | 0/299 | | | 1 | Р | 0.60 | 0/192 | 1.19 | 0/299 | | | 1 | Q | 0.61 | 0/192 | 1.18 | 1/299~(0.3%) | | | 1 | R | 0.62 | 0/192 | 1.06 | 0/299 | | | 1 | S | 0.49 | 0/192 | 0.96 | 0/299 | | | 1 | Т | 0.51 | 0/192 | 1.12 | 0/299 | | | 1 | U | 0.57 | 0/192 | 1.20 | 0/299 | | | 1 | V | 0.49 | 0/192 | 1.04 | 0/299 | | | 1 | W | 0.55 | 0/192 | 1.15 | 0/299 | | | 1 | X | 0.57 | 0/192 | 1.12 | 0/299 | | | 1 | Y | 0.49 | 0/192 | 1.05 | 0/299 | | | 1 | Z | 0.49 | 0/192 | 1.07 | 0/299 | | | 1 | a | 0.45 | 0/192 | 1.09 | 0/299 | | | 1 | b | 0.47 | 0/192 | 0.95 | 0/299 | | | 1 | С | 0.50 | 0/192 | 1.12 | 0/299 | | | 1 | d | 0.60 | 0/192 | 1.14 | 0/299 | | | 1 | е | 0.59 | 0/192 | 1.17 | 0/299 | | | 1 | f | 0.56 | 0/192 | 1.07 | 0/299 | | | Mol | Chain | Bond | lengths | Bond angles | | | |-------|-------|------|----------|-------------|----------------|--| | IVIOI | Chain | RMSZ | # Z > 5 | RMSZ | # Z > 5 | | | 1 | g | 0.56 | 0/240 | 1.04 | 0/374 | | | 1 | h | 0.60 | 0/218 | 1.12 | 1/340~(0.3%) | | | 1 | i | 0.64 | 0/192 | 1.08 | 0/299 | | | 1 | j | 0.56 | 0/192 | 1.02 | 0/299 | | | All | All | 0.57 | 0/7038 | 1.11 | 4/10962~(0.0%) | | There are no bond length outliers. All (4) bond angle outliers are listed below: | Mol | Chain | Res | Type | Atoms | ${f Z}$ | $Observed(^o)$ | $\operatorname{Ideal}({}^o)$ | |-----|-------|-----|------|------------|---------|----------------|------------------------------| | 1 | K | 3 | G | O4'-C1'-N9 | 6.59 | 113.47 | 108.20 | | 1 | Q | 6 | G | O4'-C1'-N9 | 5.62 | 112.70 | 108.20 | | 1 | D | 6 | G | O4'-C1'-N9 | 5.32 | 112.45 | 108.20 | | 1 | h | 6 | G | O4'-C1'-N9 | 5.04 | 112.23 | 108.20 | There are no chirality outliers. There are no planarity outliers. ## 5.2 Too-close contacts (i) Due to software issues we are unable to calculate clashes - this section is therefore empty. ## 5.3 Torsion angles (i) ### 5.3.1 Protein backbone (i) There are no protein molecules in this entry. ## 5.3.2 Protein sidechains (i) There are no protein molecules in this entry. #### 5.3.3 RNA (i) | Mol | Chain | Analysed | Backbone Outliers | Pucker Outliers | |-----|-------|-----------|-------------------|-----------------| | 1 | A | 7/8 (87%) | 0 | 0 | | 1 | В | 7/8 (87%) | 0 | 0 | | 1 | С | 7/8 (87%) | 0 | 0 | Continued from previous page... | Mol | Chain | Analysed | Backbone Outliers | Pucker Outliers | |-----|-------|---------------|-------------------|-----------------| | 1 | D | 7/8 (87%) | 0 | 0 | | 1 | Е | 7/8 (87%) | 0 | 0 | | 1 | F | 7/8 (87%) | 0 | 0 | | 1 | G | 6/8 (75%) | 0 | 0 | | 1 | Н | 6/8 (75%) | 0 | 0 | | 1 | I | 7/8 (87%) | 0 | 0 | | 1 | J | 7/8 (87%) | 0 | 0 | | 1 | K | 7/8 (87%) | 0 | 0 | | 1 | L | 7/8 (87%) | 0 | 0 | | 1 | M | 7/8 (87%) | 0 | 0 | | 1 | N | 7/8 (87%) | 0 | 0 | | 1 | О | 7/8 (87%) | 0 | 0 | | 1 | P | 7/8 (87%) | 0 | 0 | | 1 | Q | 7/8 (87%) | 0 | 0 | | 1 | R | 7/8 (87%) | 0 | 0 | | 1 | S | 7/8 (87%) | 0 | 0 | | 1 | Т | 7/8 (87%) | 0 | 0 | | 1 | U | 7/8 (87%) | 0 | 0 | | 1 | V | 7/8 (87%) | 0 | 0 | | 1 | W | 7/8 (87%) | 0 | 0 | | 1 | X | 7/8 (87%) | 0 | 0 | | 1 | Y | 7/8 (87%) | 0 | 0 | | 1 | Z | 7/8 (87%) | 0 | 0 | | 1 | a | 7/8 (87%) | 0 | 0 | | 1 | b | 7/8 (87%) | 0 | 0 | | 1 | c | 7/8 (87%) | 0 | 0 | | 1 | d | 7/8 (87%) | 0 | 0 | | 1 | е | 7/8 (87%) | 0 | 0 | | 1 | f | 7/8 (87%) | 0 | 0 | | 1 | g | 5/8 (62%) | 0 | 0 | | 1 | h | 6/8 (75%) | 0 | 0 | | 1 | i | 7/8 (87%) | 0 | 0 | | 1 | j | 7/8 (87%) | 0 | 0 | | All | All | 247/288 (85%) | 0 | 0 | There are no RNA backbone outliers to report. There are no RNA pucker outliers to report. ## 5.4 Non-standard residues in protein, DNA, RNA chains (i) There are no non-standard protein/DNA/RNA residues in this entry. ## 5.5 Carbohydrates (i) There are no monosaccharides in this entry. ### 5.6 Ligand geometry (i) 7 ligands are modelled in this entry. In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles). | Mol | Iol Type Chain Res | | | Tiple | В | ond leng | gths | В | ond ang | gles | |------|--------------------|-------|------|-------|--------|----------|----------|--------|---------|----------| | MIOI | Type | Chain | nes | Link | Counts | RMSZ | # Z > 2 | Counts | RMSZ | # Z > 2 | | 2 | SO4 | е | 9 | - | 4,4,4 | 0.16 | 0 | 6,6,6 | 0.12 | 0 | | 2 | SO4 | W | 9[A] | - | 4,4,4 | 0.17 | 0 | 6,6,6 | 0.12 | 0 | | 2 | SO4 | X | 9 | - | 4,4,4 | 0.12 | 0 | 6,6,6 | 0.07 | 0 | | 2 | SO4 | b | 9[A] | - | 4,4,4 | 0.15 | 0 | 6,6,6 | 0.07 | 0 | | 2 | SO4 | С | 9[A] | - | 4,4,4 | 0.14 | 0 | 6,6,6 | 0.13 | 0 | | 2 | SO4 | d | 9 | - | 4,4,4 | 0.12 | 0 | 6,6,6 | 0.11 | 0 | | 2 | SO4 | S | 9 | - | 4,4,4 | 0.13 | 0 | 6,6,6 | 0.07 | 0 | There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. No monomer is involved in short contacts. # 5.7 Other polymers (i) There are no such residues in this entry. ## 5.8 Polymer linkage issues (i) There are no chain breaks in this entry. # 6 Fit of model and data (i) ### 6.1 Protein, DNA and RNA chains (i) In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9. | Mol | Chain | Analysed | <rsrz></rsrz> | $\#\text{RSRZ}{>}2$ | | Z>2 | $OWAB(\AA^2)$ | Q<0.9 | |-----|-------|------------|---------------|---------------------|-----|-----|----------------|-------| | 1 | A | 8/8 (100%) | -0.61 | 0 | 100 | 100 | 17, 19, 22, 24 | 0 | | 1 | В | 8/8 (100%) | -0.71 | 0 | 100 | 100 | 17, 21, 23, 27 | 0 | | 1 | С | 8/8 (100%) | -0.38 | 0 | 100 | 100 | 20, 22, 41, 43 | 0 | | 1 | D | 8/8 (100%) | -0.40 | 0 | 100 | 100 | 26, 27, 27, 30 | 0 | | 1 | E | 8/8 (100%) | -0.67 | 0 | 100 | 100 | 17, 19, 24, 25 | 0 | | 1 | F | 8/8 (100%) | -0.61 | 0 | 100 | 100 | 17, 21, 25, 27 | 0 | | 1 | G | 8/8 (100%) | -0.38 | 0 | 100 | 100 | 23, 26, 27, 29 | 0 | | 1 | Н | 8/8 (100%) | -0.44 | 0 | 100 | 100 | 26, 27, 33, 34 | 0 | | 1 | I | 8/8 (100%) | -0.77 | 0 | 100 | 100 | 13, 14, 19, 19 | 0 | | 1 | J | 8/8~(100%) | -0.80 | 0 | 100 | 100 | 13, 15, 18, 18 | 0 | | 1 | K | 8/8~(100%) | -0.83 | 0 | 100 | 100 | 13, 14, 17, 19 | 0 | | 1 | L | 8/8 (100%) | -0.79 | 0 | 100 | 100 | 13, 15, 17, 17 | 0 | | 1 | M | 8/8~(100%) | -0.77 | 0 | 100 | 100 | 17, 18, 32, 34 | 0 | | 1 | N | 8/8 (100%) | -0.70 | 0 | 100 | 100 | 18, 31, 35, 41 | 0 | | 1 | О | 8/8 (100%) | -0.65 | 0 | 100 | 100 | 22, 25, 30, 35 | 0 | | 1 | Р | 8/8 (100%) | -0.59 | 0 | 100 | 100 | 21, 24, 38, 40 | 0 | | 1 | Q | 8/8~(100%) | -0.84 | 0 | 100 | 100 | 17, 18, 25, 26 | 0 | | 1 | R | 8/8~(100%) | -0.84 | 0 | 100 | 100 | 18, 24, 26, 31 | 0 | | 1 | S | 8/8 (100%) | -0.20 | 0 | 100 | 100 | 29, 43, 51, 52 | 0 | | 1 | Т | 8/8~(100%) | -0.73 | 0 | 100 | 100 | 19, 26, 32, 32 | 0 | | 1 | U | 8/8 (100%) | -0.77 | 0 | 100 | 100 | 20, 22, 27, 30 | 0 | | 1 | V | 8/8 (100%) | -0.23 | 0 | 100 | 100 | 32, 36, 38, 40 | 0 | | 1 | W | 8/8 (100%) | -0.76 | 0 | 100 | 100 | 22, 25, 25, 27 | 0 | | 1 | X | 8/8 (100%) | -0.89 | 0 | 100 | 100 | 22, 25, 30, 30 | 0 | Continued from previous page... | Mol | Chain | Analysed | <rsrz></rsrz> | # | #RSR | Z>2 | $OWAB(A^2)$ | Q < 0.9 | |-----|-------|----------------|---------------|---|------|-----|----------------|---------| | 1 | Y | 8/8 (100%) | 0.01 | 0 | 100 | 100 | 27, 46, 53, 53 | 0 | | 1 | Z | 8/8 (100%) | -0.63 | 0 | 100 | 100 | 29, 30, 32, 35 | 0 | | 1 | a | 8/8 (100%) | -0.16 | 0 | 100 | 100 | 25, 44, 47, 49 | 0 | | 1 | b | 8/8 (100%) | -0.48 | 0 | 100 | 100 | 26, 37, 44, 45 | 0 | | 1 | c | 8/8 (100%) | -0.75 | 0 | 100 | 100 | 21, 23, 26, 27 | 0 | | 1 | d | 8/8 (100%) | -0.82 | 0 | 100 | 100 | 20, 22, 28, 29 | 0 | | 1 | e | 8/8 (100%) | -0.70 | 0 | 100 | 100 | 24, 27, 28, 28 | 0 | | 1 | f | 8/8 (100%) | -0.80 | 0 | 100 | 100 | 24, 26, 32, 32 | 0 | | 1 | g | 8/8 (100%) | -0.48 | 0 | 100 | 100 | 22, 24, 30, 36 | 0 | | 1 | h | 8/8 (100%) | -0.50 | 0 | 100 | 100 | 21, 25, 37, 40 | 0 | | 1 | i | 8/8 (100%) | -0.58 | 0 | 100 | 100 | 22, 23, 27, 32 | 0 | | 1 | j | 8/8 (100%) | -0.60 | 0 | 100 | 100 | 23, 28, 30, 34 | 0 | | All | All | 288/288 (100%) | -0.61 | 0 | 100 | 100 | 13, 25, 44, 53 | 0 | There are no RSRZ outliers to report. ### 6.2 Non-standard residues in protein, DNA, RNA chains (i) There are no non-standard protein/DNA/RNA residues in this entry. ### 6.3 Carbohydrates (i) There are no monosaccharides in this entry. ### 6.4 Ligands (i) In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9. | Mol | Type | Chain | Res | Atoms | RSCC | RSR | $\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$ | Q<0.9 | |-----|------|-------|------|-------|------|------|--|-------| | 2 | SO4 | W | 9[A] | 5/5 | 0.75 | 0.29 | 37,40,60,61 | 5 | | 2 | SO4 | X | 9 | 5/5 | 0.81 | 0.27 | 33,38,45,47 | 5 | | 2 | SO4 | е | 9 | 5/5 | 0.83 | 0.26 | 31,46,57,62 | 5 | $Continued\ from\ previous\ page...$ | Mol | Type | Chain | Res | Atoms | RSCC | RSR | $\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$ | Q < 0.9 | |-----|------|-------|------|-------|------|------|--|---------| | 2 | SO4 | d | 9 | 5/5 | 0.85 | 0.33 | 42,46,59,65 | 5 | | 2 | SO4 | S | 9 | 5/5 | 0.87 | 0.31 | 39,41,46,48 | 5 | | 2 | SO4 | c | 9[A] | 5/5 | 0.87 | 0.26 | 32,38,46,52 | 5 | | 2 | SO4 | b | 9[A] | 5/5 | 0.90 | 0.50 | 39,42,48,51 | 5 | # 6.5 Other polymers (i) There are no such residues in this entry.