Full wwPDB X-ray Structure Validation Report

Feb 15, 2017 – 02:00 am GMT

PDB ID : 2RFZ
Title : Crystal structure of cellobiohydrolase from Melanocarpus albomyces complexed with cellotriose
Authors : Parkkinen, T.; Koivula, A.; Vehmaanper, J.; Rouvinen, J.
Deposited on : 2007-10-02
Resolution : 1.80 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at http://wwpdb.org/validation/2016/XrayValidationReportHelp
with specific help available everywhere you see the i symbol.

The following versions of software and data (see references i) were used in the production of this report:

- MolProbity : 4.02b-467
- Mogul : 1.7.2 (RC1), CSD as538be (2017)
- Xtriage (Phenix) : 1.9-1692
- EDS : trunk28620
- Percentile statistics : 20161228.v01 (using entries in the PDB archive December 28th 2016)
- Refmac : 5.8.0135
- CCP4 : 6.5.0
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : recalc28949
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

\textit{X-RAY DIFFRACTION}

The reported resolution of this entry is 1.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{free}})</td>
<td>100719</td>
<td>4827 (1.80-1.80)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>112137</td>
<td>5742 (1.80-1.80)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>110173</td>
<td>5676 (1.80-1.80)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>110143</td>
<td>5675 (1.80-1.80)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>101464</td>
<td>4906 (1.80-1.80)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for \(>=3, 2, 1\) and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions \(<=5\%\). The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% 23% 56% 20%</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% 33% 49% 17%</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% 40% 47% 13%</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% 43% 46% 10%</td>
</tr>
</tbody>
</table>

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit crite-
<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCA</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>A</td>
<td>431</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>A</td>
<td>432</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>B</td>
<td>431</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>C</td>
<td>431</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>C</td>
<td>432</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>D</td>
<td>431</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 3 unique types of molecules in this entry. The entry contains 14399 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Cellulose 1,4-beta-cellobiosidase.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>430</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3333 2075 558 669 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>430</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3333 2075 558 669 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>430</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3333 2075 558 669 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>430</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3333 2075 558 669 31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 4 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>PCA</td>
<td>GLN</td>
<td>ENGINEERED</td>
<td>UNP Q8J0K6</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>PCA</td>
<td>GLN</td>
<td>ENGINEERED</td>
<td>UNP Q8J0K6</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>PCA</td>
<td>GLN</td>
<td>ENGINEERED</td>
<td>UNP Q8J0K6</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>PCA</td>
<td>GLN</td>
<td>ENGINEERED</td>
<td>UNP Q8J0K6</td>
</tr>
</tbody>
</table>

- Molecule 2 is SUGAR (CELLOTRIOSE) (three-letter code: CTR) (formula: C_{18}H_{32}O_{16}).
Table 1: Molecule Details

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34 18 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34 18 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34 18 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34 18 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34 18 16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is water.

Table 2: Molecule Details (continued)

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>202</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>202 202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>191</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>191 191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>225</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>225 225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>245</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>245 245</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Cellulose 1,4-beta-cellobiosidase

Chain A:

- Molecule 1: Cellulose 1,4-beta-cellobiosidase

Chain B:
• Molecule 1: Cellulose 1,4-beta-cellobiosidase

Chain D:

43% 46% 10%
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 1 21 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>50.80Å 94.37Å 189.91Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>90.00° 90.19° 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>20.00 – 1.80</td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>92.8 (20.00-1.80)</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rmerge</td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rsym</td>
<td>0.10</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)>1</td>
<td>4.03 (at 1.80Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>SHELXL-97</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, Rfree</td>
<td>0.261 , 0.237</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>0.190 , 0.230</td>
<td>DCC</td>
</tr>
<tr>
<td>Rfree test set</td>
<td>8081 reflections (5.25%)</td>
<td>DCC</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>12.8</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.112</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k_sol(e/Å³), B_sol(Å²)</td>
<td>0.26 , 70.5</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning²</td>
<td><</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.427 for h,-k,-l</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Fα·Fc correlation</td>
<td>0.92</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>14399</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å²)</td>
<td>25.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: *The largest off-origin peak in the Patterson function is 17.69% of the height of the origin peak. No significant pseudotranslation is detected.*

1 Intensities estimated from amplitudes.

2 Theoretical values of < |L| >, < L² > for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: PCA, CTR

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with \(|Z| > 5\) is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.36</td>
<td>0/3416</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.36</td>
<td>0/3416</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0.37</td>
<td>0/3416</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0.38</td>
<td>0/3416</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.37</td>
<td>0/13664</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (45) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>58</td>
<td>ALA</td>
<td>C-N-CA</td>
<td>10.35</td>
<td>147.57</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>166</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-9.23</td>
<td>115.68</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>107</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-8.17</td>
<td>116.21</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>306</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>7.89</td>
<td>134.65</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>392</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.81</td>
<td>116.39</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>341</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>7.31</td>
<td>133.83</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>2</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-6.85</td>
<td>116.88</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>256</td>
<td>CYS</td>
<td>C-N-CA</td>
<td>6.80</td>
<td>138.70</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>324</td>
<td>ILE</td>
<td>C-N-CA</td>
<td>6.76</td>
<td>138.61</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>206</td>
<td>TYR</td>
<td>CB-CG-CD2</td>
<td>6.69</td>
<td>125.01</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>231</td>
<td>THR</td>
<td>C-N-CA</td>
<td>6.64</td>
<td>135.29</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>368</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.57</td>
<td>124.21</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>341</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.56</td>
<td>123.58</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>339</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>6.47</td>
<td>132.65</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>306</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.39</td>
<td>123.49</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>142</td>
<td>SER</td>
<td>C-N-CA</td>
<td>6.32</td>
<td>137.49</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>274</td>
<td>TYR</td>
<td>CB-CG-CD2</td>
<td>6.30</td>
<td>124.78</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>130</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.27</td>
<td>123.94</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>42</td>
<td>HIS</td>
<td>C-N-CA</td>
<td>6.14</td>
<td>137.06</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>284</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.07</td>
<td>123.33</td>
<td>120.30</td>
</tr>
</tbody>
</table>

Continued on next page...
There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3333</td>
<td>0</td>
<td>3028</td>
<td>345</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>3333</td>
<td>0</td>
<td>3028</td>
<td>288</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3333</td>
<td>0</td>
<td>3028</td>
<td>239</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>3333</td>
<td>0</td>
<td>3027</td>
<td>239</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>68</td>
<td>0</td>
<td>64</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>34</td>
<td>0</td>
<td>32</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>68</td>
<td>0</td>
<td>64</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>34</td>
<td>0</td>
<td>32</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>202</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>191</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>225</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>245</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>14399</td>
<td>0</td>
<td>12303</td>
<td>1087</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 42.

All (1087) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:97:LYS:HD3</td>
<td>1:D:6:GLU:HG3</td>
<td>1.38</td>
<td>1.01</td>
</tr>
<tr>
<td>1:D:123:MET:HE2</td>
<td>1:D:294:GLU:H</td>
<td>1.25</td>
<td>0.98</td>
</tr>
<tr>
<td>1:C:208:SER:HB3</td>
<td>1:C:323:GLU:HG3</td>
<td>1.49</td>
<td>0.95</td>
</tr>
<tr>
<td>1:C:132:ASP:HB3</td>
<td>1:C:415:VAL:HG13</td>
<td>1.49</td>
<td>0.93</td>
</tr>
<tr>
<td>1:B:36:ALA:HA</td>
<td>1:B:39:ARG:HD2</td>
<td>1.51</td>
<td>0.92</td>
</tr>
<tr>
<td>1:D:115:ASP:HA</td>
<td>1:D:166:ARG:HG2</td>
<td>1.52</td>
<td>0.92</td>
</tr>
<tr>
<td>1:D:95:VAL:HG22</td>
<td>1:D:104:VAL:HG22</td>
<td>1.55</td>
<td>0.89</td>
</tr>
<tr>
<td>1:A:373:MET:HG3</td>
<td>1:A:376:LEU:HD23</td>
<td>1.54</td>
<td>0.88</td>
</tr>
<tr>
<td>1:B:17:GLN:HB2</td>
<td>1:B:420:ARG:HG2</td>
<td>1.57</td>
<td>0.87</td>
</tr>
<tr>
<td>1:B:177:ALA:HB1</td>
<td>1:B:180:LEU:HG</td>
<td>1.57</td>
<td>0.86</td>
</tr>
<tr>
<td>1:B:214:ASP:HB2</td>
<td>1:B:226:THR:HB</td>
<td>1.58</td>
<td>0.85</td>
</tr>
<tr>
<td>1:B:374:LEU:HD13</td>
<td>1:B:378:SER:HB3</td>
<td>1.60</td>
<td>0.84</td>
</tr>
<tr>
<td>1:B:171:TYR:HB3</td>
<td>1:B:180:LEU:HD11</td>
<td>1.58</td>
<td>0.84</td>
</tr>
<tr>
<td>1:D:291:ARG:HH11</td>
<td>1:D:424:ILE:HG23</td>
<td>1.45</td>
<td>0.82</td>
</tr>
<tr>
<td>1:B:319:PRO:HG3</td>
<td>1:B:327:GLU:HG3</td>
<td>1.61</td>
<td>0.82</td>
</tr>
<tr>
<td>1:A:263:TYR:HB2</td>
<td>1:A:324:ILE:HD11</td>
<td>1.61</td>
<td>0.82</td>
</tr>
<tr>
<td>1:C:272:ASP:HA</td>
<td>1:C:278:LYS:HE2</td>
<td>1.61</td>
<td>0.82</td>
</tr>
<tr>
<td>1:A:2:ARG:HG2</td>
<td>1:A:162:GLN:HE21</td>
<td>1.45</td>
<td>0.81</td>
</tr>
<tr>
<td>1:C:82:GLY:HA3</td>
<td>1:C:93:LYS:HB2</td>
<td>1.62</td>
<td>0.81</td>
</tr>
<tr>
<td>1:A:77:TYR:HB3</td>
<td>1:A:83:ALA:HB3</td>
<td>1.60</td>
<td>0.81</td>
</tr>
<tr>
<td>1:C:368:ASP:HB2</td>
<td>1:C:373:MET:HE2</td>
<td>1.61</td>
<td>0.81</td>
</tr>
<tr>
<td>1:C:34:ILE:HG23</td>
<td>1:C:39:ARG:HE</td>
<td>1.45</td>
<td>0.80</td>
</tr>
<tr>
<td>1:D:147:VAL:HG23</td>
<td>1:D:149:MET:HG3</td>
<td>1.63</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:374:LEU:HD11</td>
<td>1:B:397:THR:HA</td>
<td>1.63</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:155:MET:HE1</td>
<td>1:A:166:ARG:HE</td>
<td>1.48</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:76:ASP:HB2</td>
<td>1:D:76:ASP:HB3</td>
<td>1.63</td>
<td>0.78</td>
</tr>
<tr>
<td>1:B:139:GLY:HA3</td>
<td>1:B:400:GLY:HA2</td>
<td>1.65</td>
<td>0.78</td>
</tr>
<tr>
<td>1:C:92:LEU:HD13</td>
<td>1:C:106:SER:OG</td>
<td>1.83</td>
<td>0.78</td>
</tr>
<tr>
<td>1:B:91:THR:HG23</td>
<td>1:B:415:VAL:HG13</td>
<td>1.64</td>
<td>0.77</td>
</tr>
<tr>
<td>1:A:13:PRO:HA</td>
<td>1:A:31:GLU:HA</td>
<td>1.65</td>
<td>0.77</td>
</tr>
<tr>
<td>1:A:178:ARG:HG3</td>
<td>1:A:247:TYR:HB2</td>
<td>1.67</td>
<td>0.77</td>
</tr>
<tr>
<td>1:A:21:ALA:HB3</td>
<td>1:B:116:LYS:HE2</td>
<td>1.66</td>
<td>0.77</td>
</tr>
<tr>
<td>1:D:295:ASN:H</td>
<td>1:D:352:ASN:HD21</td>
<td>1.32</td>
<td>0.77</td>
</tr>
<tr>
<td>1:B:177:ALA:HB3</td>
<td>1:B:208:SER:OG</td>
<td>1.84</td>
<td>0.77</td>
</tr>
<tr>
<td>1:A:6:GLU:HB2</td>
<td>1:A:72:GLU:OE2</td>
<td>1.84</td>
<td>0.76</td>
</tr>
<tr>
<td>1:D:122:LEU:HD23</td>
<td>1:D:355:LEU:HD22</td>
<td>1.67</td>
<td>0.76</td>
</tr>
<tr>
<td>1:A:78:LEU:HD12</td>
<td>1:D:75:GLY:HA2</td>
<td>1.67</td>
<td>0.76</td>
</tr>
<tr>
<td>1:B:76:ASP:HB3</td>
<td>1:C:76:ASP:OD2</td>
<td>1.86</td>
<td>0.76</td>
</tr>
<tr>
<td>1:A:269:GLY:HA3</td>
<td>1:A:314:THR:OG1</td>
<td>1.84</td>
<td>0.76</td>
</tr>
<tr>
<td>1:D:155:MET:HG2</td>
<td>1:D:161:ASN:O</td>
<td>1.85</td>
<td>0.76</td>
</tr>
<tr>
<td>1:B:231:THR:OG1</td>
<td>1:B:255:LYS:HB3</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>1:C:195:SER:HB2</td>
<td>1:C:201:ALA:O</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>1:C:67:GLU:HG3</td>
<td>3:C:471:HOH:O</td>
<td>1.87</td>
<td>0.75</td>
</tr>
<tr>
<td>1:B:53:ASN:HB2</td>
<td>1:B:201:ALA:O</td>
<td>1.87</td>
<td>0.75</td>
</tr>
<tr>
<td>1:B:98:HIS:HA</td>
<td>1:C:7:THR:OG1</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>1:D:287:THR:HB</td>
<td>1:D:302:ILE:HB</td>
<td>1.69</td>
<td>0.74</td>
</tr>
<tr>
<td>1:A:18:ARG:HD2</td>
<td>3:A:515:HOH:O</td>
<td>1.87</td>
<td>0.74</td>
</tr>
<tr>
<td>1:D:62:ALA:HA</td>
<td>1:D:187:ALA:HB3</td>
<td>1.70</td>
<td>0.74</td>
</tr>
<tr>
<td>1:B:379:ILE:HA</td>
<td>1:B:390:ALA:O</td>
<td>1.88</td>
<td>0.74</td>
</tr>
<tr>
<td>1:D:198:ASP:HB3</td>
<td>1:D:201:ALA:HB3</td>
<td>1.69</td>
<td>0.74</td>
</tr>
<tr>
<td>1:B:155:MET:HG2</td>
<td>1:B:161:ASN:O</td>
<td>1.88</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:234:GLU:HG3</td>
<td>3:B:644:HOH:O</td>
<td>1.88</td>
<td>0.73</td>
</tr>
<tr>
<td>1:C:384:LYS:O</td>
<td>1:C:387:GLN:HG3</td>
<td>1.88</td>
<td>0.73</td>
</tr>
<tr>
<td>1:C:327:GLU:HG3</td>
<td>3:C:615:HOH:O</td>
<td>1.88</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:177:ALA:HB3</td>
<td>1:A:208:SER:OG</td>
<td>1.88</td>
<td>0.73</td>
</tr>
<tr>
<td>1:C:2:ARG:HG3</td>
<td>1:C:70:MET:HA</td>
<td>1.69</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:238:CYS:HB2</td>
<td>1:A:242:ASN:O</td>
<td>1.89</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:112:ASN:ND2</td>
<td>1:B:116:LYS:HB2</td>
<td>2.04</td>
<td>0.72</td>
</tr>
<tr>
<td>1:C:166:ARG:HD2</td>
<td>3:C:581:HOH:O</td>
<td>1.89</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:259:ASN:HB3</td>
<td>2:B:431:CTR:H5C</td>
<td>1.70</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:147:VAL:HG12</td>
<td>1:A:212:GLU:HG3</td>
<td>1.72</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:112:ASN:HB3</td>
<td>1:B:118:GLN:HA</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:401:VAL:HB</td>
<td>1:A:404:GLU:HG3</td>
<td>1.70</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:372:ASN:HB3</td>
<td>1:C:400:GLY:HA3</td>
<td>1.72</td>
<td>0.72</td>
</tr>
<tr>
<td>1:C:41:LEU:HA</td>
<td>1:C:70:MET:O</td>
<td>1.89</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:37:ASN:OD1</td>
<td>1:B:180:LEU:HD22</td>
<td>1.88</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:372:ASN:HB3</td>
<td>1:B:400:GLY:HA3</td>
<td>1.72</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:231:THR:HA</td>
<td>1:B:350:GLN:HE21</td>
<td>1.55</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:61:THR:HG23</td>
<td>1:B:64:ASP:OD2</td>
<td>1.90</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:318:MET:HG3</td>
<td>1:A:319:PRO:HD2</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:332:MET:O</td>
<td>1:A:336:PHE:HB2</td>
<td>1.91</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:16:TRP:HB3</td>
<td>1:B:419:ILE:HB</td>
<td>1.70</td>
<td>0.71</td>
</tr>
<tr>
<td>1:C:35:ASP:OD2</td>
<td>1:C:37:ASN:HB2</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:379:ILE:HA</td>
<td>1:A:390:ALA:O</td>
<td>1.90</td>
<td>0.70</td>
</tr>
<tr>
<td>1:C:173:ASP:HB2</td>
<td>1:C:212:GLU:OE1</td>
<td>1.90</td>
<td>0.70</td>
</tr>
<tr>
<td>1:C:418:ASN:HD21</td>
<td>1:C:420:ARG:HH21</td>
<td>1.39</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:155:MET:HG2</td>
<td>1:A:161:ASN:O</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:1:PCA:OE</td>
<td>1:A:185:GLY:HA2</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>1:C:122:LEU:O</td>
<td>1:C:292:PHE:HB2</td>
<td>1.92</td>
<td>0.70</td>
</tr>
<tr>
<td>1:D:105:GLY:HA2</td>
<td>1:D:365:ILE:HG23</td>
<td>1.74</td>
<td>0.70</td>
</tr>
<tr>
<td>1:C:325:THR:HB</td>
<td>1:C:327:GLU:OE2</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:372:ASN:O</td>
<td>1:B:400:GLY:HA3</td>
<td>1.93</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:319:PRO:HG3</td>
<td>1:A:328:LEU:HA</td>
<td>1.73</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:418:ASN:HD21</td>
<td>1:C:420:ARG:NH2</td>
<td>1.90</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:246:THR:HG23</td>
<td>3:B:677:HOH:O</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:31:GLU:HG2</td>
<td>3:C:518:HOH:O</td>
<td>1.91</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:143:ALA:HB3</td>
<td>1:A:364:SER:OG</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:173:ASP:HB2</td>
<td>1:A:212:GLU:OE1</td>
<td>1.93</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:200:ASN:HB2</td>
<td>3:A:535:HOH:O</td>
<td>1.92</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:319:PRO:HG2</td>
<td>1:A:328:LEU:HD23</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:8:PRO:HG2</td>
<td>1:C:78:LEU:HD11</td>
<td>1.74</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:334:ASP:OD2</td>
<td>1:A:335:VAL:HG22</td>
<td>1.92</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:209:CYS:HB2</td>
<td>1:B:236:HIS:NE2</td>
<td>2.09</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:226:THR:OG1</td>
<td>1:A:262:ASP:HB3</td>
<td>1.95</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:144:LEU:HD23</td>
<td>1:B:362:VAL:O</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:326:PRO:HD2</td>
<td>1:C:327:GLU:OE2</td>
<td>1.93</td>
<td>0.67</td>
</tr>
<tr>
<td>1:D:54:GLN:HG3</td>
<td>1:D:194:SER:OG</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:82:GLY:O</td>
<td>1:A:93:LYS:HD3</td>
<td>1.93</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:51:ASP:HB2</td>
<td>1:B:56:THR:HG23</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:96:THR:O</td>
<td>1:C:102:THR:HA</td>
<td>1.95</td>
<td>0.67</td>
</tr>
<tr>
<td>1:D:123:MET:HE2</td>
<td>1:D:294:GLU:N</td>
<td>2.07</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:97:LYS:HB3</td>
<td>1:C:6:GLU:HG3</td>
<td>1.77</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:14:LEU:HD22</td>
<td>1:A:90:LEU:HB2</td>
<td>1.77</td>
<td>0.67</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:141:ASN:HB3</td>
<td>1:A:366:TRP:NE1</td>
<td>2.10</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:267:ARG:HA</td>
<td>1:B:391:ALA:O</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:379:ILE:HG21</td>
<td>1:C:385:GLU:OE2</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:331:THR:HA</td>
<td>1:A:334:ASP:OD1</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:14:LEU:HD13</td>
<td>1:A:85:THR:OG1</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:97:LYS:HG3</td>
<td>1:B:102:THR:HG23</td>
<td>1.78</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:307:LYS:HD3</td>
<td>1:B:309:GLU:OE2</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:231:THR:HA</td>
<td>1:B:350:GLN:NE2</td>
<td>2.11</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:96:THR:OG1</td>
<td>1:B:103:ASN:HB3</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:76:ASP:HB3</td>
<td>1:D:80:THR:HG23</td>
<td>1.76</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:346:GLY:HA3</td>
<td>1:A:350:GLN:HB2</td>
<td>1.78</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:46:MET:HE3</td>
<td>1:C:97:LYS:HE2</td>
<td>1.78</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:121:ASN:HB3</td>
<td>3:A:516:HOH:O</td>
<td>1.95</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:351:LEU:O</td>
<td>1:A:354:ALA:HB3</td>
<td>1.95</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:7:THR:OG1</td>
<td>1:D:98:HIS:HA</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:266:TYR:HB3</td>
<td>1:C:392:ARG:O</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:349:GLU:OE1</td>
<td>1:D:349:GLU:HA</td>
<td>1.95</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:2:ARG:HE</td>
<td>1:C:70:MET:HG2</td>
<td>1.62</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:19:CYS:HA</td>
<td>1:D:24:ASN:O</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:39:ARG:HD3</td>
<td>1:D:72:GLU:O</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:424:ILE:HG21</td>
<td>3:B:640:HOH:O</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:58:ALA:O</td>
<td>1:B:68:LYS:HD3</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:212:GLU:OE2</td>
<td>2:D:431:CTR:H6A1</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:63:THR:O</td>
<td>1:C:67:GLU:HG2</td>
<td>1.96</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:307:LYS:HD2</td>
<td>1:D:430:PHE:HB3</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:349:GLU:O</td>
<td>1:B:352:ASN:HB2</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:345:VAL:O</td>
<td>1:B:350:GLN:HG2</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:75:GLY:HA2</td>
<td>1:C:78:LEU:HD13</td>
<td>1.78</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:143:ALA:HB2</td>
<td>1:B:217:GLU:HA</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>2:C:431:CTR:H6B1</td>
<td>2:C:431:CTR:O2A</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:49:CYS:HA</td>
<td>1:C:58:ALA:HB3</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:274:TYR:CD1</td>
<td>1:D:280:LEU:HD12</td>
<td>2.33</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:132:ASP:HB3</td>
<td>1:A:415:VAL:HG13</td>
<td>1.78</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:175:GLN:HE22</td>
<td>1:D:258:ALA:HB1</td>
<td>1.61</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:17:GLN:HG2</td>
<td>1:A:419:ILE:O</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:377:ASP:O</td>
<td>1:B:395:CYS:HB2</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:48:ASN:HB3</td>
<td>1:B:50:TYR:O</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:293:GLU:HB2</td>
<td>1:B:296:LYS:O</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:144:LEU:HD12</td>
<td>1:A:363:MET:HG2</td>
<td>1.79</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:214:ASP:HB2</td>
<td>1:C:226:THR:HB</td>
<td>1.79</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:147:VAL:HG12</td>
<td>1:D:212:GLU:HG3</td>
<td>1.81</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:402:PRO:O</td>
<td>1:C:406:GLU:HG3</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:82:GLY:HA3</td>
<td>1:A:93:LYS:HB2</td>
<td>1.81</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:381:PRO:HB2</td>
<td>1:C:383:GLU:HG2</td>
<td>1.79</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:394:ASP:HB2</td>
<td>3:D:650:HOH:O</td>
<td>1.97</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:41:LEU:HA</td>
<td>1:D:70:MET:O</td>
<td>1.99</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:117:TYR:OH</td>
<td>1:B:168:GLY:HA2</td>
<td>1.98</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:33:VAL:HG21</td>
<td>1:C:166:ARG:O</td>
<td>2.00</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:317:GLY:HA3</td>
<td>3:C:542:HOH:O</td>
<td>1.98</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:297:LEU:HB2</td>
<td>1:C:324:ILE:HG13</td>
<td>1.81</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:135:THR:OG1</td>
<td>1:B:412:ALA:HA</td>
<td>1.99</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:164:GLY:O</td>
<td>1:C:169:THR:HG23</td>
<td>2.00</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:295:ASN:H</td>
<td>1:D:352:ASN:ND2</td>
<td>1.97</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:135:THR:HG1</td>
<td>1:B:413:GLN:H</td>
<td>1.48</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:431:CTR:O2A</td>
<td>2:B:431:CTR:H6B1</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:225:PHE:CD1</td>
<td>1:C:324:ILE:HD11</td>
<td>2.35</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:35:ASP:HB3</td>
<td>1:D:38:TRP:CE3</td>
<td>2.35</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:188:ASN:OD1</td>
<td>1:A:205:PRO:HD2</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:110:LEU:HD22</td>
<td>1:B:361:LEU:HD22</td>
<td>1.80</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:225:PHE:CZ</td>
<td>1:C:297:LEU:HD23</td>
<td>2.35</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:91:THR:HB</td>
<td>3:D:876:HOH:O</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:253:ALA:HB1</td>
<td>3:B:740:HOH:O</td>
<td>1.99</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:32:VAL:HA</td>
<td>1:B:109:TYR:O</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:71:ILE:HD11</td>
<td>1:B:163:ALA:HB1</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:217:GLU:OE2</td>
<td>2:D:431:CTR:H6A2</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:295:ASN:H</td>
<td>1:C:352:ASN:HD21</td>
<td>1.49</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:341:ARG:HG3</td>
<td>1:D:341:ARG:O</td>
<td>1.99</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:64:ASP:O</td>
<td>1:D:68:LYS:HB2</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:137:GLU:HG3</td>
<td>1:A:409:PHE:CZ</td>
<td>2.36</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:11:HIS:HB3</td>
<td>1:B:32:VAL:O</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:12:PRO:HD2</td>
<td>1:C:32:VAL:O</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:12:PRO:HG2</td>
<td>1:B:32:VAL:HG23</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:20:THR:OG1</td>
<td>1:C:24:ASN:HB2</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:266:TYR:HA</td>
<td>1:D:270:ASN:O</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:273:PHE:O</td>
<td>1:D:279:THR:HB</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:4:GLY:HA3</td>
<td>1:D:72:GLU:OE2</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:112:ASN:HB3</td>
<td>3:C:644:HOH:O</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:264:ASN:HB3</td>
<td>1:B:267:ARG:HB3</td>
<td>1.83</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:244:GLY:HA2</td>
<td>1:A:250:ASP:O</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:316:GLU:OE2</td>
<td>1:A:316:GLU:HA</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:330:SER:HB3</td>
<td>3:B:666:HOH:O</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:86:SER:HA</td>
<td>3:B:727:HOH:O</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:96:THR:HG23</td>
<td>3:D:833:HOH:O</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:112:ASN:O</td>
<td>1:B:116:LYS:HG3</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:188:ASN:O</td>
<td>1:D:192:TRP:HB2</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:88:ASP:O</td>
<td>1:C:417:SER:HA</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:127:LEU:HG</td>
<td>1:B:128:ALA:N</td>
<td>2.16</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:309:GLU:HG2</td>
<td>3:D:657:HOH:O</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:1:PCA:OE</td>
<td>1:A:161:ASN:HB2</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:43:ASP:HB2</td>
<td>1:B:47:GLN:O</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:122:LEU:HD12</td>
<td>1:A:421:PHE:HZ</td>
<td>1.67</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:252:PHE:HB3</td>
<td>1:A:341:ARG:HD3</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:273:PHE:O</td>
<td>1:C:279:THR:HB</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:141:ASN:HB3</td>
<td>1:B:366:TRP:NE1</td>
<td>2.17</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:106:SER:O</td>
<td>1:B:364:SER:HB2</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:130:ASP:OD2</td>
<td>1:C:418:ASN:HB3</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:1:PCA:HA</td>
<td>1:B:66:ALA:O</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:92:LEU:HD22</td>
<td>1:B:106:SER:OG</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:356:ARG:HD3</td>
<td>3:C:442:HOH:O</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:210:CYS:HB3</td>
<td>1:A:235:TYR:HA</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:225:PHE:CE2</td>
<td>1:A:297:LEU:HD23</td>
<td>2.38</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:312:PRO:HD2</td>
<td>3:D:665:HOH:O</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:150:GLU:OE1</td>
<td>1:A:154:GLY:HA2</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:289:VAL:O</td>
<td>1:B:299:GLN:HA</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:401:VAL:HG12</td>
<td>1:B:404:GLU:H</td>
<td>1.66</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:114:PRO:O</td>
<td>1:C:166:ARG:HD3</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:52:GLY:O</td>
<td>1:D:200:ASN:HA</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:175:GLN:HG3</td>
<td>2:D:431:CTR:O2A</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:326:PRO:HG3</td>
<td>1:A:348:PHE:CG</td>
<td>2.38</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:38:TRP:CE2</td>
<td>2:C:432:CTR:H5B</td>
<td>2.37</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:268:MET:O</td>
<td>1:D:313:PRO:HA</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:212:GLU:OE2</td>
<td>2:A:431:CTR:H6A2</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:259:ASN:OD1</td>
<td>2:B:431:CTR:H3C</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:50:TYR:HA</td>
<td>1:B:55:TRP:HA</td>
<td>1.85</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:13:PRO:O</td>
<td>1:D:85:THR:HG21</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:177:ALA:O</td>
<td>1:A:180:LEU:HG</td>
<td>2.02</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:155:MET:SD</td>
<td>1:A:162:GLN:HA</td>
<td>2.43</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:146:PHE:O</td>
<td>1:B:147:VAL:HG13</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:183:VAL:HG13</td>
<td>1:C:208:SER:OG</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:293:GLU:HG2</td>
<td>1:D:424:ILE:HD11</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:250:ASP:HB3</td>
<td>1:A:253:ALA:HB2</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:196:THR:HG23</td>
<td>3:B:709:HOH:O</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:331:THR:O</td>
<td>1:D:334:ASP:HB2</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:179:ASP:HB3</td>
<td>1:B:247:TYR:CZ</td>
<td>2.39</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:384:LYS:HG2</td>
<td>1:B:387:GLN:OE1</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:341:ARG:O</td>
<td>1:A:344:GLU:HB2</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:12:PRO:O</td>
<td>1:B:31:GLU:HB2</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:208:SER:HB3</td>
<td>1:C:235:TYR:CZ</td>
<td>2.38</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:368:ASP:HB2</td>
<td>1:C:373:MET:CE</td>
<td>2.34</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:78:LEU:HG</td>
<td>1:D:84:SER:HB3</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:42:HIS:HB2</td>
<td>1:B:47:GLN:O</td>
<td>2.03</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:96:THR:O</td>
<td>1:B:102:THR:HA</td>
<td>2.03</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:175:GLN:NE2</td>
<td>1:D:258:ALA:HB1</td>
<td>2.18</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:281:ASP:HB2</td>
<td>3:A:598:HOH:O</td>
<td>2.02</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:294:GLU:HG3</td>
<td>1:A:295:ASN:OD1</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:291:ARG:HG2</td>
<td>1:C:424:ILE:HG12</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:278:LYS:HD3</td>
<td>3:D:751:HOH:O</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:407:ALA:HB1</td>
<td>3:D:843:HOH:O</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:183:VAL:HG22</td>
<td>1:A:208:SER:HB3</td>
<td>1.85</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:246:THR:HA</td>
<td>3:C:445:HOH:O</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:423:PRO:O</td>
<td>1:C:426:SER:HB3</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:172:CYS:HA</td>
<td>1:D:208:SER:HB3</td>
<td>1.85</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:130:ASP:HA</td>
<td>1:A:286:PHE:O</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:1:PCA:HG3</td>
<td>1:A:182:PHE:CD2</td>
<td>2.40</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:199:PRO:HB2</td>
<td>1:B:200:ASN:HD22</td>
<td>1.70</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:401:VAL:HG11</td>
<td>1:B:404:GLU:OE2</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:137:GLU:O</td>
<td>1:C:140:ILE:HG13</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:195:SER:HA</td>
<td>3:C:450:HOH:O</td>
<td>2.03</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:307:LYS:HD3</td>
<td>1:D:304:ASP:O</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:287:THR:HB</td>
<td>1:A:302:ILE:HB</td>
<td>1.87</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:15:THR:HB</td>
<td>1:B:28:VAL:O</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:327:GLU:O</td>
<td>1:D:331:THR:HG23</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:74:ALA:HB1</td>
<td>1:D:81:TYR:CE2</td>
<td>2.39</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:11:HIS:HB3</td>
<td>1:A:32:VAL:O</td>
<td>2.05</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:193:LYS:HD3</td>
<td>1:B:203:VAL:CG1</td>
<td>2.34</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:17:GLN:HB3</td>
<td>1:B:25:CYS:HB3</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:384:LYS:HE3</td>
<td>3:B:705:HOH:O</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:1:PCA:HG3</td>
<td>1:C:182:PHE:CG</td>
<td>2.40</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:341:ARG:HA</td>
<td>1:D:344:GLU:HB2</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:136:VAL:O</td>
<td>1:A:219:ASN:HB2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:173:ASP:O</td>
<td>1:B:209:CYS:HA</td>
<td>2.04</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:224:ALA:HA</td>
<td>1:B:263:TYR:O</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:61:THR:HB</td>
<td>1:C:190:GLU:OE1</td>
<td>2.04</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:36:ALA:HA</td>
<td>1:C:39:ARG:HG3</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:372:ASN:O</td>
<td>1:C:400:GLY:HA3</td>
<td>2.04</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:145:TYR:HB3</td>
<td>1:D:214:ASP:HA</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:147:VAL:HB</td>
<td>1:A:172:CYS:O</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:103:ASN:HA</td>
<td>2:A:432:CTR:O2A</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:318:MET:HE3</td>
<td>1:C:332:MET:HA</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:18:ARG:HB2</td>
<td>1:D:26:GLN:HG2</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:41:LEU:CD2</td>
<td>1:D:71:ILE:HG23</td>
<td>2.36</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:163:ALA:HB1</td>
<td>1:B:167:TYR:HB2</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:193:LYS:HD3</td>
<td>1:B:203:VAL:HG13</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:157:SER:O</td>
<td>1:D:159:PRO:HD3</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:22:PRO:HB3</td>
<td>1:B:429:ASP:OD2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:350:GLN:HA</td>
<td>1:B:350:GLN:OE1</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:213:ILE:CD2</td>
<td>1:A:277:PRO:CB</td>
<td>2.36</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:308:ASP:HB3</td>
<td>1:A:373:MET:CE</td>
<td>2.36</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:379:ILE:HG13</td>
<td>1:A:391:ALA:CA</td>
<td>2.35</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:47:GLN:HG3</td>
<td>1:B:48:ASN:N</td>
<td>2.21</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:63:THR:CB</td>
<td>1:C:186:LYS:HZ2</td>
<td>2.18</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:122:LEU:HD11</td>
<td>1:D:146:PHE:CE1</td>
<td>2.41</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:315:TRP:CB</td>
<td>1:D:388:PRO:HG3</td>
<td>2.41</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:122:LEU:HD11</td>
<td>1:A:146:PHE:CE2</td>
<td>2.41</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:144:LEU:HD21</td>
<td>1:A:361:LEU:HD11</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:291:ARG:HH11</td>
<td>1:D:424:ILE:CG2</td>
<td>2.17</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:339:ARG:HA</td>
<td>3:D:722:HOH:O</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:225:PHE:CZ</td>
<td>1:A:297:LEU:HD23</td>
<td>2.41</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:16:TRP:HB2</td>
<td>1:A:419:ILE:HB</td>
<td>1.86</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:37:ASN:OD1</td>
<td>1:A:181:LYS:HD3</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:46:MET:HG3</td>
<td>1:C:97:LYS:HD2</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:78:LEU:HD12</td>
<td>1:D:75:GLY:CA</td>
<td>2.34</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:291:ARG:HB3</td>
<td>1:D:424:ILE:HG12</td>
<td>1.88</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:410:PRO:HD3</td>
<td>3:D:843:HOH:O</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:225:PHE:CE1</td>
<td>1:A:299:GLN:HB2</td>
<td>2.42</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:126:GLU:HB2</td>
<td>1:B:290:SER:O</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:176:CYS:HA</td>
<td>1:C:208:SER:O</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:98:His:HD2</td>
<td>1:D:100:TYR:H</td>
<td>1.54</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:160:SER:OG</td>
<td>1:A:185:GLY:HA3</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:287:THR:O</td>
<td>1:B:301:PHE:HA</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:352:ASN:O</td>
<td>1:B:355:LEU:HB2</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:137:GLU:H</td>
<td>1:C:140:ILE:HD12</td>
<td>1.72</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:401:VAL:O</td>
<td>1:B:405:VAL:HG22</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:276:LYS:HB2</td>
<td>3:D:656:HOH:O</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:250:ASP:OD2</td>
<td>1:D:253:ALA:HB2</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:428:TYR:HB3</td>
<td>1:D:430:PHE:CD1</td>
<td>2.40</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:31:GLU:HG3</td>
<td>1:A:111:MET:HB2</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:35:ASP:OD2</td>
<td>1:A:38:TRP:HZ3</td>
<td>1.90</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:401:VAL:HB</td>
<td>1:A:404:GLU:CG</td>
<td>2.36</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:139:GLY:O</td>
<td>1:B:373:MET:HE3</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:293:GLU:HG2</td>
<td>1:D:424:ILE:CD1</td>
<td>2.37</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:97:LYS:HG2</td>
<td>1:D:46:MET:CE</td>
<td>2.36</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:205:PRO:HB2</td>
<td>1:C:206:TYR:HD2</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:133:LEU:HD11</td>
<td>1:C:286:PHE:CE</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:366:TRP:CH2</td>
<td>2:C:431:CTR:H2A</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:175:GLN:O</td>
<td>1:D:176:CYS:HB2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:384:LYS:HE3</td>
<td>1:D:385:GLU:O</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:155:MET:HE3</td>
<td>1:A:166:ARG:HE3</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:315:TRP:CH2</td>
<td>1:A:388:PRO:HA</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:147:VAL:HG12</td>
<td>1:D:212:GLU:HB2</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:368:ASP:HB2</td>
<td>1:D:373:MET:HE1</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:132:ASP:HB3</td>
<td>1:A:415:VAL:CG1</td>
<td>2.37</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:85:THR:HG22</td>
<td>3:C:505:HOH:O</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:266:TYR:CD2</td>
<td>1:D:271:PRO:HA</td>
<td>2.43</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:266:TYR:HE1</td>
<td>1:D:391:ALA:HB1</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:97:LYS:HG2</td>
<td>1:D:46:MET:HE3</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:16:TRP:HE1</td>
<td>1:A:28:VAL:HG11</td>
<td>2.22</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:41:LEU:HD21</td>
<td>1:A:182:PHE:HE2</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:198:ASP:HB3</td>
<td>1:B:201:ALA:HB3</td>
<td>1.89</td>
<td>0.54</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:252:PHE:CD2</td>
<td>1:C:339:ARG:HD3</td>
<td>2.43</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:276:LYS:HD2</td>
<td>3:A:448:HOH:O</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:9:GLU:HB2</td>
<td>1:C:73:GLY:HA2</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:155:MET:HG3</td>
<td>1:D:164:GLY:CA</td>
<td>2.38</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:178:ARG:HG2</td>
<td>1:B:206:TYR:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:377:ASP:HB2</td>
<td>1:A:395:CYS:SG</td>
<td>2.48</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:143:ALA:CB</td>
<td>1:B:217:GLU:HA</td>
<td>2.38</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:146:PHE:HB3</td>
<td>1:B:359:MET:HB3</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:428:TYR:HB3</td>
<td>1:D:430:PHE:CE1</td>
<td>2.43</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:209:CYS:HB2</td>
<td>1:C:236:HIS:NE2</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:384:LYS:HG2</td>
<td>1:D:387:GLN:NE2</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:19:CYS:HA</td>
<td>1:A:25:CYS:HA</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:95:VAL:HG13</td>
<td>1:D:104:VAL:HG23</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:181:LYS:HE2</td>
<td>3:A:472:HOH:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:143:ALA:HA</td>
<td>1:B:216:TRP:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:110:LEU:HB2</td>
<td>1:B:361:LEU:HD23</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:209:CYS:HB2</td>
<td>1:C:236:HIS:CE1</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:35:ASP:HB3</td>
<td>1:D:38:TRP:CZ3</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:177:ALA:CB</td>
<td>1:B:180:LEU:HG</td>
<td>2.34</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:209:CYS:HB3</td>
<td>1:C:256:CYS:SG</td>
<td>2.49</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:381:PRO:HB2</td>
<td>1:D:383:GLU:OE2</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:209:CYS:O</td>
<td>1:A:210:CYS:HB3</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:267:ARG:HE</td>
<td>1:A:389:GLY:HA2</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:126:GLU:OE2</td>
<td>1:B:427:THR:HG23</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:91:THR:CG2</td>
<td>1:B:415:VAL:HG13</td>
<td>2.37</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:250:ASP:HB3</td>
<td>1:C:253:ALA:HB2</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:34:ILE:HB</td>
<td>1:D:108:PHE:CE2</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:209:CYS:O</td>
<td>1:B:210:CYS:HB3</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:34:ILE:HD11</td>
<td>1:C:38:TRP:CD1</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:286:PHE:HA</td>
<td>3:D:713:HOH:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:357:VAL:O</td>
<td>1:A:359:MET:HG3</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:38:TRP:CH2</td>
<td>2:A:432:CTR:H6C2</td>
<td>2.44</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:13:PRO:O</td>
<td>1:B:85:THR:HG21</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:77:TYR:O</td>
<td>1:A:83:ALA:HB3</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:43:ASP:O</td>
<td>1:A:46:MET:HE3</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:132:ASP:HB3</td>
<td>1:B:415:VAL:HG23</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:114:PRO:HG2</td>
<td>1:D:115:ASP:OD1</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:243:CYS:O</td>
<td>1:D:253:ALA:HB3</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:198:ASP:HB3</td>
<td>1:A:201:ALA:HB3</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:60:SER:O</td>
<td>1:A:61:THR:HG23</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:141:ASN:O</td>
<td>1:B:365:ILE:HA</td>
<td>2.09</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:318:MET:HE2</td>
<td>1:C:332:MET:HB2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:88:ASP:HB3</td>
<td>3:C:481:HOH:O</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:133:LEU:HD12</td>
<td>3:A:597:HOH:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:286:PHE:HB3</td>
<td>1:B:303:GLN:NE2</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:353:ASN:HA</td>
<td>1:C:356:ARG:HD2</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:368:ASP:OD2</td>
<td>1:B:371:ALA:HB3</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:237:VAL:HB</td>
<td>3:C:640:HOH:O</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:297:LEU:CB</td>
<td>1:C:324:ILE:HG13</td>
<td>2.39</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:164:GLY:O</td>
<td>1:D:169:THR:HG23</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:217:GLU:O</td>
<td>1:C:223:PHE:HA</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:299:GLN:O</td>
<td>1:A:310:ILE:HD12</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:132:ASP:O</td>
<td>1:A:415:VAL:HG13</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:2:ARG:HA</td>
<td>1:B:162:GLN:HB2</td>
<td>1.90</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:31:GLU:HG3</td>
<td>1:C:111:MET:HG3</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:418:ASN:ND2</td>
<td>1:C:420:ARG:HH21</td>
<td>2.04</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:232:THR:HG23</td>
<td>1:A:234:GLU:HG2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:118:GLN:HE21</td>
<td>1:B:119:MET:N</td>
<td>2.06</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:280:LEU:HD23</td>
<td>1:B:308:ILE:HD12</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:98:HIS:HA</td>
<td>1:D:40:TRP:CZ3</td>
<td>2.45</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:1:PCA:HB3</td>
<td>1:A:182:PHE:CZ</td>
<td>2.45</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:294:GLU:HG3</td>
<td>1:B:295:ASN:ND2</td>
<td>2.25</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:94:PHE:HZ</td>
<td>1:D:367:ASP:OD2</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:115:ASP:O</td>
<td>1:A:165:ALA:HB3</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:379:ILE:HG21</td>
<td>1:A:385:GLU:HB2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:126:GLU:HB2</td>
<td>1:A:290:SER:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:375:TRP:O</td>
<td>1:A:392:ARG:HD3</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:11:HIS:HE1</td>
<td>1:B:166:ARG:HG3</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:45:ASN:O</td>
<td>1:B:46:MET:HB2</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:342:PHE:HD2</td>
<td>3:C:502:HOH:O</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:310:ILE:HD12</td>
<td>1:D:310:ILE:H</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:66:ALA:HB2</td>
<td>1:D:182:PHE:HE1</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:155:MET:HE1</td>
<td>1:A:166:ARG:NE</td>
<td>2.20</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:135:THR:HG21</td>
<td>1:B:413:GLN:HG2</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:244:GLY:CA</td>
<td>1:B:254:GLY:H</td>
<td>2.23</td>
<td>0.52</td>
</tr>
<tr>
<td>3:A:469:HOH:O</td>
<td>1:D:78:LEU:HD12</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:15:THR:HG22</td>
<td>1:A:88:ASP:HA</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:317:GLY:O</td>
<td>1:B:331:THR:HB</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:115:ASP:HA</td>
<td>1:C:166:ARG:CD</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:281:ASP:HB2</td>
<td>1:B:303:GLN:OE1</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:147:VAL:HG23</td>
<td>1:A:147:VAL:O</td>
<td>2.11</td>
<td>0.51</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:3:ALA:HA</td>
<td>1:C:71:ILE:CD1</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:335:VAL:HG12</td>
<td>1:D:388:PRO:HB3</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:53:ASN:ND2</td>
<td>1:D:194:SER:HB3</td>
<td>2.24</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:212:GLU:HG2</td>
<td>1:A:214:ASP:OD1</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:182:PHE:CE1</td>
<td>1:A:187:ALA:HB2</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:89:ALA:HA</td>
<td>1:A:417:SER:HB3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:112:ASN:HB3</td>
<td>1:B:118:GLN:CA</td>
<td>2.39</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:227:PRO:HD2</td>
<td>1:B:261:CYS:O</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:312:PRO:HB3</td>
<td>1:C:321:SER:N</td>
<td>2.26</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:209:CYS:HB2</td>
<td>1:A:236:HIS:CE1</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:212:GLU:OE2</td>
<td>1:D:214:ASP:OD1</td>
<td>2.29</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:229:ALA:O</td>
<td>1:A:257:ASP:HB2</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:427:THR:HG1</td>
<td>1:B:428:TYR:HD1</td>
<td>1.59</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:141:ASN:HB3</td>
<td>1:A:366:TRP:CE2</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:34:ILE:HG23</td>
<td>1:C:39:ARG:NE</td>
<td>2.22</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:132:ASP:CB</td>
<td>1:D:415:VAL:HG2</td>
<td>2.40</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:199:PRO:HB2</td>
<td>1:B:200:ASN:ND2</td>
<td>2.26</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:372:ASN:HB3</td>
<td>1:B:400:GLY:CA</td>
<td>2.38</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:148:ALA:HB3</td>
<td>1:C:210:CYS:HB2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:198:ASP:OD1</td>
<td>1:C:199:PRO:HD2</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:333:PHE:HD2</td>
<td>1:B:338:ASP:O</td>
<td>1.94</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:381:PRO:HB2</td>
<td>1:C:383:GLU:CG</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:132:ASP:HB3</td>
<td>1:D:415:VAL:HG2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:244:GLY:HA3</td>
<td>1:B:254:GLY:H</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:6:GLU:O</td>
<td>1:A:97:LYS:HB3</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:223:PHE:HE1</td>
<td>1:A:299:GLN:OE1</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:302:ILE:O</td>
<td>1:A:302:ILE:HG2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:125:ASN:HB3</td>
<td>1:A:422:GLY:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:193:LYS:HB2</td>
<td>1:B:203:VAL:CG1</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:2:ARG:HE</td>
<td>1:B:70:MET:HG2</td>
<td>1.75</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:367:ASP:OD2</td>
<td>1:B:406:GLU:OE2</td>
<td>2.28</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:103:ASN:OD1</td>
<td>2:C:432:CTR:O6B</td>
<td>2.29</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:372:ASN:N</td>
<td>1:C:372:ASN:HD22</td>
<td>2.09</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:379:ILE:HG2</td>
<td>1:C:385:GLU:HB3</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:318:MET:SD</td>
<td>1:A:332:MET:HA</td>
<td>2.51</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:373:MET:HA</td>
<td>1:B:375:TRP:NE1</td>
<td>2.26</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:137:GLU:HG3</td>
<td>1:C:409:PHE:CD1</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:144:LEU:CD2</td>
<td>1:C:361:LEU:HD11</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:176:CYS:O</td>
<td>1:A:178:ARG:HG2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Continued on next page...
Interatomic Distance and Clash Overlap Report

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic Distance (Å)</th>
<th>Clash Overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:17:GLN:HA</td>
<td>1:B:26:GLN:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:313:PRO:HG2</td>
<td>1:B:319:PRO:O</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:146:PHE:HB3</td>
<td>1:B:359:MET:CB</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:97:LYS:O</td>
<td>1:B:98:HIS:O</td>
<td>2.30</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:190:GLU:O</td>
<td>1:A:205:PRO:HG3</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:139:GLY:HA3</td>
<td>1:A:400:GLY:HA2</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:76:ASP:O</td>
<td>1:A:76:ASP:OD2</td>
<td>2.30</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:127:LEU:HD21</td>
<td>1:B:129:PHE:HD1</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:172:CYH:HB3</td>
<td>1:B:235:TYR:CE1</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:349:GLU:OE2</td>
<td>1:B:352:ASN:OD1</td>
<td>2.30</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:275:GLY:O</td>
<td>1:C:278:LYS:HB2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:19:CYH:HA</td>
<td>1:D:25:CYH:HA</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:198:ASP:HB2</td>
<td>1:A:369:HIS:CD2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:2:ARG:HD2</td>
<td>1:C:70:MET:HB3</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:228:HIS:HB3</td>
<td>1:D:257:ASP:O</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:307:LYS:HD2</td>
<td>1:D:430:PHE:HD2</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:43:ASP:OD1</td>
<td>1:D:68:LYS:O</td>
<td>2.30</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:45:ASN:O</td>
<td>1:A:46:MET:O</td>
<td>2.30</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:133:LEU:HD11</td>
<td>1:C:286:PHE:HZ</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:276:LYS:HG3</td>
<td>3:D:656:HOH:O</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:291:ARG:CD</td>
<td>1:D:424:ILE:HG23</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:261:CYH:HB2</td>
<td>1:A:342:PHE:CD1</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:6:GLU:HB2</td>
<td>1:B:72:GLU:OE2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:429:ASP:C</td>
<td>1:D:284:ARG:HH22</td>
<td>2.15</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:128:ALA:CB</td>
<td>1:D:289:VAL:HG22</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:31:GLU:O</td>
<td>1:D:111:MET:HB2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:147:VAL:CG1</td>
<td>1:A:212:GLU:HG3</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:163:ALA:HB3</td>
<td>1:B:169:THR:HG21</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:401:VAL:O</td>
<td>1:B:401:VAL:HG12</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:12:PRO:HA</td>
<td>3:D:739:HOH:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:401:VAL:O</td>
<td>1:D:405:VAL:HG13</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:147:VAL:O</td>
<td>1:A:149:MET:HG3</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:150:GLU:OE1</td>
<td>1:A:157:SER:OG</td>
<td>2.30</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:2:ARG:O</td>
<td>1:A:70:MET:HA</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:293:GLU:HG2</td>
<td>1:C:424:ILE:HD11</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:369:HIS:CD2</td>
<td>1:C:402:PRO:HG2</td>
<td>2.46</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:130:ASP:HA</td>
<td>1:D:286:PHE:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:145:TYR:CB</td>
<td>1:D:214:ASP:HA</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:104:VAL:O</td>
<td>1:A:105:GLY:O</td>
<td>2.30</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:283:SER:OG</td>
<td>1:A:284:ARG:HG3</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:209:CYS:SG</td>
<td>1:B:238:CYS:HB3</td>
<td>2.52</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:147:VAL:HG12</td>
<td>1:D:212:GLU:CB</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:374:LEU:HD11</td>
<td>1:B:397:THR:CA</td>
<td>2.37</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:34:ILE:HD11</td>
<td>1:C:38:TRP:CG</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:178:ARG:HB3</td>
<td>1:D:203:VAL:HG13</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:324:ILE:HG22</td>
<td>1:A:324:ILE:O</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:398:ASP:O</td>
<td>1:C:399:SER:O</td>
<td>2.29</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:214:ASP:OD2</td>
<td>1:D:217:GLU:OE2</td>
<td>2.30</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:349:GLU:OE1</td>
<td>1:D:352:ASN:OD1</td>
<td>2.30</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:206:TYR:CD2</td>
<td>1:B:239:GLU:HG3</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:345:VAL:O</td>
<td>1:C:345:VAL:HG23</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:13:PRO:HD2</td>
<td>1:C:85:THR:HG21</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:53:ASN:HB3</td>
<td>1:D:200:ASN:HA</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:160:SER:OG</td>
<td>1:A:185:GLY:O</td>
<td>2.30</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:116:LYS:HB3</td>
<td>1:B:151:GLU:OE1</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:92:LEU:HB2</td>
<td>1:C:414:VAL:HG12</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:177:ALA:HB1</td>
<td>1:D:180:LEU:HD23</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:137:GLU:HG3</td>
<td>1:C:409:PHE:CE1</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:348:PHE:CZ</td>
<td>1:D:351:LEU:HD23</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:246:THR:HG23</td>
<td>1:D:251:ARG:HH12</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:163:ALA:O</td>
<td>1:A:166:ARG:HG3</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:405:VAL:O</td>
<td>1:A:405:VAL:HG23</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:32:VAL:HG12</td>
<td>1:B:109:TYR:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:307:LYS:HB2</td>
<td>1:B:430:PHE:CE2</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:403:ALA:O</td>
<td>1:B:407:ALA:HB2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:272:ASP:HA</td>
<td>1:C:278:LYS:CE</td>
<td>2.38</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:333:PHE:O</td>
<td>1:C:337:ASN:HA</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:13:PRO:HD2</td>
<td>1:C:85:THR:CG2</td>
<td>2.43</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:79:GLY:O</td>
<td>1:C:98:HIS:HB3</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:96:THR:O</td>
<td>1:D:102:THR:HA</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:35:ASP:OD1</td>
<td>1:A:109:TYR:OH</td>
<td>2.30</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:212:GLU:OE2</td>
<td>1:B:214:ASP:OD1</td>
<td>2.30</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:315:TRP:O</td>
<td>1:B:318:MET:HB2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:142:SER:OG</td>
<td>1:C:142:SER:O</td>
<td>2.30</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:239:GLU:O</td>
<td>1:C:242:ASN:OD1</td>
<td>2.29</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:384:LYS:HG2</td>
<td>1:D:387:GLN:HE21</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:366:TRP:HZ2</td>
<td>2:D:431:CTR:H4A</td>
<td>2.47</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:328:LEU:O</td>
<td>1:A:332:MET:HB2</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:1:PCA:HG3</td>
<td>1:B:182:PHE:CE2</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:295:ASN:HA</td>
<td>1:B:348:PHE:CE2</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:425:GLY:HA2</td>
<td>3:B:590:HOH:O</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:53:ASN:O</td>
<td>1:B:194:SER:OG</td>
<td>2.30</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:109:TYR:OH</td>
<td>1:C:171:TYR:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:384:LYS:O</td>
<td>1:D:385:GLU:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:105:GLY:O</td>
<td>1:B:106:SER:HB3</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:379:ILE:HG21</td>
<td>1:B:385:GLU:CG</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:125:ASN:HD22</td>
<td>1:C:423:PRO:HA</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:197:SER:OG</td>
<td>1:C:369:HIS:HD2</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:155:MET:HG3</td>
<td>1:A:164:GLY:CA</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:71:ILE:HD21</td>
<td>1:B:163:ALA:CB</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:130:ASP:OD1</td>
<td>1:A:287:THR:OG1</td>
<td>2.30</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:217:GLU:O</td>
<td>1:B:218:SER:HB3</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:104:VAL:HG21</td>
<td>1:B:406:GLU:OE1</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:38:TRP:CZ2</td>
<td>1:D:106:SER:HA</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:82:GLY:N</td>
<td>1:D:96:THR:HG21</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:288:VAL:HG22</td>
<td>1:A:301:PHE:CE2</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:310:ILE:HG23</td>
<td>1:A:311:PRO:HD2</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:86:SER:O</td>
<td>1:A:86:SER:OG</td>
<td>2.29</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:63:THR:HG23</td>
<td>1:C:186:LYS:NZ</td>
<td>2.29</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:131:VAL:HA</td>
<td>1:D:415:VAL:O</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:266:TYR:CD2</td>
<td>1:B:393:GLY:HA2</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:141:ASN:HB3</td>
<td>1:B:366:TRP:CD1</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:55:TRP:O</td>
<td>1:B:56:THR:O</td>
<td>2.31</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:530:HOH:O</td>
<td>1:D:304:ASP:HA</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:377:ASP:O</td>
<td>1:A:393:GLY:HA3</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:100:TYR:HB3</td>
<td>1:C:100:TYR:CD1</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:272:ASP:O</td>
<td>1:B:278:LYS:HG2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:95:VAL:HG11</td>
<td>1:D:97:LYS:NZ</td>
<td>2.27</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:226:THR:HG22</td>
<td>1:A:228:HIS:CD2</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:133:LEU:HD13</td>
<td>1:B:219:ASN:O</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:408:GLN:O</td>
<td>1:B:410:PRO:HD3</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:66:ALA:HA</td>
<td>1:C:182:PHE:HE1</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:369:HIS:HA</td>
<td>1:D:402:PRO:HG2</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:78:LEU:O</td>
<td>1:D:82:GLY:HA2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:131:VAL:C</td>
<td>1:A:285:LYS:HG3</td>
<td>2.34</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:14:LEU:O</td>
<td>1:A:30:ALA:HB3</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:374:LEU:HD13</td>
<td>1:A:382:PRO:HG2</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:280:LEU:CD2</td>
<td>1:B:308:ILE:HD12</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:54:GLN:HE21</td>
<td>1:B:54:GLN:HB3</td>
<td>1.45</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:63:THR:HG23</td>
<td>1:C:186:LYS:HZ2</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:383:GLU:O</td>
<td>1:C:384:LYS:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:307:LYS:HE3</td>
<td>1:B:430:PHE:HB3</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:239:GLU:HG3</td>
<td>1:D:240:THR:OG1</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:289:VAL:HB</td>
<td>1:A:300:TYR:CE2</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:119:MET:HE2</td>
<td>1:B:151:GLU:HB2</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:133:LEU:HD13</td>
<td>1:B:219:ASN:C</td>
<td>2.34</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:415:VAL:HG22</td>
<td>1:C:415:VAL:O</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:384:LYS:HG3</td>
<td>1:D:385:GLU:N</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:270:ASN:HA</td>
<td>1:D:271:PRO:HD2</td>
<td>1.69</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:303:GLN:O</td>
<td>1:D:306:ARG:HG3</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:53:ASN:CG</td>
<td>1:D:194:SER:HB3</td>
<td>2.35</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:400:GLY:O</td>
<td>1:B:402:PRO:HD3</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:213:ILE:HA</td>
<td>1:D:227:PRO:HA</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:296:LYS:HE3</td>
<td>1:D:298:SER:OG</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:9:GLU:OE1</td>
<td>1:D:77:TYR:OH</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:272:ASP:HA</td>
<td>1:A:278:LYS:HD2</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:420:ARG:HB3</td>
<td>1:A:427:THR:CG2</td>
<td>2.43</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:405:VAL:HA</td>
<td>1:D:408:GLN:HG2</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:9:GLU:OE2</td>
<td>1:A:73:GLY:HA2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:292:PHE:HD2</td>
<td>1:B:297:LEU:HG</td>
<td>1.80</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:13:PRO:HG2</td>
<td>1:B:85:THR:HG21</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:293:GLU:OE1</td>
<td>1:A:296:LYS:HD2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:374:LEU:HD13</td>
<td>1:B:378:SER:CB</td>
<td>2.39</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:122:LEU:HG</td>
<td>1:D:292:PHE:CG</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:375:TRP:CE2</td>
<td>2:D:431:CTR:H5B</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:82:GLY:HA3</td>
<td>1:D:96:THR:HG21</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:155:MET:HG2</td>
<td>1:C:161:ASN:O</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:262:ASP:OD1</td>
<td>2:C:431:CTR:O6C</td>
<td>2.30</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:263:TYR:CE1</td>
<td>1:C:322:SER:HA</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:122:LEU:HG</td>
<td>1:D:292:PHE:CD1</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:213:ILE:O</td>
<td>1:D:213:ILE:HG2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:97:LYS:HZ2</td>
<td>1:D:46:MET:HE1</td>
<td>1.80</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:44:ASP:HB3</td>
<td>3:A:539:HOH:O</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:297:LEU:HD11</td>
<td>1:C:355:LEU:HD11</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:319:PRO:HD2</td>
<td>1:C:328:LEU:HD23</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:126:GLU:OE2</td>
<td>1:D:427:THR:OG1</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:179:ASP:OD2</td>
<td>2:A:432:CTR:O6C</td>
<td>2.30</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:95:VAL:HB</td>
<td>1:A:410:PRO:O</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:188:ASN:CG</td>
<td>1:C:204:GLY:HA3</td>
<td>2.36</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:258:ALA:HB3</td>
<td>1:B:259:ASN:ND2</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:259:ASN:O</td>
<td>1:B:260:GLY:O</td>
<td>2.32</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:71:ILE:HD11</td>
<td>1:C:163:ALA:HB2</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:371:ALA:O</td>
<td>1:A:374:LEU:HB2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:225:PHE:CZ</td>
<td>1:B:297:LEU:HD23</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:373:MET:HA</td>
<td>1:B:375:TRP:CD1</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:381:PRO:HB2</td>
<td>1:B:383:GLU:HG2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:228:HIS:HB3</td>
<td>1:A:257:ASP:HB3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:428:TYR:HB3</td>
<td>1:A:430:PHE:CD1</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:187:ALA:CB</td>
<td>1:B:189:ILE:HG22</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:172:CYS:HB3</td>
<td>1:B:235:TYR:CD1</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:6:GLU:OE1</td>
<td>1:B:46:MET:HE3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:179:ASP:O</td>
<td>1:D:192:TRP:HH2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:20:THR:O</td>
<td>1:D:21:ALA:HB2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>2:A:432:CTR:HO4A</td>
<td>1:D:100:TYR:HE1</td>
<td>1.61</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:104:VAL:O</td>
<td>2:C:432:CTR:H6B1</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:345:VAL:O</td>
<td>1:D:350:GLN:HG2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:63:THR:HG22</td>
<td>1:A:64:ASP:N</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:11:His:CE1</td>
<td>1:B:166:ARG:HG3</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:196:THR:O</td>
<td>1:B:197:SER:HB3</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:316:GLU:OE1</td>
<td>1:B:316:GLU:HA</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:49:CYS:O</td>
<td>1:B:55:TRP:HE3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:137:GLU:OE2</td>
<td>1:C:221:TYR:OH</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:257:ASP:CG</td>
<td>1:C:260:GLY:H</td>
<td>2.19</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:368:ASP:OD2</td>
<td>1:D:371:ALA:HB3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:134:SER:HB3</td>
<td>1:A:283:SER:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:41:LEU:HD22</td>
<td>1:B:49:CYS:HB2</td>
<td>1.98</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:43:ASP:N</td>
<td>1:B:47:GLN:O</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:125:ASN:ND2</td>
<td>1:C:423:PRO:HA</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:115:ASP:HA</td>
<td>1:C:166:ARG:NE</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:295:ASN:O</td>
<td>1:C:296:LYS:HB2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:64:ASP:O</td>
<td>1:C:68:LYS:HB2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:303:GLN:HB2</td>
<td>1:A:308:ILE:HD13</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:34:ILE:HB</td>
<td>1:A:77:TYR:HE2</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:16:TRP:HH2</td>
<td>1:B:18:ARG:NH1</td>
<td>2.14</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:97:LYS:HB3</td>
<td>1:C:6:GLU:CG</td>
<td>2.43</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:86:SER:O</td>
<td>1:B:89:ALA:HB3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:267:ARG:NH1</td>
<td>2:C:431:CTR:O6C</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:222:ALA:HA</td>
<td>3:A:463:HOH:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:286:PHE:HB3</td>
<td>1:A:303:GLN:HG2</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:107:ARG:HH12</td>
<td>2:A:432:CTR:H6C1</td>
<td>1.80</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:296:LYS:HE3</td>
<td>1:C:296:LYS:HB2</td>
<td>1.69</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:357:VAL:O</td>
<td>1:C:359:MET:HG2</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:225:PHE:CZ</td>
<td>1:D:297:LEU:HD23</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:41:LEU:O</td>
<td>1:D:42:HIS:HB3</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:101:GLY:O</td>
<td>1:A:102:THR:OG1</td>
<td>2.30</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:99:GLU:HB3</td>
<td>1:A:100:TYR:CD2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:286:PHE:HB3</td>
<td>1:B:303:GLN:HE21</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:9:GLU:CD</td>
<td>1:B:39:ARG:HH22</td>
<td>2.20</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:212:GLU:OE2</td>
<td>1:C:214:ASP:OD1</td>
<td>2.35</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:126:GLU:OE1</td>
<td>1:D:424:ILE:HA</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:147:VAL:HG12</td>
<td>1:D:212:GLU:CG</td>
<td>2.45</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:141:ASN:OD1</td>
<td>1:A:218:SER:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:141:ASN:HA</td>
<td>1:A:218:SER:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:327:GLU:O</td>
<td>1:A:330:SER:OG</td>
<td>2.30</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:379:ILE:HG21</td>
<td>1:B:385:GLU:HG2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:2:ARG:HG3</td>
<td>1:C:70:MET:CA</td>
<td>2.42</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:115:ASP:OD1</td>
<td>1:D:115:ASP:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:213:ILE:HG13</td>
<td>1:D:227:PRO:CB</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:214:ASP:OD2</td>
<td>1:A:228:HIS:NE2</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:280:LEU:HD11</td>
<td>1:C:286:PHE:CG</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:374:LEU:HB3</td>
<td>1:C:378:SER:HB3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:43:ASP:OD1</td>
<td>1:C:44:ASP:N</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:80:THR:HA</td>
<td>1:C:98:HIS:CD2</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:16:TRP:HZ2</td>
<td>1:D:118:GLN:OE1</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:180:LEU:O</td>
<td>1:D:188:ASN:ND2</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:40:TRP:N</td>
<td>3:D:702:HOH:O</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:198:ASP:OD1</td>
<td>1:A:201:ALA:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:178:ARG:NH2</td>
<td>1:A:205:PRO:O</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:244:GLY:N</td>
<td>1:A:253:ALA:O</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:142:SER:HB2</td>
<td>1:A:414:VAL:HB</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:144:LEU:HD2</td>
<td>1:C:361:LEU:HD11</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:12:PCA:HG3</td>
<td>1:C:182:PHE:CD1</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:34:ILE:HG13</td>
<td>1:C:35:ASP:N</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:62:ALA:O</td>
<td>1:D:187:ALA:HB3</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:368:ASP:HB2</td>
<td>1:D:373:MET:CE</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:239:GLU:O</td>
<td>1:B:242:ASN:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:368:ASP:OD2</td>
<td>1:B:372:ASN:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:40:TRP:CE3</td>
<td>1:B:72:GLU:HG3</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:172:CYS:HB3</td>
<td>1:C:235:TYR:CE1</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:264:ASN:ND2</td>
<td>3:C:443:HOH:O</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:366:TRP:HE3</td>
<td>1:C:367:ASP:O</td>
<td>2.00</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:2:ARG:NH1</td>
<td>1:D:67:GLU:O</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:240:THR:OG1</td>
<td>1:A:241:THR:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:276:LYS:N</td>
<td>1:B:282:THR:OG1</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:283:SER:O</td>
<td>1:B:283:SER:OG</td>
<td>2.35</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:11:HIS:HB2</td>
<td>1:B:31:GLU:HG3</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:17:GLN:OE1</td>
<td>1:B:420:ARG:NE</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:196:THR:OG1</td>
<td>1:C:196:THR:O</td>
<td>2.29</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:327:GLU:N</td>
<td>3:C:615:HOH:O</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:368:ASP:O</td>
<td>1:C:372:ASN:ND2</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:42:HIS:HA</td>
<td>1:C:48:ASN:HA</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:3:ALA:O</td>
<td>1:C:5:ASN:ND2</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:155:MET:HG3</td>
<td>1:D:164:GLY:HA2</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:20:THR:N</td>
<td>1:D:24:ASN:O</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:332:MET:HG2</td>
<td>1:D:333:PHE:N</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:250:ASP:CB</td>
<td>1:A:253:ALA:HB2</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:37:ASN:O</td>
<td>1:A:181:LYS:NZ</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:142:SER:O</td>
<td>1:B:416:TRP:HH2</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:244:GLY:H</td>
<td>1:B:254:GLY:CA</td>
<td>2.30</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:51:ASP:O</td>
<td>1:B:54:GLN:O</td>
<td>2.34</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:205:PRO:HB2</td>
<td>1:C:206:TYR:CD2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:223:PHE:CE2</td>
<td>1:A:265:PRO:HG2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:35:ASP:HB3</td>
<td>1:A:38:TRP:CZ3</td>
<td>2.52</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:182:PHE:CE1</td>
<td>1:B:187:ALA:HB2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:251:ARG:NH2</td>
<td>2:B:431:CTR:O5B</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:296:LYS:HB2</td>
<td>1:B:296:LYS:HE3</td>
<td>1.71</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:144:LEU:HD21</td>
<td>1:B:361:LEU:HD11</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:41:LEU:O</td>
<td>1:B:48:ASN:ND2</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:7:THR:HG22</td>
<td>1:B:73:GLY:HA3</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:242:ASN:ND2</td>
<td>3:C:592:HOH:O</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:415:VAL:HG22</td>
<td>1:A:415:VAL:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:85:THR:HA</td>
<td>1:A:89:ALA:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:356:ARG:HD3</td>
<td>1:B:21:ALA:HB2</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:189:ILE:O</td>
<td>1:C:191:GLY:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:143:ALA:HB3</td>
<td>1:D:364:SER:OG</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:349:GLU:HB2</td>
<td>3:D:641:HOH:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:18:ARG:O</td>
<td>1:A:26:GLN:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:286:PHE:HB3</td>
<td>1:A:303:GLN:CG</td>
<td>2.48</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:368:ASP:HB3</td>
<td>1:A:373:MET:HE1</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:313:PRO:HD2</td>
<td>1:B:319:PRO:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:413:GLN:NE2</td>
<td>3:B:606:HOH:O</td>
<td>2.49</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:4:GLY:O</td>
<td>1:D:5:ASN:ND2</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:147:VAL:O</td>
<td>1:A:149:MET:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:88:ASP:OD2</td>
<td>1:A:418:ASN:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:314:THR:HG22</td>
<td>3:B:584:HOH:O</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:180:LEU:HD23</td>
<td>3:C:436:HOH:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:372:ASN:HB3</td>
<td>1:D:400:GLY:HA3</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:120:PHE:N</td>
<td>1:A:359:MET:O</td>
<td>2.49</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:142:SER:OG</td>
<td>1:A:142:SER:O</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:195:SER:OG</td>
<td>1:A:198:ASP:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:214:ASP:OD1</td>
<td>1:A:214:ASP:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:176:CYS:O</td>
<td>1:B:178:ARG:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:21:ALA:O</td>
<td>1:B:23:GLY:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:214:ASP:N</td>
<td>1:B:226:THR:O</td>
<td>2.49</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:349:GLU:OE1</td>
<td>1:D:352:ASN:HB2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:15:THR:HG22</td>
<td>1:A:88:ASP:CA</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:172:CYS:HB2</td>
<td>1:A:208:SER:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:173:ASP:HB2</td>
<td>1:A:212:GLU:CD</td>
<td>2.36</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:416:TRP:O</td>
<td>1:B:417:SER:HB3</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:231:THR:OG1</td>
<td>1:C:255:LYS:HG2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:1:PCA:HG3</td>
<td>1:D:182:PHE:CD1</td>
<td>2.52</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:250:ASP:OD2</td>
<td>1:D:253:ALA:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:269:GLY:O</td>
<td>1:D:271:PRO:HD3</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:230:CYS:HB2</td>
<td>1:A:232:THR:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:341:ARG:HD2</td>
<td>1:A:344:GLU:OE1</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:312:PRO:HB3</td>
<td>1:B:321:SER:HA</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:58:THR:O</td>
<td>1:B:86:SER:HB2</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:158:TYR:O</td>
<td>1:C:161:ASN:HB3</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:130:ASP:OD2</td>
<td>1:D:418:ASN:HB3</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:62:ALA:CA</td>
<td>1:D:187:ALA:HB3</td>
<td>2.43</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:176:CYS:O</td>
<td>1:A:178:ARG:N</td>
<td>2.49</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:77:TYR:HB3</td>
<td>1:A:83:ALA:CB</td>
<td>2.38</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:38:TRP:HZ2</td>
<td>1:B:106:SER:HA</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:122:LEU:HD13</td>
<td>1:C:359:MET:O2G</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:89:ALA:HA</td>
<td>1:C:416:TRP:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:41:LEU:HD11</td>
<td>1:C:71:ILE:O</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:125:ASN:HD22</td>
<td>1:D:423:PRO:Z</td>
<td>1.81</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:281:ASP:O</td>
<td>1:A:303:GLN:NE2</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:326:PRO:Z</td>
<td>1:A:348:PHE:Z</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:95:VAL:Z</td>
<td>1:B:103:ASN:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:379:ILE:O</td>
<td>1:C:379:ILE:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:37:ASN:O</td>
<td>2:C:432:CTR:Z</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:123:MET:O2G</td>
<td>1:D:293:GLU:O</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:21:ALA:O</td>
<td>1:D:426:SER:O2G</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:118:GLN:O</td>
<td>1:A:360:VAL:O2G</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:26:GLN:O</td>
<td>3:A:444:HOH:O</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:384:LYS:O</td>
<td>1:A:384:LYS:O</td>
<td>1.38</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:63:THR:O</td>
<td>1:C:186:LYS:O</td>
<td>2.31</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:83:ALA:O</td>
<td>1:C:91:THR:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:189:ILE:O2G</td>
<td>1:D:190:GLU:O</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:345:VAL:O2G</td>
<td>1:D:345:VAL:O</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:36:ALA:O</td>
<td>1:B:39:ARG:O2G</td>
<td>2.37</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:195:SER:O2G</td>
<td>1:C:201:ALA:O</td>
<td>2.36</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:213:ILE:O2G</td>
<td>1:D:355:LEU:O2G</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:42:HIS:O</td>
<td>1:A:69:CYT:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:307:LYS:O2G</td>
<td>1:C:430:PHE:O2G</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:38:TRP:O</td>
<td>2:C:432:CTR:O2G</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:366:TRP:O</td>
<td>1:A:368:ASP:HB2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:404:GLU:O</td>
<td>1:A:408:GLU:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:329:CYS:O</td>
<td>1:B:333:PHE:HD1</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:428:TYR:HA</td>
<td>3:C:454:HOH:O</td>
<td>2.16</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:33:VAL:HG11</td>
<td>1:D:111:MET:CE</td>
<td>2.47</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:9:GLU:OE2</td>
<td>1:D:74:ALA:N</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:346:GLY:HA3</td>
<td>1:A:350:GLN:CB</td>
<td>2.46</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:78:LEU:HD23</td>
<td>1:A:184:SER:HB3</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:242:ASN:N</td>
<td>1:B:242:ASN:OD1</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:377:ASP:O</td>
<td>1:C:395:CYS:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:1:PCA:OE</td>
<td>1:D:161:ASN:HB2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:342:PHE:O</td>
<td>1:A:347:GLY:N</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:378:SER:O</td>
<td>1:A:392:ARG:N</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:78:LEU:HA</td>
<td>1:A:83:ALA:O</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:173:ASP:OD1</td>
<td>1:B:175:GLN:N</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:336:PHE:O</td>
<td>1:B:338:ASP:OD2</td>
<td>2.36</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:55:TRP:CD1</td>
<td>1:B:189:ILE:HA</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:155:MET:HG3</td>
<td>1:B:164:GLY:CA</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:36:ALA:HB2</td>
<td>1:B:167:TYR:O</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:226:THR:HG23</td>
<td>1:C:262:ASP:HB3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:41:LEU:HG</td>
<td>1:C:71:ILE:HA</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:99:GLU:HB3</td>
<td>1:A:100:TYR:CE2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:200:ASN:ND2</td>
<td>3:A:584:HOH:O</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:141:ASN:HD21</td>
<td>1:A:217:GLU:HB3</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:372:ASN:HB3</td>
<td>1:A:400:GLY:HA3</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:234:GLU:H</td>
<td>1:B:234:GLU:HG2</td>
<td>1.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:54:GLN:HA</td>
<td>1:C:192:TRP:CD1</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:140:ILE:HG22</td>
<td>1:D:141:ASN:N</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:97:LYS:HD2</td>
<td>1:A:97:LYSH</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:98:HIS:CE1</td>
<td>1:A:101:GLY:HA3</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:122:LEU:CD2</td>
<td>1:B:359:MET:HG3</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:272:ASP:C</td>
<td>1:C:278:LYS:HD3</td>
<td>2.39</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:55:TRP:CH2</td>
<td>1:C:187:ALA:HB1</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:217:GLU:O</td>
<td>1:D:223:PHE:HA</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:95:VAL:HG13</td>
<td>1:D:104:VAL:CG2</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:131:VAL:HG13</td>
<td>1:A:131:VAL:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:288:VAL:HG12</td>
<td>1:A:288:VAL:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:319:PRO:HG3</td>
<td>1:A:328:LEU:CA</td>
<td>2.47</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:349:GLU:O</td>
<td>1:A:352:ASN:N</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:392:ARG:HH12</td>
<td>2:A:431:CTR:H6C1</td>
<td>1.81</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:2:ARG:NE</td>
<td>1:B:70:MET:HG2</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:115:ASP:HB3</td>
<td>1:D:166:ARG:NE</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:198:ASP:HA</td>
<td>1:D:199:PRO:HD2</td>
<td>1.68</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:19:CYS:HA</td>
<td>1:A:25:CYS:CB</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:44:ASP:OD1</td>
<td>1:A:45:ASN:N</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:357:VAL:HB</td>
<td>1:B:359:MET:HE2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:263:TYR:CZ</td>
<td>1:C:322:SER:HA</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:293:GLU:HG2</td>
<td>1:C:424:ILE:CD1</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:141:ASN:O</td>
<td>1:C:365:ILE:HA</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:88:ASP:N</td>
<td>1:C:88:ASP:OD1</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:41:LEU:HG</td>
<td>1:D:71:ILE:HG23</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:268:MET:O</td>
<td>1:A:314:THR:N</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:216:TRP:CZ3</td>
<td>1:A:288:VAL:HG21</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:77:TYR:O</td>
<td>1:A:83:ALA:N</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:274:TYR:C</td>
<td>1:C:278:LYS:HD2</td>
<td>2.39</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:136:VAL:HG12</td>
<td>1:D:219:ASN:HB3</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:284:ARG:HD2</td>
<td>1:C:303:GLN:NE2</td>
<td>2.33</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:315:TRP:HB3</td>
<td>1:C:335:VAL:HG11</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:348:PHE:O</td>
<td>1:C:351:LEU:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:11:HIS:CB</td>
<td>1:B:31:GLU:HG3</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:119:MET:CB</td>
<td>1:B:151:GLU:HG3</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:275:GLY:O</td>
<td>1:B:278:LYS:HB2</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:80:THR:HG23</td>
<td>1:C:98:HIS:NE2</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:257:ASP:HA</td>
<td>1:D:341:ARG:HG2</td>
<td>1.99</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:226:THR:HG22</td>
<td>1:A:228:HIS:HD2</td>
<td>1.83</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:251:ARG:HG2</td>
<td>1:C:251:ARG:O</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:142:SER:HB2</td>
<td>1:A:414:VAL:HG21</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:21:ALA:HB3</td>
<td>1:B:116:LYS:CE</td>
<td>2.44</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:381:PRO:O</td>
<td>1:A:383:GLU:N</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:68:LYS:HE3</td>
<td>3:B:715:HOH:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:71:ILE:CD1</td>
<td>1:B:167:TYR:HB3</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:401:VAL:O</td>
<td>1:C:405:VAL:HG13</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:310:ILE:HD12</td>
<td>3:D:657:HOH:O</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:246:THR:HG22</td>
<td>1:B:370:TYR:CD2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:383:GLU:H</td>
<td>1:C:383:GLU:HG2</td>
<td>1.37</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:221:TYR:O</td>
<td>1:D:222:ALA:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:294:GLU:O</td>
<td>1:D:295:ASN:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:418:ASN:HA</td>
<td>3:D:677:HOH:O</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:5:ASN:N</td>
<td>1:D:72:GLU:OE2</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:250:ASP:CG</td>
<td>1:A:253:ALA:HB2</td>
<td>2.40</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:416:TRP:O</td>
<td>1:A:417:SER:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:420:ARG:HB3</td>
<td>1:A:427:THR:HG22</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:418:ASN:HD21</td>
<td>1:A:420:ARG:NH2</td>
<td>2.18</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:428:TYR:HB3</td>
<td>1:A:430:PHE:CE1</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:11:HIS:HB2</td>
<td>3:B:629:HOH:O</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:257:ASP:OD2</td>
<td>1:B:342:PHE:HD1</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:117:TYR:HE2</td>
<td>1:C:153:GLY:HA2</td>
<td>1.83</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:279:THR:HE2</td>
<td>1:C:280:LEU:N</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:23:GLY:O</td>
<td>1:D:25:CYS:N</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:124:GLY:N</td>
<td>1:D:292:PHE:O</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:369:HIS:CG</td>
<td>1:D:402:PRO:HG2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:257:ASP:HA</td>
<td>1:A:341:ARG:HG2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:420:ARG:HB3</td>
<td>1:A:427:THR:HB</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:129:PHE:HZ</td>
<td>1:B:216:TRP:CG</td>
<td>2.38</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:141:ASN:ND2</td>
<td>1:B:217:GLU:OE1</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:2:ARG:HG2</td>
<td>1:B:162:GLN:HE22</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:80:THR:HB</td>
<td>1:B:81:TYR:CD2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:66:ALA:HA</td>
<td>1:C:182:PHE:CE1</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:291:ARG:HD3</td>
<td>1:D:424:ILE:HG23</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:95:VAL:HG11</td>
<td>1:D:97:LYS:HZ1</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:92:LEU:CD12</td>
<td>1:B:416:TRP:HE1</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:48:ASN:ND2</td>
<td>1:C:51:ASP:OD2</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:117:TYR:CE</td>
<td>1:D:165:ALA:HB1</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:267:ARG:HG3</td>
<td>1:A:392:ARG:HG2</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:333:PHE:O</td>
<td>1:B:337:ASN:HA</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:251:ARG:HC2</td>
<td>2:B:431:CTR:OB6</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:250:ASP:HB3</td>
<td>1:C:253:ALA:CB</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:318:MET:CE</td>
<td>1:C:332:MET:HA</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:375:TRP:O</td>
<td>1:C:392:ARG:HG2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:4:GLY:N</td>
<td>1:D:71:ILE:O</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:9:GLU:OE2</td>
<td>1:D:73:GLY:HA2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:142:SER:HB2</td>
<td>1:A:414:VAL:CG2</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:225:PHE:O</td>
<td>1:B:263:TYR:N</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:276:LYS:HD3</td>
<td>3:B:701:HOH:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:127:LEU:HB2</td>
<td>1:B:421:PHE:HD1</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:111:MET:HA</td>
<td>1:C:118:GLN:H</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:4:GLY:N</td>
<td>1:C:71:ILE:O</td>
<td>2.50</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:82:GLY:CA</td>
<td>1:D:96:THR:HG21</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:279:THR:HG22</td>
<td>1:A:280:LEU:N</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:356:ARG:HD3</td>
<td>1:B:21:ALA:CB</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:405:VAL:HG23</td>
<td>1:C:406:GLU:CB</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:3:ALA:HA</td>
<td>1:C:71:ILE:HD12</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:155:MET:O</td>
<td>1:D:159:PRO:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:74:ALA:HD3</td>
<td>1:D:77:TYR:CZ</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:76:ASP:CB</td>
<td>1:D:76:ASP:HB3</td>
<td>2.43</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:14:LEU:HA</td>
<td>1:A:14:LEU:HD12</td>
<td>1.77</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:179:ASP:HB3</td>
<td>1:B:247:TYR:OH</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:310:ILE:HA</td>
<td>1:B:311:PRO:HD3</td>
<td>1.81</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:350:GLN:O</td>
<td>1:C:353:ASN:N</td>
<td>2.52</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:244:GLY:HA2</td>
<td>1:D:250:ASP:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:329:CYS:HA</td>
<td>1:A:332:MET:HE2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:374:LEU:HD13</td>
<td>1:A:382:PRO:CG</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:4:GLY:N</td>
<td>1:A:70:MET:HB2</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:32:VAL:HG12</td>
<td>1:B:109:TYR:C</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:186:LYS:HA</td>
<td>1:B:186:LYS:HD3</td>
<td>1.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:42:HIS:CB</td>
<td>1:B:48:ASN:HA</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:141:ASN:HB2</td>
<td>1:C:373:MET:SD</td>
<td>2.61</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:286:PHE:HB3</td>
<td>1:C:303:GLN:NE2</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:402:PRO:O</td>
<td>1:C:405:VAL:HG22</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:310:ILE:HD12</td>
<td>1:D:310:ILE:N</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:380:TYR:CD1</td>
<td>1:A:382:PRO:HD3</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:327:GLU:OE1</td>
<td>1:B:327:GLU:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:349:GLU:HA</td>
<td>1:B:352:ASN:HB2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:91:THR:C</td>
<td>1:C:92:LEU:HD23</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:12:PRO:O</td>
<td>1:A:32:VAL:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:366:TRP:HZ3</td>
<td>1:A:368:ASP:HB2</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:332:MET:HE2</td>
<td>1:B:332:MET:HE2</td>
<td>1.92</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:85:THR:HG23</td>
<td>1:B:86:SER:N</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:62:ALA:NL</td>
<td>1:C:190:GLU:OE1</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:53:ASN:CG</td>
<td>1:C:194:SER:HB3</td>
<td>2.40</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:313:PRO:HG2</td>
<td>1:C:318:MET:HB3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:324:ILE:HG23</td>
<td>1:C:328:LEU:HD12</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:122:LEU:CD1</td>
<td>1:C:359:MET:HG3</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:375:TRP:O</td>
<td>1:D:392:ARG:HD3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:1:PCA:HG3</td>
<td>1:A:182:PHE:CG</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:368:ASP:HB3</td>
<td>1:B:373:MET:N</td>
<td>2.35</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:274:TYR:HD1</td>
<td>1:D:280:LEU:HD12</td>
<td>1.81</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:326:PRO:HG3</td>
<td>1:A:348:PHE:HB3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:374:LEU:HB3</td>
<td>1:A:380:TYR:CD1</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:251:ARG:HG1</td>
<td>1:B:251:ARG:HG3</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:324:ILE:CG2</td>
<td>1:C:328:LEU:HD12</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:14:LEU:HD13</td>
<td>1:D:85:THR:OG1</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:278:LYS:HG3</td>
<td>1:D:278:LYS:HZ3</td>
<td>1.67</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:34:ILE:HG13</td>
<td>1:D:107:ARG:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:80:THR:HG22</td>
<td>1:D:98:HIS:CE1</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:18:ARG:NH1</td>
<td>1:A:28:VAL:HG22</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:372:ASN:HB3</td>
<td>1:A:400:GLY:C</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:107:ARG:HG1</td>
<td>3:B:664:HOH:O</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:175:GLN:OE1</td>
<td>1:B:175:GLN:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:280:LEU:HD11</td>
<td>1:B:286:PHE:CD1</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:337:ASN:HA</td>
<td>1:B:337:ASN:HD22</td>
<td>1.49</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:355:LEU:HA</td>
<td>1:B:355:LEU:HD22</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:368:ASP:O</td>
<td>1:B:372:ASN:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:404:GLU:O</td>
<td>1:B:407:ALA:HB3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:115:ASP:HA</td>
<td>1:C:166:ARG:HD3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:126:GLU:HA</td>
<td>1:C:200:SER:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:176:CYS:HA</td>
<td>1:D:208:SER:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:80:THR:HA</td>
<td>1:D:98:HIS:CE1</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:7:THR:HG21</td>
<td>1:A:75:GLY:H</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:231:THR:HG1</td>
<td>1:B:255:LYS:HB3</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:365:ILE:O</td>
<td>1:B:365:ILE:HG23</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:63:THR:OG1</td>
<td>1:C:186:LYS:NZ</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:60:SER:C</td>
<td>1:D:189:ILE:HD13</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:2:ARG:HD3</td>
<td>1:D:2:ARG:HH11</td>
<td>1.74</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:357:VAL:HA</td>
<td>1:A:358:PRO:HD2</td>
<td>1.78</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:142:SER:HB2</td>
<td>1:A:414:VAL:CB</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:51:ASP:O</td>
<td>1:A:54:GLN:O</td>
<td>2.38</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:17:GLN:HB2</td>
<td>1:B:420:ARG:CG</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:109:TYR:HH</td>
<td>1:C:171:TYR:HB2</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:222:ALA:N</td>
<td>1:C:274:TYR:HE2</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:295:ASN:HA</td>
<td>1:C:348:PHE:CE2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:132:ASP:CB</td>
<td>1:C:415:VAL:HG13</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:265:PRO:HA</td>
<td>1:D:268:MET:HB2</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:7:THR:N</td>
<td>1:D:72:GLU:OE1</td>
<td>2.52</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:315:TRP:CE3</td>
<td>1:A:388:PRO:HB3</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:195:SER:OG</td>
<td>1:B:196:THR:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:149:MET:HG2</td>
<td>1:C:170:GLY:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:276:LYS:HG2</td>
<td>1:C:283:SER:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:311:PRO:HA</td>
<td>1:C:312:PRO:HD3</td>
<td>1.95</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:188:ASN:HB3</td>
<td>1:D:192:TRP:CE3</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:239:GLU:C</td>
<td>1:D:240:THR:HG1</td>
<td>2.23</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:61:THR:OG1</td>
<td>1:D:64:ASP:OD2</td>
<td>2.30</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:143:ALA:HA</td>
<td>1:A:216:TRP:O</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:215:VAL:HA</td>
<td>1:B:225:PHE:CE2</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:15:THR:HA</td>
<td>1:B:28:VAL:O</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:37:ASN:OD1</td>
<td>1:C:180:LEU:HA</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:11:HIS:CD2</td>
<td>1:A:33:VAL:HG23</td>
<td>2.57</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:251:ARG:HH11</td>
<td>1:B:251:ARG:HG3</td>
<td>1.86</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:278:LYS:HB3</td>
<td>1:D:279:THR:H</td>
<td>1.61</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:126:GLU:OE1</td>
<td>1:A:291:ARG:HG2</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:189:ILE:HG23</td>
<td>1:A:190:GLU:N</td>
<td>2.36</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:377:ASP:HB2</td>
<td>1:B:395:CYS:SG</td>
<td>2.62</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:208:SER:HB3</td>
<td>1:C:235:TYR:CE1</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:401:VAL:O</td>
<td>1:C:405:VAL:HG22</td>
<td>2.22</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:381:PRO:HB2</td>
<td>1:D:383:GLU:CD</td>
<td>2.42</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:198:ASP:OD1</td>
<td>1:A:200:ASN:N</td>
<td>2.50</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:252:PHE:HB3</td>
<td>1:A:341:ARG:CD</td>
<td>2.50</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:99:GLU:HG2</td>
<td>1:A:100:TYR:CE2</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:118:GLN:NE2</td>
<td>1:B:119:MET:N</td>
<td>2.69</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:362:VAL:HG12</td>
<td>1:B:363:MET:N</td>
<td>2.37</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:82:GLY:CA</td>
<td>1:C:96:THR:HG21</td>
<td>2.51</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:52:GLY:HA2</td>
<td>3:D:840:HOH:O</td>
<td>2.22</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:16:TRP:CE2</td>
<td>1:A:28:VAL:HG11</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:147:VAL:O</td>
<td>1:B:149:MET:N</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:251:ARG:HG2</td>
<td>1:B:251:ARG:O</td>
<td>2.22</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:219:ASN:OD1</td>
<td>1:C:222:ALA:N</td>
<td>2.53</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:193:LYS:NZ</td>
<td>3:D:712:HOH:O</td>
<td>2.55</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:292:PHE:HB3</td>
<td>1:D:355:LEU:HD13</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:382:PRO:O</td>
<td>1:D:384:LYS:N</td>
<td>2.54</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>428/430 (100%)</td>
<td>359 (84%)</td>
<td>54 (13%)</td>
<td>15 (4%)</td>
<td>4 0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>428/430 (100%)</td>
<td>355 (83%)</td>
<td>56 (13%)</td>
<td>17 (4%)</td>
<td>3 0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>428/430 (100%)</td>
<td>379 (89%)</td>
<td>37 (9%)</td>
<td>12 (3%)</td>
<td>6 1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>428/430 (100%)</td>
<td>373 (87%)</td>
<td>46 (11%)</td>
<td>9 (2%)</td>
<td>8 1</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1712/1720 (100%)</td>
<td>1466 (86%)</td>
<td>193 (11%)</td>
<td>53 (3%)</td>
<td>5 0</td>
</tr>
</tbody>
</table>

All (53) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>46</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>47</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>148</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>240</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>384</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>43</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>56</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>98</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>232</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>248</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>278</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>44</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>45</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>164</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>399</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>383</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>390</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>105</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>177</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>210</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>385</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>86</td>
<td>SER</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>165</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>176</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>189</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>197</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>210</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>260</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>246</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>385</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>102</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>176</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>240</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>385</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>46</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>176</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>296</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>46</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>123</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>185</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>402</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>247</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>31</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>24</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>24</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>22</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>192</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>190</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>402</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>388</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>402</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>199</td>
<td>PRO</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>354/354 (100%)</td>
<td>260 (73%)</td>
<td>94 (27%)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>354/354 (100%)</td>
<td>274 (77%)</td>
<td>80 (23%)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>354/354 (100%)</td>
<td>292 (82%)</td>
<td>62 (18%)</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>354/354 (100%)</td>
<td>303 (86%)</td>
<td>51 (14%)</td>
<td>4</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1416/1416 (100%)</td>
<td>1129 (80%)</td>
<td>287 (20%)</td>
<td>1</td>
</tr>
</tbody>
</table>

All (287) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>6</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>15</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>17</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>20</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>32</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>39</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>40</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>46</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>53</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>59</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>61</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>63</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>70</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>71</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>76</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>84</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>85</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>86</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>88</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>96</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>97</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>99</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>100</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>106</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>117</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>122</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>133</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>135</td>
<td>THR</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>137</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>151</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>155</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>157</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>162</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>175</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>178</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>179</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>181</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>193</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>195</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>196</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>197</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>203</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>213</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>214</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>228</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>234</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>236</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>239</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>241</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>242</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>246</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>252</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>257</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>266</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>267</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>276</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>290</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>294</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>296</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>298</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>303</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>304</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>306</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>308</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>315</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>316</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>318</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>319</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>320</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>321</td>
<td>SER</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>322</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>332</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>335</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>336</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>338</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>340</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>348</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>353</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>360</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>363</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>368</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>376</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>377</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>379</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>383</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>394</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>401</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>405</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>409</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>415</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>420</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>421</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>2</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>6</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>7</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>15</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>18</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>26</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>31</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>32</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>34</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>37</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>41</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>45</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>47</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>48</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>51</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>54</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>56</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>61</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>68</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>70</td>
<td>MET</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>76</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>80</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>85</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>93</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>98</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>112</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>116</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>122</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>127</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>133</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>135</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>147</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>149</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>155</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>157</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>162</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>181</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>182</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>189</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>193</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>194</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>195</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>196</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>198</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>208</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>213</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>234</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>242</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>248</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>259</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>278</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>280</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>281</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>283</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>284</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>298</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>316</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>321</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>332</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>334</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>337</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>338</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>340</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>343</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>348</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>355</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>359</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>361</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>363</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>365</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>374</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>376</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>384</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>392</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>398</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>405</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>415</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>427</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>429</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>2</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>6</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>34</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>37</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>41</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>45</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>49</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>51</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>67</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>70</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>71</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>86</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>90</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>92</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>96</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>97</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>100</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>106</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>111</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>116</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>127</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>133</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>140</td>
<td>ILE</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>142</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>155</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>160</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>162</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>166</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>180</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>181</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>193</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>195</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>196</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>197</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>206</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>208</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>234</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>239</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>242</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>264</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>272</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>284</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>291</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>294</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>306</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>320</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>323</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>324</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>327</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>328</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>332</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>340</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>364</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>383</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>385</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>394</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>398</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>408</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>415</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>420</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>426</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>2</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>6</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>26</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>37</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>44</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>46</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>59</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>64</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>70</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>88</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>93</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>97</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>99</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>100</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>115</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>116</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>122</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>123</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>133</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>155</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>160</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>180</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>186</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>190</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>193</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>194</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>196</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>246</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>251</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>278</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>285</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>292</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>293</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>294</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>298</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>306</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>322</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>332</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>337</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>338</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>348</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>349</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>359</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>369</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>383</td>
<td>GLU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>388</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>402</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>413</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>415</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>430</td>
<td>PHE</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (48) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>17</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>24</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>29</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>48</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>162</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>320</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>353</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>372</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>24</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>29</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>48</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>54</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>118</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>125</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>162</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>200</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>337</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>340</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>352</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>353</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>369</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>372</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>408</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>413</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>5</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>125</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>162</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>320</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>337</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>340</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>352</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>353</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>369</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>372</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>418</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>5</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>26</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>29</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>45</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>98</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>125</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>320</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>352</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>353</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>369</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>387</td>
<td>GLN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

4 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>1</td>
<td>PCA</td>
<td>A</td>
<td>1</td>
<td>1</td>
<td>8,8,9</td>
<td>1.90</td>
</tr>
<tr>
<td>1</td>
<td>PCA</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>8,8,9</td>
<td>1.89</td>
</tr>
<tr>
<td>1</td>
<td>PCA</td>
<td>C</td>
<td>1</td>
<td>1</td>
<td>8,8,9</td>
<td>2.04</td>
</tr>
<tr>
<td>1</td>
<td>PCA</td>
<td>D</td>
<td>1</td>
<td>1</td>
<td>8,8,9</td>
<td>1.90</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical
component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCA</td>
<td>A</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0/0/11/13</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>1</td>
<td>PCA</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0/0/11/13</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>1</td>
<td>PCA</td>
<td>C</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0/0/11/13</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>1</td>
<td>PCA</td>
<td>D</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0/0/11/13</td>
<td>0/1/1/1</td>
</tr>
</tbody>
</table>

All (6) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>1</td>
<td>PCA</td>
<td>CA-C</td>
<td>2.22</td>
<td>1.53</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1</td>
<td>PCA</td>
<td>CA-C</td>
<td>2.57</td>
<td>1.53</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1</td>
<td>PCA</td>
<td>CD-N</td>
<td>4.50</td>
<td>1.47</td>
<td>1.34</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1</td>
<td>PCA</td>
<td>CD-N</td>
<td>4.58</td>
<td>1.47</td>
<td>1.34</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1</td>
<td>PCA</td>
<td>CD-N</td>
<td>4.69</td>
<td>1.48</td>
<td>1.34</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>PCA</td>
<td>CD-N</td>
<td>4.69</td>
<td>1.48</td>
<td>1.34</td>
</tr>
</tbody>
</table>

All (14) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>1</td>
<td>PCA</td>
<td>OE-CD-CG</td>
<td>-4.02</td>
<td>119.46</td>
<td>126.86</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1</td>
<td>PCA</td>
<td>OE-CD-CG</td>
<td>-3.99</td>
<td>119.51</td>
<td>126.86</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1</td>
<td>PCA</td>
<td>OE-CD-CG</td>
<td>-3.51</td>
<td>120.40</td>
<td>126.86</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1</td>
<td>PCA</td>
<td>CB-CA-C</td>
<td>-3.26</td>
<td>108.22</td>
<td>112.70</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>PCA</td>
<td>O-C-CA</td>
<td>-3.03</td>
<td>118.09</td>
<td>125.15</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1</td>
<td>PCA</td>
<td>CB-CA-C</td>
<td>-2.64</td>
<td>109.07</td>
<td>112.70</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1</td>
<td>PCA</td>
<td>O-C-CA</td>
<td>-2.33</td>
<td>119.72</td>
<td>125.15</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1</td>
<td>PCA</td>
<td>O-C-CA</td>
<td>-2.25</td>
<td>119.90</td>
<td>125.15</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>PCA</td>
<td>OE-CD-CG</td>
<td>-2.22</td>
<td>122.77</td>
<td>126.86</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>PCA</td>
<td>CG-CD-N</td>
<td>-2.16</td>
<td>102.19</td>
<td>108.33</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1</td>
<td>PCA</td>
<td>CB-CA-C</td>
<td>-2.14</td>
<td>109.76</td>
<td>112.70</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>PCA</td>
<td>CB-CA-C</td>
<td>-2.06</td>
<td>109.87</td>
<td>112.70</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1</td>
<td>PCA</td>
<td>O-C-CA</td>
<td>-2.04</td>
<td>120.39</td>
<td>125.15</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1</td>
<td>PCA</td>
<td>CB-CG-CD</td>
<td>2.26</td>
<td>108.13</td>
<td>104.30</td>
</tr>
</tbody>
</table>

There are no chirality outliers.
There are no torsion outliers.
There are no ring outliers.
4 monomers are involved in 11 short contacts:
5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

6 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>A</td>
<td>431</td>
<td>-</td>
<td>36,36,36</td>
<td>0.57</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>A</td>
<td>432</td>
<td>-</td>
<td>36,36,36</td>
<td>0.48</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>B</td>
<td>431</td>
<td>-</td>
<td>36,36,36</td>
<td>0.53</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>C</td>
<td>431</td>
<td>-</td>
<td>36,36,36</td>
<td>0.61</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>C</td>
<td>432</td>
<td>-</td>
<td>36,36,36</td>
<td>0.52</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>D</td>
<td>431</td>
<td>-</td>
<td>36,36,36</td>
<td>0.57</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CTR</td>
<td>A</td>
<td>431</td>
<td>-</td>
<td>1/1/15/15</td>
<td>0/14/74/74</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>A</td>
<td>432</td>
<td>-</td>
<td>1/1/15/15</td>
<td>0/14/74/74</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>B</td>
<td>431</td>
<td>-</td>
<td>1/1/15/15</td>
<td>0/14/74/74</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>C</td>
<td>431</td>
<td>-</td>
<td>1/1/15/15</td>
<td>0/14/74/74</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>C</td>
<td>432</td>
<td>-</td>
<td>1/1/15/15</td>
<td>0/14/74/74</td>
<td>0/3/3/3</td>
</tr>
</tbody>
</table>

Continued on next page...
There are no bond length outliers.

All (45) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>432</td>
<td>CTR</td>
<td>C1A-O4B-C4B</td>
<td>-4.04</td>
<td>108.16</td>
<td>118.00</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>431</td>
<td>CTR</td>
<td>C1B-O4C-C4C</td>
<td>-3.74</td>
<td>108.89</td>
<td>118.00</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>C1B-O5B-C5B</td>
<td>-3.68</td>
<td>106.78</td>
<td>113.72</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>431</td>
<td>CTR</td>
<td>C1B-O5B-C5B</td>
<td>-3.59</td>
<td>106.96</td>
<td>113.72</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>432</td>
<td>CTR</td>
<td>C1A-O5A-C5A</td>
<td>-3.57</td>
<td>107.08</td>
<td>113.39</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>431</td>
<td>CTR</td>
<td>C1B-O4C-C4C</td>
<td>-3.45</td>
<td>109.60</td>
<td>118.00</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>431</td>
<td>CTR</td>
<td>C1A-O4B-C4B</td>
<td>-3.39</td>
<td>109.74</td>
<td>118.00</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>431</td>
<td>CTR</td>
<td>C1B-O4C-C4C</td>
<td>-3.28</td>
<td>110.00</td>
<td>118.00</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>431</td>
<td>CTR</td>
<td>C1A-O4B-C4B</td>
<td>-3.17</td>
<td>110.26</td>
<td>118.00</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>O5A-C1A-C2A</td>
<td>-2.88</td>
<td>104.75</td>
<td>110.30</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>431</td>
<td>CTR</td>
<td>C1B-O5B-C5B</td>
<td>-2.87</td>
<td>108.30</td>
<td>113.72</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>C1C-O5C-C5C</td>
<td>-2.63</td>
<td>108.64</td>
<td>113.39</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>C1A-O4B-C4B</td>
<td>-2.60</td>
<td>111.66</td>
<td>118.00</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>431</td>
<td>CTR</td>
<td>C1B-O5B-C5B</td>
<td>-2.50</td>
<td>109.01</td>
<td>113.72</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>C1A-O5A-C5A</td>
<td>-2.49</td>
<td>109.02</td>
<td>113.72</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>431</td>
<td>CTR</td>
<td>C1B-O4C-C4C</td>
<td>-2.39</td>
<td>112.18</td>
<td>118.00</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>431</td>
<td>CTR</td>
<td>C3C-C4C-C5C</td>
<td>-2.36</td>
<td>105.87</td>
<td>110.88</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>431</td>
<td>CTR</td>
<td>C3B-C4B-C5B</td>
<td>-2.34</td>
<td>105.90</td>
<td>110.88</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>431</td>
<td>CTR</td>
<td>O5B-C1B-C2B</td>
<td>-2.27</td>
<td>105.92</td>
<td>110.30</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>431</td>
<td>CTR</td>
<td>C1B-O4C-C4C</td>
<td>-2.26</td>
<td>112.48</td>
<td>118.00</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>431</td>
<td>CTR</td>
<td>O5B-C1B-C2B</td>
<td>-2.22</td>
<td>106.01</td>
<td>110.30</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>431</td>
<td>CTR</td>
<td>C6A-C5A-C4A</td>
<td>-2.15</td>
<td>107.97</td>
<td>113.00</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>431</td>
<td>CTR</td>
<td>C1A-O4B-C4B</td>
<td>-2.12</td>
<td>112.83</td>
<td>118.00</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>O5B-C1B-C2B</td>
<td>-2.10</td>
<td>106.24</td>
<td>110.30</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>C1B-O4C-C4C</td>
<td>-2.08</td>
<td>112.94</td>
<td>118.00</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>431</td>
<td>CTR</td>
<td>C1A-O5A-C5A</td>
<td>-2.05</td>
<td>109.85</td>
<td>113.72</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>431</td>
<td>CTR</td>
<td>O4A-C4A-C3A</td>
<td>-2.03</td>
<td>105.94</td>
<td>110.36</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>432</td>
<td>CTR</td>
<td>O5B-C5B-C4B</td>
<td>2.02</td>
<td>113.88</td>
<td>109.75</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>431</td>
<td>CTR</td>
<td>O5B-C5B-C4B</td>
<td>2.13</td>
<td>114.12</td>
<td>109.75</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>431</td>
<td>CTR</td>
<td>C2B-C3B-C4B</td>
<td>2.18</td>
<td>114.12</td>
<td>109.61</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>O5C-C5C-C6C</td>
<td>2.21</td>
<td>111.70</td>
<td>106.41</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>432</td>
<td>CTR</td>
<td>O5A-C5A-C6A</td>
<td>2.25</td>
<td>111.81</td>
<td>106.41</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>C1B-C2B-C3B</td>
<td>2.41</td>
<td>114.45</td>
<td>109.98</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>431</td>
<td>CTR</td>
<td>O5A-C5A-C6A</td>
<td>2.50</td>
<td>112.40</td>
<td>106.41</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>431</td>
<td>CTR</td>
<td>O5B-C5B-C6B</td>
<td>2.51</td>
<td>112.42</td>
<td>106.41</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>O5A-C5A-C4A</td>
<td>2.76</td>
<td>114.74</td>
<td>109.66</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>431</td>
<td>CTR</td>
<td>O5C-C5C-C4C</td>
<td>2.81</td>
<td>115.50</td>
<td>109.75</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>432</td>
<td>CTR</td>
<td>O2C-C2C-C1C</td>
<td>2.84</td>
<td>115.66</td>
<td>109.75</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>432</td>
<td>CTR</td>
<td>O4B-C1A-C2A</td>
<td>2.95</td>
<td>114.76</td>
<td>108.11</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>431</td>
<td>CTR</td>
<td>C1C-C2C-C3C</td>
<td>3.02</td>
<td>116.10</td>
<td>110.65</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>C2B-C3B-C4B</td>
<td>3.18</td>
<td>116.20</td>
<td>109.61</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>431</td>
<td>CTR</td>
<td>C1C-O5C-C5C</td>
<td>3.28</td>
<td>119.31</td>
<td>113.39</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>431</td>
<td>CTR</td>
<td>C1A-C2A-C3A</td>
<td>4.58</td>
<td>118.50</td>
<td>109.98</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>432</td>
<td>CTR</td>
<td>O5C-C5C-C4C</td>
<td>5.94</td>
<td>121.91</td>
<td>109.75</td>
</tr>
</tbody>
</table>

All (6) chirality outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>431</td>
<td>CTR</td>
<td>C1C</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>431</td>
<td>CTR</td>
<td>C1C</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>C1C</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>431</td>
<td>CTR</td>
<td>C1C</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>431</td>
<td>CTR</td>
<td>C1C</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>432</td>
<td>CTR</td>
<td>C1C</td>
</tr>
</tbody>
</table>

There are no torsion outliers.

There are no ring outliers.

6 monomers are involved in 34 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>431</td>
<td>CTR</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>432</td>
<td>CTR</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>431</td>
<td>CTR</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>431</td>
<td>CTR</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>432</td>
<td>CTR</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>431</td>
<td>CTR</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ> 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>429/430 (99%)</td>
<td>-0.16</td>
<td>3 (0%)</td>
<td>87 86</td>
<td>9, 29, 48, 80</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>429/430 (99%)</td>
<td>-0.21</td>
<td>4 (0%)</td>
<td>84 82</td>
<td>11, 28, 44, 61</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>429/430 (99%)</td>
<td>-0.53</td>
<td>0 100</td>
<td>100</td>
<td>6, 22, 37, 68</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>429/430 (99%)</td>
<td>-0.53</td>
<td>0 100</td>
<td>100</td>
<td>7, 20, 36, 58</td>
</tr>
<tr>
<td>1</td>
<td>All</td>
<td>1716/1720 (99%)</td>
<td>-0.36</td>
<td>7 (0%)</td>
<td>92 90</td>
<td>6, 25, 42, 80</td>
</tr>
</tbody>
</table>

All (7) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>244</td>
<td>GLY</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>269</td>
<td>GLY</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>66</td>
<td>ALA</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>61</td>
<td>THR</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>59</td>
<td>CYS</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>189</td>
<td>ILE</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>313</td>
<td>PRO</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. LLDF column lists the quality of electron density of the group with respect to its neighbouring residues in protein, DNA or RNA chains. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RCC</th>
<th>RSR</th>
<th>LLDF</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCA</td>
<td>D</td>
<td>1</td>
<td>8/9</td>
<td>0.99</td>
<td>0.06</td>
<td></td>
<td>5,17,23,43</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>PCA</td>
<td>C</td>
<td>1</td>
<td>8/9</td>
<td>0.94</td>
<td>0.12</td>
<td></td>
<td>14,25,27,28</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>PCA</td>
<td>B</td>
<td>1</td>
<td>8/9</td>
<td>0.95</td>
<td>0.09</td>
<td></td>
<td>17,32,40,51</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>LLDF</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCA</td>
<td>A</td>
<td>1</td>
<td>8/9</td>
<td>0.91</td>
<td>0.13</td>
<td>-</td>
<td>24,29,38,39</td>
<td>0</td>
</tr>
</tbody>
</table>

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. LLDF column lists the quality of electron density of the group with respect to its neighbouring residues in protein, DNA or RNA chains. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>LLDF</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CTR</td>
<td>C</td>
<td>432</td>
<td>34/34</td>
<td>0.93</td>
<td>0.12</td>
<td>1.44</td>
<td>7,35,60,78</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>D</td>
<td>431</td>
<td>34/34</td>
<td>0.95</td>
<td>0.09</td>
<td>1.03</td>
<td>14,29,53,59</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>A</td>
<td>432</td>
<td>34/34</td>
<td>0.93</td>
<td>0.12</td>
<td>0.17</td>
<td>15,36,57,76</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>B</td>
<td>431</td>
<td>34/34</td>
<td>0.96</td>
<td>0.09</td>
<td>-0.12</td>
<td>9,29,47,66</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>A</td>
<td>431</td>
<td>34/34</td>
<td>0.95</td>
<td>0.09</td>
<td>-0.51</td>
<td>10,30,41,43</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CTR</td>
<td>C</td>
<td>431</td>
<td>34/34</td>
<td>0.98</td>
<td>0.06</td>
<td>-0.96</td>
<td>7,18,31,65</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.