

wwPDB EM Validation Summary Report (i)

Dec 11, 2022 - 02:17 am GMT

PDB ID	:	6RFQ
EMDB ID	:	EMD-4872
Title	:	Cryo-EM structure of a respiratory complex I assembly intermediate with ND-
		UFAF2
Authors	:	Parey, K.; Vonck, J.
Deposited on	:	2019-04-16
Resolution	:	3.30 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#$ Entries)	${ m EM} { m structures} \ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	728	94%	• 5%
2	В	488	89%	• 10%
3	С	466	90%	• 8%
4	D	87	98%	••
5	Е	375	68% ·	30%
6	F	144	8%	• 16%
7	G	281	• 72% •	25%
8	Н	243	86%	• 12%
9	Ι	229	٥ % 83%	17%

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
10	J	198	8%	• 10%
11	К	210	72%	27%
12	L	89	100%	
13	О	109	71%	29%
14	Р	124	98%	••
15	Q	132	64% 36	%
16	R	109	94%	• •
17	S	249	68% · 3	30%
18	U	172	94%	5%•
19	W	123	94%	••
20	Х	169	97%	••
21	Y	161	6% 75% •	24%
22	Z	182	9% 64% · 3	4%
23	a	149	82%	17%
24	b	74	85%	• 14%
25	с	60	73%	27%
26	d	92	95%	• •
27	е	67	78%	22%
28	f	87	90%	• 9%
29	g	78	96%	••
30	i	90	92%	8%
31	j	93	95%	•••
32	k	237	40% • 59%	
33	n	120	92%	• 5%
34	1	341	9%	• 7%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
35	2	469	97%	•
36	3	128	80%	16%
37	4	486	95%	•
38	5	655	• 95%	•
39	6	185	95%	• •
40	8	99	14% 79%	17%
41	9	89	96%	•••

2 Entry composition (i)

There are 52 unique types of molecules in this entry. The entry contains 62052 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Subunit NUAM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	694	Total 5274	$\begin{array}{c} \mathrm{C} \\ 3275 \end{array}$	N 928	O 1042	S 29	0	0

• Molecule 2 is a protein called Subunit NUBM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
2	В	441	Total 3421	C 2161	N 601	O 635	S 24	0	0

• Molecule 3 is a protein called Subunit NUCM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
3	С	430	Total 3415	C 2170	N 583	O 640	S 22	0	0

• Molecule 4 is a protein called Subunit NIMM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	86	Total 681	C 432	N 127	0 119	$\frac{S}{3}$	0	0

• Molecule 5 is a protein called Subunit NUEM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	263	Total 2075	C 1315	N 362	O 390	S 8	0	0

• Molecule 6 is a protein called Subunit NUFM of NADH:Ubiquinone Oxidoreductase (Com-

plex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	F	121	Total 990	C 629	N 166	O 193	${ m S} { m 2}$	0	0

• Molecule 7 is a protein called Subunit NUGM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Ate	oms			AltConf	Trace
7	G	210	Total 1739	C 1119	N 297	0 319	$\frac{S}{4}$	0	0

• Molecule 8 is a protein called Subunit NUHM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
8	Н	215	Total 1680	C 1054	N 283	O 325	S 18	0	0

• Molecule 9 is a protein called Subunit NUIM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		A	AltConf	Trace			
9	Ι	190	Total 1519	C 966	N 254	O 289	S 10	0	0

• Molecule 10 is a protein called Subunit NUJM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	J	179	Total 1329	C 844	N 241	O 239	${ m S}{ m 5}$	0	0

• Molecule 11 is a protein called Subunit NUKM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		A	AltConf	Trace			
11	Κ	153	Total 1190	C 756	N 206	0 214	S 14	0	0

• Molecule 12 is a protein called Subunit NULM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	L	89	Total 691	C 464	N 109	O 115	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called Acyl carrier protein ACPM1 of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Ator	\mathbf{ns}	AltConf	Trace	
19	0	77	Total	С	N	Ō	0	0
15	0	11	591	373	93	125	0	0

• Molecule 14 is a protein called Subunit NB4M of protein NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	Р	123	Total 1036	C 667	N 182	0 185	${ m S} { m 2}$	0	0

• Molecule 15 is a protein called Acyl carrier protein ACPM2 of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
15	Q	85	Total 648	C 405	N 103	0 138	${ m S} { m 2}$	0	0

• Molecule 16 is a protein called Subunit NI2M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	R	106	Total 884	C 562	N 168	0 151	${ m S} { m 3}$	0	0

• Molecule 17 is a protein called Subunit NESM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
17	S	174	Total 1430	C 920	N 245	O 263	${ m S} { m 2}$	0	0

• Molecule 18 is a protein called Subunit NUPM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
18	U	171	Total 1345	C 847	N 236	O 252	S 10	0	0

• Molecule 19 is a protein called Subunit NB6M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
19	W	119	Total 961	C 615	N 176	O 165	${ m S}{ m 5}$	0	0

• Molecule 20 is a protein called Subunit NUXM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
20	Х	168	Total 1305	C 845	N 223	O 233	${S \atop 4}$	0	0

• Molecule 21 is a protein called Subunit NUYM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
21	Y	123	Total 1021	C 651	N 187	0 181	${S \over 2}$	0	0

• Molecule 22 is a protein called Subunit NUZM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	Z	120	Total 922	C 589	N 158	0 174	S 1	0	0

• Molecule 23 is a protein called Subunit NIAM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
23	a	124	Total 1030	C 669	N 165	0 194	${ m S} { m 2}$	0	0

• Molecule 24 is a protein called Subunit NEBM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
24	b	64	Total 490	C 326	N 83	O 81	0	0

• Molecule 25 is a protein called Subunit NB2M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms				AltConf	Trace
25	с	44	Total	C	N C7	0	0	0
		11	353	229	67	57		

• Molecule 26 is a protein called Subunit NIDM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
26	d	90	Total 760	C 472	N 137	0 148	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called Subunit NUVM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues	Atoms					AltConf	Trace
27	е	52	Total 436	C 293	N 75	O 65	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called Subunit NI8M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
28	f	79	Total 620	C 389	N 118	0 112	S 1	0	0

• Molecule 29 is a protein called Subunit NI9M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
29	g	76	Total 617	C 405	N 112	O 100	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
g	71	GLY	GLN	conflict	UNP A0A1D8NJR0

• Molecule 30 is a protein called Subunit N7BM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms		AltConf	Trace	
30	i	83	Total 646	C 413	N 117	0 115	S 1	0	0

• Molecule 31 is a protein called Subunit NUUM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
31	j	90	Total 724	C 465	N 132	O 127	0	0

• Molecule 32 is a protein called Subunit N7BML assembly factor.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
32	k	98	Total 828	C 538	N 148	0 142	0	0

• Molecule 33 is a protein called Subunit NUNM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
33	n	114	Total 914	C 588	N 156	0 169	S 1	0	0

• Molecule 34 is a protein called Subunit NU1M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
34	1	318	Total 2540	C 1738	N 369	0 426	${f S} {f 7}$	0	0

• Molecule 35 is a protein called Subunit NU2M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
35	2	469	Total 3774	$\begin{array}{c} \mathrm{C} \\ 2557 \end{array}$	N 550	O 655	S 12	0	0

• Molecule 36 is a protein called Subunit NU3M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
36	3	108	Total 869	C 600	N 127	0 140	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 37 is a protein called Subunit NU4M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms			AltConf	Trace
37	4	486	Total 3855	C 2600	N 586	O 654	S 15	0	0

• Molecule 38 is a protein called Subunit NU5M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
38	5	654	Total 5197	C 3479	N 785	O 905	S 28	0	0

• Molecule 39 is a protein called Subunit NU6M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
39	6	183	Total 1443	C 979	N 207	O 249	S 8	0	0

• Molecule 40 is a protein called Subunit NB8M of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	8	82	Total 672	C 426	N 122	0 116	S 8	0	0

• Molecule 41 is a protein called Subunit NIPM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	AltConf	Trace			
41	9	86	Total 672	C 422	N 122	0 122	S 6	0	0

• Molecule 42 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	AltConf
42	А	1	Total Fe S 16 8 8	0
42	А	1	TotalFeS1688	0
42	В	1	Total Fe S 8 4 4	0
42	Ι	1	Total Fe S 16 8 8	0
42	Ι	1	Total Fe S 16 8 8	0
42	К	1	Total Fe S 8 4 4	0

• Molecule 43 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	AltConf
43	Λ	1	Total Fe S	0
40	Л	1	4 2 2	0
42	п	1	Total Fe S	0
40	11	1	4 2 2	0

• Molecule 44 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula: $C_{17}H_{21}N_4O_9P$).

Mol	Chain	Residues	Atoms					AltConf
4.4	В	1	Total	С	Ν	Ο	Р	0
44 D	T	31	17	4	9	1	0	

• Molecule 45 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE

PHOSPHATE (three-letter code: NDP) (formula: $C_{21}H_{30}N_7O_{17}P_3$).

Mol	Chain	Residues	Atoms					AltConf
45	Е	1	Total 48	C 21	N 7	0 17	Р 3	0

• Molecule 46 is 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE (three-letter code: 3PE) (formula: $C_{41}H_{82}NO_8P$).

Mol	Chain	Residues		AltConf				
46	Ι	1	Total 51	C 41	N 1	0 8	Р 1	0

Mol	Chain	Residues	-	Ato	oms			AltConf
16	т	1	Total	С	Ν	0	Р	0
40	J	1	85	65	2	16	2	0
16	т	1	Total	С	Ν	Ο	Р	0
40	J	1	85	65	2	16	2	0
16	CC CC	1	Total	С	Ν	0	Р	0
40	g	1	43	33	1	8	1	0
46	4	1	Total	С	Ν	Ο	Р	0
40	4	1	136	106	3	24	3	0
46	1	1	Total	С	Ν	Ο	Р	0
40	4	T	136	106	3	24	3	0
46	4	1	Total	С	Ν	Ο	Р	0
40	4	1	136	106	3	24	3	0
46	5	1	Total	С	Ν	Ο	Р	0
04	0	1	93	73	2	16	2	0
46	5	1	Total	С	Ν	Ο	Р	0
01	5	1	93	73	2	16	2	
46	6	1	Total	C	N	Ō	Р	0
10	U	L	36	26	1	8	1	

Continued from previous page...

• Molecule 47 is Lauryl Maltose Neopentyl Glycol (three-letter code: LMN) (formula: $C_{47}H_{88}O_{22}$).

Ν	ſol	Chain	Residues	Atoms	AltConf
4	47	J	1	Total C O 69 47 22	0
4	47	j	1	Total C O 65 43 22	0

• Molecule 48 is CARDIOLIPIN (three-letter code: CDL) (formula: $C_{81}H_{156}O_{17}P_2$).

Mol	Chain	Residues	A		AltConf		
19	Т	1	Total	С	Ο	Р	0
40	J	L	78	59	17	2	0
19	v	1	Total	С	Ο	Р	0
40	Λ	L	82	63	17	2	0
10	<i>c</i> r	1	Total	С	Ο	Р	0
40	g	L	83	64	17	2	0
10	4	1	Total	С	Ο	Р	0
40	4		92	73	17	2	U

• Molecule 49 is S-[2-({N-[(2S)-2-hydroxy-3,3-dimethyl-4-(phosphonooxy)butanoyl]-beta-alan yl}amino)ethyl] tetradecanethioate (three-letter code: ZMP) (formula: $C_{25}H_{49}N_2O_8PS$).

Mol	Chain	Residues	Atoms					AltConf	
49 O	1	Total	С	Ν	0	Р	S	0	
		33	22	2	7	1	1	0	
40	40 0	0 1	Total	С	Ν	0	Р	S	0
49 6	Q	L	33	22	2	7	1	1	0

• Molecule 50 is DIUNDECYL PHOSPHATIDYL CHOLINE (three-letter code: PLC) (formula: $C_{32}H_{65}NO_8P$).

Mol	Chain	Residues	Atoms					AltConf
50	W	1	Total 83	C 63	N 2	O 16	Р 2	0

Continued	from	previous	page
	J	1	1 5

Mol	Chain	Residues	Atoms					AltConf
50 V	W	1	Total	С	Ν	Ο	Р	0
50	50 W	1	83	63	2	16	2	0
50		Total	С	Ν	Ο	Р	0	
50 II	1	42	32	1	8	1	0	
50	50 5	5 1	Total	С	Ν	Ο	Р	0
50			31	21	1	8	1	U

• Molecule 51 is Phosphatidylinositol (three-letter code: T7X) (formula: $C_{47}H_{83}O_{13}P$).

Mol	Chain	Residues	Atoms		AltConf
51	2	1	Total C O	P	0
51	2	T	100 72 26	2	0
51	2	1	Total C O	Р	0
51	51 2	1	100 72 26	2	0
51	1	1	Total C O	Р	0
51	4		43 29 13	1	0

• Molecule 52 is 1-PALMITOYL-2-LINOLEOYL-SN-GLYCERO-3-PHOSPHOCHOLINE (three-letter code: CPL) (formula: $C_{42}H_{80}NO_8P$).

Mol	Chain	Residues	Atoms				AltConf	
52	2	1	Total	C 49	N 1	0	P 1	0
			52	42	T	ð	T	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Subunit NUAM of NADH:Ubiquinone Oxidoreductase (Complex I)

• Molecule 3: Subunit NUCM of NADH:Ubiquinone Oxidoreductase (Complex I)

• Molecule 8: Subunit NUHM of NADH:Ubiquinone Oxidoreductase (Complex I)

Chain H:	86%	• 12%	
MET LEU LEU LEU LEU LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ARIG PRO GLN GLN ALA ALA ALA ALA ALA ALA ALA ARG TR3 B33 M35 M35 M35 M38	842 143 143 846 846 848 848 848 848 843 843 843 843 843 843 843 843 843 843 843 843 843 843 943 943 943 944 943 944 945	M1 41 Q1 45 N1 46
N149 1150 K151 E154 T155 T155 K157 D158 N159 N159 T155 E165	N174 N178 D182 D182 D182 D183 C182 C193 C193 C193 C193 C193 C193 C193	A202 4203 4204 4205 4206 4206 4206 4213 4214 4215 4214 8215 4216 7218	E219 P220 A221 S222 G223 Q224 K225 V226 L228 L228
K230 E231 P232 P233 N234 V235 A236 A236 A236 C241 C241 C241 C242 C242 C242 C242 C242			
• Molecule 9: Subunit N	NUIM of NADH:Ubiquinon	e Oxidoreductase (Complex I	.)
Chain I:	83%	17%	
MET LEU LEU SER SER VAL VAL VAL VAL ARG SER SER SER SER SER SER SER SER SER SER	PRU SER MET MET MET ARG LEU LEU LEU HIS MARG ARG ARA ARA ARA ARA ARA ARA ARA ARA	ALA ILLE M40 G44 HBS B65 B65 B65 B67 B124 E127 E127 E127	1153 •
E217			
• Molecule 10: Subunit	NUJM of NADH:Ubiquino	ne Oxidoreductase (Complex	: I)
Chain J:	89%	• 10%	
MET AER GLUU CLUU CLUU HIS FIS PRO FRO PRO FRO FRO FRO FRO FIS FIS SER SER SER SER SER SER SER SER SER SE	HI F20 H21 H21 H21 G53 S64 G55 S64 G65 G65 G65 S64 H111	L147 4156 2157 2158 2158 4196 7197 ASN	
• Molecule 11: Subunit	NUKM of NADH:Ubiquine	one Oxidoreductase (Complex	x I)
Chain K:	72%	27%	
MET LEU ARG ARG ARG CLN LLE ARG ALA ARG ALA ARG ALA ARG ALA ARG ALA ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	THLA THLE VAL TLE PRO GLN ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	838 840 841 842 845 849 849 849 849 849 849 849 849 849 849	ALA VAL ASP TYR THR
LEU THR THR L64 665 A66 A66 A66 A68 A68 A70 A71 A71 A71 A71 A71 A71 A71 A71 A74	575 77 77 77 77 710 8100 8103 7103 7105 7107 7107 7108 8108 8108 8108 8108 8108	q113 8114 115 1194 1194 1200 12003 12000 12003 10000 10000 10000 10000000000	
	WORLDW PROTEIN DAT		

• Molecule 12: Subunit NULM of NADH:Ubiquinone Oxidoreductase (Complex I)

• Molecule 17: Subunit NESM of NADH: Ubiquinone Oxidoreductase (Complex I)

• Molecule 29: Subunit NI9M of NADH:Ubiquinone Oxidoreductase (Complex I)

Chain g:	96% •••	
MET 12 R69 D77 GLU		
• Molecule 30: S	bunit N7BM of NADH:Ubiquinone Oxidoreductase (Complex I)	
Chain i:	92% 8%	
MET GLY GLY GLY G4 B61 A86 A16 A16 CLU SER CLU SER CLU		
• Molecule 31: S	bunit NUUM of NADH:Ubiquinone Oxidoreductase (Complex I)	
Chain j:	95% ••	
MET VAL E3 011 011 018 018 018 018 021 021		
• Molecule 32: S	bunit N7BML assembly factor	
Chain k:	40% · 59%	
MET TIJE PRO PRO PRO VAL VAL LEU VAL LEU ARC PRE ARC PRE ARC	ASP LYSS VAL LYSS LYSS LYSS LYSS LYSS ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	
P70 D71 L72 S73 S73 V75 H77 K78	H93 195 195 195 195 195 195 190 1100 1100 1	GLU ASP
GLN LEU LYS PRO PHE PHE THR GLU GLU GLU GLU CLEU	MET MET OLIN OLIN OLIN OLIV OLIV ULL PRO OLIN ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
ARG GLM ARG H1S H1S ASP LEU LEU ASP TYR YAL	LYS GLU ARG ASP SER ASP SER ASP CLY LYS P224 A225 C225 C225 A225 C225 A223 C225 A223 C225 C225 C225 C225 C225 C225 C225 C	
• Molecule 33: S	bunit NUNM of NADH:Ubiquinone Oxidoreductase (Complex I)	
Chain n:	92% · 5%	
PHE SGLY SGLY HIS CLY G7 C7 E42	E90 23102 7102 610 610 610	
• Molecule 34: S	bunit NU1M of NADH:Ubiquinone Oxidoreductase (Complex I)	
Chain 1:	90% · 7%	

• Molecule 40: Subunit NB8M of NADH:Ubiquinone Oxidoreductase (Complex I)

• Molecule 41: Subunit NIPM of NADH:Ubiquinone Oxidoreductase (Complex I)

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	112418	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	46425	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.202	Depositor
Minimum map value	-0.072	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.021	Depositor
Map size (Å)	491.112, 491.112, 491.112	wwPDB
Map dimensions	456, 456, 456	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.077, 1.077, 1.077	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: LMN, CDL, SF4, FES, NDP, ZMP, FMN, PLC, CPL, 3PE, T7X

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.51	2/5368~(0.0%)	0.69	4/7285~(0.1%)	
2	В	0.56	5/3496~(0.1%)	0.79	10/4717~(0.2%)	
3	С	0.63	0/3492	0.83	8/4729~(0.2%)	
4	D	0.56	0/697	0.78	2/940~(0.2%)	
5	Е	0.48	0/2113	0.78	8/2854~(0.3%)	
6	F	0.45	0/1011	0.74	2/1371~(0.1%)	
7	G	0.64	0/1793	0.81	5/2441~(0.2%)	
8	Н	0.40	0/1717	0.69	2/2332~(0.1%)	
9	Ι	0.62	0/1557	0.75	1/2110~(0.0%)	
10	J	0.52	1/1362~(0.1%)	0.75	2/1855~(0.1%)	
11	Κ	0.65	0/1220	0.79	1/1656~(0.1%)	
12	L	0.60	0/700	0.83	0/947	
13	0	0.33	0/598	0.60	0/813	
14	Р	0.50	0/1061	0.70	2/1427~(0.1%)	
15	Q	0.41	0/654	0.66	0/890	
16	R	0.53	1/909~(0.1%)	0.72	0/1229	
17	S	0.49	0/1454	0.75	3/1960~(0.2%)	
18	U	0.52	0/1374	0.81	5/1856~(0.3%)	
19	W	0.50	0/984	0.72	2/1327~(0.2%)	
20	Х	0.57	0/1344	0.71	5/1822~(0.3%)	
21	Y	0.51	0/1051	0.69	3/1420~(0.2%)	
22	Ζ	0.46	0/947	0.72	3/1291~(0.2%)	
23	a	0.60	0/1064	0.79	3/1439~(0.2%)	
24	b	0.48	0/503	0.78	1/679~(0.1%)	
25	с	0.48	0/364	0.59	0/491	
26	d	0.64	0/776	0.75	0/1043	
27	е	0.43	0/456	0.62	0/619	
28	f	0.39	0/630	0.71	1/844~(0.1%)	
29	g	0.47	0/643	0.64	1/880~(0.1%)	
30	i	0.52	0/666	0.65	0/907	
31	j	0.52	0/745	0.65	0/1006	
32	k	0.46	0/856	0.75	0/1163	

Mal	Chain	Bo	ond lengths	E	Bond angles
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
33	n	0.58	0/943	0.77	2/1279~(0.2%)
34	1	0.67	0/2608	0.94	10/3558~(0.3%)
35	2	0.78	3/3854~(0.1%)	0.94	14/5252~(0.3%)
36	3	0.56	0/888	0.95	5/1210~(0.4%)
37	4	0.72	1/3949~(0.0%)	0.91	18/5392~(0.3%)
38	5	0.67	2/5327~(0.0%)	0.87	20/7273~(0.3%)
39	6	0.58	0/1468	0.90	8/2003~(0.4%)
40	8	0.59	1/686~(0.1%)	0.76	2/918~(0.2%)
41	9	0.57	1/684~(0.1%)	0.72	0/918
All	All	0.59	17/62012~(0.0%)	0.80	153/84146~(0.2%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
3	С	0	2
5	Е	0	1
7	G	0	1
8	Н	0	5
16	R	0	2
17	S	0	1
18	U	0	3
19	W	0	1
22	Ζ	0	1
26	d	0	1
31	j	0	1
32	k	0	2
34	1	0	2
37	4	0	3
38	5	0	5
40	8	0	1
All	All	0	33

The worst 5 of 17 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
2	В	113	ARG	NE-CZ	13.65	1.50	1.33
2	В	113	ARG	CZ-NH2	-8.99	1.21	1.33
1	А	80	CYS	CB-SG	-7.53	1.69	1.82

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
35	2	135	TYR	CB-CG	-7.03	1.41	1.51
2	В	113	ARG	CD-NE	-6.99	1.34	1.46

The worst 5 of 153 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	В	113	ARG	NE-CZ-NH1	22.27	131.43	120.30
33	n	10	LEU	C-N-CA	11.35	150.08	121.70
35	2	26	ARG	NE-CZ-NH1	11.26	125.93	120.30
3	С	381	LEU	CA-CB-CG	11.24	141.14	115.30
10	J	147	LEU	CA-CB-CG	10.68	139.87	115.30

There are no chirality outliers.

5 of 33 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	568	PHE	Peptide
3	С	269	ARG	Sidechain
3	С	336	ARG	Sidechain
5	Е	51	ARG	Sidechain
7	G	148	ARG	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured Allowed		Outliers	Percentiles		
1	А	692/728~(95%)	642 (93%)	50 (7%)	0	100	100	
2	В	439/488 (90%)	409 (93%)	30 (7%)	0	100	100	

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	С	426/466~(91%)	396 (93%)	30 (7%)	0	100	100
4	D	84/87~(97%)	79~(94%)	5~(6%)	0	100	100
5	Ε	255/375~(68%)	241 (94%)	14 (6%)	0	100	100
6	F	119/144 (83%)	109 (92%)	10 (8%)	0	100	100
7	G	208/281~(74%)	195 (94%)	13 (6%)	0	100	100
8	Н	213/243~(88%)	191 (90%)	22 (10%)	0	100	100
9	Ι	188/229~(82%)	176 (94%)	12 (6%)	0	100	100
10	J	177/198~(89%)	164 (93%)	13 (7%)	0	100	100
11	Κ	147/210 (70%)	136 (92%)	11 (8%)	0	100	100
12	L	87/89~(98%)	84 (97%)	3 (3%)	0	100	100
13	Ο	75/109~(69%)	71 (95%)	4 (5%)	0	100	100
14	Р	121/124 (98%)	113 (93%)	8 (7%)	0	100	100
15	Q	83/132~(63%)	80 (96%)	3 (4%)	0	100	100
16	R	104/109~(95%)	93~(89%)	11 (11%)	0	100	100
17	S	168/249~(68%)	156 (93%)	12 (7%)	0	100	100
18	U	169/172~(98%)	153 (90%)	15 (9%)	1 (1%)	25	57
19	W	117/123~(95%)	112 (96%)	5 (4%)	0	100	100
20	Х	166/169~(98%)	156 (94%)	10 (6%)	0	100	100
21	Y	121/161~(75%)	113 (93%)	8 (7%)	0	100	100
22	Z	118/182~(65%)	107 (91%)	11 (9%)	0	100	100
23	a	122/149~(82%)	109 (89%)	13 (11%)	0	100	100
24	b	62/74~(84%)	60 (97%)	2 (3%)	0	100	100
25	с	42/60~(70%)	38 (90%)	4 (10%)	0	100	100
26	d	88/92~(96%)	82 (93%)	5 (6%)	1 (1%)	14	45
27	е	50/67~(75%)	49 (98%)	1 (2%)	0	100	100
28	f	77/87~(88%)	67 (87%)	10 (13%)	0	100	100
29	g	74/78~(95%)	64 (86%)	10 (14%)	0	100	100
30	i	81/90~(90%)	77 (95%)	4 (5%)	0	100	100
31	j	88/93~(95%)	81 (92%)	6 (7%)	1 (1%)	14	45
32	k	94/237~(40%)	86 (92%)	6 (6%)	2 (2%)	7	31
33	n	$\overline{112/120}~(93\%)$	96 (86%)	15 (13%)	1 (1%)	17	48

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
34	1	312/341~(92%)	292 (94%)	20~(6%)	0	100	100
35	2	467/469~(100%)	436 (93%)	30 (6%)	1 (0%)	47	77
36	3	104/128~(81%)	98~(94%)	6 (6%)	0	100	100
37	4	484/486~(100%)	455~(94%)	28~(6%)	1 (0%)	47	77
38	5	652/655~(100%)	605~(93%)	44 (7%)	3~(0%)	29	61
39	6	181/185~(98%)	166 (92%)	15 (8%)	0	100	100
40	8	80/99~(81%)	75~(94%)	5~(6%)	0	100	100
41	9	84/89~(94%)	$78 \ (93\%)$	6 (7%)	0	100	100
All	All	7531/8667~(87%)	6990 (93%)	530 (7%)	11 (0%)	54	81

Continued from previous page...

5 of 11 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
32	k	40	VAL
32	k	55	VAL
38	5	555	VAL
38	5	556	SER
35	2	188	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	Percentiles	
1	А	566/595~(95%)	563~(100%)	3~(0%)	88	93	
2	В	353/389~(91%)	353~(100%)	0	100	100	
3	С	369/394~(94%)	368 (100%)	1 (0%)	92	96	
4	D	68/69~(99%)	68 (100%)	0	100	100	
5	Е	225/329~(68%)	224 (100%)	1 (0%)	91	95	
6	F	109/129~(84%)	109 (100%)	0	100	100	
7	G	188/245~(77%)	187 (100%)	1 (0%)	88	93	
8	Н	190/212~(90%)	190 (100%)	0	100	100	

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
9	Ι	156/187~(83%)	156 (100%)	0	100	100
10	J	130/147~(88%)	130 (100%)	0	100	100
11	Κ	131/180~(73%)	131 (100%)	0	100	100
12	L	77/77~(100%)	77 (100%)	0	100	100
13	Ο	65/91~(71%)	65 (100%)	0	100	100
14	Р	109/110~(99%)	109 (100%)	0	100	100
15	Q	72/111~(65%)	72 (100%)	0	100	100
16	R	97/100~(97%)	97 (100%)	0	100	100
17	S	149/211~(71%)	148 (99%)	1 (1%)	84	90
18	U	147/148 (99%)	147 (100%)	0	100	100
19	W	98/102~(96%)	98 (100%)	0	100	100
20	Х	132/133~(99%)	132 (100%)	0	100	100
21	Y	105/140~(75%)	105 (100%)	0	100	100
22	Z	95/148~(64%)	95 (100%)	0	100	100
23	a	108/129 (84%)	108 (100%)	0	100	100
24	b	50/59~(85%)	50 (100%)	0	100	100
25	с	30/45~(67%)	30 (100%)	0	100	100
26	d	83/85~(98%)	82 (99%)	1 (1%)	71	83
27	е	44/55~(80%)	44 (100%)	0	100	100
28	f	68/73~(93%)	68 (100%)	0	100	100
29	g	62/64~(97%)	62 (100%)	0	100	100
30	i	64/68~(94%)	64 (100%)	0	100	100
31	j	71/73~(97%)	71 (100%)	0	100	100
32	k	86/207~(42%)	86 (100%)	0	100	100
33	n	98/102~(96%)	98 (100%)	0	100	100
34	1	282/302~(93%)	282 (100%)	0	100	100
35	2	433/433 (100%)	433 (100%)	0	100	100
36	3	97/114~(85%)	97 (100%)	0	100	100
37	4	434/434~(100%)	434 (100%)	0	100	100
38	5	579/580~(100%)	578 (100%)	1 (0%)	93	97
39	6	165/167~(99%)	165 (100%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Rotameric Outliers		Percentiles		
40	8	69/76~(91%)	69~(100%)	0	100	100		
41	9	73/76~(96%)	73~(100%)	0	100	100		
All	All	6527/7389~(88%)	6518 (100%)	9 (0%)	93	97		

 $5~{\rm of}~9$ residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
26	d	13	ASP
38	5	477	LYS
3	С	98	LEU
5	Е	162	ARG
7	G	197	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 74 such side chains are listed below:

Mol	Chain	Res	Type
37	4	335	HIS
39	6	152	ASN
37	4	469	GLN
38	5	529	ASN
18	U	17	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

36 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Chain Res	Res Link	B	Bond lengths			Bond angles			
IVI01	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2		
46	3PE	5	903	-	$50,\!50,\!50$	0.89	3 (6%)	$53,\!55,\!55$	1.17	2 (3%)		
42	SF4	K	301	11	0,12,12	-	-	-				
49	ZMP	Q	201	15	26,32,36	1.87	5 (19%)	$31,\!39,\!45$	1.99	8 (25%)		
44	FMN	В	502	-	33,33,33	2.87	12 (36%)	48,50,50	1.60	9 (18%)		
43	FES	А	803	1	0,4,4	-	-	-				
48	CDL	4	502	-	91,91,99	0.94	8 (8%)	97,103,111	1.18	6 (6%)		
48	CDL	Х	201	-	81,81,99	0.97	7 (8%)	87,93,111	1.20	5 (5%)		
46	3PE	J	203	-	43,43,50	0.91	3 (6%)	46,48,55	1.16	2 (4%)		
51	T7X	2	503	-	52,52,61	0.93	4 (7%)	62,64,73	1.27	7 (11%)		
42	SF4	В	501	2	0,12,12	-	-	-				
42	SF4	А	801	1	0,12,12	-	-	-				
43	FES	Н	301	8	0,4,4	-	-	-				
46	3PE	5	901	-	41,41,50	0.98	3 (7%)	44,46,55	1.19	3 (6%)		
50	PLC	5	902	-	30,30,41	1.48	6 (20%)	$36,\!38,\!49$	1.03	3 (8%)		
46	3PE	6	301	-	$35,\!35,\!50$	1.01	4 (11%)	$38,\!40,\!55$	1.12	2 (5%)		
46	3PE	4	501	-	42,42,50	0.94	3 (7%)	45,47,55	1.23	3 (6%)		
52	CPL	2	502	-	51,51,51	0.99	4 (7%)	57,59,59	1.10	3 (5%)		
46	3PE	4	505	-	50,50,50	0.82	3 (6%)	$53,\!55,\!55$	1.20	4 (7%)		
42	SF4	А	802	1	0,12,12	-	-	-				
48	CDL	J	204	-	77,77,99	1.04	4 (5%)	83,89,111	1.14	8 (9%)		
50	PLC	W	402	-	41,41,41	1.29	5 (12%)	47,49,49	1.21	2 (4%)		
46	3PE	J	201	-	40,40,50	0.98	3 (7%)	43,45,55	1.29	3 (6%)		
47	LMN	j	101	-	68,68,72	1.61	12 (17%)	92,94,98	1.49	16 (17%)		
50	PLC	n	1101	-	41,41,41	1.32	5 (12%)	47,49,49	1.05	2 (4%)		
50	PLC	W	401	-	40,40,41	1.34	6 (15%)	46,48,49	1.22	3 (6%)		
51	T7X	2	501	-	48,48,61	0.95	3 (6%)	57,60,73	1.29	7 (12%)		
49	ZMP	Ο	201	13	26,32,36	1.75	5 (19%)	31,39,45	1.86	8 (25%)		
45	NDP	Е	401	-	45,52,52	3.97	18 (40%)	53,80,80	2.44	7 (13%)		
46	3PE	Ι	303	-	50,50,50	0.88	4 (8%)	$53,\!55,\!55$	1.36	3 (5%)		
46	3PE	g	202	-	42,42,50	0.91	3 (7%)	45,47,55	1.32	2 (4%)		

Mol Type (Chain	Chain Res I	Tiple	B	Bond lengths		Bond angles		
INIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
47	LMN	J	202	-	72,72,72	1.50	8 (11%)	96,98,98	1.58	17 (17%)
42	SF4	Ι	302	9	0,12,12	-	-	-		
42	SF4	Ι	301	9	0,12,12	-	-	-		
51	T7X	4	504	-	43,43,61	0.96	3 (6%)	53,55,73	1.42	5 (9%)
46	3PE	4	503	-	41,41,50	0.93	3 (7%)	44,46,55	1.13	3 (6%)
48	CDL	g	201	-	82,82,99	0.95	6 (7%)	88,94,111	1.25	5 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
46	3PE	5	903	-	-	19/54/54/54	-
42	SF4	K	301	11	-	-	0/6/5/5
49	ZMP	Q	201	15	-	7/37/39/43	-
44	FMN	В	502	-	-	10/18/18/18	0/3/3/3
48	CDL	4	502	-	-	53/102/102/110	-
43	FES	А	803	1	-	-	0/1/1/1
48	CDL	Х	201	-	-	27/92/92/110	-
46	3PE	J	203	-	-	23/47/47/54	-
51	T7X	2	503	-	-	20/47/71/80	0/1/1/1
42	SF4	В	501	2	-	-	0/6/5/5
42	SF4	А	801	1	-	-	0/6/5/5
43	FES	Н	301	8	-	-	0/1/1/1
46	3PE	5	901	-	-	21/45/45/54	-
50	PLC	5	902	-	-	18/34/34/45	-
46	3PE	6	301	-	-	21/39/39/54	-
46	3PE	4	501	-	-	22/46/46/54	-
52	CPL	2	502	-	-	26/55/55/55	-
46	3PE	4	505	-	-	23/54/54/54	-
42	SF4	А	802	1	-	-	0/6/5/5
48	CDL	J	204	-	-	21/88/88/110	-
50	PLC	W	402	-	-	24/45/45/45	-
46	3PE	J	201	-	-	21/44/44/54	-
47	LMN	j	101	-	-	20/46/126/130	0/4/4/4
50	PLC	n	1101	-	-	11/45/45/45	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
50	PLC	W	401	-	-	21/44/44/45	-
51	T7X	2	501	-	-	14/43/67/80	0/1/1/1
49	ZMP	О	201	13	-	13/37/39/43	-
45	NDP	Е	401	-	-	14/30/77/77	0/5/5/5
46	3PE	Ι	303	-	-	24/54/54/54	-
46	3PE	g	202	-	-	21/46/46/54	-
47	LMN	J	202	-	-	26/50/130/130	0/4/4/4
42	SF4	Ι	302	9	-	-	0/6/5/5
42	SF4	Ι	301	9	-	-	0/6/5/5
51	T7X	4	504	-	-	26/38/62/80	0/1/1/1
46	3PE	4	503	-	-	21/45/45/54	-
48	CDL	g	201	-	-	38/93/93/110	-

Continued from previous page...

The worst 5 of 153 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
45	Е	401	NDP	O4B-C1B	13.50	1.59	1.41
45	Ε	401	NDP	C6N-C5N	12.22	1.55	1.33
45	Е	401	NDP	O4D-C1D	7.56	1.59	1.42
44	В	502	FMN	C4A-N5	7.35	1.45	1.30
45	Е	401	NDP	C2D-C1D	-7.27	1.30	1.53

The worst 5 of 148 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
45	Е	401	NDP	C5A-C6A-N6A	10.31	136.02	120.35
45	Е	401	NDP	C1B-N9A-C4A	-8.63	111.49	126.64
45	Е	401	NDP	N6A-C6A-N1A	-7.26	103.49	118.57
49	Q	201	ZMP	C9-C10-S1	6.27	120.75	113.46
45	Е	401	NDP	N3A-C2A-N1A	-6.03	119.25	128.68

There are no chirality outliers.

5 of 605 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
44	В	502	FMN	N10-C1'-C2'-O2'
44	В	502	FMN	N10-C1'-C2'-C3'
44	В	502	FMN	C1'-C2'-C3'-O3'
44	В	502	FMN	C1'-C2'-C3'-C4'

Continued from previous page...

Mol	Chain	Res	Type	Atoms
44	В	502	FMN	O2'-C2'-C3'-O3'

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-4872. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 228

Y Index: 228

Z Index: 228

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 193

Y Index: 272

Z Index: 196

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.021. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 333 nm^3 ; this corresponds to an approximate mass of 300 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.303 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.303 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	3.30	-	-	
Author-provided FSC curve	3.31	3.79	3.35	
Unmasked-calculated*	-	-	-	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-4872 and PDB model 6RFQ. Per-residue inclusion information can be found in section 3 on page 20.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.021 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.021).

9.4 Atom inclusion (i)

At the recommended contour level, 79% of all backbone atoms, 69% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.021) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6928	0.4610
1	0.6687	0.4590
2	0.8159	0.5260
3	0.6283	0.4540
4	0.7956	0.5180
5	0.7882	0.5070
6	0.6862	0.4790
8	0.6244	0.3730
9	0.6455	0.4420
А	0.6566	0.4430
В	0.5674	0.4070
С	0.7388	0.4810
D	0.7270	0.4740
E	0.5786	0.4320
F	0.6790	0.4350
G	0.7890	0.5030
Н	0.5090	0.3680
I	0.7487	0.4830
J	0.7235	0.4610
K	0.6241	0.4520
L	0.7552	0.4760
0	0.3312	0.3060
P	0.6354	0.4270
Q	0.5900	0.3990
R	0.6966	0.4260
S	0.6482	0.3910
U	0.6919	0.4590
W	0.6842	0.4630
X	0.7592	0.4860
Y	0.7062	0.4810
Z	0.6549	0.4430
a	0.7480	0.4430
b	0.7934	0.5000
С	0.6873	0.4150
d	0.7838	0.4840

0.0 <0.0

1.0

Continued from previous page...

Chain	Atom inclusion	Q-score
е	0.6988	0.4640
f	0.4836	0.3600
g	0.7756	0.5230
i	0.7540	0.4620
j	0.7251	0.4790
k	0.3271	0.3570
n	0.7131	0.4680

