

# Full wwPDB X-ray Structure Validation Report (i)

#### Sep 14, 2023 – 01:00 AM EDT

| PDB ID       | : | 4RSQ                                                                     |
|--------------|---|--------------------------------------------------------------------------|
| Title        | : | 2.9A resolution structure of SRPN2 (K198C/E359C) from Anopheles gambiae  |
| Authors      | : | Lovell, S.; Battaile, K.P.; Zhang, X.; Meekins, D.A.; An, C.; Michel, K. |
| Deposited on | : | 2014-11-10                                                               |
| Resolution   | : | 2.90  Å(reported)                                                        |
|              |   |                                                                          |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Xtriage (Phenix)               | : | 1.13                                                               |
| $\mathrm{EDS}$                 | : | 2.35.1                                                             |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35.1                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\# { m Entries,\ resolution\ range}({ m \AA}))$ |  |
|-----------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| R <sub>free</sub>     | 130704                                                               | 1957 (2.90-2.90)                                                           |  |
| Clashscore            | 141614                                                               | 2172 (2.90-2.90)                                                           |  |
| Ramachandran outliers | 138981                                                               | 2115 (2.90-2.90)                                                           |  |
| Sidechain outliers    | 138945                                                               | 2117 (2.90-2.90)                                                           |  |
| RSRZ outliers         | 127900                                                               | 1906 (2.90-2.90)                                                           |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain  |     |       |
|-----|-------|--------|-------------------|-----|-------|
| 1   | А     | 397    | %<br><b>7</b> 6%  | 13% | • 10% |
| 1   | В     | 397    | .%<br><b>82%</b>  | 7%  | • 11% |
| 1   | С     | 397    | 76%               | 13% | 11%   |
| 1   | D     | 397    | 2%<br><b>76</b> % | 13% | 11%   |
| 1   | Е     | 397    | %<br>80%          | 9%  | 10%   |



| Mol | Chain | Length | Quality of chain |           |
|-----|-------|--------|------------------|-----------|
| 1   | F     | 397    | %<br>• 79%       | 9% • 11%  |
| 1   | G     | 397    | %<br>•<br>78%    | 12% 10%   |
| 1   | Н     | 397    | %<br>• 76%       | 13% • 10% |
| 1   | Ι     | 397    | %<br>73%         | 14% • 10% |
| 1   | J     | 397    | %<br>•<br>76%    | 13% 11%   |
| 1   | K     | 397    | %<br>•<br>80%    | 10% • 10% |
| 1   | L     | 397    | 76%              | 12% • 10% |



#### 4RSQ

## 2 Entry composition (i)

There is only 1 type of molecule in this entry. The entry contains 33765 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | Ate          | oms          |     |              | ZeroOcc      | AltConf | Trace |   |
|-----|-------|----------|-------|--------------|--------------|-----|--------------|--------------|---------|-------|---|
| 1   | Δ     | 356      | Total | С            | Ν            | 0   | S            | 0            | 0       | 0     |   |
| 1   |       | 550      | 2827  | 1813         | 468          | 538 | 8            | 0            | 0       | 0     |   |
| 1   | 1 B   | 355      | Total | С            | Ν            | Ο   | $\mathbf{S}$ | 0            | 0       | 0     |   |
| 1   | D     | 000      | 2800  | 1800         | 460          | 532 | 8            | 0            | 0       | 0     |   |
| 1   | 1 C   | 354      | Total | С            | Ν            | Ο   | $\mathbf{S}$ | 0            | 0       | 0     |   |
| 1   | U     | 004      | 2816  | 1806         | 464          | 538 | 8            | 0            | 0       | 0     |   |
| 1   | л     | 355      | Total | С            | Ν            | Ο   | $\mathbf{S}$ | 0            | 0       | 0     |   |
| 1   | D     | 000      | 2801  | 1797         | 463          | 533 | 8            | 0            | 0       | 0     |   |
| 1   | E     | 356      | Total | $\mathbf{C}$ | Ν            | Ο   | $\mathbf{S}$ | 0            | 0       | 0     |   |
| 1   |       | 000      | 2816  | 1808         | 467          | 533 | 8            | 0            | 0       | 0     |   |
| 1   | F     | 353      | Total | С            | Ν            | Ο   | $\mathbf{S}$ | 0            | 0       | 0     |   |
| 1   | Ľ     |          | 2804  | 1802         | 461          | 533 | 8            | 0            | 0       | 0     |   |
| 1   | G     | С        | 357   | Total        | $\mathbf{C}$ | Ν   | Ο            | $\mathbf{S}$ | 0       | 0     | 0 |
| 1   |       | 001      | 2829  | 1815         | 468          | 538 | 8            | 0            | 0       | 0     |   |
| 1   | ц     | н        | 357   | Total        | $\mathbf{C}$ | Ν   | Ο            | $\mathbf{S}$ | 0       | 0     | 0 |
| 1   | 11    | 001      | 2814  | 1807         | 465          | 534 | 8            | 0            | 0       | 0     |   |
| 1   | т     | 356      | Total | $\mathbf{C}$ | Ν            | 0   | $\mathbf{S}$ | 0            | 0       | 0     |   |
| 1   | T     | 550      | 2814  | 1808         | 466          | 532 | 8            | 0            | 0       |       |   |
| 1   | Т     | 355      | Total | $\mathbf{C}$ | Ν            | Ο   | $\mathbf{S}$ | 0            | 0       | 0     |   |
| 1   | 0     | 000      | 2817  | 1808         | 465          | 536 | 8            | 0            | 0       | U     |   |
| 1   | K     | 356      | Total | С            | Ν            | Ο   | $\mathbf{S}$ | 0            | 0       | 0     |   |
|     | IX    | 550      | 2807  | 1803         | 463          | 533 | 8            | 0            | U       | U     |   |
| 1   | T     | 356      | Total | С            | Ν            | 0   | S            | 0            | 0       | 0     |   |
|     |       | 000      | 2820  | 1807         | 468          | 537 | 8            | 0            | 0       | 0     |   |

• Molecule 1 is a protein called Serpin 2.

There are 132 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment        | Reference  |
|-------|---------|----------|--------|----------------|------------|
| А     | 13      | MET      | -      | expression tag | UNP Q005N3 |
| А     | 14      | GLY      | -      | expression tag | UNP Q005N3 |
| А     | 15      | HIS      | -      | expression tag | UNP Q005N3 |
| А     | 16      | HIS      | -      | expression tag | UNP Q005N3 |
| А     | 17      | HIS      | -      | expression tag | UNP Q005N3 |



| 4RSQ |
|------|
|      |

| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| А     | 18      | HIS      | -      | expression tag      | UNP Q005N3 |
| А     | 19      | HIS      | -      | expression tag      | UNP Q005N3 |
| А     | 20      | HIS      | -      | expression tag      | UNP Q005N3 |
| А     | 21      | GLY      | -      | expression tag      | UNP Q005N3 |
| А     | 198     | CYS      | LYS    | engineered mutation | UNP Q005N3 |
| А     | 359     | CYS      | GLU    | engineered mutation | UNP Q005N3 |
| В     | 13      | MET      | -      | expression tag      | UNP Q005N3 |
| В     | 14      | GLY      | -      | expression tag      | UNP Q005N3 |
| В     | 15      | HIS      | -      | expression tag      | UNP Q005N3 |
| В     | 16      | HIS      | -      | expression tag      | UNP Q005N3 |
| В     | 17      | HIS      | -      | expression tag      | UNP Q005N3 |
| В     | 18      | HIS      | -      | expression tag      | UNP Q005N3 |
| В     | 19      | HIS      | -      | expression tag      | UNP Q005N3 |
| В     | 20      | HIS      | -      | expression tag      | UNP Q005N3 |
| В     | 21      | GLY      | -      | expression tag      | UNP Q005N3 |
| В     | 198     | CYS      | LYS    | engineered mutation | UNP Q005N3 |
| В     | 359     | CYS      | GLU    | engineered mutation | UNP Q005N3 |
| С     | 13      | MET      | -      | expression tag      | UNP Q005N3 |
| С     | 14      | GLY      | -      | expression tag      | UNP Q005N3 |
| С     | 15      | HIS      | -      | expression tag      | UNP Q005N3 |
| С     | 16      | HIS      | -      | expression tag      | UNP Q005N3 |
| С     | 17      | HIS      | -      | expression tag      | UNP Q005N3 |
| С     | 18      | HIS      | -      | expression tag      | UNP Q005N3 |
| С     | 19      | HIS      | -      | expression tag      | UNP Q005N3 |
| С     | 20      | HIS      | -      | expression tag      | UNP Q005N3 |
| С     | 21      | GLY      | -      | expression tag      | UNP Q005N3 |
| С     | 198     | CYS      | LYS    | engineered mutation | UNP Q005N3 |
| С     | 359     | CYS      | GLU    | engineered mutation | UNP Q005N3 |
| D     | 13      | MET      | -      | expression tag      | UNP Q005N3 |
| D     | 14      | GLY      | -      | expression tag      | UNP Q005N3 |
| D     | 15      | HIS      | -      | expression tag      | UNP Q005N3 |
| D     | 16      | HIS      | -      | expression tag      | UNP Q005N3 |
| D     | 17      | HIS      | -      | expression tag      | UNP Q005N3 |
| D     | 18      | HIS      | -      | expression tag      | UNP Q005N3 |
| D     | 19      | HIS      | -      | expression tag      | UNP Q005N3 |
| D     | 20      | HIS      | -      | expression tag      | UNP Q005N3 |
| D     | 21      | GLY      | -      | expression tag      | UNP Q005N3 |
| D     | 198     | CYS      | LYS    | engineered mutation | UNP Q005N3 |
| D     | 359     | CYS      | GLU    | engineered mutation | UNP Q005N3 |
| Е     | 13      | MET      | -      | expression tag      | UNP Q005N3 |
| Е     | 14      | GLY      | -      | expression tag      | UNP Q005N3 |
| Е     | 15      | HIS      | -      | expression tag      | UNP Q005N3 |



Е Е Е Е Е Е Е Е F F F F F F F F F F F G G G G G G G G G G G Η Η Н Η Η Н

Η

Η

Η

Η

Н

Ι

19

20

21

198

359

13

HIS

HIS

GLY

CYS

CYS

MET

\_

-

-

LYS

GLU

-

| Residue | Modelled | Actual | Comment             | Reference    |
|---------|----------|--------|---------------------|--------------|
| 16      | HIS      | -      | expression tag      | UNP Q005N3   |
| 17      | HIS      | -      | expression tag      | UNP Q005N3   |
| 18      | HIS      | -      | expression tag      | UNP Q005N3   |
| 19      | HIS      | -      | expression tag      | UNP Q005N3   |
| 20      | HIS      | -      | expression tag      | UNP Q005N3   |
| 21      | GLY      | -      | expression tag      | UNP Q005N3   |
| 198     | CYS      | LYS    | engineered mutation | UNP Q005N3   |
| 359     | CYS      | GLU    | engineered mutation | UNP Q005N3   |
| 13      | MET      | -      | expression tag      | UNP Q005N3   |
| 14      | GLY      | -      | expression tag      | UNP Q005N3   |
| 15      | HIS      | -      | expression tag      | UNP Q005N3   |
| 16      | HIS      | -      | expression tag      | UNP Q005N3   |
| 17      | HIS      | -      | expression tag      | UNP Q005N3   |
| 18      | HIS      | -      | expression tag      | UNP Q005N3   |
| 19      | HIS      | -      | expression tag      | UNP Q005N3   |
| 20      | HIS      | -      | expression tag      | UNP Q005N3   |
| 21      | GLY      | -      | expression tag      | UNP Q005N3   |
| 198     | CYS      | LYS    | engineered mutation | UNP Q005N3   |
| 359     | CYS      | GLU    | engineered mutation | UNP Q005N3   |
| 13      | MET      | -      | expression tag      | UNP Q005N3   |
| 14      | GLY      | -      | expression tag      | UNP Q005N3   |
| 15      | HIS      | -      | expression tag      | UNP Q005N3   |
| 16      | HIS      | -      | expression tag      | UNP Q005N3   |
| 17      | HIS      | -      | expression tag      | UNP Q005N3   |
| 18      | HIS      | -      | expression tag      | UNP Q005N3   |
| 19      | HIS      | -      | expression tag      | UNP Q005N3   |
| 20      | HIS      | -      | expression tag      | UNP Q005N3   |
| 21      | GLY      | -      | expression tag      | UNP Q005N3   |
| 198     | CYS      | LYS    | engineered mutation | UNP Q005N3   |
| 359     | CYS      | GLU    | engineered mutation | UNP Q005N3   |
| 13      | MET      | -      | expression tag      | UNP Q005N3   |
| 14      | GLY      | -      | expression tag      | UNP Q005N3   |
| 15      | HIS      | -      | expression tag      | UNP Q005N3   |
| 16      | HIS      | -      | expression tag      | UNP $Q005N3$ |
| 17      | HIS      | -      | expression tag      | UNP Q005N3   |
| 18      | HIS      |        | expression tag      | UNP $Q005N3$ |

Continue Chain

Continued on next page...

UNP Q005N3

UNP Q005N3

UNP Q005N3

UNP Q005N3

UNP Q005N3

UNP Q005N3



expression tag

expression tag

expression tag

engineered mutation

engineered mutation

expression tag

| 4RSQ |
|------|
|      |

| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| Ι     | 14      | GLY      | _      | expression tag      | UNP Q005N3 |
| Ι     | 15      | HIS      | _      | expression tag      | UNP Q005N3 |
| Ι     | 16      | HIS      | -      | expression tag      | UNP Q005N3 |
| Ι     | 17      | HIS      | _      | expression tag      | UNP Q005N3 |
| Ι     | 18      | HIS      | -      | expression tag      | UNP Q005N3 |
| Ι     | 19      | HIS      | -      | expression tag      | UNP Q005N3 |
| Ι     | 20      | HIS      | -      | expression tag      | UNP Q005N3 |
| Ι     | 21      | GLY      | -      | expression tag      | UNP Q005N3 |
| Ι     | 198     | CYS      | LYS    | engineered mutation | UNP Q005N3 |
| Ι     | 359     | CYS      | GLU    | engineered mutation | UNP Q005N3 |
| J     | 13      | MET      | -      | expression tag      | UNP Q005N3 |
| J     | 14      | GLY      | -      | expression tag      | UNP Q005N3 |
| J     | 15      | HIS      | -      | expression tag      | UNP Q005N3 |
| J     | 16      | HIS      | -      | expression tag      | UNP Q005N3 |
| J     | 17      | HIS      | -      | expression tag      | UNP Q005N3 |
| J     | 18      | HIS      | -      | expression tag      | UNP Q005N3 |
| J     | 19      | HIS      | -      | expression tag      | UNP Q005N3 |
| J     | 20      | HIS      | -      | expression tag      | UNP Q005N3 |
| J     | 21      | GLY      | -      | expression tag      | UNP Q005N3 |
| J     | 198     | CYS      | LYS    | engineered mutation | UNP Q005N3 |
| J     | 359     | CYS      | GLU    | engineered mutation | UNP Q005N3 |
| K     | 13      | MET      | -      | expression tag      | UNP Q005N3 |
| K     | 14      | GLY      | -      | expression tag      | UNP Q005N3 |
| K     | 15      | HIS      | -      | expression tag      | UNP Q005N3 |
| K     | 16      | HIS      | -      | expression tag      | UNP Q005N3 |
| K     | 17      | HIS      | -      | expression tag      | UNP Q005N3 |
| K     | 18      | HIS      | -      | expression tag      | UNP Q005N3 |
| K     | 19      | HIS      | -      | expression tag      | UNP Q005N3 |
| K     | 20      | HIS      | -      | expression tag      | UNP Q005N3 |
| K     | 21      | GLY      | -      | expression tag      | UNP Q005N3 |
| K     | 198     | CYS      | LYS    | engineered mutation | UNP Q005N3 |
| K     | 359     | CYS      | GLU    | engineered mutation | UNP Q005N3 |
| L     | 13      | MET      | -      | expression tag      | UNP Q005N3 |
| L     | 14      | GLY      | -      | expression tag      | UNP Q005N3 |
| L     | 15      | HIS      | -      | expression tag      | UNP Q005N3 |
| L     | 16      | HIS      | -      | expression tag      | UNP Q005N3 |
| L     | 17      | HIS      | -      | expression tag      | UNP Q005N3 |
| L     | 18      | HIS      | -      | expression tag      | UNP Q005N3 |
| L     | 19      | HIS      | -      | expression tag      | UNP Q005N3 |
| L     | 20      | HIS      | -      | expression tag      | UNP Q005N3 |
| L     | 21      | GLY      | -      | expression tag      | UNP Q005N3 |
| L     | 198     | CYS      | LYS    | engineered mutation | UNP Q005N3 |



| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| L     | 359     | CYS      | GLU    | engineered mutation | UNP Q005N3 |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Serpin 2









#### 



• Molecule 1: Serpin 2





## 4 Data and refinement statistics (i)

| Property                                          | Value                                           | Source    |
|---------------------------------------------------|-------------------------------------------------|-----------|
| Space group                                       | P 1 21 1                                        | Depositor |
| Cell constants                                    | 97.92Å 164.39Å 186.18Å                          | Deperitor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$            | $90.00^{\circ}$ $90.02^{\circ}$ $90.00^{\circ}$ | Depositor |
| $\mathbf{P}_{\text{osolution}}(\hat{\mathbf{A}})$ | 47.82 - 2.90                                    | Depositor |
| Resolution (A)                                    | 47.82 - 2.90                                    | EDS       |
| % Data completeness                               | 99.3 (47.82-2.90)                               | Depositor |
| (in resolution range)                             | 99.3 (47.82 - 2.90)                             | EDS       |
| $R_{merge}$                                       | 0.14                                            | Depositor |
| $R_{sym}$                                         | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                               | 2.47 (at 2.91Å)                                 | Xtriage   |
| Refinement program                                | REFMAC                                          | Depositor |
| D D                                               | 0.194 , $0.255$                                 | Depositor |
| $\mathbf{n},  \mathbf{n}_{free}$                  | 0.197 , $0.255$                                 | DCC       |
| $R_{free}$ test set                               | 6286 reflections $(4.85%)$                      | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                           | 40.3                                            | Xtriage   |
| Anisotropy                                        | 0.863                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$       | 0.34 , $8.6$                                    | EDS       |
| L-test for $twinning^2$                           | $< L >=0.46, < L^2>=0.29$                       | Xtriage   |
| Estimated twinning fraction                       | 0.427 for h,-k,-l                               | Xtriage   |
| Perented twinning freation                        | 0.445 for H, K, L                               | Depositor |
| Reported twinning fraction                        | 0.555 for h,-k,-l                               | Depositor |
| Outliers                                          | 0 of 129620 reflections                         | Xtriage   |
| $F_o, F_c$ correlation                            | 0.93                                            | EDS       |
| Total number of atoms                             | 33765                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                      | 43.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 30.85 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.2202e-03. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for a centric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

## 5 Model quality (i)

## 5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal   | Chain   | Bond | lengths  | Bond | angles   |
|-------|---------|------|----------|------|----------|
| 10101 | Ullaill | RMSZ | # Z  > 5 | RMSZ | # Z  > 5 |
| 1     | А       | 0.37 | 0/2890   | 0.54 | 0/3928   |
| 1     | В       | 0.35 | 0/2863   | 0.54 | 0/3894   |
| 1     | С       | 0.37 | 0/2878   | 0.56 | 0/3909   |
| 1     | D       | 0.37 | 0/2863   | 0.55 | 0/3892   |
| 1     | Ε       | 0.38 | 0/2880   | 0.56 | 0/3918   |
| 1     | F       | 0.34 | 0/2867   | 0.52 | 0/3898   |
| 1     | G       | 0.34 | 0/2893   | 0.52 | 0/3935   |
| 1     | Н       | 0.35 | 0/2877   | 0.55 | 0/3913   |
| 1     | Ι       | 0.37 | 0/2877   | 0.54 | 0/3911   |
| 1     | J       | 0.37 | 0/2880   | 0.55 | 0/3916   |
| 1     | Κ       | 0.36 | 0/2871   | 0.55 | 0/3908   |
| 1     | L       | 0.36 | 0/2883   | 0.55 | 0/3923   |
| All   | All     | 0.36 | 0/34522  | 0.54 | 0/46945  |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 2827  | 0        | 2699     | 30      | 0            |
| 1   | В     | 2800  | 0        | 2658     | 14      | 0            |
| 1   | С     | 2816  | 0        | 2689     | 24      | 0            |
| 1   | D     | 2801  | 0        | 2672     | 28      | 0            |

![](_page_13_Picture_15.jpeg)

| 0 0 1 0 0 0 | e ontoin a ca front process as pagen |       |          |          |         |              |
|-------------|--------------------------------------|-------|----------|----------|---------|--------------|
| Mol         | Chain                                | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
| 1           | Ε                                    | 2816  | 0        | 2688     | 17      | 0            |
| 1           | F                                    | 2804  | 0        | 2673     | 18      | 0            |
| 1           | G                                    | 2829  | 0        | 2698     | 20      | 0            |
| 1           | Н                                    | 2814  | 0        | 2676     | 30      | 0            |
| 1           | Ι                                    | 2814  | 0        | 2692     | 34      | 0            |
| 1           | J                                    | 2817  | 0        | 2690     | 28      | 0            |
| 1           | Κ                                    | 2807  | 0        | 2668     | 16      | 0            |
| 1           | L                                    | 2820  | 0        | 2690     | 30      | 0            |
| All         | All                                  | 33765 | 0        | 32193    | 282     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (282) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1           | Atom 2           | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:E:63:LEU:HD21  | 1:E:193:ASN:HB2  | 1.65         | 0.77        |
| 1:A:63:LEU:HD21  | 1:A:193:ASN:HB2  | 1.65         | 0.77        |
| 1:G:130:ILE:HD11 | 1:G:188:VAL:HG12 | 1.69         | 0.74        |
| 1:G:178:ILE:HG23 | 1:G:179:VAL:HG13 | 1.70         | 0.73        |
| 1:K:130:ILE:HD11 | 1:K:340:VAL:HG11 | 1.72         | 0.71        |
| 1:L:130:ILE:O    | 1:L:150:LYS:NZ   | 2.23         | 0.71        |
| 1:F:130:ILE:HD11 | 1:F:188:VAL:HG12 | 1.71         | 0.70        |
| 1:A:178:ILE:HG23 | 1:A:179:VAL:HG13 | 1.74         | 0.70        |
| 1:I:175:LEU:HD13 | 1:I:348:LYS:HG2  | 1.77         | 0.67        |
| 1:D:73:THR:HG21  | 1:D:82:THR:HB    | 1.76         | 0.67        |
| 1:K:123:ASN:HB2  | 1:K:166:TRP:CZ2  | 2.30         | 0.67        |
| 1:F:73:THR:HG21  | 1:F:82:THR:HB    | 1.76         | 0.66        |
| 1:E:63:LEU:HD22  | 1:E:191:LEU:HD11 | 1.78         | 0.66        |
| 1:J:332:ARG:NH1  | 1:K:287:TYR:O    | 2.29         | 0.66        |
| 1:L:308:LEU:HD12 | 1:L:345:ILE:HG22 | 1.78         | 0.66        |
| 1:I:193:ASN:HD22 | 1:I:347:GLN:HG3  | 1.62         | 0.64        |
| 1:I:123:ASN:HB2  | 1:I:166:TRP:CZ2  | 2.32         | 0.64        |
| 1:J:123:ASN:OD1  | 1:J:125:PHE:CZ   | 2.51         | 0.64        |
| 1:A:248:ARG:NE   | 1:A:393:GLU:OE1  | 2.26         | 0.63        |
| 1:I:48:ASN:N     | 1:I:48:ASN:HD22  | 1.97         | 0.63        |
| 1:H:63:LEU:HD11  | 1:H:193:ASN:HB2  | 1.81         | 0.63        |
| 1:C:259:TYR:HB2  | 1:C:389:PHE:CE1  | 2.34         | 0.62        |
| 1:G:229:GLU:HG3  | 1:G:296:THR:HG23 | 1.80         | 0.62        |
| 1:I:175:LEU:HD22 | 1:I:348:LYS:HE3  | 1.80         | 0.62        |
| 1:I:178:ILE:HD11 | 1:I:346:PHE:HB3  | 1.80         | 0.62        |

![](_page_14_Picture_9.jpeg)

|                  | lo uo pagem      | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:I:390:ILE:HD12 | 1:I:400:PHE:CD1  | 2.34         | 0.62        |
| 1:L:130:ILE:HD11 | 1:L:340:VAL:HG11 | 1.83         | 0.61        |
| 1:D:130:ILE:HD11 | 1:D:188:VAL:HG12 | 1.81         | 0.61        |
| 1:H:123:ASN:HB2  | 1:H:166:TRP:CZ2  | 2.36         | 0.60        |
| 1:G:123:ASN:HB2  | 1:G:166:TRP:CZ2  | 2.37         | 0.60        |
| 1:I:63:LEU:HD21  | 1:I:193:ASN:HB2  | 1.84         | 0.60        |
| 1:J:55:LEU:HD23  | 1:J:401:ALA:O    | 2.02         | 0.60        |
| 1:J:193:ASN:HD22 | 1:J:347:GLN:HG3  | 1.66         | 0.60        |
| 1:H:152:SER:O    | 1:H:159:THR:OG1  | 2.18         | 0.59        |
| 1:I:67:ILE:HD13  | 1:I:320:ILE:HD12 | 1.84         | 0.59        |
| 1:A:67:ILE:HD13  | 1:A:320:ILE:HD12 | 1.84         | 0.59        |
| 1:E:103:LYS:NZ   | 1:E:107:GLU:OE2  | 2.34         | 0.59        |
| 1:J:63:LEU:HD21  | 1:J:193:ASN:HB2  | 1.83         | 0.59        |
| 1:K:55:LEU:HB2   | 1:K:347:GLN:HE22 | 1.68         | 0.59        |
| 1:H:269:VAL:HG13 | 1:H:387:ILE:HD11 | 1.85         | 0.59        |
| 1:H:106:LEU:HD22 | 1:H:110:GLN:HE21 | 1.67         | 0.58        |
| 1:J:130:ILE:HD11 | 1:J:188:VAL:HG12 | 1.86         | 0.58        |
| 1:A:126:VAL:HG22 | 1:A:189:ILE:HG12 | 1.86         | 0.58        |
| 1:G:269:VAL:HG13 | 1:G:387:ILE:HD11 | 1.86         | 0.58        |
| 1:H:153:TYR:OH   | 1:H:190:THR:OG1  | 2.22         | 0.58        |
| 1:H:63:LEU:HD11  | 1:H:193:ASN:CB   | 2.35         | 0.57        |
| 1:D:178:ILE:HG23 | 1:D:179:VAL:HG13 | 1.86         | 0.57        |
| 1:F:266:ASP:OD1  | 1:F:266:ASP:N    | 2.36         | 0.57        |
| 1:K:390:ILE:HD12 | 1:K:400:PHE:CD2  | 2.39         | 0.57        |
| 1:C:178:ILE:HD12 | 1:C:348:LYS:HB2  | 1.87         | 0.56        |
| 1:J:178:ILE:HD12 | 1:J:348:LYS:HB2  | 1.88         | 0.56        |
| 1:G:63:LEU:HB3   | 1:G:191:LEU:HD21 | 1.86         | 0.56        |
| 1:J:175:LEU:HD22 | 1:J:348:LYS:HE2  | 1.88         | 0.56        |
| 1:D:62:ILE:HD12  | 1:D:106:LEU:HD11 | 1.88         | 0.56        |
| 1:A:330:LEU:C    | 1:A:330:LEU:HD23 | 2.26         | 0.55        |
| 1:I:262:LEU:HD12 | 1:I:386:PHE:HB3  | 1.89         | 0.55        |
| 1:D:66:LEU:O     | 1:D:136:TYR:OH   | 2.25         | 0.55        |
| 1:L:213:LYS:HB2  | 1:L:227:TYR:CE1  | 2.43         | 0.54        |
| 1:L:116:TYR:OH   | 1:L:255:LYS:HD2  | 2.06         | 0.54        |
| 1:B:46:PHE:HD2   | 1:B:273:LEU:HD11 | 1.73         | 0.54        |
| 1:F:308:LEU:HD12 | 1:F:345:ILE:HG22 | 1.89         | 0.54        |
| 1:L:193:ASN:HD22 | 1:L:347:GLN:CG   | 2.20         | 0.53        |
| 1:D:193:ASN:HD22 | 1:D:347:GLN:HG3  | 1.74         | 0.53        |
| 1:C:258:MET:SD   | 1:C:260:PHE:CZ   | 3.02         | 0.53        |
| 1:H:260:PHE:CE2  | 1:H:297:LEU:HD13 | 2.43         | 0.53        |
| 1:B:38:ASP:O     | 1:B:42:VAL:HG23  | 2.09         | 0.53        |

![](_page_15_Picture_6.jpeg)

|                  | lo ao pagom      | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:D:259:TYR:HB2  | 1:D:389:PHE:CE1  | 2.44         | 0.53        |
| 1:F:175:LEU:HD22 | 1:F:348:LYS:HE2  | 1.90         | 0.53        |
| 1:J:390:ILE:HD12 | 1:J:400:PHE:CD2  | 2.43         | 0.53        |
| 1:C:137:GLN:HE22 | 1:C:148:LEU:H    | 1.57         | 0.52        |
| 1:G:319:GLU:O    | 1:G:325:ALA:HB2  | 2.08         | 0.52        |
| 1:D:73:THR:HG21  | 1:D:82:THR:CB    | 2.39         | 0.52        |
| 1:I:314:GLN:HE21 | 1:I:314:GLN:HA   | 1.74         | 0.52        |
| 1:L:72:ASP:C     | 1:L:72:ASP:OD1   | 2.47         | 0.52        |
| 1:I:175:LEU:HD13 | 1:I:348:LYS:CG   | 2.39         | 0.52        |
| 1:D:28:PRO:HG2   | 1:D:235:TYR:CE2  | 2.46         | 0.51        |
| 1:H:73:THR:HG21  | 1:H:82:THR:HB    | 1.92         | 0.51        |
| 1:B:53:VAL:HG13  | 1:B:304:PHE:CE2  | 2.45         | 0.51        |
| 1:B:66:LEU:HD21  | 1:B:144:TYR:HB2  | 1.93         | 0.51        |
| 1:H:390:ILE:HD12 | 1:H:400:PHE:CD1  | 2.46         | 0.51        |
| 1:L:330:LEU:C    | 1:L:330:LEU:HD23 | 2.31         | 0.51        |
| 1:G:63:LEU:HD21  | 1:G:193:ASN:HB2  | 1.92         | 0.51        |
| 1:B:69:GLU:OE2   | 1:B:99:ARG:NE    | 2.35         | 0.51        |
| 1:A:134:ASN:O    | 1:A:137:GLN:HB3  | 2.10         | 0.51        |
| 1:B:213:LYS:HB2  | 1:B:227:TYR:CD2  | 2.46         | 0.51        |
| 1:J:38:ASP:OD2   | 1:J:57:PRO:HB2   | 2.11         | 0.50        |
| 1:L:178:ILE:HG23 | 1:L:179:VAL:HG13 | 1.93         | 0.50        |
| 1:A:267:ASN:OD1  | 1:A:267:ASN:N    | 2.44         | 0.50        |
| 1:I:89:VAL:O     | 1:I:102:TYR:OH   | 2.21         | 0.50        |
| 1:G:227:TYR:OH   | 1:G:383:ASN:HA   | 2.12         | 0.50        |
| 1:I:64:LEU:HB3   | 1:I:86:LEU:HD22  | 1.94         | 0.50        |
| 1:L:308:LEU:HD12 | 1:L:345:ILE:CG2  | 2.41         | 0.49        |
| 1:D:130:ILE:HD11 | 1:D:188:VAL:CG1  | 2.41         | 0.49        |
| 1:E:63:LEU:HD21  | 1:E:193:ASN:CB   | 2.39         | 0.49        |
| 1:L:39:LEU:HD21  | 1:L:281:LEU:HD22 | 1.94         | 0.49        |
| 1:A:64:LEU:HD22  | 1:A:317:ILE:HD13 | 1.94         | 0.49        |
| 1:D:167:VAL:HG21 | 1:D:178:ILE:CG2  | 2.41         | 0.49        |
| 1:H:178:ILE:HD13 | 1:H:192:VAL:HG13 | 1.95         | 0.49        |
| 1:K:103:LYS:NZ   | 1:K:107:GLU:OE2  | 2.44         | 0.49        |
| 1:C:309:ASN:O    | 1:C:313:GLN:HG3  | 2.12         | 0.49        |
| 1:L:309:ASN:HD21 | 1:L:344:ARG:HA   | 1.76         | 0.49        |
| 1:A:242:LEU:HD12 | 1:A:246:ILE:HD11 | 1.94         | 0.49        |
| 1:L:46:PHE:HD2   | 1:L:273:LEU:HD11 | 1.78         | 0.48        |
| 1:C:308:LEU:HD11 | 1:C:347:GLN:HB2  | 1.94         | 0.48        |
| 1:I:45:ILE:HD12  | 1:I:306:GLU:OE1  | 2.13         | 0.48        |
| 1:K:125:PHE:CE2  | 1:K:163:ILE:HG23 | 2.48         | 0.48        |
| 1:G:167:VAL:HG13 | 1:G:194:VAL:HG11 | 1.96         | 0.48        |

![](_page_16_Picture_6.jpeg)

|                  | io uo puge       | Interatomic    | Clash       |  |
|------------------|------------------|----------------|-------------|--|
| Atom-1           | Atom-2           | distance $(Å)$ | overlap (Å) |  |
| 1:G:175:LEU:HD13 | 1:G:348:LYS:HG2  | 1.95           | 0.48        |  |
| 1:G:391:GLU:HA   | 1:G:397:THR:O    | 2.13           | 0.48        |  |
| 1:L:213:LYS:HB2  | 1:L:227:TYR:CD1  | 2.48           | 0.48        |  |
| 1:E:123:ASN:HB2  | 1:E:166:TRP:CZ2  | 2.49           | 0.48        |  |
| 1:F:123:ASN:HB2  | 1:F:166:TRP:CZ2  | 2.48           | 0.48        |  |
| 1:J:190:THR:HG23 | 1:J:344:ARG:HB2  | 1.95           | 0.48        |  |
| 1:L:45:ILE:HG21  | 1:L:55:LEU:HD22  | 1.95           | 0.48        |  |
| 1:L:193:ASN:HD22 | 1:L:347:GLN:HG2  | 1.78           | 0.48        |  |
| 1:A:388:PHE:CZ   | 1:A:402:GLY:HA3  | 2.49           | 0.47        |  |
| 1:I:103:LYS:HD3  | 1:I:143:HIS:HA   | 1.96           | 0.47        |  |
| 1:I:113:ASN:N    | 1:I:113:ASN:HD22 | 2.12           | 0.47        |  |
| 1:L:123:ASN:HB2  | 1:L:166:TRP:CZ2  | 2.50           | 0.47        |  |
| 1:C:130:ILE:HG23 | 1:C:331:ALA:HB1  | 1.97           | 0.47        |  |
| 1:H:384:ARG:HB2  | 1:H:385:PRO:CD   | 2.44           | 0.47        |  |
| 1:A:224:ASN:N    | 1:A:224:ASN:HD22 | 2.13           | 0.47        |  |
| 1:E:114:LYS:HA   | 1:I:200:LEU:HD11 | 1.96           | 0.47        |  |
| 1:H:105:LEU:HD23 | 1:H:397:THR:HG23 | 1.96           | 0.47        |  |
| 1:I:116:TYR:OH   | 1:I:255:LYS:HD2  | 2.15           | 0.47        |  |
| 1:I:163:ILE:HG21 | 1:I:179:VAL:HG21 | 1.96           | 0.47        |  |
| 1:L:247:LEU:HD22 | 1:L:380:PHE:CD2  | 2.50           | 0.47        |  |
| 1:L:319:GLU:O    | 1:L:325:ALA:HB2  | 2.14           | 0.47        |  |
| 1:D:123:ASN:HB2  | 1:D:166:TRP:CZ2  | 2.49           | 0.47        |  |
| 1:G:330:LEU:C    | 1:G:330:LEU:HD23 | 2.35           | 0.47        |  |
| 1:C:359:CYS:O    | 1:C:360:ALA:HB2  | 2.15           | 0.47        |  |
| 1:F:386:PHE:CZ   | 1:F:404:ILE:HG13 | 2.50           | 0.47        |  |
| 1:H:384:ARG:HB2  | 1:H:385:PRO:HD2  | 1.97           | 0.47        |  |
| 1:E:190:THR:HG22 | 1:E:192:VAL:HG23 | 1.97           | 0.46        |  |
| 1:H:55:LEU:HB2   | 1:H:347:GLN:HE22 | 1.80           | 0.46        |  |
| 1:C:269:VAL:HG13 | 1:C:387:ILE:HD11 | 1.97           | 0.46        |  |
| 1:K:193:ASN:HD22 | 1:K:347:GLN:HG3  | 1.80           | 0.46        |  |
| 1:C:153:TYR:CE1  | 1:C:159:THR:HG21 | 2.51           | 0.46        |  |
| 1:I:384:ARG:HB2  | 1:I:385:PRO:HD2  | 1.98           | 0.46        |  |
| 1:J:296:THR:HB   | 1:J:381:ASN:HA   | 1.97           | 0.46        |  |
| 1:A:296:THR:HB   | 1:A:381:ASN:HA   | 1.97           | 0.46        |  |
| 1:I:390:ILE:HD12 | 1:I:400:PHE:CG   | 2.51           | 0.46        |  |
| 1:D:124:PHE:CE1  | 1:D:191:LEU:HD13 | 2.51           | 0.46        |  |
| 1:L:267:ASN:N    | 1:L:267:ASN:HD22 | 2.14           | 0.46        |  |
| 1:A:258:MET:HE3  | 1:A:390:ILE:HD11 | 1.99           | 0.45        |  |
| 1:C:198:CYS:HA   | 1:C:358:SER:O    | 2.17           | 0.45        |  |
| 1:J:142:THR:HB   | 1:J:143:HIS:CD2  | 2.51           | 0.45        |  |
| 1:K:108:SER:O    | 1:K:255:LYS:HD3  | 2.16           | 0.45        |  |

![](_page_17_Picture_6.jpeg)

|                  | louo page        | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:A:105:LEU:HG   | 1:A:395:LEU:HD13 | 1.99         | 0.45        |
| 1:D:309:ASN:ND2  | 1:D:343:SER:O    | 2.49         | 0.45        |
| 1:F:235:TYR:CE1  | 1:F:290:GLU:HG3  | 2.51         | 0.45        |
| 1:A:56:SER:O     | 1:A:60:VAL:HG23  | 2.16         | 0.45        |
| 1:H:246:ILE:HA   | 1:H:260:PHE:O    | 2.17         | 0.45        |
| 1:A:163:ILE:O    | 1:A:167:VAL:HG23 | 2.17         | 0.45        |
| 1:A:67:ILE:HG12  | 1:A:342:VAL:HG21 | 1.98         | 0.45        |
| 1:A:193:ASN:HD22 | 1:A:347:GLN:HG3  | 1.82         | 0.45        |
| 1:I:48:ASN:N     | 1:I:48:ASN:ND2   | 2.64         | 0.45        |
| 1:J:390:ILE:HD12 | 1:J:400:PHE:CG   | 2.52         | 0.45        |
| 1:F:130:ILE:HD11 | 1:F:188:VAL:CG1  | 2.42         | 0.45        |
| 1:H:69:GLU:OE2   | 1:H:99:ARG:NE    | 2.50         | 0.45        |
| 1:H:167:VAL:HG21 | 1:H:178:ILE:HG22 | 1.99         | 0.45        |
| 1:F:35:ASN:HA    | 1:F:38:ASP:OD1   | 2.17         | 0.44        |
| 1:F:118:LEU:HD23 | 1:F:119:ASN:N    | 2.32         | 0.44        |
| 1:H:229:GLU:HG2  | 1:H:296:THR:HG23 | 1.98         | 0.44        |
| 1:B:262:LEU:HD12 | 1:B:386:PHE:HB3  | 1.98         | 0.44        |
| 1:C:330:LEU:C    | 1:C:330:LEU:HD23 | 2.37         | 0.44        |
| 1:H:89:VAL:O     | 1:H:102:TYR:OH   | 2.34         | 0.44        |
| 1:D:307:GLN:HE21 | 1:D:309:ASN:HB2  | 1.82         | 0.44        |
| 1:E:237:ASP:OD1  | 1:E:238:ASN:N    | 2.50         | 0.44        |
| 1:G:130:ILE:HD11 | 1:G:188:VAL:CG1  | 2.43         | 0.44        |
| 1:L:160:ALA:O    | 1:L:164:ASN:ND2  | 2.50         | 0.44        |
| 1:J:34:GLN:HE22  | 1:J:91:GLN:HE22  | 1.66         | 0.44        |
| 1:L:72:ASP:HB3   | 1:L:328:PRO:HG3  | 1.98         | 0.44        |
| 1:C:258:MET:SD   | 1:C:260:PHE:CE1  | 3.11         | 0.44        |
| 1:L:259:TYR:HB2  | 1:L:389:PHE:CE1  | 2.52         | 0.44        |
| 1:D:121:ALA:HB1  | 1:D:166:TRP:CZ2  | 2.52         | 0.44        |
| 1:D:130:ILE:HD13 | 1:D:189:ILE:HD11 | 2.00         | 0.44        |
| 1:E:58:PHE:CE2   | 1:E:62:ILE:HD11  | 2.52         | 0.44        |
| 1:J:43:LYS:NZ    | 1:J:276:ILE:O    | 2.48         | 0.44        |
| 1:J:175:LEU:HD13 | 1:J:348:LYS:HG2  | 2.00         | 0.44        |
| 1:D:298:PRO:O    | 1:D:353:ILE:HD11 | 2.18         | 0.44        |
| 1:F:308:LEU:HD12 | 1:F:345:ILE:CG2  | 2.47         | 0.44        |
| 1:J:123:ASN:OD1  | 1:J:125:PHE:CE1  | 2.71         | 0.44        |
| 1:B:330:LEU:C    | 1:B:330:LEU:HD23 | 2.38         | 0.44        |
| 1:F:194:VAL:HG12 | 1:F:348:LYS:HB3  | 2.00         | 0.44        |
| 1:H:119:ASN:ND2  | 1:H:121:ALA:HB2  | 2.31         | 0.44        |
| 1:B:330:LEU:HD23 | 1:B:330:LEU:O    | 2.17         | 0.44        |
| 1:C:63:LEU:HD21  | 1:C:193:ASN:HB2  | 1.99         | 0.44        |
| 1:C:134:ASN:HD21 | 1:C:138:GLN:NE2  | 2.16         | 0.44        |

![](_page_18_Picture_6.jpeg)

|                  | lo uo pagem      | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:D:63:LEU:HD21  | 1:D:193:ASN:HB2  | 2.00         | 0.44        |
| 1:I:213:LYS:HB3  | 1:I:214:PRO:HD2  | 1.99         | 0.44        |
| 1:L:82:THR:HG22  | 1:L:86:LEU:HD12  | 1.99         | 0.44        |
| 1:G:310:GLU:HB3  | 1:G:311:PRO:HD3  | 2.00         | 0.43        |
| 1:C:58:PHE:CD1   | 1:C:397:THR:CG2  | 3.01         | 0.43        |
| 1:G:242:LEU:HD22 | 1:G:276:ILE:HG13 | 1.99         | 0.43        |
| 1:B:116:TYR:CE2  | 1:B:256:LEU:HD11 | 2.52         | 0.43        |
| 1:C:327:LEU:HD11 | 1:C:342:VAL:HG23 | 2.00         | 0.43        |
| 1:C:199:GLY:O    | 1:C:200:LEU:HD23 | 2.17         | 0.43        |
| 1:G:58:PHE:CZ    | 1:G:62:ILE:HD11  | 2.54         | 0.43        |
| 1:G:390:ILE:HB   | 1:G:400:PHE:HB2  | 2.00         | 0.43        |
| 1:I:213:LYS:HB2  | 1:I:227:TYR:CE1  | 2.53         | 0.43        |
| 1:E:330:LEU:C    | 1:E:330:LEU:HD23 | 2.39         | 0.43        |
| 1:G:133:ILE:HD13 | 1:I:287:TYR:CD1  | 2.53         | 0.43        |
| 1:H:258:MET:SD   | 1:H:260:PHE:CZ   | 3.11         | 0.43        |
| 1:F:183:SER:O    | 1:F:344:ARG:NH1  | 2.52         | 0.43        |
| 1:F:226:GLN:HB3  | 1:F:299:LYS:HE3  | 2.01         | 0.43        |
| 1:A:330:LEU:HD23 | 1:A:330:LEU:O    | 2.19         | 0.42        |
| 1:I:66:LEU:HD21  | 1:I:144:TYR:HB2  | 1.99         | 0.42        |
| 1:I:261:ILE:HB   | 1:I:387:ILE:HB   | 2.01         | 0.42        |
| 1:I:330:LEU:HD23 | 1:I:330:LEU:C    | 2.40         | 0.42        |
| 1:K:110:GLN:O    | 1:K:111:GLN:C    | 2.57         | 0.42        |
| 1:A:137:GLN:HE22 | 1:A:148:LEU:H    | 1.68         | 0.42        |
| 1:D:225:ALA:HB3  | 1:D:227:TYR:CE1  | 2.54         | 0.42        |
| 1:D:386:PHE:CE1  | 1:D:404:ILE:HG13 | 2.54         | 0.42        |
| 1:F:46:PHE:HD2   | 1:F:273:LEU:HD11 | 1.84         | 0.42        |
| 1:J:266:ASP:OD1  | 1:J:266:ASP:N    | 2.51         | 0.42        |
| 1:I:35:ASN:HA    | 1:I:38:ASP:OD1   | 2.19         | 0.42        |
| 1:I:201:TRP:CD1  | 1:I:357:GLY:HA2  | 2.54         | 0.42        |
| 1:J:105:LEU:HD23 | 1:J:397:THR:OG1  | 2.20         | 0.42        |
| 1:J:289:GLU:CD   | 1:L:332:ARG:HH22 | 2.22         | 0.42        |
| 1:A:167:VAL:HG13 | 1:A:194:VAL:HG11 | 2.02         | 0.42        |
| 1:K:52:ASN:ND2   | 1:K:406:ASN:O    | 2.41         | 0.42        |
| 1:L:37:PHE:CE1   | 1:L:317:ILE:HD11 | 2.55         | 0.42        |
| 1:B:138:GLN:HG2  | 1:C:30:GLN:HE22  | 1.85         | 0.42        |
| 1:K:236:TYR:CD1  | 1:K:236:TYR:C    | 2.93         | 0.42        |
| 1:L:308:LEU:HD11 | 1:L:347:GLN:HB2  | 2.02         | 0.42        |
| 1:A:277:ASN:O    | 1:A:278:SER:C    | 2.58         | 0.42        |
| 1:D:327:LEU:HD11 | 1:D:342:VAL:HG23 | 2.02         | 0.42        |
| 1:H:55:LEU:HD23  | 1:H:55:LEU:N     | 2.34         | 0.42        |
| 1:C:386:PHE:CE1  | 1:C:404:ILE:HG21 | 2.54         | 0.42        |

![](_page_19_Picture_6.jpeg)

|                  | jugern           | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:L:86:LEU:O     | 1:L:90:ILE:HG12  | 2.20         | 0.42        |
| 1:H:52:ASN:HB3   | 1:H:302:PHE:CZ   | 2.55         | 0.42        |
| 1:K:267:ASN:OD1  | 1:K:267:ASN:N    | 2.53         | 0.42        |
| 1:A:188:VAL:HG12 | 1:A:189:ILE:HG13 | 2.02         | 0.41        |
| 1:A:330:LEU:C    | 1:A:330:LEU:CD2  | 2.88         | 0.41        |
| 1:D:356:LEU:HD23 | 1:D:356:LEU:HA   | 1.90         | 0.41        |
| 1:E:255:LYS:CG   | 1:E:392:ASP:OD1  | 2.68         | 0.41        |
| 1:I:392:ASP:O    | 1:I:396:GLY:N    | 2.51         | 0.41        |
| 1:C:164:ASN:HD21 | 1:C:178:ILE:N    | 2.18         | 0.41        |
| 1:E:63:LEU:HD22  | 1:E:191:LEU:CD1  | 2.48         | 0.41        |
| 1:G:392:ASP:O    | 1:G:396:GLY:N    | 2.52         | 0.41        |
| 1:B:130:ILE:HG12 | 1:B:340:VAL:HG11 | 2.03         | 0.41        |
| 1:J:384:ARG:HB2  | 1:J:385:PRO:HD2  | 2.01         | 0.41        |
| 1:E:130:ILE:HD11 | 1:E:340:VAL:HG11 | 2.02         | 0.41        |
| 1:H:119:ASN:HD21 | 1:H:121:ALA:HB2  | 1.85         | 0.41        |
| 1:A:55:LEU:HB2   | 1:A:347:GLN:NE2  | 2.35         | 0.41        |
| 1:H:134:ASN:C    | 1:H:134:ASN:ND2  | 2.73         | 0.41        |
| 1:H:178:ILE:HD11 | 1:H:346:PHE:HB3  | 2.02         | 0.41        |
| 1:J:285:LEU:O    | 1:L:135:LYS:NZ   | 2.52         | 0.41        |
| 1:D:30:GLN:HB3   | 1:F:139:ILE:HD11 | 2.02         | 0.41        |
| 1:H:163:ILE:O    | 1:H:167:VAL:HG23 | 2.20         | 0.41        |
| 1:J:307:GLN:HE21 | 1:J:309:ASN:HB2  | 1.86         | 0.41        |
| 1:K:213:LYS:HB3  | 1:K:214:PRO:HD2  | 2.03         | 0.41        |
| 1:A:299:LYS:HG2  | 1:A:354:ASN:HA   | 2.01         | 0.41        |
| 1:C:123:ASN:HB2  | 1:C:166:TRP:CZ2  | 2.55         | 0.41        |
| 1:D:248:ARG:HD2  | 1:D:259:TYR:CZ   | 2.55         | 0.41        |
| 1:E:38:ASP:O     | 1:E:42:VAL:HG23  | 2.21         | 0.41        |
| 1:K:249:LEU:HD12 | 1:K:260:PHE:CE1  | 2.56         | 0.41        |
| 1:C:327:LEU:HD13 | 1:C:330:LEU:HD13 | 2.03         | 0.41        |
| 1:D:130:ILE:O    | 1:D:150:LYS:NZ   | 2.42         | 0.41        |
| 1:I:259:TYR:CE2  | 1:I:285:LEU:HD22 | 2.56         | 0.41        |
| 1:J:300:PHE:CE1  | 1:J:404:ILE:HD11 | 2.55         | 0.41        |
| 1:A:205:PHE:CD2  | 1:A:230:GLN:HG2  | 2.56         | 0.41        |
| 1:B:46:PHE:CD2   | 1:B:273:LEU:HD11 | 2.55         | 0.41        |
| 1:B:137:GLN:HE22 | 1:B:147:MET:HA   | 1.86         | 0.41        |
| 1:C:282:HIS:O    | 1:C:286:TRP:HB2  | 2.20         | 0.41        |
| 1:E:110:GLN:O    | 1:E:111:GLN:C    | 2.59         | 0.41        |
| 1:L:202:THR:HB   | 1:L:250:PRO:HG2  | 2.03         | 0.41        |
| 1:A:119:ASN:HD21 | 1:A:121:ALA:HB2  | 1.86         | 0.41        |
| 1:D:91:GLN:O     | 1:D:93:ASP:N     | 2.53         | 0.41        |
| 1:E:354:ASN:OD1  | 1:E:356:LEU:N    | 2.50         | 0.40        |

![](_page_20_Picture_6.jpeg)

| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
| 1:F:113:ASN:HD22 | 1:F:113:ASN:N    | 2.19                        | 0.40                 |
| 1:H:139:ILE:HD13 | 1:H:139:ILE:HA   | 1.90                        | 0.40                 |
| 1:H:231:ASN:HD21 | 1:H:294:ASN:HD21 | 1.68                        | 0.40                 |
| 1:J:211:ASN:OD1  | 1:J:213:LYS:NZ   | 2.54                        | 0.40                 |
| 1:A:124:PHE:HB2  | 1:A:148:LEU:HG   | 2.02                        | 0.40                 |
| 1:I:295:VAL:CG1  | 1:I:297:LEU:HG   | 2.51                        | 0.40                 |
| 1:J:235:TYR:CE1  | 1:J:290:GLU:HG3  | 2.55                        | 0.40                 |
| 1:D:385:PRO:HA   | 1:D:404:ILE:O    | 2.21                        | 0.40                 |
| 1:E:49:HIS:O     | 1:E:403:LYS:NZ   | 2.40                        | 0.40                 |
| 1:J:54:VAL:HG21  | 1:J:351:ILE:HB   | 2.03                        | 0.40                 |
| 1:K:63:LEU:HD21  | 1:K:193:ASN:HB2  | 2.03                        | 0.40                 |

There are no symmetry-related clashes.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured  | Allowed | Outliers | Perce | entiles |
|-----|-------|---------------|-----------|---------|----------|-------|---------|
| 1   | А     | 346/397~(87%) | 335~(97%) | 10 (3%) | 1 (0%)   | 41    | 71      |
| 1   | В     | 345/397~(87%) | 325~(94%) | 19 (6%) | 1 (0%)   | 41    | 71      |
| 1   | С     | 342/397~(86%) | 327~(96%) | 14 (4%) | 1 (0%)   | 41    | 71      |
| 1   | D     | 345/397~(87%) | 326 (94%) | 17 (5%) | 2(1%)    | 25    | 58      |
| 1   | Е     | 348/397~(88%) | 326 (94%) | 22 (6%) | 0        | 100   | 100     |
| 1   | F     | 343/397~(86%) | 329~(96%) | 13 (4%) | 1 (0%)   | 41    | 71      |
| 1   | G     | 349/397~(88%) | 335~(96%) | 14 (4%) | 0        | 100   | 100     |
| 1   | Н     | 347/397~(87%) | 334 (96%) | 10 (3%) | 3~(1%)   | 17    | 48      |
| 1   | Ι     | 346/397~(87%) | 324 (94%) | 19 (6%) | 3~(1%)   | 17    | 48      |
| 1   | J     | 345/397~(87%) | 325 (94%) | 20 (6%) | 0        | 100   | 100     |
| 1   | K     | 348/397~(88%) | 333 (96%) | 15 (4%) | 0        | 100   | 100     |

![](_page_21_Picture_12.jpeg)

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 1   | L     | 348/397~(88%)   | 340~(98%)  | 8 (2%)   | 0        | 100   | 100    |
| All | All   | 4152/4764 (87%) | 3959~(95%) | 181 (4%) | 12 (0%)  | 41    | 71     |

All (12) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 92  | ASN  |
| 1   | Н     | 92  | ASN  |
| 1   | D     | 74  | SER  |
| 1   | Н     | 222 | PRO  |
| 1   | Ι     | 92  | ASN  |
| 1   | А     | 325 | ALA  |
| 1   | Ι     | 73  | THR  |
| 1   | С     | 222 | PRO  |
| 1   | В     | 178 | ILE  |
| 1   | F     | 178 | ILE  |
| 1   | Ι     | 385 | PRO  |
| 1   | Н     | 406 | ASN  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Rotameric | Outliers | Perce | $\mathbf{ntiles}$ |
|-----|-------|---------------|-----------|----------|-------|-------------------|
| 1   | А     | 305/349~(87%) | 295~(97%) | 10 (3%)  | 38    | 72                |
| 1   | В     | 299/349~(86%) | 292~(98%) | 7 (2%)   | 50    | 80                |
| 1   | С     | 305/349~(87%) | 294~(96%) | 11 (4%)  | 35    | 69                |
| 1   | D     | 300/349~(86%) | 290~(97%) | 10 (3%)  | 38    | 72                |
| 1   | Ε     | 302/349~(86%) | 292~(97%) | 10 (3%)  | 38    | 72                |
| 1   | F     | 302/349~(86%) | 289~(96%) | 13~(4%)  | 29    | 62                |
| 1   | G     | 304/349~(87%) | 293~(96%) | 11 (4%)  | 35    | 69                |
| 1   | Н     | 301/349~(86%) | 291 (97%) | 10 (3%)  | 38    | 72                |
| 1   | Ι     | 302/349~(86%) | 284 (94%) | 18 (6%)  | 19    | 49                |

![](_page_22_Picture_12.jpeg)

| Mol | Chain | Analysed        | Rotameric  | Outliers | Percentiles |
|-----|-------|-----------------|------------|----------|-------------|
| 1   | J     | 304/349~(87%)   | 293~(96%)  | 11 (4%)  | 35 69       |
| 1   | Κ     | 300/349~(86%)   | 285~(95%)  | 15~(5%)  | 24 57       |
| 1   | L     | 304/349~(87%)   | 291~(96%)  | 13 (4%)  | 29 62       |
| All | All   | 3628/4188~(87%) | 3489~(96%) | 139 (4%) | 33 67       |

Continued from previous page...

All (139) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 38  | ASP  |
| 1   | А     | 128 | ASP  |
| 1   | А     | 129 | PHE  |
| 1   | А     | 158 | GLN  |
| 1   | А     | 198 | CYS  |
| 1   | А     | 224 | ASN  |
| 1   | А     | 267 | ASN  |
| 1   | А     | 330 | LEU  |
| 1   | А     | 352 | THR  |
| 1   | А     | 356 | LEU  |
| 1   | В     | 38  | ASP  |
| 1   | В     | 55  | LEU  |
| 1   | В     | 138 | GLN  |
| 1   | В     | 152 | SER  |
| 1   | В     | 198 | CYS  |
| 1   | В     | 230 | GLN  |
| 1   | В     | 391 | GLU  |
| 1   | С     | 38  | ASP  |
| 1   | С     | 55  | LEU  |
| 1   | С     | 71  | SER  |
| 1   | С     | 182 | ASP  |
| 1   | С     | 238 | ASN  |
| 1   | С     | 254 | ASN  |
| 1   | С     | 292 | GLU  |
| 1   | С     | 301 | LYS  |
| 1   | С     | 303 | ASP  |
| 1   | С     | 377 | VAL  |
| 1   | С     | 397 | THR  |
| 1   | D     | 114 | LYS  |
| 1   | D     | 126 | VAL  |
| 1   | D     | 137 | GLN  |
| 1   | D     | 218 | THR  |
| 1   | D     | 226 | GLN  |

![](_page_23_Picture_8.jpeg)

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 266 | ASP  |
| 1   | D     | 292 | GLU  |
| 1   | D     | 294 | ASN  |
| 1   | D     | 307 | GLN  |
| 1   | D     | 340 | VAL  |
| 1   | Е     | 50  | ASN  |
| 1   | Е     | 55  | LEU  |
| 1   | Е     | 119 | ASN  |
| 1   | Е     | 128 | ASP  |
| 1   | Е     | 129 | PHE  |
| 1   | Е     | 198 | CYS  |
| 1   | Е     | 277 | ASN  |
| 1   | Е     | 305 | SER  |
| 1   | Е     | 359 | CYS  |
| 1   | Е     | 391 | GLU  |
| 1   | F     | 34  | GLN  |
| 1   | F     | 55  | LEU  |
| 1   | F     | 113 | ASN  |
| 1   | F     | 122 | THR  |
| 1   | F     | 154 | SER  |
| 1   | F     | 182 | ASP  |
| 1   | F     | 188 | VAL  |
| 1   | F     | 198 | CYS  |
| 1   | F     | 241 | ASP  |
| 1   | F     | 266 | ASP  |
| 1   | F     | 267 | ASN  |
| 1   | F     | 270 | ASN  |
| 1   | F     | 305 | SER  |
| 1   | G     | 38  | ASP  |
| 1   | G     | 42  | VAL  |
| 1   | G     | 72  | ASP  |
| 1   | G     | 100 | SER  |
| 1   | G     | 152 | SER  |
| 1   | G     | 198 | CYS  |
| 1   | G     | 238 | ASN  |
| 1   | G     | 254 | ASN  |
| 1   | G     | 292 | GLU  |
| 1   | G     | 294 | ASN  |
| 1   | G     | 303 | ASP  |
| 1   | Η     | 134 | ASN  |
| 1   | Н     | 157 | THR  |
| 1   | Н     | 183 | SER  |

![](_page_24_Picture_6.jpeg)

| 1       H       190       THR         1       H       233       GLN         1       H       233       GLN         1       H       254       ASN         1       H       267       ASN         1       H       397       THR         1       I       38       ASP         1       I       38       ASN         1       I       73       THR         1       I       134       ASN         1       I       198       CYS         1       I       202       THR         1       I       218       THR         1       I       291       ASN         1       I       292       GLU         1       I       292       GLU         1       I       348       LYS         1       I       398       MET         1 <t< th=""><th>Mol</th><th>Chain</th><th>Res</th><th>Type</th></t<>                                                                                        | Mol | Chain | Res | Type |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|------|
| 1       H       198       CYS         1       H       233       GLN         1       H       254       ASN         1       H       267       ASN         1       H       377       VAL         1       H       397       THR         1       H       397       THR         1       H       397       THR         1       I       38       ASP         1       I       55       LEU         1       I       73       THR         1       I       134       ASN         1       I       134       ASN         1       I       198       CYS         1       I       202       THR         1       I       289       GLU         1       I       289       GLU         1       I       292       GLU         1       I       348       LYS         1       I       348       LYS         1       J       171       SER         1       J       172       ASN         1 <t< td=""><td>1</td><td>Н</td><td>190</td><td>THR</td></t<>                                                                                               | 1   | Н     | 190 | THR  |
| 1       H       233       GLN         1       H       254       ASN         1       H       267       ASN         1       H       377       VAL         1       H       397       THR         1       H       397       THR         1       I       38       ASP         1       I       48       ASN         1       I       55       LEU         1       I       73       THR         1       I       134       ASN         1       I       134       ASN         1       I       198       CYS         1       I       202       THR         1       I       289       GLU         1       I       291       ASN         1       I       292       GLU         1       I       348       LYS         1       I       398       MET         1       J       117       ASN         1       J       117       ASN         1       J       117       ASN         1 <td< td=""><td>1</td><td>Н</td><td>198</td><td>CYS</td></td<>                                                                                              | 1   | Н     | 198 | CYS  |
| 1         H         254         ASN           1         H         267         ASN           1         H         377         VAL           1         H         397         THR           1         I         38         ASP           1         I         38         ASP           1         I         55         LEU           1         I         73         THR           1         I         134         ASN           1         I         134         ASN           1         I         198         CYS           1         I         202         THR           1         I         202         THR           1         I         289         GLU           1         I         291         ASN           1         I         292         GLU           1         I         340         VAL           1         I         348         LYS           1         I         398         MET           1         J         117         ASN           1         J         172                                                  | 1   | Н     | 233 | GLN  |
| 1         H         267         ASN           1         H         377         VAL           1         H         397         THR           1         I         38         ASP           1         I         48         ASN           1         I         55         LEU           1         I         55         LEU           1         I         134         ASN           1         I         134         ASN           1         I         134         ASN           1         I         198         CYS           1         I         202         THR           1         I         289         GLU           1         I         291         ASN           1         I         292         GLU           1         I         314         GLN           1         I         348         LYS           1         I         348         LYS           1         J         117         ASN           1         J         117         ASN           1         J         117                                                  | 1   | Н     | 254 | ASN  |
| 1         H         377         VAL           1         H         397         THR           1         I         38         ASP           1         I         48         ASN           1         I         55         LEU           1         I         73         THR           1         I         134         ASN           1         I         134         ASN           1         I         134         ASN           1         I         134         ASN           1         I         198         CYS           1         I         202         THR           1         I         289         GLU           1         I         289         GLU           1         I         291         ASN           1         I         292         GLU           1         I         292         GLU           1         I         340         VAL           1         I         348         LYS           1         J         117         ASN           1         J         172                                                  | 1   | Н     | 267 | ASN  |
| 1         H         397         THR           1         I         38         ASP           1         I         48         ASN           1         I         55         LEU           1         I         73         THR           1         I         133         ASN           1         I         134         ASN           1         I         134         ASN           1         I         134         ASN           1         I         198         CYS           1         I         202         THR           1         I         202         THR           1         I         290         GLU           1         I         291         ASN           1         I         292         GLU           1         I         340         VAL           1         I         348         LYS           1         I         398         MET           1         J         117         ASN           1         J         117         ASN           1         J         110                                                  | 1   | Н     | 377 | VAL  |
| 1       I       38       ASP         1       I       48       ASN         1       I       55       LEU         1       I       73       THR         1       I       113       ASN         1       I       134       ASN         1       I       134       ASN         1       I       179       VAL         1       I       198       CYS         1       I       202       THR         1       I       254       ASN         1       I       289       GLU         1       I       291       ASN         1       I       292       GLU         1       I       292       GLU         1       I       314       GLN         1       I       348       LYS         1       I       348       LYS         1       J       71       SER         1       J       117       ASN         1       J       117       ASN         1       J       117       ASN         1                                                                                                                                                             | 1   | Н     | 397 | THR  |
| 1         I         48         ASN           1         I         55         LEU           1         I         73         THR           1         I         113         ASN           1         I         134         ASN           1         I         134         ASN           1         I         134         ASN           1         I         198         CYS           1         I         202         THR           1         I         202         THR           1         I         202         THR           1         I         203         GLU           1         I         289         GLU           1         I         291         ASN           1         I         292         GLU           1         I         314         GLN           1         I         348         LYS           1         I         348         LYS           1         J         117         ASN           1         J         117         ASN           1         J         117 <td>1</td> <td>Ι</td> <td>38</td> <td>ASP</td>  | 1   | Ι     | 38  | ASP  |
| 1         I         55         LEU           1         I         73         THR           1         I         113         ASN           1         I         134         ASN           1         I         134         ASN           1         I         179         VAL           1         I         198         CYS           1         I         202         THR           1         I         202         THR           1         I         202         THR           1         I         202         THR           1         I         202         GLU           1         I         289         GLU           1         I         291         ASN           1         I         292         GLU           1         I         314         GLN           1         I         348         LYS           1         I         348         LYS           1         J         172         ASN           1         J         172         ASN           1         J         255 <td>1</td> <td>Ι</td> <td>48</td> <td>ASN</td> | 1   | Ι     | 48  | ASN  |
| 1       I       73       THR         1       I       113       ASN         1       I       134       ASN         1       I       179       VAL         1       I       179       VAL         1       I       198       CYS         1       I       202       THR         1       I       218       THR         1       I       254       ASN         1       I       289       GLU         1       I       291       ASN         1       I       292       GLU         1       I       292       GLU         1       I       340       VAL         1       I       348       LYS         1       I       348       LYS         1       J       71       SER         1       J       171       SER         1       J       171       ASN         1       J       172       ASN         1       J       172       ASN         1       J       172       ASN         1       <                                                                                                                                                  | 1   | Ι     | 55  | LEU  |
| 1       I       113       ASN         1       I       134       ASN         1       I       179       VAL         1       I       198       CYS         1       I       202       THR         1       I       218       THR         1       I       254       ASN         1       I       289       GLU         1       I       291       ASN         1       I       292       GLU         1       I       292       GLU         1       I       340       VAL         1       I       348       LYS         1       I       348       LYS         1       I       348       LYS         1       J       71       SER         1       J       117       ASN         1       J       1255       LYS         1                                                                                                                                                        | 1   | Ι     | 73  | THR  |
| 1       I       134       ASN         1       I       179       VAL         1       I       198       CYS         1       I       202       THR         1       I       202       THR         1       I       202       THR         1       I       202       THR         1       I       218       THR         1       I       254       ASN         1       I       289       GLU         1       I       292       GLU         1       I       292       GLU         1       I       340       VAL         1       I       348       LYS         1       I       348       LYS         1       I       398       MET         1       J       171       SER         1       J       172       ASN         1       J       172       ASN         1       J       172       ASN         1       J       255       LYS         1       J       266       ASP         1                                                                                                                                                        | 1   | Ι     | 113 | ASN  |
| 1       I       179       VAL         1       I       198       CYS         1       I       202       THR         1       I       218       THR         1       I       254       ASN         1       I       254       ASN         1       I       291       ASN         1       I       292       GLU         1       I       292       GLU         1       I       292       GLU         1       I       340       VAL         1       I       348       LYS         1       I       348       LYS         1       I       398       MET         1       J       71       SER         1       J       117       ASP         1       J       117       ASP         1       J       117       ASP         1       J       117       ASP         1       J       1255       LYS         1       J       266       ASP         1       J       305       SER         1                                                                                                                                                        | 1   | Ι     | 134 | ASN  |
| 1       I       198       CYS         1       I       202       THR         1       I       218       THR         1       I       254       ASN         1       I       254       ASN         1       I       289       GLU         1       I       291       ASN         1       I       292       GLU         1       I       292       GLU         1       I       292       GLU         1       I       340       VAL         1       I       348       LYS         1       I       348       LYS         1       I       398       MET         1       J       71       SER         1       J       117       ASN         1       J       117       ASN         1       J       117       ASN         1       J       117       ASN         1       J       1255       LYS         1       J       266       ASP         1       J       305       SER         1                                                                                                                                                        | 1   | Ι     | 179 | VAL  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | Ι     | 198 | CYS  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | Ι     | 202 | THR  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | Ι     | 218 | THR  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | Ι     | 254 | ASN  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | Ι     | 289 | GLU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | Ι     | 291 | ASN  |
| 1       I       314       GLN         1       I       340       VAL         1       I       348       LYS         1       I       398       MET         1       J       71       SER         1       J       111       GLN         1       J       71       SER         1       J       117       ASP         1       J       172       ASN         1       J       172       ASN         1       J       172       ASN         1       J       255       LYS         1       J       266       ASP         1       J       266       ASP         1       J       275       ARG         1       J       305       SER         1       J       305       SER         1       J       310       GLU         1       K       38       ASP         1       K       118       LEU         1       K       152       SER         1       K       180       THR         1 <td< td=""><td>1</td><td>Ι</td><td>292</td><td>GLU</td></td<>                                                                                             | 1   | Ι     | 292 | GLU  |
| 1       I       340       VAL         1       I       348       LYS         1       I       398       MET         1       J       71       SER         1       J       71       SER         1       J       111       GLN         1       J       117       ASP         1       J       172       ASN         1       J       172       ASN         1       J       172       ASN         1       J       255       LYS         1       J       266       ASP         1       J       275       ARG         1       J       283       GLN         1       J       305       SER         1       J       310       GLU         1       K       38       ASP         1       K       18       LEU         1       K       118       LEU         1       K       180       THR         1       K       198       CYS                                                                                                                                                                                                            | 1   | Ι     | 314 | GLN  |
| 1       I       348       LYS         1       I       398       MET         1       J       71       SER         1       J       111       GLN         1       J       117       ASP         1       J       172       ASN         1       J       172       ASN         1       J       172       ASN         1       J       198       CYS         1       J       255       LYS         1       J       266       ASP         1       J       275       ARG         1       J       283       GLN         1       J       305       SER         1       J       310       GLU         1       K       38       ASP         1       K       40       MET         1       K       118       LEU         1       K       118       LEU         1       K       152       SER         1       K       198       CYS                                                                                                                                                                                                           | 1   | Ι     | 340 | VAL  |
| 1       I       398       MET         1       J       71       SER         1       J       111       GLN         1       J       117       ASP         1       J       172       ASN         1       J       172       ASN         1       J       172       ASN         1       J       172       ASN         1       J       255       LYS         1       J       255       LYS         1       J       266       ASP         1       J       275       ARG         1       J       283       GLN         1       J       305       SER         1       J       310       GLU         1       K       38       ASP         1       K       40       MET         1       K       118       LEU         1       K       152       SER         1       K       180       THR         1       K       198       CYS                                                                                                                                                                                                           | 1   | Ι     | 348 | LYS  |
| 1       J       71       SER         1       J       111       GLN         1       J       117       ASP         1       J       172       ASN         1       J       255       LYS         1       J       266       ASP         1       J       266       ASP         1       J       283       GLN         1       J       305       SER         1       J       310       GLU         1       K       38       ASP         1       K       40       MET         1       K       118       LEU         1       K       152       SER         1       K       198       CYS                                                                                                                                                                                                                                                                                       | 1   | Ι     | 398 | MET  |
| 1       J       111       GLN         1       J       117       ASP         1       J       172       ASN         1       J       198       CYS         1       J       255       LYS         1       J       266       ASP         1       J       275       ARG         1       J       283       GLN         1       J       305       SER         1       J       310       GLU         1       K       38       ASP         1       K       18       LEU         1       K       18       LEU         1       K       180       THR         1       K       198       CYS                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   | J     | 71  | SER  |
| 1       J       117       ASP         1       J       172       ASN         1       J       198       CYS         1       J       255       LYS         1       J       266       ASP         1       J       266       ASP         1       J       275       ARG         1       J       283       GLN         1       J       305       SER         1       J       310       GLU         1       K       38       ASP         1       K       18       LEU         1       K       118       LEU         1       K       152       SER         1       K       180       THR         1       K       198       CYS                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | J     | 111 | GLN  |
| 1       J       172       ASN         1       J       198       CYS         1       J       255       LYS         1       J       266       ASP         1       J       266       ASP         1       J       275       ARG         1       J       275       SER         1       J       305       SER         1       J       310       GLU         1       K       38       ASP         1       K       18       LEU         1       K       118       LEU         1       K       152       SER         1       K       180       THR         1       K       198       CYS                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | J     | 117 | ASP  |
| 1       J       198       CYS         1       J       255       LYS         1       J       266       ASP         1       J       275       ARG         1       J       275       SER         1       J       305       SER         1       J       310       GLU         1       K       38       ASP         1       K       18       LEU         1       K       152       SER         1       K       180       THR         1       K       198       CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | J     | 172 | ASN  |
| 1         J         255         LYS           1         J         266         ASP           1         J         275         ARG           1         J         283         GLN           1         J         305         SER           1         J         310         GLU           1         K         38         ASP           1         K         18         LEU           1         K         152         SER           1         K         180         THR           1         K         198         CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | J     | 198 | CYS  |
| 1       J       266       ASP         1       J       275       ARG         1       J       283       GLN         1       J       305       SER         1       J       310       GLU         1       K       38       ASP         1       K       18       LEU         1       K       152       SER         1       K       180       THR         1       K       198       CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | J     | 255 | LYS  |
| 1         J         275         ARG           1         J         283         GLN           1         J         305         SER           1         J         310         GLU           1         K         38         ASP           1         K         18         LEU           1         K         152         SER           1         K         180         THR           1         K         198         CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | J     | 266 | ASP  |
| 1         J         283         GLN           1         J         305         SER           1         J         310         GLU           1         J         310         GLU           1         K         38         ASP           1         K         40         MET           1         K         118         LEU           1         K         152         SER           1         K         180         THR           1         K         198         CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | J     | 275 | ARG  |
| 1         J         305         SER           1         J         310         GLU           1         K         38         ASP           1         K         40         MET           1         K         118         LEU           1         K         152         SER           1         K         180         THR           1         K         198         CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | J     | 283 | GLN  |
| 1         J         310         GLU           1         K         38         ASP           1         K         40         MET           1         K         118         LEU           1         K         152         SER           1         K         180         THR           1         K         198         CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | J     | 305 | SER  |
| 1         K         38         ASP           1         K         40         MET           1         K         118         LEU           1         K         152         SER           1         K         180         THR           1         K         198         CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | J     | 310 | GLU  |
| 1         K         40         MET           1         K         118         LEU           1         K         152         SER           1         K         180         THR           1         K         198         CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1   | K     | 38  | ASP  |
| 1         K         118         LEU           1         K         152         SER           1         K         180         THR           1         K         198         CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | K     | 40  | MET  |
| 1         K         152         SER           1         K         180         THR           1         K         198         CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | K     | 118 | LEU  |
| 1         K         180         THR           1         K         198         CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | K     | 152 | SER  |
| 1 K 198 CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   | K     | 180 | THR  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | K     | 198 | CYS  |

![](_page_25_Picture_6.jpeg)

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | К     | 210 | ASN  |
| 1   | К     | 236 | TYR  |
| 1   | Κ     | 266 | ASP  |
| 1   | К     | 267 | ASN  |
| 1   | Κ     | 269 | VAL  |
| 1   | K     | 292 | GLU  |
| 1   | K     | 356 | LEU  |
| 1   | К     | 384 | ARG  |
| 1   | K     | 391 | GLU  |
| 1   | L     | 38  | ASP  |
| 1   | L     | 55  | LEU  |
| 1   | L     | 72  | ASP  |
| 1   | L     | 100 | SER  |
| 1   | L     | 128 | ASP  |
| 1   | L     | 182 | ASP  |
| 1   | L     | 198 | CYS  |
| 1   | L     | 267 | ASN  |
| 1   | L     | 292 | GLU  |
| 1   | L     | 303 | ASP  |
| 1   | L     | 307 | GLN  |
| 1   | L     | 347 | GLN  |
| 1   | L     | 352 | THR  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (128) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 30  | GLN  |
| 1   | А     | 137 | GLN  |
| 1   | А     | 141 | ASN  |
| 1   | А     | 165 | ASN  |
| 1   | А     | 193 | ASN  |
| 1   | А     | 224 | ASN  |
| 1   | А     | 270 | ASN  |
| 1   | А     | 347 | GLN  |
| 1   | А     | 378 | GLN  |
| 1   | В     | 34  | GLN  |
| 1   | В     | 91  | GLN  |
| 1   | В     | 172 | ASN  |
| 1   | В     | 193 | ASN  |
| 1   | В     | 238 | ASN  |
| 1   | В     | 245 | GLN  |
| 1   | В     | 378 | GLN  |

![](_page_26_Picture_8.jpeg)

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 406 | ASN  |
| 1   | С     | 30  | GLN  |
| 1   | С     | 34  | GLN  |
| 1   | С     | 104 | GLN  |
| 1   | С     | 134 | ASN  |
| 1   | С     | 137 | GLN  |
| 1   | С     | 233 | GLN  |
| 1   | С     | 238 | ASN  |
| 1   | С     | 254 | ASN  |
| 1   | С     | 264 | ASN  |
| 1   | С     | 267 | ASN  |
| 1   | С     | 294 | ASN  |
| 1   | С     | 307 | GLN  |
| 1   | С     | 347 | GLN  |
| 1   | D     | 193 | ASN  |
| 1   | D     | 238 | ASN  |
| 1   | D     | 264 | ASN  |
| 1   | D     | 267 | ASN  |
| 1   | D     | 291 | ASN  |
| 1   | D     | 294 | ASN  |
| 1   | D     | 378 | GLN  |
| 1   | Е     | 34  | GLN  |
| 1   | Ε     | 50  | ASN  |
| 1   | Е     | 91  | GLN  |
| 1   | Ε     | 104 | GLN  |
| 1   | Ε     | 119 | ASN  |
| 1   | Е     | 141 | ASN  |
| 1   | Ε     | 193 | ASN  |
| 1   | E     | 233 | GLN  |
| 1   | E     | 245 | GLN  |
| 1   | Е     | 254 | ASN  |
| 1   | E     | 270 | ASN  |
| 1   | Е     | 277 | ASN  |
| 1   | E     | 313 | GLN  |
| 1   | E     | 347 | GLN  |
| 1   | E     | 378 | GLN  |
| 1   | F     | 104 | GLN  |
| 1   | F     | 113 | ASN  |
| 1   | F     | 254 | ASN  |
| 1   | F     | 270 | ASN  |
| 1   | F     | 291 | ASN  |
| 1   | F     | 378 | GLN  |

![](_page_27_Picture_6.jpeg)

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | G     | 104 | GLN  |
| 1   | G     | 123 | ASN  |
| 1   | G     | 137 | GLN  |
| 1   | G     | 141 | ASN  |
| 1   | G     | 170 | HIS  |
| 1   | G     | 193 | ASN  |
| 1   | G     | 238 | ASN  |
| 1   | G     | 254 | ASN  |
| 1   | G     | 291 | ASN  |
| 1   | G     | 294 | ASN  |
| 1   | G     | 347 | GLN  |
| 1   | G     | 378 | GLN  |
| 1   | Н     | 34  | GLN  |
| 1   | Н     | 91  | GLN  |
| 1   | Н     | 110 | GLN  |
| 1   | Н     | 119 | ASN  |
| 1   | Н     | 134 | ASN  |
| 1   | Н     | 141 | ASN  |
| 1   | Н     | 145 | HIS  |
| 1   | Н     | 193 | ASN  |
| 1   | Н     | 231 | ASN  |
| 1   | Н     | 245 | GLN  |
| 1   | Н     | 270 | ASN  |
| 1   | Н     | 294 | ASN  |
| 1   | Н     | 313 | GLN  |
| 1   | Н     | 347 | GLN  |
| 1   | Н     | 378 | GLN  |
| 1   | Ι     | 48  | ASN  |
| 1   | Ι     | 104 | GLN  |
| 1   | Ι     | 111 | GLN  |
| 1   | Ι     | 113 | ASN  |
| 1   | Ι     | 137 | GLN  |
| 1   | Ι     | 141 | ASN  |
| 1   | Ι     | 145 | HIS  |
| 1   | Ι     | 193 | ASN  |
| 1   | Ι     | 270 | ASN  |
| 1   | Ι     | 314 | GLN  |
| 1   | Ι     | 347 | GLN  |
| 1   | Ι     | 378 | GLN  |
| 1   | Ι     | 383 | ASN  |
| 1   | J     | 34  | GLN  |
| 1   | J     | 104 | GLN  |

![](_page_28_Picture_6.jpeg)

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | J     | 123 | ASN  |
| 1   | J     | 134 | ASN  |
| 1   | J     | 170 | HIS  |
| 1   | J     | 193 | ASN  |
| 1   | J     | 226 | GLN  |
| 1   | J     | 254 | ASN  |
| 1   | J     | 270 | ASN  |
| 1   | J     | 307 | GLN  |
| 1   | J     | 347 | GLN  |
| 1   | K     | 30  | GLN  |
| 1   | K     | 34  | GLN  |
| 1   | K     | 104 | GLN  |
| 1   | K     | 165 | ASN  |
| 1   | K     | 193 | ASN  |
| 1   | K     | 210 | ASN  |
| 1   | K     | 313 | GLN  |
| 1   | K     | 347 | GLN  |
| 1   | K     | 378 | GLN  |
| 1   | L     | 34  | GLN  |
| 1   | L     | 91  | GLN  |
| 1   | L     | 104 | GLN  |
| 1   | L     | 137 | GLN  |
| 1   | L     | 141 | ASN  |
| 1   | L     | 193 | ASN  |
| 1   | L     | 270 | ASN  |
| 1   | L     | 313 | GLN  |
| 1   | L     | 347 | GLN  |
| 1   | L     | 378 | GLN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

![](_page_29_Picture_11.jpeg)

## 5.6 Ligand geometry (i)

There are no ligands in this entry.

## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

![](_page_30_Picture_9.jpeg)

## 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed                      | <RSRZ $>$ | # <b>RSRZ</b> > | >2 | $OWAB(Å^2)$    | Q < 0.9 |
|-----|-------|-------------------------------|-----------|-----------------|----|----------------|---------|
| 1   | А     | 356/397~(89%)                 | 0.05      | 3 (0%) 86       | 86 | 24, 38, 62, 90 | 0       |
| 1   | В     | 355/397~(89%)                 | 0.10      | 4 (1%) 80       | 80 | 27, 43, 65, 90 | 0       |
| 1   | С     | 354/397~(89%)                 | -0.00     | 0 100 1         | 00 | 18, 36, 58, 98 | 0       |
| 1   | D     | 355/397~(89%)                 | 0.13      | 7 (1%) 65       | 63 | 21, 41, 66, 94 | 0       |
| 1   | Е     | 356/397~(89%)                 | 0.07      | 5 (1%) 75       | 75 | 23, 40, 65, 87 | 0       |
| 1   | F     | 353/397~(88%)                 | 0.09      | 4 (1%) 80       | 80 | 32, 45, 65, 89 | 0       |
| 1   | G     | 357/397~(89%)                 | 0.06      | 4 (1%) 80       | 80 | 24, 43, 63, 85 | 0       |
| 1   | Н     | 357/397~(89%)                 | 0.14      | 3 (0%) 86       | 86 | 24, 46, 69, 95 | 0       |
| 1   | Ι     | 356/397~(89%)                 | 0.10      | 3 (0%) 86       | 86 | 24, 43, 69, 84 | 0       |
| 1   | J     | 355/397~(89%)                 | 0.07      | 2 (0%) 89       | 89 | 23, 42, 66, 88 | 0       |
| 1   | K     | 356/397~(89%)                 | 0.13      | 3 (0%) 86       | 86 | 26, 43, 75, 96 | 0       |
| 1   | L     | 356/397~(89%)                 | 0.01      | 1 (0%) 94       | 94 | 24, 40, 56, 83 | 0       |
| All | All   | $426\overline{6}/4764~(89\%)$ | 0.08      | 39 (0%) 84      | 84 | 18, 42, 66, 98 | 0       |

All (39) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | А     | 73  | THR  | 4.2  |
| 1   | В     | 73  | THR  | 4.2  |
| 1   | G     | 73  | THR  | 3.5  |
| 1   | В     | 72  | ASP  | 3.4  |
| 1   | D     | 409 | PHE  | 3.2  |
| 1   | Ι     | 218 | THR  | 3.1  |
| 1   | D     | 208 | VAL  | 3.1  |
| 1   | Κ     | 208 | VAL  | 3.1  |
| 1   | J     | 218 | THR  | 3.1  |
| 1   | В     | 409 | PHE  | 3.0  |
| 1   | Κ     | 409 | PHE  | 2.9  |

![](_page_31_Picture_10.jpeg)

| 4RSQ |
|------|
|------|

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | J     | 178 | ILE  | 2.8  |
| 1   | Е     | 72  | ASP  | 2.8  |
| 1   | K     | 73  | THR  | 2.8  |
| 1   | D     | 209 | ALA  | 2.7  |
| 1   | D     | 73  | THR  | 2.6  |
| 1   | Н     | 409 | PHE  | 2.6  |
| 1   | D     | 218 | THR  | 2.6  |
| 1   | Ι     | 178 | ILE  | 2.6  |
| 1   | Е     | 73  | THR  | 2.5  |
| 1   | G     | 409 | PHE  | 2.5  |
| 1   | Е     | 325 | ALA  | 2.5  |
| 1   | F     | 208 | VAL  | 2.5  |
| 1   | D     | 178 | ILE  | 2.3  |
| 1   | Е     | 324 | ASN  | 2.3  |
| 1   | F     | 220 | GLY  | 2.2  |
| 1   | В     | 340 | VAL  | 2.2  |
| 1   | А     | 72  | ASP  | 2.2  |
| 1   | Ι     | 349 | ALA  | 2.2  |
| 1   | F     | 218 | THR  | 2.2  |
| 1   | G     | 154 | SER  | 2.2  |
| 1   | А     | 360 | ALA  | 2.1  |
| 1   | D     | 171 | THR  | 2.1  |
| 1   | F     | 73  | THR  | 2.1  |
| 1   | Н     | 74  | SER  | 2.1  |
| 1   | L     | 409 | PHE  | 2.1  |
| 1   | Е     | 74  | SER  | 2.0  |
| 1   | G     | 209 | ALA  | 2.0  |
| 1   | Н     | 382 | ALA  | 2.0  |

Continued from previous page...

## 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

## 6.4 Ligands (i)

There are no ligands in this entry.

![](_page_32_Picture_11.jpeg)

## 6.5 Other polymers (i)

There are no such residues in this entry.

![](_page_33_Picture_5.jpeg)