Full wwPDB/EMDataBank EM Map/Model Validation Report

Oct 29, 2019 – 05:13 PM EDT

PDB ID : 6S6U
EMDB ID: : EMD-10106
Title : Structure of Azospirillum brasilense Glutamate Synthase in a6b4 oligomeric state.
Authors : Chaves-Sanjuan, A.; Bolognesi, M.
Deposited on : 2019-07-03
Resolution : 3.50 Å (reported)

This is a Full wwPDB/EMDataBank EM Map/Model Validation Report for a publicly released PDB/EMDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp
with specific help available everywhere you see the 🔄 symbol.

MolProbity : 4.02b-467
Mogul : 1.8.0 (224370), CSD as540be (2019)
Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et. al. (1996)
Validation Pipeline (wwPDB-VP) : 2.4
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is 3.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>EM structures (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>136327</td>
<td>1886</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>132723</td>
<td>1663</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>132532</td>
<td>1531</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1515</td>
<td>84% 13%</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1515</td>
<td>84% 13%</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1515</td>
<td>82% 15%</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1515</td>
<td>84% 13%</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1515</td>
<td>82% 15%</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1515</td>
<td>84% 13%</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>482</td>
<td>85% 12%</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>482</td>
<td>81% 17%</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>482</td>
<td>85% 12%</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>J</td>
<td>482</td>
<td>82%</td>
</tr>
</tbody>
</table>

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>FAD</td>
<td>H</td>
<td>503</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 6 unique types of molecules in this entry. The entry contains 82978 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Glutamate synthase [NADPH] large chain.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1472</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11337 7109 2036 2132 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1472</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11337 7109 2036 2132 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1472</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11337 7109 2036 2132 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1472</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11337 7109 2036 2132 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1472</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11337 7109 2036 2132 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1472</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11337 7109 2036 2132 60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called Glutamate synthase [NADPH] small chain.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>G</td>
<td>472</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3613 2250 660 686 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>472</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3613 2250 660 686 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>472</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3613 2250 660 686 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>472</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3613 2250 660 686 17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula: C17H21N4O9P) (labeled as "Ligand of Interest" by author).
Molecule 4 is FE3-S4 CLUSTER (three-letter code: F3S) (formula: Fe₃S₄).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total C N O P 31 17 4 9 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total C N O P 31 17 4 9 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total C N O P 31 17 4 9 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1</td>
<td>Total C N O P 31 17 4 9 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1</td>
<td>Total C N O P 31 17 4 9 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1</td>
<td>Total C N O P 31 17 4 9 1</td>
<td>0</td>
</tr>
</tbody>
</table>
- Molecule 5 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe₄S₄).
• Molecule 6 is FLAVIN-ADENINE DINUCLEOTIDE (three-letter code: FAD) (formula: C\textsubscript{27}H\textsubscript{33}N\textsubscript{9}O\textsubscript{15}P\textsubscript{2}) (labeled as "Ligand of Interest" by author).
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>G</td>
<td>1</td>
<td>Total C N O P</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 27 9 15 2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>1</td>
<td>Total C N O P</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 27 9 15 2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>1</td>
<td>Total C N O P</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 27 9 15 2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>1</td>
<td>Total C N O P</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 27 9 15 2</td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Glutamate synthase [NADPH] large chain

Chain A:

- Molecule 1: Glutamate synthase [NADPH] large chain

Chain B:
- Molecule 1: Glutamate synthase [NADPH] large chain

Chain C:

- Molecule 1: Glutamate synthase [NADPH] large chain

Chain D:
• Molecule 1: Glutamate synthase [NADPH] large chain

Chain E: 82% 15%

• Molecule 1: Glutamate synthase [NADPH] large chain

Chain F: 84% 13%
- Molecule 2: Glutamate synthase [NADPH] small chain

Chain G:

- Molecule 2: Glutamate synthase [NADPH] small chain

Chain H:

- Molecule 2: Glutamate synthase [NADPH] small chain

Chain I:
• Molecule 2: Glutamate synthase [NADPH] small chain

Chain J:
4 Experimental information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstruction method</td>
<td>SINGLE PARTICLE</td>
<td>Depositor</td>
</tr>
<tr>
<td>Imposed symmetry</td>
<td>POINT, C2</td>
<td>Depositor</td>
</tr>
<tr>
<td>Number of particles used</td>
<td>76146</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution determination method</td>
<td>FSC 0.143 CUT-OFF</td>
<td>Depositor</td>
</tr>
<tr>
<td>CTF correction method</td>
<td>PHASE FLIPPING AND AMPLITUDE CORRECTION</td>
<td>Depositor</td>
</tr>
<tr>
<td>Microscope</td>
<td>FEI TALOS ARCTICA</td>
<td>Depositor</td>
</tr>
<tr>
<td>Voltage (kV)</td>
<td>200</td>
<td>Depositor</td>
</tr>
<tr>
<td>Electron dose ((e^-/\AA^2))</td>
<td>50</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum defocus (nm)</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum defocus (nm)</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Magnification</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Image detector</td>
<td>FEI FALCON III (4k x 4k)</td>
<td>Depositor</td>
</tr>
</tbody>
</table>
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: FMN, SF4, F3S, FAD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.27</td>
<td>0/11545</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.26</td>
<td>0/11545</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0.26</td>
<td>0/11545</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0.27</td>
<td>0/11545</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.26</td>
<td>0/11545</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>0.26</td>
<td>0/11545</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>0.27</td>
<td>0/3681</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>0.27</td>
<td>0/3681</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>0.27</td>
<td>0/3681</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>0.27</td>
<td>0/3681</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.27</td>
<td>0/83994</td>
</tr>
</tbody>
</table>

There are no bond length outliers.
There are no bond angle outliers.
There are no chirality outliers.
There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>11337</td>
<td>0</td>
<td>11355</td>
<td>122</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>11337</td>
<td>0</td>
<td>11355</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>11337</td>
<td>0</td>
<td>11355</td>
<td>130</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>11337</td>
<td>0</td>
<td>11355</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>11337</td>
<td>0</td>
<td>11355</td>
<td>134</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>11337</td>
<td>0</td>
<td>11355</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>3613</td>
<td>0</td>
<td>3553</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>3613</td>
<td>0</td>
<td>3553</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>3613</td>
<td>0</td>
<td>3553</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>3613</td>
<td>0</td>
<td>3553</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>31</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>31</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>31</td>
<td>0</td>
<td>19</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>31</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>31</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>31</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>53</td>
<td>0</td>
<td>31</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>53</td>
<td>0</td>
<td>31</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>53</td>
<td>0</td>
<td>31</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>53</td>
<td>0</td>
<td>31</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>82978</td>
<td>0</td>
<td>82580</td>
<td>929</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (929) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:H:503:FAD:H9</td>
<td>6:H:503:FAD:C2'</td>
<td>2.01</td>
<td>0.91</td>
</tr>
<tr>
<td>1:A:235:ASN:OD1</td>
<td>1:A:508:ASN:ND2</td>
<td>2.06</td>
<td>0.88</td>
</tr>
<tr>
<td>1:D:235:ASN:OD1</td>
<td>1:D:508:ASN:ND2</td>
<td>2.06</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:829:LEU:HD11</td>
<td>1:C:1186:ARG:HH22</td>
<td>1.51</td>
<td>0.76</td>
</tr>
<tr>
<td>1:E:854:ILE:HD11</td>
<td>1:E:1068:ARG:HD3</td>
<td>1.68</td>
<td>0.76</td>
</tr>
<tr>
<td>1:C:854:ILE:HD11</td>
<td>1:C:1068:ARG:HD3</td>
<td>1.68</td>
<td>0.75</td>
</tr>
<tr>
<td>1:C:94:GLU:OE1</td>
<td>1:F:732:ARG:NH1</td>
<td>2.19</td>
<td>0.75</td>
</tr>
<tr>
<td>1:E:829:LEU:HD11</td>
<td>1:E:1186:ARG:HH22</td>
<td>1.51</td>
<td>0.75</td>
</tr>
<tr>
<td>2:H:433:THR:HG22</td>
<td>2:H:434:ASN:H</td>
<td>1.54</td>
<td>0.72</td>
</tr>
<tr>
<td>2:J:433:THR:HG22</td>
<td>2:J:434:ASN:H</td>
<td>1.53</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:732:ARG:NH1</td>
<td>1:E:94:GLU:OE1</td>
<td>2.23</td>
<td>0.71</td>
</tr>
<tr>
<td>1:C:1287:GLU:HG3</td>
<td>1:C:1306:VAL:HB</td>
<td>1.73</td>
<td>0.71</td>
</tr>
<tr>
<td>1:E:1268:LEU:HB2</td>
<td>1:E:1288:VAL:HG12</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>1:C:1268:LEU:HB2</td>
<td>1:C:1288:VAL:HG12</td>
<td>1.72</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:1287:GLU:HG3</td>
<td>1:E:1306:VAL:HB</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:F:919:ALA:O</td>
<td>1:F:923:ASN:ND2</td>
<td>2.25</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:525:ARG:HB3</td>
<td>1:A:542:LEU:HD12</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:D:525:ARG:HB3</td>
<td>1:D:542:LEU:HD12</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:919:ALA:O</td>
<td>1:B:923:ASN:ND2</td>
<td>2.25</td>
<td>0.69</td>
</tr>
<tr>
<td>6:G:503:FAD:H2'</td>
<td>6:G:503:FAD:H9</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:504:SER:HB3</td>
<td>1:D:508:ASN:HB3</td>
<td>1.75</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:1119:VAL:HG12</td>
<td>1:D:1121:ASP:H</td>
<td>1.59</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:236:THR:O</td>
<td>1:A:240:ASN:ND2</td>
<td>2.27</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:236:THR:O</td>
<td>1:D:240:ASN:ND2</td>
<td>2.27</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:504:SER:HB3</td>
<td>1:A:508:ASN:HB3</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:116:ILE:HD12</td>
<td>1:B:187:GLN:HB3</td>
<td>1.75</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:529:LEU:HD22</td>
<td>1:B:638:THR:HA</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>1:E:1325:ASN:HD22</td>
<td>1:E:1344:GLU:H</td>
<td>1.44</td>
<td>0.66</td>
</tr>
<tr>
<td>1:E:1419:HIS:HD2</td>
<td>1:E:1468:VAL:HG21</td>
<td>1.60</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:1325:ASN:HD22</td>
<td>1:C:1344:GLU:H</td>
<td>1.43</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:1419:HIS:HD2</td>
<td>1:C:1468:VAL:HG21</td>
<td>1.60</td>
<td>0.66</td>
</tr>
<tr>
<td>1:F:235:ASN:OD1</td>
<td>1:F:508:ASN:ND2</td>
<td>2.30</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:218:THR:HG22</td>
<td>1:B:220:PRO:HD2</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:1360:CYS:SG</td>
<td>1:A:1361:GLY:N</td>
<td>2.69</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:1348:VAL:HG12</td>
<td>1:A:1366:GLU:HB3</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:1360:CYS:SG</td>
<td>1:D:1361:GLY:N</td>
<td>2.69</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Continued on next page...
### Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:72:ALA:HB3 | 1:C:133:VAL:HG12 | 1.79 | 0.65
1:E:1338:ALA:HB3 | 1:E:1357:VAL:HG12 | 1.79 | 0.64
1:C:1338:ALA:HB3 | 1:C:1357:VAL:HG12 | 1.79 | 0.64
1:A:458:MET:HG2 | 1:A:775:VAL:HA | 1.79 | 0.64
1:B:235:ASN:OD1 | 1:B:508:ASN:ND2 | 2.30 | 0.64
1:E:72:ALA:HB3 | 1:E:133:VAL:HG12 | 1.79 | 0.64
1:B:1003:ARG:HA | 1:B:1043:LEU:HD12 | 1.80 | 0.64
2:G:111:ILE:HD11 | 2:G:119:VAL:HG23 | 1.80 | 0.64
1:D:52:GLN:HE22 | 1:D:71:LEU:H | 1.46 | 0.64
1:F:1003:ARG:HA | 1:F:1043:LEU:HD12 | 1.80 | 0.64
1:E:1446:ASP:OD2 | 1:E:1449:ARG:NH2 | 2.31 | 0.64
2:I:111:ILE:HD11 | 2:I:119:VAL:HG23 | 1.80 | 0.64
1:C:768:GLU:N | 1:C:768:GLU:OE1 | 2.31 | 0.64
1:E:448:ARG:NH1 | 1:E:771:VAL:O | 2.31 | 0.64
1:E:768:GLU:OE1 | 1:E:768:GLU:N | 2.31 | 0.64
1:C:1446:ASP:OD2 | 1:C:1449:ARG:NH2 | 2.31 | 0.63
1:C:446:GLU:OE1 | 1:C:449:ARG:NH2 | 2.29 | 0.63
1:B:482:ASP:OD1 | 1:B:1106:ARG:NH2 | 2.30 | 0.63
1:C:448:ARG:NH1 | 1:C:771:VAL:O | 2.31 | 0.63
1:C:1360:CYS:SG | 1:C:1361:GLY:N | 2.72 | 0.63
1:D:1348:VAL:HG12 | 1:D:1366:GLU:HB3 | 1.79 | 0.63
6:G:503:FAD:C2' | 6:G:503:FAD:H9 | 2.27 | 0.63
1:D:458:MET:HG2 | 1:D:775:VAL:HA | 1.79 | 0.63
1:F:482:ASP:OD1 | 1:F:1106:ARG:NH2 | 2.30 | 0.63
2:G:295:VAL:HG12 | 2:G:397:ILE:HB | 1.80 | 0.63
1:E:1360:CYS:SG | 1:E:1361:GLY:N | 2.72 | 0.63
2:I:227:LEU:HD23 | 2:I:413:GLU:HG3 | 1.81 | 0.62
1:B:512:ASP:OD2 | 1:B:515:ARG:NH1 | 2.32 | 0.62
2:G:220:GLU:HG2 | 2:G:223:ARG:HG3 | 1.82 | 0.62
6:H:503:FAD:O4' | 6:H:503:FAD:O2' | 2.18 | 0.62
1:F:512:ASP:OD2 | 1:F:515:ARG:NH1 | 2.32 | 0.61
1:E:1411:ILE:HD11 | 1:E:1463:LEU:HD21 | 1.82 | 0.61
1:C:1411:ILE:HD11 | 1:C:1463:LEU:HD21 | 1.82 | 0.61
1:F:1267:ARG:NH1 | 1:F:1287:GLU:OE1 | 2.34 | 0.61
1:A:1338:ALA:HB3 | 1:A:1357:VAL:HG12 | 1.83 | 0.61
1:B:505:GLN:HE22 | 1:B:1001:VAL:H | 1.49 | 0.61
2:H:227:LEU:HD23 | 2:H:413:GLU:HG3 | 1.81 | 0.61

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:511:ILE:O</td>
<td>1:B:709:SER:OG</td>
<td>2.19</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:1267:ARG:NH1</td>
<td>1:B:1287:GLU:OE1</td>
<td>2.34</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:446:GLU:OE1</td>
<td>1:E:449:ARG:NH2</td>
<td>2.29</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:1003:ARG:HA</td>
<td>1:C:1043:LEU:HD12</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:F:289:ARG:NH1</td>
<td>1:F:535:GLU:OE1</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>1:F:923:ASN:OD1</td>
<td>1:F:1252:ARG:NH2</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>2:I:220:GLU:HG2</td>
<td>2:I:223:ARG:HG3</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:1414:ARG:NH1</td>
<td>1:E:1452:THR:O</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:1414:ARG:NH1</td>
<td>1:C:1452:THR:O</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:364:ILE:HD13</td>
<td>1:D:372:VAL:HG21</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:1338:ALA:HB3</td>
<td>1:D:1357:VAL:HG12</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:1003:ARG:HA</td>
<td>1:E:1043:LEU:HD12</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:289:ARG:NH1</td>
<td>1:B:535:GLU:OE1</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:1218:ASP:OD2</td>
<td>1:C:1233:TYR:OH</td>
<td>2.19</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:876:ASN:ND2</td>
<td>1:A:902:ASN:OD1</td>
<td>2.35</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:116:ILE:HD11</td>
<td>1:C:191:PHE:HB2</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:168:TYR:OH</td>
<td>1:B:226:ARG:NH1</td>
<td>2.35</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:876:ASN:ND2</td>
<td>1:D:902:ASN:OD1</td>
<td>2.35</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:512:ASP:OD2</td>
<td>1:C:515:ARG:NH1</td>
<td>2.35</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:643:ASN:ND2</td>
<td>1:A:665:THR:OG1</td>
<td>2.35</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:732:ARG:NH1</td>
<td>1:F:94:GLU:OE2</td>
<td>2.35</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:512:ASP:OD2</td>
<td>1:E:515:ARG:NH1</td>
<td>2.35</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:1003:ARG:HA</td>
<td>1:D:1043:LEU:HD12</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:1060:ARG:NH2</td>
<td>1:D:1192:PRO:O</td>
<td>2.36</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:1276:LEU:HB3</td>
<td>1:E:1296:VAL:HG23</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:1060:ARG:NH2</td>
<td>1:A:1192:PRO:O</td>
<td>2.36</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:923:ASN:OD1</td>
<td>1:B:1252:ARG:NH2</td>
<td>2.34</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:52:GLN:NE2</td>
<td>1:D:71:LEU:H</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:F:505:GLN:HE22</td>
<td>1:F:1001:VAL:H</td>
<td>1.49</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:1003:ARG:HA</td>
<td>1:A:1043:LEU:HD12</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:1218:ASP:OD2</td>
<td>1:E:1233:TYR:OH</td>
<td>2.19</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:858:MET:HB3</td>
<td>1:B:863:LEU:HD13</td>
<td>1.85</td>
<td>0.59</td>
</tr>
<tr>
<td>1:F:168:TYR:OH</td>
<td>1:F:226:ARG:NH1</td>
<td>2.35</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:1276:LEU:HB3</td>
<td>1:C:1296:VAL:HG23</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:52:GLN:NE2</td>
<td>1:A:71:LEU:H</td>
<td>2.01</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:116:ILE:HD11</td>
<td>1:E:191:PHE:HB2</td>
<td>1.84</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Continued on next page...
### Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:558:MET:O | 1:B:562:MET:HG3 | 2.04 | 0.58
1:A:165:ASN:HD21 | 1:D:165:ASN:HD21 | 1.52 | 0.58
1:C:531:ASN:O | 1:C:539:GLN:NE2 | 2.37 | 0.58
1:E:531:ASN:O | 1:E:539:GLN:NE2 | 2.37 | 0.58
2:J:112:GLU:HB2 | 2:J:118:ALA:HB2 | 1.86 | 0.58
1:D:912:SER:OG | 1:D:970:PRO:O | 2.22 | 0.57
1:F:558:MET:O | 1:F:562:MET:HG3 | 2.04 | 0.57
1:B:1049:LEU:HD22 | 1:B:1069:THR:HG21 | 1.86 | 0.57
1:E:923:ASN:OD1 | 1:E:1252:ARG:NH2 | 2.37 | 0.57
1:A:381:GLU:OE1 | 1:A:402:ARG:NH2 | 2.37 | 0.57
1:A:426:LEU:HD22 | 1:A:545:LEU:HD22 | 1.86 | 0.57
1:D:1391:MET:SD | 1:D:1456:GLN:NE2 | 2.75 | 0.57
1:B:1338:ALA:HB3 | 1:B:1357:VAL:HG12 | 1.85 | 0.57
1:B:854:ILE:HD12 | 1:B:881:LYS:HB2 | 1.86 | 0.57
1:C:1274:GLN:HG2 | 1:C:1294:ASP:HB2 | 1.86 | 0.57
1:E:1274:GLN:HG2 | 1:E:1294:ASP:HB2 | 1.86 | 0.57
1:D:426:LEU:HD22 | 1:D:545:LEU:HD22 | 1.86 | 0.57
1:C:840:VAL:HG12 | 1:C:1147:ARG:HH21 | 1.70 | 0.57
1:E:310:PRO:HD3 | 1:E:404:ARG:HH22 | 1.68 | 0.57
1:C:248:GLU:O | 1:C:264:LYS:NZ | 2.32 | 0.57
1:C:310:PRO:HD3 | 1:C:404:ARG:HH22 | 1.69 | 0.57
1:B:94:GLU:OE2 | 1:E:732:ARG:NH1 | 2.38 | 0.57
1:D:345:MET:HG3 | 1:D:346:ASP:H | 1.70 | 0.57
1:E:908:LYS:NZ | 1:E:924:GLN:O | 2.38 | 0.57
1:B:881:LYS:HE2 | 1:B:926:ARG:HH12 | 1.69 | 0.56
1:C:923:ASN:OD1 | 1:C:1252:ARG:NH2 | 2.37 | 0.56
1:A:195:LEU:HD23 | 1:A:200:PHE:HD2 | 1.70 | 0.56
1:A:511:ILE:O | 1:A:709:SER:OG | 2.24 | 0.56
1:D:1236:ARG:NH1 | 1:E:841:ASP:OD1 | 2.35 | 0.56
1:F:505:GLN:HB2 | 1:F:1009:ILE:HD13 | 1.87 | 0.56
1:B:505:GLN:HB2 | 1:B:1009:ILE:HD13 | 1.88 | 0.56
1:C:160:LYS:HD2 | 1:F:163:GLN:HE22 | 1.71 | 0.56
1:D:116:ILE:HD12 | 1:D:187:GLN:HB3 | 1.87 | 0.56
1:E:919:ALA:O | 1:E:923:ASN:ND2 | 2.39 | 0.56
1:A:345:MET:HG3 | 1:A:346:ASP:H | 1.70 | 0.56
1:E:840:VAL:HG12 | 1:E:1147:ARG:HH21 | 1.70 | 0.56
2:H:112:GLU:HB2 | 2:H:118:ALA:HB2 | 1.86 | 0.56
1:A:291:ALA:HB2 | 1:A:337:ASP:HB2 | 1.88 | 0.56

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:919:ALA:O</td>
<td>1:D:337:ASP:HB2</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:291:ALA:HB2</td>
<td>1:A:187:GLN:HB3</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:908:LYS:NZ</td>
<td>1:C:924:GLN:O</td>
<td>2.38</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:195:LEU:HD23</td>
<td>1:D:200:PHN:HD2</td>
<td>1.70</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:511:ILE:O</td>
<td>1:D:709:SER:OG</td>
<td>2.23</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:559:ARG:NH1</td>
<td>1:E:563:GLY:O</td>
<td>2.40</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:1350:ASN:HB3</td>
<td>1:B:1368:MET:HG3</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:647:ALA:HB1</td>
<td>1:E:670:LEU:HD22</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:291:ALA:HB2</td>
<td>1:B:337:ASP:HB2</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:1392:ALA:HB3</td>
<td>1:C:1457:VAL:HB</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>1:F:1350:ASN:HB3</td>
<td>1:F:1368:MET:HG3</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>6:J:503:FAD:C9</td>
<td>6:J:503:FAD:C2’</td>
<td>2.84</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:919:ALA:O</td>
<td>1:D:923:ASN:ND2</td>
<td>2.40</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:1060:ARG:NH2</td>
<td>1:B:1192:PRO:O</td>
<td>2.39</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:427:ASP:OD1</td>
<td>1:B:428:GLU:N</td>
<td>2.39</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:833:SER:OG</td>
<td>1:B:834:THR:N</td>
<td>2.39</td>
<td>0.55</td>
</tr>
<tr>
<td>2:J:417:LYS:HG2</td>
<td>2:J:434:ASN:HD22</td>
<td>1.71</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:236:THR:OG1</td>
<td>1:A:240:ASN:ND2</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:1331:ALA:O</td>
<td>1:C:1351:SER:OG</td>
<td>2.21</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:574:PRO:HG3</td>
<td>1:C:615:ARG:HH12</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:1350:ASN:HB3</td>
<td>1:D:1368:MET:HG3</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:1350:ASN:HB3</td>
<td>1:A:1368:MET:HG3</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:375:ASP:N</td>
<td>1:B:375:ASP:OD1</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:1088:GLU:HG2</td>
<td>1:D:1162:ILE:HD13</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:1323:ILE:HG13</td>
<td>1:D:1342:ALA:HA</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>2:H:417:LYS:HG2</td>
<td>2:H:434:ASN:HD22</td>
<td>1.71</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:1323:ILE:HG13</td>
<td>1:A:1342:ALA:HA</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:1325:ASN:ND2</td>
<td>1:E:1344:GLU:H</td>
<td>2.05</td>
<td>0.54</td>
</tr>
<tr>
<td>2:J:158:PRO:HG3</td>
<td>2:J:187:LEU:HD11</td>
<td>1.88</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:J:197:GLU:HG3</td>
<td>2:J:199:SER:H</td>
<td>1.73</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:919:ALA:O</td>
<td>1:A:923:ASN:ND2</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:295:LYS:HE2</td>
<td>1:B:299:VAL:HG23</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:647:ALA:HB1</td>
<td>1:C:670:LEU:HD22</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:236:THR:OG1</td>
<td>1:D:240:ASN:ND2</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:418:LYS:HG3</td>
<td>1:D:419:TRP:CD1</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:574:PRO:HG3</td>
<td>1:E:615:ARG:HH12</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>2:H:433:THR:HG22</td>
<td>2:H:434:ASN:N</td>
<td>2.22</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:478:SER:HB3</td>
<td>1:A:1109:HIS:ND1</td>
<td>2.22</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:418:LYS:HG3</td>
<td>1:A:419:TRP:CD1</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:559:ARG:NH1</td>
<td>1:C:563:GLY:O</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:1019:ASP:N</td>
<td>1:D:1019:ASP:OD1</td>
<td>2.39</td>
<td>0.54</td>
</tr>
<tr>
<td>2:I:220:GLU:HG3</td>
<td>2:I:222:GLY:H</td>
<td>1.73</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:1088:GLU:HG2</td>
<td>1:A:1162:ILE:HD13</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:1391:MET:SD</td>
<td>1:A:1456:GLN:NE2</td>
<td>2.75</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:381:GLU:OE1</td>
<td>1:D:402:ARG:NH2</td>
<td>2.37</td>
<td>0.54</td>
</tr>
<tr>
<td>2:H:197:GLU:HG3</td>
<td>2:H:199:SER:H</td>
<td>1.73</td>
<td>0.54</td>
</tr>
<tr>
<td>2:I:424:LEU:HD11</td>
<td>2:I:440:ALA:HB3</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:1392:ALA:HB3</td>
<td>1:E:1457:VAL:HB</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:35:ASP:OD2</td>
<td>1:B:40:THR:OG1</td>
<td>2.26</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:713:ILE:HD12</td>
<td>1:E:719:TYR:HD1</td>
<td>1.73</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:368:GLU:OE1</td>
<td>1:F:1237:ASN:ND2</td>
<td>2.39</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:273:ASP:OD1</td>
<td>1:F:274:SER:N</td>
<td>2.40</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:1360:CYS:SG</td>
<td>1:B:1361:GLY:N</td>
<td>2.82</td>
<td>0.53</td>
</tr>
<tr>
<td>2:G:417:LYS:HB2</td>
<td>2:G:434:ASN:HD22</td>
<td>1.73</td>
<td>0.53</td>
</tr>
<tr>
<td>6:G:503:FAD:C2'</td>
<td>6:G:503:FAD:C9</td>
<td>2.86</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:1325:ASN:ND2</td>
<td>1:C:1344:GLU:H</td>
<td>2.05</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:249:THR:HB</td>
<td>1:C:635:ASN:HD22</td>
<td>1.72</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:713:ILE:HD12</td>
<td>1:C:719:TYR:HD1</td>
<td>1.73</td>
<td>0.53</td>
</tr>
<tr>
<td>2:I:64:ASN:HD22</td>
<td>2:I:88:THR:HG23</td>
<td>1.73</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:802:VAL:HG12</td>
<td>1:B:1134:LYS:HG3</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:163:GLN:HE22</td>
<td>1:E:160:LYS:HD2</td>
<td>1.73</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:978:GLU:N</td>
<td>1:C:978:GLU:OE1</td>
<td>2.37</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:313:HIS:O</td>
<td>1:E:317:ILE:HG13</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:154:ARG:HH11</td>
<td>1:F:259:HIS:HD2</td>
<td>1.56</td>
<td>0.53</td>
</tr>
<tr>
<td>2:G:220:GLU:HG3</td>
<td>2:G:222:GLY:H</td>
<td>1.73</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:437:GLY:O</td>
<td>1:A:556:ARG:NH2</td>
<td>2.40</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:249:THR:HB</td>
<td>1:E:635:ASN:HD22</td>
<td>1.72</td>
<td>0.53</td>
</tr>
<tr>
<td>2:G:64:ASN:HD22</td>
<td>2:G:88:THR:HG23</td>
<td>1.73</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:I:503:FAD:C9</td>
<td>6:I:503:FAD:H2'</td>
<td>2.33</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:607:THR:HG22</td>
<td>1:A:609:GLU:H</td>
<td>1.72</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:1113:CYS:HB2</td>
<td>4:F:1502:F3S:S2</td>
<td>2.49</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:802:VAL:HG12</td>
<td>1:F:1134:LYS:HG3</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>2:F:417:LYS:HB2</td>
<td>2:F:434:ASN:HD22</td>
<td>1.73</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:908:LYS:HG2</td>
<td>1:A:925:CYS:HB3</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:1113:CYS:HB2</td>
<td>4:B:1502:F3S:S2</td>
<td>2.49</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:478:SER:HB3</td>
<td>1:D:1109:HIS:ND1</td>
<td>2.22</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:607:THR:HG22</td>
<td>1:D:609:GLU:H</td>
<td>1.72</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:1360:CYS:SG</td>
<td>1:F:1361:GLY:N</td>
<td>2.82</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:403:ASP:OD1</td>
<td>1:F:407:LYS:NZ</td>
<td>2.40</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:1272:ALA:O</td>
<td>1:E:1293:ASN:ND2</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>2:H:197:GLU:OE1</td>
<td>2:H:198:LYS:N</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>2:H:366:VAL:HG12</td>
<td>2:H:388:GLU:HG2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:1173:ARG:NH2</td>
<td>1:B:1179:ASP:OD2</td>
<td>2.38</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:469:VAL:HG21</td>
<td>1:B:675:ILE:HD12</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>2:J:433:THR:HG22</td>
<td>2:J:434:ASN:N</td>
<td>2.22</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:691:LYS:HE3</td>
<td>1:B:695:ASN:HD21</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:168:TYR:OH</td>
<td>1:E:226:ARG:NH1</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>2:J:197:GLU:OE1</td>
<td>2:J:198:LYS:N</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:313:HIS:O</td>
<td>1:F:317:ILE:HG13</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:478:SER:HB3</td>
<td>1:C:1109:HIS:ND1</td>
<td>2.25</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:643:ASN:ND2</td>
<td>1:D:665:THR:OG1</td>
<td>2.34</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:1047:MET:HG2</td>
<td>1:A:1186:ARG:HH22</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:313:HIS:O</td>
<td>1:B:317:ILE:HG13</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:478:SER:HB3</td>
<td>1:E:1109:HIS:ND1</td>
<td>2.25</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:1331:ALA:O</td>
<td>1:E:1351:SER:OG</td>
<td>2.21</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:648:GLU:OE1</td>
<td>1:C:654:TYR:OH</td>
<td>2.18</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:1296:VAL:HG13</td>
<td>1:F:1327:VAL:HG13</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:882:SER:OG</td>
<td>1:A:883:ASP:N</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:168:TYR:OH</td>
<td>1:C:226:ARG:NH1</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:313:HIS:O</td>
<td>1:C:317:ILE:HG13</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:428:GLU:O</td>
<td>1:C:432:THR:HG23</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:1047:MET:HG2</td>
<td>1:D:1186:ARG:HH22</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:908:LYS:HG2</td>
<td>1:D:925:CYS:HB3</td>
<td>1.90</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:469:VAL:HG21</td>
<td>1:F:675:ILE:HD12</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:798:LEU:HD13</td>
<td>1:F:813:TYR:CZ</td>
<td>2.45</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:1341:GLN:HG2</td>
<td>1:B:1359:GLY:HA3</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:691:LYS:HE3</td>
<td>1:F:695:ASN:HD21</td>
<td>1.75</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Continued on next page...
### Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:419:TRP:O | 1:A:540:THR:OG1 | 2.25 | 0.52
1:B:154:ARG:HH11 | 1:B:259:HIS:HD2 | 1.56 | 0.52
2:J:366:VAL:HG12 | 2:J:388:GLU:HG2 | 1.91 | 0.52
1:B:908:LYS:NZ | 1:B:924:GLN:O | 2.43 | 0.51
1:E:418:LYS:HG3 | 1:E:419:TRP:CD1 | 2.46 | 0.51
1:E:428:GLU:O | 1:E:432:THR:HG23 | 2.10 | 0.51
1:F:574:PRO:HG3 | 1:F:615:ARG:HH12 | 1.76 | 0.51
1:F:908:LYS:NZ | 1:F:924:GLN:O | 2.43 | 0.51
1:C:127:ALA:O | 1:C:1293:ASN:ND2 | 2.43 | 0.51
1:C:1310:THR:HG22 | 1:C:1312:SER:H | 1.75 | 0.51
1:C:408:ASP:OD1 | 1:C:408:ASP:N | 2.43 | 0.51
1:C:418:LYS:HG3 | 1:C:419:TRP:CD1 | 2.46 | 0.51
1:E:1310:THR:HG22 | 1:E:1312:SER:H | 1.75 | 0.51
2:G:112:GLU:HB2 | 2:G:118:ALA:HB2 | 1.91 | 0.51
1:F:35:ASP:OD2 | 1:F:40:THR:OG1 | 2.26 | 0.51
6:I:503:FAD:C9 | 6:I:503:FAD:C2' | 2.85 | 0.51
1:B:273:ASP:OD1 | 1:B:274:SER:N | 2.40 | 0.51
1:C:858:MET:HB3 | 1:C:863:LEU:HD13 | 1.93 | 0.51
1:D:1325:ASN:HD22 | 1:D:1344:GLU:HB2 | 1.76 | 0.51
1:D:597:VAL:HG22 | 1:D:640:THR:HG21 | 1.92 | 0.51
1:D:882:SER:OG | 1:D:883:ASP:N | 2.43 | 0.51
1:E:427:ASP:HA | 1:E:430:VAL:HG12 | 1.93 | 0.51
1:B:1296:VAL:HG13 | 1:B:1327:VAL:HG13 | 1.92 | 0.51
1:B:798:LEU:HD13 | 1:B:813:TYR:CZ | 2.45 | 0.51
1:F:1230:GLN:HG2 | 1:F:1265:THR:HG23 | 1.91 | 0.51
1:F:345:MET:HG3 | 1:F:346:ASP:H | 1.76 | 0.51
2:I:112:GLU:HB2 | 2:I:118:ALA:HB2 | 1.91 | 0.51
1:A:1325:ASN:HD22 | 1:A:1344:GLU:HB2 | 1.76 | 0.51
1:A:236:THR:O | 1:A:236:THR:OG1 | 2.29 | 0.51
1:B:664:THR:HG22 | 1:B:665:THR:HG23 | 1.93 | 0.51
1:F:1341:GLN:HG2 | 1:F:1359:GLY:HA3 | 1.91 | 0.51
1:C:1113:CYS:HB3 | 1:C:1119:VAL:HG13 | 1.93 | 0.51
1:B:208:HIS:CD2 | 1:B:223:GLN:HB2 | 2.46 | 0.51
1:D:1291:ASP:N | 1:D:1291:ASP:OD1 | 2.43 | 0.51
1:D:908:LYS:NZ | 1:D:924:GLN:O | 2.44 | 0.51
2:J:152:GLY:O | 2:J:237:VAL:HA | 2.11 | 0.51
1:F:1325:ASN:HD22 | 1:F:1344:GLU:HB2 | 1.76 | 0.50

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:94:GLU:OE2</td>
<td>1:D:732:ARG:NH1</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:1291:ASP:OD1</td>
<td>1:A:1291:ASP:N</td>
<td>2.43</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:195:LEU:HD23</td>
<td>1:C:200:PHE:HD2</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:505:GLN:HB2</td>
<td>1:C:1009:ILE:HD13</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:1:CYS:SG</td>
<td>1:E:231:ASN:ND2</td>
<td>2.85</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:1173:ARG:NH2</td>
<td>1:F:1179:ASP:OD2</td>
<td>2.38</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:368:GLU:OE1</td>
<td>1:B:1237:ASN:ND2</td>
<td>2.39</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:574:PRO:HG3</td>
<td>1:B:615:ARG:HH12</td>
<td>1.75</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:1322:ILE:HG23</td>
<td>1:C:1323:ILE:HG23</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:505:GLN:HB2</td>
<td>1:E:1009:ILE:HD13</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:858:MET:HB3</td>
<td>1:E:863:LEU:HD13</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:1:CYS:SG</td>
<td>1:C:231:ASN:ND2</td>
<td>2.85</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:1119:VAL:HG23</td>
<td>1:F:1125:ARG:HG3</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:208:HIS:CD2</td>
<td>1:C:223:GLN:HB2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:959:SER:OG</td>
<td>1:D:960:THR:N</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:908:LYS:NZ</td>
<td>1:A:924:GLN:O</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:1230:GLN:HG2</td>
<td>1:B:1265:THR:HG23</td>
<td>1.91</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:1397:LEU:HD23</td>
<td>1:B:1397:LEU:H</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:1113:CYS:HB3</td>
<td>1:E:1119:VAL:HG13</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:208:HIS:CD2</td>
<td>1:E:223:GLN:HB2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:248:GLU:O</td>
<td>1:E:264:LYS:NZ</td>
<td>2.32</td>
<td>0.50</td>
</tr>
<tr>
<td>2:J:158:PRO:HD2</td>
<td>6:J:503:FAD:P</td>
<td>2.52</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:505:GLN:HB2</td>
<td>1:A:1009:ILE:HD13</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:52:GLN:HE22</td>
<td>1:B:71:LEU:H</td>
<td>1.58</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:912:SER:OG</td>
<td>1:C:970:PRO:O</td>
<td>2.29</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:437:GLY:O</td>
<td>1:C:556:ARG:NH2</td>
<td>2.40</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:505:GLN:HB2</td>
<td>1:D:1009:ILE:HD13</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:882:SER:OG</td>
<td>1:E:883:ASP:N</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:345:MET:HG3</td>
<td>1:B:346:ASP:H</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:403:ASP:OD1</td>
<td>1:B:407:LYS:NZ</td>
<td>2.40</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:203:ASP:N</td>
<td>1:C:203:ASP:OD1</td>
<td>2.43</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:959:SER:OG</td>
<td>1:A:960:THR:N</td>
<td>2.44</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:1350:ASN:HB3</td>
<td>1:C:1368:MET:HG3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:503:PHE:HE1</td>
<td>1:C:505:GLN:HE21</td>
<td>1.60</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:982:GLN:NE2</td>
<td>1:E:986:ASP:OD1</td>
<td>2.45</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Continued on next page...
Interatomic Distance and Clash Overlap

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:J:158:PRO:HD2</td>
<td>6:J:503:FAD:O1P</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:427:ASP:HA</td>
<td>1:C:430:VAL:HG12</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:882:SER:OG</td>
<td>1:C:883:ASP:N</td>
<td>2.45</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:195:LEU:HD23</td>
<td>1:E:200:PHE:HD2</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:266:VAL:HG21</td>
<td>1:A:283:VAL:HG11</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:1325:ASN:HD22</td>
<td>1:B:1344:GLU:HB2</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:1293:ASN:O</td>
<td>1:D:1324:GLY:HA3</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:208:HIS:CD2</td>
<td>1:F:223:GLN:HB2</td>
<td>2.46</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:428:GLU:O</td>
<td>1:B:432:THR:HG23</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:869:GLY:O</td>
<td>1:C:873:VAL:HG23</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:982:GLN:NE2</td>
<td>1:C:986:ASP:OD1</td>
<td>2.45</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:1272:ALA:O</td>
<td>1:D:1293:ASN:ND2</td>
<td>2.46</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:503:PHE:HE1</td>
<td>1:E:505:GLN:HE21</td>
<td>1.60</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:1397:LEU:HD23</td>
<td>1:F:1397:LEU:H</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:1230:GLN:HG2</td>
<td>1:A:1265:THR:HG23</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:1391:MET:HG3</td>
<td>1:E:1458:VAL:HG12</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:1119:VAL:HG23</td>
<td>1:B:1125:ARG:HG3</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:1391:MET:HG3</td>
<td>1:C:1458:VAL:HG12</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:1272:ALA:O</td>
<td>1:A:1293:ASN:ND2</td>
<td>2.46</td>
<td>0.49</td>
</tr>
<tr>
<td>2:H:427:ASP:OD2</td>
<td>2:H:430:THR:OG1</td>
<td>2.30</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:1293:ASN:O</td>
<td>1:A:1324:GLY:HA3</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:15:ARG:HG3</td>
<td>1:A:19:GLU:HG3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:441:ASP:OD2</td>
<td>1:D:680:ARG:NH2</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:1349:ARG:NH1</td>
<td>1:A:1369:THR:OG1</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:840:VAL:O</td>
<td>1:B:1147:ARG:NH2</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:1230:GLN:HG2</td>
<td>1:D:1265:THR:HG23</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:1322:ILE:HG23</td>
<td>1:E:1323:ILE:HG23</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:1356:VAL:HG2</td>
<td>1:F:1374:VAL:HB</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:337:ASP:OD1</td>
<td>1:F:338:GLY:N</td>
<td>2.45</td>
<td>0.48</td>
</tr>
<tr>
<td>2:J:6:MET:SD</td>
<td>2:J:71:LYS:HA</td>
<td>2.53</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:830:GLU:OE2</td>
<td>1:A:832:ARG:NH1</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:218:THR:HG22</td>
<td>1:C:220:PRO:HD2</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:978:GLU:CD</td>
<td>1:C:978:GLU:H</td>
<td>2.17</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:1349:ARG:NH1</td>
<td>1:D:1369:THR:OG1</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:830:GLU:OE2</td>
<td>1:D:832:ARG:NH1</td>
<td>2.46</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:735:VAL:HA</td>
<td>1:F:739:PHE:HD2</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:571:ALA:O</td>
<td>1:C:618:ILE:HG22</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:15:ARG:HG3</td>
<td>1:D:19:GLU:HG3</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:237:VAL:HG11</td>
<td>1:D:273:ASP:HB3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:922:LEU:O</td>
<td>1:D:991:ASN:ND2</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:869:GLY:O</td>
<td>1:E:873:VAL:HG23</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:441:ASP:OD2</td>
<td>1:A:680:ARG:NH2</td>
<td>2.45</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:575:VAL:HG23</td>
<td>1:A:759:LEU:HD22</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:414:LYS:HB2</td>
<td>1:B:416:TRP:CZ2</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:571:ALA:O</td>
<td>1:E:618:ILE:HG22</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:208:HIS:CD2</td>
<td>1:A:223:GLN:HB2</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:1431:HIS:O</td>
<td>1:B:1435:THR:HG22</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:735:VAL:HA</td>
<td>1:B:739:PHE:HD2</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:330:PRO:HG3</td>
<td>1:E:350:LEU:HD12</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:840:VAL:O</td>
<td>1:F:1147:ARG:NH2</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>2:J:306:VAL:HG11</td>
<td>2:J:343:VAL:HG11</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:1210:THR:OG1</td>
<td>1:D:1211:LEU:N</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:266:VAL:HG21</td>
<td>1:D:283:VAL:HG11</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:233:GLU:OE1</td>
<td>1:B:508:ASN:ND2</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:208:HIS:CD2</td>
<td>1:D:223:GLN:HB2</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:307:GLN:N</td>
<td>1:D:307:GLN:OE1</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:1350:ASN:HB3</td>
<td>1:E:1368:MET:HG3</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:912:SER:OG</td>
<td>1:E:970:PRO:O</td>
<td>2.29</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:922:LEU:O</td>
<td>1:A:991:ASN:ND2</td>
<td>2.46</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:1316:GLU:O</td>
<td>1:C:1320:ASN:ND2</td>
<td>2.41</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:575:VAL:HG23</td>
<td>1:D:759:LEU:HD22</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:414:LYS:HB2</td>
<td>1:F:416:TRP:CZ2</td>
<td>2.49</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:419:TRP:O</td>
<td>1:D:540:THR:OG1</td>
<td>2.25</td>
<td>0.47</td>
</tr>
<tr>
<td>2:G:254:SER:OG</td>
<td>2:G:254:SER:O</td>
<td>2.32</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:330:PRO:HG3</td>
<td>1:C:350:LEU:HD12</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:664:THR:HG22</td>
<td>1:D:665:THR:HG23</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:648:GLU:OE1</td>
<td>1:E:654:TYR:OH</td>
<td>2.18</td>
<td>0.47</td>
</tr>
<tr>
<td>6:J:503:FAD:OE1</td>
<td>6:J:503:FAD:C8A</td>
<td>2.92</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:415:PRO:HB2</td>
<td>1:A:418:LYS:HG2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:79:PRO:O</td>
<td>1:E:86:GLN:NE2</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:52:GLN:NE2</td>
<td>1:C:71:LEU:H</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:1296:VAL:HG13</td>
<td>1:D:1327:VAL:HG13</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>2:H:36:PHE:CE2</td>
<td>2:H:123:SER:HB3</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:1356:VAL:HG22</td>
<td>1:B:1374:VAL:HB</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:375:ASP:OD2</td>
<td>1:C:377:THR:OG1</td>
<td>2.26</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:52:GLN:HE22</td>
<td>1:C:71:LEU:H</td>
<td>1.63</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:415:PRO:HB2</td>
<td>1:D:418:LYS:HG2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:218:THR:HG22</td>
<td>1:E:220:PRO:HD2</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:236:THR:O</td>
<td>1:B:240:ASN:ND2</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>2:H:408:PRO:HB3</td>
<td>2:H:414:PRO:HA</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:1210:THR:OG1</td>
<td>1:A:1211:LEU:N</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:52:GLN:NE2</td>
<td>1:B:71:LEU:H</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:234:ILE:HD11</td>
<td>1:C:277:LEU:HD22</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:52:GLN:NE2</td>
<td>1:E:71:LEU:H</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>2:J:80:GLU:O</td>
<td>2:J:84:VAL:HG23</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:1176:GLU:OE2</td>
<td>1:A:1176:GLU:N</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:195:LEU:HD23</td>
<td>1:D:200:PHE:CD2</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:890:ASP:HB3</td>
<td>1:F:893:ARG:HG3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>2:H:80:GLU:O</td>
<td>2:H:84:VAL:HG23</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>2:J:36:PHE:CE2</td>
<td>2:J:123:SER:HB3</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>2:J:226:SER:OG</td>
<td>2:J:228:PRO:HD2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:1176:GLU:OE2</td>
<td>1:D:1176:GLU:N</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:844:GLU:O</td>
<td>1:E:1147:ARG:HD2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:236:THR:O</td>
<td>1:F:240:ASN:ND2</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:478:SER:O</td>
<td>1:F:478:SER:OG</td>
<td>2.32</td>
<td>0.46</td>
</tr>
<tr>
<td>2:J:443:ASP:HB3</td>
<td>6:J:503:FAD:O2P</td>
<td>2.15</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:1376:LEU:HA</td>
<td>1:A:1395:TYR:HB3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:890:ASP:HB3</td>
<td>1:B:893:ARG:HG3</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:949:VAL:HG23</td>
<td>1:B:962:GLY:H</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:979:ASP:OD2</td>
<td>1:B:1295:TYR:OH</td>
<td>2.32</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:1127:LYS:HE2</td>
<td>1:E:1127:LYS:HB3</td>
<td>1.52</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:246:ALA:O</td>
<td>1:E:638:THR:OG1</td>
<td>2.32</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:978:GLU:CD</td>
<td>1:E:978:GLU:H</td>
<td>2.17</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:780:ARG:HD2</td>
<td>1:F:781:PHE:H</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>2:J:237:VAL:HG23</td>
<td>2:J:438:VAL:HG23</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:250:ARG:HD2</td>
<td>1:A:639:PHE:HE1</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:203:ASP:N</td>
<td>1:B:203:ASP:OD1</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:780:ARG:HD2</td>
<td>1:B:781:PHE:H</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:1236:ARG:NH1</td>
<td>1:C:841:ASP:OD1</td>
<td>2.38</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:250:ARG:HD2</td>
<td>1:D:639:PHE:HE1</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:961:PRO:O</td>
<td>1:D:1465:ARG:NH1</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:697:LYS:HA</td>
<td>1:E:700:ILE:HG22</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:961:PRO:O</td>
<td>1:A:1465:ARG:NH1</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:1122:ASP:O</td>
<td>1:C:1126:GLN:HG2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:949:VAL:HG23</td>
<td>1:F:962:GLY:H</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:609:GLU:OE2</td>
<td>1:E:645:ARG:NH1</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:52:GLN:NE2</td>
<td>1:F:71:LEU:H</td>
<td>2.13</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:1376:LEU:HA</td>
<td>1:D:1395:TYR:HB3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:280:VAL:HA</td>
<td>1:D:283:VAL:HG12</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:846:ILE:HD13</td>
<td>1:E:1147:ARG:HD3</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:713:ILE:HG21</td>
<td>1:D:719:TYR:HB2</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:988:LYS:NZ</td>
<td>1:E:1205:ASN:O</td>
<td>2.43</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:988:LYS:NZ</td>
<td>1:C:1205:ASN:O</td>
<td>2.43</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:844:GLU:O</td>
<td>1:C:1147:ARG:HD2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:609:GLU:OE2</td>
<td>1:C:645:ARG:NH1</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:807:TYR:OH</td>
<td>1:E:1145:GLU:OE1</td>
<td>2.28</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:10:ASP:N</td>
<td>1:F:10:ASP:OD1</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>2:I:433:THR:OG1</td>
<td>2:I:434:ASN:N</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:713:ILE:HG21</td>
<td>1:A:719:TYR:HB2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:1122:ASP:O</td>
<td>1:E:1126:GLN:HG2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:233:GLU:OE1</td>
<td>1:F:508:ASN:ND2</td>
<td>2.46</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:249:THR:HB</td>
<td>1:F:635:ASN:HD22</td>
<td>1.81</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:841:ASP:OD2</td>
<td>1:B:1236:ARG:NH2</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:141:ASP:O</td>
<td>1:B:145:GLU:HG2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:1121:ASP:OD1</td>
<td>1:E:1122:ASP:N</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:203:ASP:OD1</td>
<td>1:E:203:ASP:N</td>
<td>2.43</td>
<td>0.45</td>
</tr>
<tr>
<td>2:H:226:SER:OG</td>
<td>2:H:228:PRO:HD2</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>2:I:17:PRO:HD3</td>
<td>2:I:36:PHE:CZ</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:249:THR:HB</td>
<td>1:B:635:ASN:HD22</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>2:G:433:THR:OG1</td>
<td>2:G:434:ASN:N</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>2:J:174:VAL:CG2</td>
<td>2:J:213:VAL:HG13</td>
<td>2.45</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:846:ILE:HD13</td>
<td>1:C:1147:ARG:HD3</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:416:TRP:CZ3</td>
<td>1:C:419:TRP:HE3</td>
<td>2.34</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:236:THR:OG1</td>
<td>1:D:236:THR:O</td>
<td>2.29</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:345:MET:HG3</td>
<td>1:E:346:ASP:H</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:52:GLN:HE22</td>
<td>1:E:71:LEU:H</td>
<td>1.63</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:645:ARG:HE</td>
<td>1:A:667:ASN:HD22</td>
<td>1.64</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:478:SER:O</td>
<td>1:B:478:SER:OG</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:869:GLY:O</td>
<td>1:B:873:VAL:HG23</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:1121:ASP:OD1</td>
<td>1:C:1122:ASP:N</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:1467:GLU:N</td>
<td>1:C:1467:GLU:OE1</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:1218:ASP:OD2</td>
<td>1:D:1233:TYR:OH</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:1007:GLY:HA3</td>
<td>1:E:1055:VAL:HG21</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:1431:HIS:O</td>
<td>1:E:1435:THR:HG22</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:869:GLY:O</td>
<td>1:F:873:VAL:HG23</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:1218:ASP:OD2</td>
<td>1:A:1233:TYR:OH</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:697:LYS:HA</td>
<td>1:C:700:ILE:HG22</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:352:PRO:HB3</td>
<td>1:D:1325:ASN:OD1</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>2:G:201:VAL:O</td>
<td>2:G:205:VAL:HG23</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>2:J:408:PRO:HB3</td>
<td>2:J:414:PRO:HA</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:457:THR:HG22</td>
<td>1:D:774:PRO:HG2</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:234:ILE:HD11</td>
<td>1:E:277:LEU:HD22</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:640:THR:OG1</td>
<td>1:E:641:SER:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>2:H:300:ASP:OD1</td>
<td>2:H:301:THR:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>2:I:201:VAL:O</td>
<td>2:I:205:VAL:HG23</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>2:J:300:ASP:OD1</td>
<td>2:J:301:THR:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:1467:GLU:N</td>
<td>1:E:1467:GLU:OE1</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:408:ASP:OD1</td>
<td>1:E:408:ASP:N</td>
<td>2.43</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:416:TRP:CZ3</td>
<td>1:E:419:TRP:HE3</td>
<td>2.34</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:J:150:SER:O</td>
<td>2:J:235:VAL:HG12</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:531:ASN:O</td>
<td>1:B:539:GLN:NE2</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:847:THR:HG22</td>
<td>1:C:850:ARG:HH21</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:826:ARG:NH2</td>
<td>1:D:1072:GLY:O</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:801:ALA:HB2</td>
<td>1:E:809:THR:HG22</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>2:H:36:PHE:HE2</td>
<td>2:H:123:SER:HB3</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:501:GLN:HE21</td>
<td>1:B:653:HIS:CD2</td>
<td>2.35</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:1408:GLU:HA</td>
<td>1:C:1408:GLU:OE2</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:461:MET:HE3</td>
<td>1:C:678:ARG:HD2</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:908:LYS:HG2</td>
<td>1:C:925:CYS:HB3</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:1179:ASP:N</td>
<td>1:D:1179:ASP:OD1</td>
<td>2.45</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:227:MET:HG3</td>
<td>1:D:336:THR:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:531:ASN:O</td>
<td>1:F:539:GLN:NE2</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:826:ARG:NH2</td>
<td>1:A:1072:GLY:O</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:1113:CYS:HB3</td>
<td>1:B:1119:VAL:HG13</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>2:I:233:Lys:HG2</td>
<td>2:I:233:Lys:HB3</td>
<td>1.80</td>
<td>0.45</td>
</tr>
<tr>
<td>2:I:254:SER:O</td>
<td>2:I:254:SER:OG</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:1179:ASP:N</td>
<td>1:A:1179:ASP:OD1</td>
<td>2.45</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:10:ASP:OD1</td>
<td>1:B:10:ASP:N</td>
<td>2.49</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:1245:ARG:O</td>
<td>1:B:1249:MET:HG2</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:1007:GLY:HA3</td>
<td>1:C:1055:VAL:HG21</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:72:ALA:HB2</td>
<td>1:E:174:ALA:HB2</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:482:ASP:N</td>
<td>1:E:482:ASP:OD1</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>2:J:419:THR:HG22</td>
<td>2:J:423:THR:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:72:ALA:HB2</td>
<td>1:C:174:ALA:HB2</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:640:THR:OG1</td>
<td>1:C:641:SER:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:645:ARG:HE</td>
<td>1:D:667:ASN:HD22</td>
<td>1.64</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:141:ASP:O</td>
<td>1:E:145:GLU:HG2</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:141:ASP:O</td>
<td>1:F:145:GLU:HG2</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>2:G:185:GLY:O</td>
<td>2:G:188:VAL:HG12</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>2:G:17:PRO:HD3</td>
<td>2:G:36:PHE:CI2</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:90:ARG:NH2</td>
<td>1:A:129:GLU:OE2</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:273:ASP:N</td>
<td>1:A:273:ASP:OD1</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:1184:ASN:ND2</td>
<td>1:E:107:TRP:O</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:1127:Lys:HE2</td>
<td>1:C:1127:Lys:HB3</td>
<td>1.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:1431:His:O</td>
<td>1:C:1435:THR:HG22</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:324:MET:HG3</td>
<td>1:D:325:GLU:N</td>
<td>2.33</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:H:220:GLU:HG3</td>
<td>2:H:222:GLY:H</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>2:J:208:LEU:O</td>
<td>2:J:213:VAL:HG23</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>2:J:36:PHE:HE2</td>
<td>2:J:123:SER:HB3</td>
<td>1.81</td>
<td>0.44</td>
</tr>
<tr>
<td>2:J:221:VAL:HG12</td>
<td>6:J:503:FAD:N1A</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:1147:ARG:HB3</td>
<td>1:B:1147:ARG:HE</td>
<td>1.61</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:264:LYS:HA</td>
<td>1:B:264:LYS:HD3</td>
<td>1.79</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:482:ASP:OD1</td>
<td>1:C:1106:ARG:NH2</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:1287:GLU:N</td>
<td>1:C:1287:GLU:OE1</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:1363:ASN:HD22</td>
<td>1:D:1382:ASN:HD22</td>
<td>1.66</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:324:MET:HG3</td>
<td>1:A:325:GLU:N</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:195:LEU:HD23</td>
<td>1:B:200:PHE:HD2</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:141:ASP:O</td>
<td>1:C:145:GLU:HG2</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:1323:ILE:HG13</td>
<td>1:F:1342:ALA:HA</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:979:ASP:OD2</td>
<td>1:F:1295:TYR:OH</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:4:GLY:HA3</td>
<td>1:B:207:TYR:CZ</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:706:LYS:HE3</td>
<td>1:B:706:LYS:HB2</td>
<td>1.81</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:437:GLY:O</td>
<td>1:C:556:ARG:NH2</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>6:J:503:FAD:C3B</td>
<td>6:J:503:FAD:H8A</td>
<td>2.46</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:801:ALA:HB2</td>
<td>1:C:809:THR:HG22</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:937:LYS:NZ</td>
<td>1:D:1032:ALA:O</td>
<td>2.38</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:1408:GLU:HA</td>
<td>1:E:1408:GLU:OE2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:437:GLY:O</td>
<td>1:E:556:ARG:NH2</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:168:TYR:OH</td>
<td>1:A:226:ARG:NH1</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:909:GLN:NE2</td>
<td>1:A:929:GLU:OE2</td>
<td>2.49</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:345:MET:HG3</td>
<td>1:C:346:ASP:H</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:35:ASP:OD1</td>
<td>1:D:36:ALA:N</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:482:ASP:OD1</td>
<td>1:E:1106:ARG:NH2</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:1245:ARG:O</td>
<td>1:F:1249:MET:HG2</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:4:GLY:HA3</td>
<td>1:F:207:TYR:CZ</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>2:J:185:GLY:O</td>
<td>2:J:188:VAL:HG12</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:602:THR:O</td>
<td>1:B:603:HIS:ND1</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:840:VAL:O</td>
<td>1:E:1147:ARG:NH2</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:602:THR:O</td>
<td>1:F:603:HIS:ND1</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:1105:VAL:HG13</td>
<td>2:H:51:CYS:HB3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:J:185:GLY:O</td>
<td>2:J:188:VAL:HG22</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:J:220:GLU:HG3</td>
<td>2:J:222:GLY:H</td>
<td>1.82</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:418:LYS:HG3</td>
<td>1:A:419:TRP:HD1</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:1132:PRO:O</td>
<td>1:B:1136:VAL:HG23</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:168:TYR:OH</td>
<td>1:D:226:ARG:NH1</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:264:LYS:HA</td>
<td>1:D:264:LYS:HD3</td>
<td>1.77</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:1147:ARG:HB3</td>
<td>1:F:1147:ARG:HE</td>
<td>1.61</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:1322:ILE:HG23</td>
<td>1:F:1323:ILE:HG23</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:35:ASP:OD1</td>
<td>1:A:36:ALA:N</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:1145:GLU:O</td>
<td>1:B:1149:ILE:HG13</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:606:LEU:O</td>
<td>1:B:627:VAL:HG21</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:202:SER:HD11</td>
<td>1:C:203:ASP:N</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:246:ALA:O</td>
<td>1:C:638:THR:OG1</td>
<td>2.32</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:482:ASP:N</td>
<td>1:C:482:ASP:OD1</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:840:VAL:O</td>
<td>1:C:1147:ARG:NH2</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:1276:LEU:HD23</td>
<td>1:D:1296:VAL:HG23</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:1172:SER:HG</td>
<td>1:E:63:GLY:HA3</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:847:THR:HG22</td>
<td>1:E:850:ARG:HH21</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>2:H:419:THR:HG22</td>
<td>2:H:423:THR:O</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>2:I:331:SER:HB3</td>
<td>2:I:334:GLU:HG3</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:107:TRP:O</td>
<td>1:F:1184:ASN:ND2</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:1287:GLU:OE1</td>
<td>1:E:1287:GLU:N</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:1132:PRO:O</td>
<td>1:F:1136:VAL:HG23</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:H:186:LEU:HG</td>
<td>6:H:503:FAD:O1A</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>2:H:70:LEU:HD23</td>
<td>2:H:70:LEU:HA</td>
<td>1.85</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:1127:LYS:HE3</td>
<td>2:G:116:HIS:CD2</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:399:LYS:HE3</td>
<td>1:A:399:LYS:HB2</td>
<td>1.86</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:1396:ASP:OD2</td>
<td>1:B:1401:LEU:N</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:90:ARG:NE2</td>
<td>1:D:129:GLU:OE2</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>2:G:221:VAL:HG12</td>
<td>6:G:503:FAD:N1A</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:1276:LEU:HD23</td>
<td>1:A:1296:VAL:HG23</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:284:MET:HE2</td>
<td>1:A:284:MET:HB3</td>
<td>1.75</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:108:ARG:NH1</td>
<td>1:C:130:GLN:OE1</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:1142:LEU:HD12</td>
<td>1:E:1142:LEU:HA</td>
<td>1.88</td>
<td>0.43</td>
</tr>
<tr>
<td>2:I:133:TRP:NE1</td>
<td>2:I:203:ARG:HD2</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>2:I:221:VAL:HG12</td>
<td>6:I:503:FAD:N1A</td>
<td>2.33</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:J:102:ASP:N</td>
<td>2:J:102:ASP:OD1</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:937:LYS:NZ</td>
<td>1:A:1032:ALA:O</td>
<td>2.38</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:537:GLU:OE1</td>
<td>1:A:537:GLU:N</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:1323:ILE:HG13</td>
<td>1:B:1342:ALA:HA</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:1428:ILE:O</td>
<td>1:C:1432:VAL:HG23</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:1145:GLU:O</td>
<td>1:F:1149:ILE:HG13</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:1182:ASP:OD1</td>
<td>1:F:1184:ASN:HB2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:G:331:SER:HB3</td>
<td>2:G:334:GLU:HG3</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>2:H:307:ARG:NH1</td>
<td>2:H:334:GLU:OE2</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:337:ASP:OD1</td>
<td>1:B:338:GLY:N</td>
<td>2.45</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:196:LEU:HA</td>
<td>1:D:196:LEU:HD23</td>
<td>1.88</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:390:MET:HG3</td>
<td>1:E:406:LEU:HD23</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:461:MET:HE3</td>
<td>1:E:678:ARG:HD2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:306:SER:OG</td>
<td>1:F:308:THR:HG23</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:364:ILE:HD12</td>
<td>1:F:374:ILE:HD11</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:J:472:LYS:HE3</td>
<td>2:J:472:LYS:HB3</td>
<td>1.80</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:267:ILE:HD13</td>
<td>1:F:276:SER:HB2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:706:LYS:HB2</td>
<td>1:F:706:LYS:HE3</td>
<td>1.81</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:886:GLU:HB3</td>
<td>1:F:911:ALA:HB2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:J:307:ARG:NH1</td>
<td>2:J:334:GLU:OE2</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:886:GLU:HB3</td>
<td>1:A:911:ALA:HB2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:537:GLU:OE1</td>
<td>1:D:537:GLU:N</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:886:GLU:HB3</td>
<td>1:D:911:ALA:HB2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:135:ASN:ND2</td>
<td>1:E:139:VAL:O</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:1157:SER:N</td>
<td>1:F:1160:GLU:OE1</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:589:ILE:HG13</td>
<td>1:F:590:ARG:N</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>2:I:467:ALA:O</td>
<td>2:I:470:LYS:HG3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:1182:ASP:OD1</td>
<td>1:B:1184:ASN:HB2</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:1368:MET:HB3</td>
<td>1:C:1387:MET:HG3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:390:MET:HG3</td>
<td>1:C:406:LEU:HD23</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:461:MET:HA</td>
<td>1:C:465:LEU:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:1317:THR:O</td>
<td>1:D:1340:GLY:HA2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:223:GLN:HB3</td>
<td>1:D:224:PRO:HA</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>2:H:72:LEU:HD13</td>
<td>2:H:80:GLU:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:1150:LEU:HD23</td>
<td>1:A:1150:LEU:HA</td>
<td>1.87</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:306:SER:OG</td>
<td>1:B:308:THR:HG23</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:79:PRO:O</td>
<td>1:C:86:GLN:NE2</td>
<td>2.47</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:108:ARG:NH1</td>
<td>1:E:130:GLN:OE1</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:783:LYS:HD2</td>
<td>1:E:783:LYS:HA</td>
<td>1.74</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:1396:ASP:OD2</td>
<td>1:F:1401:LEU:N</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>2:J:443:ASP:CB</td>
<td>6:J:503:FAD:O2P</td>
<td>2.67</td>
<td>0.42</td>
</tr>
<tr>
<td>2:J:72:LEU:HD13</td>
<td>2:J:80:GLU:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:223:GLN:HB3</td>
<td>1:A:224:PRO:HA</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:886:GLU:HB3</td>
<td>1:B:911:ALA:HB2</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:135:ASN:ND2</td>
<td>1:C:139:VAL:O</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>2:H:126:LYS:HE2</td>
<td>2:H:126:LYS:HB3</td>
<td>1.70</td>
<td>0.42</td>
</tr>
<tr>
<td>2:I:326:LYS:HA</td>
<td>2:I:326:LYS:HD2</td>
<td>1.69</td>
<td>0.42</td>
</tr>
<tr>
<td>2:J:38:ASP:OD1</td>
<td>2:J:127:TYR:OH</td>
<td>2.28</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:854:ILE:O</td>
<td>1:B:1091:GLY:HA2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:1157:SER:N</td>
<td>1:B:1160:GLU:OE1</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:1322:ILE:HG23</td>
<td>1:B:1323:ILE:HG23</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:364:ILE:HD12</td>
<td>1:B:374:ILE:HD11</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:1368:MET:HB3</td>
<td>1:E:1387:MET:HG3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:375:ASP:OD2</td>
<td>1:E:377:THR:OG1</td>
<td>2.26</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:250:ARG:NH2</td>
<td>1:E:530:GLY:HA2</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>2:G:326:LYS:HA</td>
<td>2:G:326:LYS:HD2</td>
<td>1.69</td>
<td>0.42</td>
</tr>
<tr>
<td>2:G:467:ALA:O</td>
<td>2:G:470:LYS:HG3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:881:LYS:HE2</td>
<td>1:C:926:ARG:HH12</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:1428:ILE:O</td>
<td>1:E:1432:VAL:HG23</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:202:SER:OG</td>
<td>1:E:203:ASP:N</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:264:LYS:HA</td>
<td>1:E:264:LYS:HD3</td>
<td>1.78</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:854:ILE:O</td>
<td>1:F:1091:GLY:HA2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>2:H:185:GLY:O</td>
<td>2:H:188:VAL:HG22</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:783:LYS:HD2</td>
<td>1:C:783:LYS:HA</td>
<td>1.74</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:1389:GLY:HA2</td>
<td>1:D:1462:MET:SD</td>
<td>2.60</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:418:LYS:HG3</td>
<td>1:D:419:TRP:HD1</td>
<td>1.83</td>
<td>0.42</td>
</tr>
<tr>
<td>2:H:472:LYS:HB3</td>
<td>2:H:472:LYS:HE3</td>
<td>1.80</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:1389:GLY:HA2</td>
<td>1:A:1462:MET:SD</td>
<td>2.60</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:140:SER:OG</td>
<td>1:A:141:ASP:N</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:267:ILE:HD13</td>
<td>1:B:276:SER:HB2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:589:ILE:HG13</td>
<td>1:B:590:ARG:N</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:806:SER:OG</td>
<td>1:B:809:THR:HG22</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:1341:GLN:HG2</td>
<td>1:C:1359:GLY:HA3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:826:ARG:NE</td>
<td>1:F:1078:ASP:OD2</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>2:G:311:ARG:HA</td>
<td>2:G:311:ARG:HD3</td>
<td>1.86</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:973:ASP:O</td>
<td>1:A:979:ASP:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:1316:GLU:O</td>
<td>1:E:1320:ASN:ND2</td>
<td>2.41</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:806:SER:OG</td>
<td>1:F:809:THR:HG22</td>
<td>2.20</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:997:THR:HB</td>
<td>1:C:1020:ILE:HB</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:248:GLU:OE2</td>
<td>1:D:266:VAL:HG12</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:1110:SER:O</td>
<td>1:E:1112:THR:HG23</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:1092:ILE:HD12</td>
<td>1:D:1139:PHE:HZ</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:185:ALA:HB2</td>
<td>1:D:209:GLN:NE2</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:83:LEU:HD23</td>
<td>1:D:83:LEU:HZ1</td>
<td>1.87</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:973:ASP:O</td>
<td>1:D:979:ASP:HZ1</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:798:LEU:HB2</td>
<td>1:F:813:TYR:CE1</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>2:G:238:LEU:HD12</td>
<td>2:G:465:ILE:HD12</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:1317:THR:HZ</td>
<td>1:A:1340:GLY:HZ1</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:860:MET:CE</td>
<td>1:A:893:ARG:HZ1</td>
<td>2.33</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:501:GLN:HZ2</td>
<td>1:C:653:GLN:HZ2</td>
<td>2.38</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:529:LEU:HD12</td>
<td>1:D:529:LEU:HZ1</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:414:LYS:HZ1</td>
<td>1:E:416:THR:HZ1</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:1427:LEU:HZ2</td>
<td>1:F:1427:LEU:HZ2</td>
<td>1.92</td>
<td>0.41</td>
</tr>
<tr>
<td>2:G:133:TRP:HZ1</td>
<td>2:G:203:ARG:HZ1</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>2:G:6:MET:SD</td>
<td>2:G:7:LYS:HZ1</td>
<td>2.60</td>
<td>0.41</td>
</tr>
<tr>
<td>2:J:99:CYS:O</td>
<td>2:J:101:GLN:HZ2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:620:ALA:O</td>
<td>1:B:624:THR:HG23</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:1110:SER:O</td>
<td>1:C:1112:THR:HG23</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:1437:SER:HZ</td>
<td>1:E:1438:ARG:HZ1</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:1127:LYS:HZ2</td>
<td>2:H:116:GLN:HZ2</td>
<td>2.37</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:45:GLY:HZ1</td>
<td>1:A:224:PRO:HZ2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:248:GLU:OE2</td>
<td>1:A:266:VAL:HG12</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:1501:FMN:HZ</td>
<td>3:C:1501:FMN:HZ</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:273:ASP:N</td>
<td>1:D:273:ASP:HZ1</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:91:CYS:O</td>
<td>1:E:95:THR:HG23</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:H:191:ILE:HZ1</td>
<td>2:H:198:LYS:HZ1</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>2:H:324:ASP:HZ1</td>
<td>2:H:327:ASN:HZ1</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>2:J:324:ASP:HZ1</td>
<td>2:J:327:ASN:HZ1</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:473:LYS:HZ1</td>
<td>1:A:473:LYS:HZ2</td>
<td>1.87</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:227:MET:HZ1</td>
<td>1:B:336:THR:HZ1</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:250:ARG:HZ1</td>
<td>1:C:530:GLY:HZ1</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:909:GLN:HZ1</td>
<td>1:D:929:GLU:OE2</td>
<td>2.49</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:997:THR:HZ1</td>
<td>1:E:1020:ILE:HZ</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:1341:GLN:HZ1</td>
<td>1:E:1359:GLY:HZ1</td>
<td>2.01</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:202:SER:OG</td>
<td>1:F:203:ASP:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:221:LEU:HA</td>
<td>1:F:221:LEU:HD23</td>
<td>1.92</td>
<td>0.41</td>
</tr>
<tr>
<td>2:I:70:LEU:HD23</td>
<td>2:I:70:LEU:HA</td>
<td>1.88</td>
<td>0.41</td>
</tr>
<tr>
<td>2:J:110:CYSG</td>
<td>2:J:111:ILE:HG12</td>
<td>2.61</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:359:THR:HG23</td>
<td>1:A:378:GLN:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:923:ASN:OD1</td>
<td>1:A:1252:ARG:NH2</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:236:THR:OG1</td>
<td>1:B:236:THR:O</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:1437:SER:OG</td>
<td>1:C:1438:ARG:N</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:359:THR:HG23</td>
<td>1:D:378:GLN:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:264:LYS:HA</td>
<td>1:F:264:LYS:HD3</td>
<td>1.79</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:312:ASN:OD1</td>
<td>1:F:313:HIS:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>2:H:109:CYSG</td>
<td>2:H:111:ILE:HG12</td>
<td>2.60</td>
<td>0.41</td>
</tr>
<tr>
<td>2:H:220:GLU:HG3</td>
<td>2:H:222:GLY:N</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>2:H:99:CYSG</td>
<td>2:H:101:GLN:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:202:SER:OG</td>
<td>1:B:203:ASP:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:853:PHE:O</td>
<td>1:B:854:ILE:HD13</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:140:SER:OG</td>
<td>1:D:141:ASP:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:893:ARG:HD2</td>
<td>1:D:903:TRP:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:1350:ASN:HD21</td>
<td>1:E:1353:ALA:HB3</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:461:MET:HA</td>
<td>1:E:465:LEU:HB3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:273:ASP:OD1</td>
<td>1:C:274:SER:N</td>
<td>2.52</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:428:GLU:O</td>
<td>1:D:432:THR:HG23</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:69:ASN:OD1</td>
<td>1:E:69:ASN:N</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>2:H:143:PRO:HB3</td>
<td>2:H:171:GLY:HA2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>2:J:143:PRO:HB3</td>
<td>2:J:171:GLY:HA2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:105:TYR:HE2</td>
<td>1:A:134:GLY:HA3</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:829:LEU:O</td>
<td>1:A:1077:ARG:NH2</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:1345:ARG:HB3</td>
<td>1:B:1348:VAL:HG21</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:91:CYSG</td>
<td>1:C:95:THR:HG22</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:923:ASN:OD1</td>
<td>1:D:1252:ARG:NH2</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:860:MET:CE</td>
<td>1:D:893:ARG:HH12</td>
<td>2.33</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:503:PHE:HE1</td>
<td>1:E:505:GLN:NE2</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:928:LEU:O</td>
<td>1:E:997:THR:HG22</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:1325:ASN:ND2</td>
<td>1:F:1344:GLU:HB2</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:236:THR:O</td>
<td>1:F:236:THR:OG1</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:620:ALA:O</td>
<td>1:F:624:THR:HG22</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:G:245:LYS:HB3</td>
<td>2:G:403:GLU:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:G:28:ASP:OD1</td>
<td>2:G:28:ASP:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>2:I:238:LEU:HD12</td>
<td>2:I:465:ILE:HD12</td>
<td>2.03</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:J:220:GLU:HG3</td>
<td>2:J:222:GLY:N</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:798:LEU:HB2</td>
<td>1:B:813:TYR:CE1</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:244:MET:O</td>
<td>1:C:248:GLU:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:4:GLY:HA3</td>
<td>1:C:207:TYR:CZ</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:1417:VAL:HG12</td>
<td>1:D:1419:HIS:H</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:1172:SER:OG</td>
<td>1:E:63:GLY:HA3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:671:ALA:O</td>
<td>1:F:675:ILE:HG12</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:I:6:MET:SD</td>
<td>2:I:71:LYS:HA</td>
<td>2.60</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:264:LYS:HA</td>
<td>1:C:264:LYS:HD3</td>
<td>1.79</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:794:VAL:HG13</td>
<td>1:D:813:TYR:HE1</td>
<td>1.87</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:244:MET:O</td>
<td>1:E:248:GLU:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:H:443:ASP:HB3</td>
<td>6:H:503:FAD:O1P</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:I:247:ARG:NE</td>
<td>2:I:403:GLU:OE2</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:706:LYS:HB2</td>
<td>1:A:706:LYS:HE3</td>
<td>1.76</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:1092:ILE:HD12</td>
<td>1:B:1139:PHE:HZ</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:1218:ASP:OD2</td>
<td>1:B:1233:TYR:OH</td>
<td>2.39</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:4:GLY:HA3</td>
<td>1:D:207:TYR:CZ</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:45:GLY:HA3</td>
<td>1:D:224:PRO:HD3</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:1345:ARG:HB3</td>
<td>1:F:1348:VAL:HG21</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:51:PRO:HG3</td>
<td>1:A:200:PHE:CD1</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:841:ASP:O</td>
<td>1:B:1236:ARG:NH2</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:1325:ASN:ND2</td>
<td>1:B:1344:GLU:HB2</td>
<td>2.35</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:711:MET:HE3</td>
<td>1:B:724:ASN:HB3</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:928:LEU:O</td>
<td>1:C:997:THR:HG22</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:105:TYR:HE2</td>
<td>1:D:134:GLY:HA3</td>
<td>1.86</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:296:MET:HE2</td>
<td>1:D:296:MET:HB2</td>
<td>1.94</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:330:PRO:HG3</td>
<td>1:D:350:LEU:HD12</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:4:GLY:HA3</td>
<td>1:E:207:TYR:CZ</td>
<td>2.55</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:586:LEU:HD23</td>
<td>1:E:586:LEU:HA</td>
<td>1.92</td>
<td>0.40</td>
</tr>
<tr>
<td>2:G:451:VAL:HG23</td>
<td>6:G:503:FAD:HM83</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:418:LYS:HA</td>
<td>1:A:421:GLN:NE2</td>
<td>2.36</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:1444:LEU:HD23</td>
<td>1:B:1444:LEU:HA</td>
<td>1.95</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:846:ILE:CD1</td>
<td>1:F:1147:ARG:HD3</td>
<td>2.52</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Continued on next page...
There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1470/1515 (97%)</td>
<td>1421 (97%)</td>
<td>49 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1470/1515 (97%)</td>
<td>1429 (97%)</td>
<td>41 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1470/1515 (97%)</td>
<td>1427 (97%)</td>
<td>43 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1470/1515 (97%)</td>
<td>1421 (97%)</td>
<td>49 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>1470/1515 (97%)</td>
<td>1429 (97%)</td>
<td>41 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1470/1515 (97%)</td>
<td>1429 (97%)</td>
<td>41 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>470/482 (98%)</td>
<td>447 (95%)</td>
<td>23 (5%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>470/482 (98%)</td>
<td>444 (94%)</td>
<td>26 (6%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>470/482 (98%)</td>
<td>447 (95%)</td>
<td>23 (5%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>470/482 (98%)</td>
<td>445 (95%)</td>
<td>25 (5%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>10700/11018 (97%)</td>
<td>10339 (97%)</td>
<td>361 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1201/1233 (97%)</td>
<td>1198 (100%)</td>
<td>3 (0%)</td>
<td>94 98</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1201/1233 (97%)</td>
<td>1198 (100%)</td>
<td>3 (0%)</td>
<td>94 98</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1201/1233 (97%)</td>
<td>1189 (99%)</td>
<td>12 (1%)</td>
<td>78 90</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1201/1233 (97%)</td>
<td>1198 (100%)</td>
<td>3 (0%)</td>
<td>94 98</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1201/1233 (97%)</td>
<td>1189 (99%)</td>
<td>12 (1%)</td>
<td>78 90</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1201/1233 (97%)</td>
<td>1198 (100%)</td>
<td>3 (0%)</td>
<td>94 98</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>373/379 (98%)</td>
<td>372 (100%)</td>
<td>1 (0%)</td>
<td>93 97</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>373/379 (98%)</td>
<td>371 (100%)</td>
<td>2 (0%)</td>
<td>90 95</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>373/379 (98%)</td>
<td>372 (100%)</td>
<td>1 (0%)</td>
<td>93 97</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>373/379 (98%)</td>
<td>371 (100%)</td>
<td>2 (0%)</td>
<td>90 95</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>8698/8914 (98%)</td>
<td>8656 (100%)</td>
<td>42 (0%)</td>
<td>90 95</td>
</tr>
</tbody>
</table>

All (42) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>309</td>
<td>THR</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (128) such
The sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>30</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>52</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>208</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>240</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>259</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>539</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>635</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>643</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>653</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>667</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>762</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>767</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>824</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>876</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>902</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1159</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1177</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1363</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>52</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>143</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>163</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>165</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>240</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>259</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>497</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>505</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>635</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>643</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>653</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>695</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>762</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>824</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>872</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1159</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1177</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1184</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1363</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>52</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>143</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>165</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>259</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>635</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>653</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>762</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>824</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>872</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>982</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1063</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1177</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1274</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1325</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1363</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1419</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1423</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>30</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>52</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>165</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>208</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>240</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>259</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>539</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>635</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>643</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>653</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>667</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>762</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>767</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>824</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>876</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>902</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1159</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1177</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1325</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1363</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>52</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>143</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>165</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>259</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>635</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>653</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>762</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>824</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>872</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>982</td>
<td>GLN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>1063</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1177</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1274</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1325</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1363</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1419</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1423</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>52</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>143</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>163</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>165</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>240</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>259</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>497</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>505</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>635</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>653</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>695</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>762</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>824</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>872</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1159</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1177</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1184</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1325</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1363</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>64</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>218</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>234</td>
<td>HIS</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>270</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>409</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>434</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>64</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>216</td>
<td>HIS</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>234</td>
<td>HIS</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>64</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>218</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>234</td>
<td>HIS</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>270</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>409</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>434</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>64</td>
<td>ASN</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>J</td>
<td>216</td>
<td>HIS</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>234</td>
<td>HIS</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

24 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>3</td>
<td>FMN</td>
<td>A</td>
<td>1501</td>
<td></td>
<td>31,33,33</td>
<td>1.32</td>
</tr>
<tr>
<td>4</td>
<td>F3S</td>
<td>A</td>
<td>1502</td>
<td>1</td>
<td>0,9,9</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>FMN</td>
<td>B</td>
<td>1501</td>
<td></td>
<td>31,33,33</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>F3S</td>
<td>B</td>
<td>1502</td>
<td>1</td>
<td>0,9,9</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>FMN</td>
<td>C</td>
<td>1501</td>
<td></td>
<td>31,33,33</td>
<td>1.31</td>
</tr>
<tr>
<td>4</td>
<td>F3S</td>
<td>C</td>
<td>1502</td>
<td>1</td>
<td>0,9,9</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>FMN</td>
<td>D</td>
<td>1501</td>
<td></td>
<td>31,33,33</td>
<td>1.32</td>
</tr>
<tr>
<td>4</td>
<td>F3S</td>
<td>D</td>
<td>1502</td>
<td>1</td>
<td>0,9,9</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>FMN</td>
<td>E</td>
<td>1501</td>
<td></td>
<td>31,33,33</td>
<td>1.32</td>
</tr>
<tr>
<td>4</td>
<td>F3S</td>
<td>E</td>
<td>1502</td>
<td>1</td>
<td>0,9,9</td>
<td>0.00</td>
</tr>
</tbody>
</table>
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>FMN</td>
<td>F</td>
<td>1501</td>
<td>-</td>
<td>-</td>
<td>0/18/18/18</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>F3S</td>
<td>A</td>
<td>1502</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>3</td>
<td>FMN</td>
<td>B</td>
<td>1501</td>
<td>-</td>
<td>-</td>
<td>1/18/18/18</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>F3S</td>
<td>B</td>
<td>1502</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>3</td>
<td>FMN</td>
<td>C</td>
<td>1501</td>
<td>-</td>
<td>-</td>
<td>1/18/18/18</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>F3S</td>
<td>C</td>
<td>1502</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>3</td>
<td>FMN</td>
<td>D</td>
<td>1501</td>
<td>-</td>
<td>-</td>
<td>0/18/18/18</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>F3S</td>
<td>D</td>
<td>1502</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>3</td>
<td>FMN</td>
<td>E</td>
<td>1501</td>
<td>-</td>
<td>-</td>
<td>1/18/18/18</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>F3S</td>
<td>E</td>
<td>1502</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>3</td>
<td>FMN</td>
<td>F</td>
<td>1501</td>
<td>-</td>
<td>-</td>
<td>1/18/18/18</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>F3S</td>
<td>F</td>
<td>1502</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>5</td>
<td>SF4</td>
<td>G</td>
<td>501</td>
<td>2</td>
<td>-</td>
<td>0/6/5/5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SF4</td>
<td>G</td>
<td>502</td>
<td>2</td>
<td>-</td>
<td>0/6/5/5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FAD</td>
<td>G</td>
<td>503</td>
<td>-</td>
<td>-</td>
<td>8/30/50/50</td>
<td>0/6/6/6</td>
</tr>
<tr>
<td>5</td>
<td>SF4</td>
<td>H</td>
<td>501</td>
<td>2</td>
<td>-</td>
<td>0/6/5/5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SF4</td>
<td>H</td>
<td>502</td>
<td>2</td>
<td>-</td>
<td>0/6/5/5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FAD</td>
<td>H</td>
<td>503</td>
<td>-</td>
<td>2/2/9/9</td>
<td>9/30/50/50</td>
<td>0/6/6/6</td>
</tr>
<tr>
<td>5</td>
<td>SF4</td>
<td>I</td>
<td>501</td>
<td>2</td>
<td>-</td>
<td>0/6/5/5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SF4</td>
<td>I</td>
<td>502</td>
<td>2</td>
<td>-</td>
<td>0/6/5/5</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>FAD</td>
<td>I</td>
<td>503</td>
<td>-</td>
<td>-</td>
<td>12/30/50/50</td>
<td>0/6/6/6</td>
</tr>
<tr>
<td>5</td>
<td>SF4</td>
<td>J</td>
<td>501</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>0/6/5/5</td>
</tr>
<tr>
<td>5</td>
<td>SF4</td>
<td>J</td>
<td>502</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>0/6/5/5</td>
</tr>
<tr>
<td>6</td>
<td>FAD</td>
<td>J</td>
<td>503</td>
<td>-</td>
<td>-</td>
<td>9/30/50/50</td>
<td>0/6/6/6</td>
</tr>
</tbody>
</table>

All (27) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C10</td>
<td>5.27</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C10</td>
<td>5.18</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C10</td>
<td>5.13</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C10</td>
<td>5.09</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1501</td>
<td>FMN</td>
<td>C10-N1</td>
<td>3.70</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1501</td>
<td>FMN</td>
<td>C10-N1</td>
<td>3.69</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1501</td>
<td>FMN</td>
<td>C10-N1</td>
<td>3.61</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1501</td>
<td>FMN</td>
<td>C10-N1</td>
<td>3.61</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1501</td>
<td>FMN</td>
<td>C10-N1</td>
<td>3.61</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1501</td>
<td>FMN</td>
<td>C10-N1</td>
<td>3.58</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5</td>
<td>3.32</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5</td>
<td>3.31</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5</td>
<td>3.16</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5</td>
<td>3.16</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5</td>
<td>3.07</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N3</td>
<td>3.03</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5</td>
<td>3.03</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1501</td>
<td>FMN</td>
<td>C4-N3</td>
<td>3.01</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1501</td>
<td>FMN</td>
<td>C4-N3</td>
<td>2.82</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1501</td>
<td>FMN</td>
<td>C4-N3</td>
<td>2.81</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1501</td>
<td>FMN</td>
<td>C4-N3</td>
<td>2.80</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1501</td>
<td>FMN</td>
<td>C4-N3</td>
<td>2.80</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C4-N3</td>
<td>2.52</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C4-N3</td>
<td>2.50</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C4-N3</td>
<td>2.44</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>C4-N3</td>
<td>2.44</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1501</td>
<td>FMN</td>
<td>C1'-N10</td>
<td>2.01</td>
<td>1.50</td>
<td>1.48</td>
</tr>
</tbody>
</table>

All (59) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C4-N3-C2</td>
<td>8.06</td>
<td>121.94</td>
<td>115.14</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C4-N3-C2</td>
<td>8.03</td>
<td>121.92</td>
<td>115.14</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>C4-N3-C2</td>
<td>7.86</td>
<td>121.78</td>
<td>115.14</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C4-N3-C2</td>
<td>7.84</td>
<td>121.77</td>
<td>115.14</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1501</td>
<td>FMN</td>
<td>C4-N3-C2</td>
<td>5.68</td>
<td>119.94</td>
<td>115.14</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1501</td>
<td>FMN</td>
<td>C4-N3-C2</td>
<td>5.61</td>
<td>119.88</td>
<td>115.14</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1501</td>
<td>FMN</td>
<td>C4-N3-C2</td>
<td>5.60</td>
<td>119.87</td>
<td>115.14</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1501</td>
<td>FMN</td>
<td>C4-N3-C2</td>
<td>5.57</td>
<td>119.84</td>
<td>115.14</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1501</td>
<td>FMN</td>
<td>C4-N3-C2</td>
<td>5.57</td>
<td>119.84</td>
<td>115.14</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1501</td>
<td>FMN</td>
<td>C4-N3-C2</td>
<td>5.56</td>
<td>119.83</td>
<td>115.14</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C10-C4X-N5</td>
<td>4.89</td>
<td>124.84</td>
<td>121.25</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>C10-C4X-N5</td>
<td>4.85</td>
<td>124.81</td>
<td>121.25</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C10-C4X-N5</td>
<td>4.83</td>
<td>116.38</td>
<td>119.95</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C4-C4X-C10</td>
<td>-4.83</td>
<td>116.47</td>
<td>119.95</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C4-C4X-C10</td>
<td>-4.64</td>
<td>116.52</td>
<td>119.95</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>C4-C4X-C10</td>
<td>-4.61</td>
<td>116.54</td>
<td>119.95</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C4-N3</td>
<td>-4.00</td>
<td>117.91</td>
<td>123.47</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C4-N3</td>
<td>-3.96</td>
<td>117.96</td>
<td>123.47</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C4-N3</td>
<td>-3.94</td>
<td>117.99</td>
<td>123.47</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C4-N3</td>
<td>-3.91</td>
<td>118.03</td>
<td>123.47</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C10-N10</td>
<td>-3.66</td>
<td>116.54</td>
<td>120.30</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C10-N10</td>
<td>-3.64</td>
<td>116.56</td>
<td>120.30</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C10-N10</td>
<td>-3.58</td>
<td>116.63</td>
<td>120.30</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C4X-C10-N10</td>
<td>-3.58</td>
<td>116.72</td>
<td>120.30</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>P-O3P-PA</td>
<td>-3.58</td>
<td>121.20</td>
<td>132.57</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>P-O3P-PA</td>
<td>-3.57</td>
<td>121.24</td>
<td>132.57</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>P-O3P-PA</td>
<td>-3.57</td>
<td>121.24</td>
<td>132.57</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1501</td>
<td>FMN</td>
<td>C5A-C9A-N10</td>
<td>3.22</td>
<td>120.10</td>
<td>117.71</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1501</td>
<td>FMN</td>
<td>C5A-C9A-N10</td>
<td>3.21</td>
<td>120.16</td>
<td>117.71</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1501</td>
<td>FMN</td>
<td>C5A-C9A-N10</td>
<td>3.09</td>
<td>120.07</td>
<td>117.71</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1501</td>
<td>FMN</td>
<td>C5A-C9A-N10</td>
<td>3.05</td>
<td>120.04</td>
<td>117.71</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5-C5A</td>
<td>3.04</td>
<td>119.90</td>
<td>116.77</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5-C5A</td>
<td>3.02</td>
<td>119.88</td>
<td>116.77</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1501</td>
<td>FMN</td>
<td>C5A-C9A-N10</td>
<td>3.00</td>
<td>120.00</td>
<td>117.71</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1501</td>
<td>FMN</td>
<td>C5A-C9A-N10</td>
<td>2.98</td>
<td>119.99</td>
<td>117.71</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5-C5A</td>
<td>2.90</td>
<td>119.75</td>
<td>116.77</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5-C5A</td>
<td>2.90</td>
<td>119.75</td>
<td>116.77</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5-C5A</td>
<td>2.88</td>
<td>119.73</td>
<td>116.77</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-N5-C5A</td>
<td>2.88</td>
<td>119.73</td>
<td>116.77</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C1'-N10-C9A</td>
<td>2.56</td>
<td>120.54</td>
<td>118.31</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1501</td>
<td>FMN</td>
<td>C1'-N10-C9A</td>
<td>2.55</td>
<td>120.53</td>
<td>118.31</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-C4-N3</td>
<td>-2.54</td>
<td>119.93</td>
<td>123.47</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-C4-N3</td>
<td>-2.54</td>
<td>119.94</td>
<td>123.47</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-C4-N3</td>
<td>-2.51</td>
<td>119.97</td>
<td>123.47</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>E</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-C4-N3</td>
<td>-2.51</td>
<td>119.98</td>
<td>123.47</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-C4-N3</td>
<td>-2.51</td>
<td>119.98</td>
<td>123.47</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C2B-C3B-C4B</td>
<td>-2.51</td>
<td>97.80</td>
<td>102.60</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1501</td>
<td>FMN</td>
<td>C4A-C4-N3</td>
<td>-2.49</td>
<td>120.00</td>
<td>123.47</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1501</td>
<td>FMN</td>
<td>C1'-N10-C9A</td>
<td>2.48</td>
<td>120.47</td>
<td>118.31</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C1'-N10-C9A</td>
<td>2.43</td>
<td>120.43</td>
<td>118.31</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>P-O3P-PA</td>
<td>-2.27</td>
<td>125.35</td>
<td>132.57</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C5A-C6A-N6A</td>
<td>2.13</td>
<td>123.73</td>
<td>120.38</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1501</td>
<td>FMN</td>
<td>C1'-N10-C9A</td>
<td>2.08</td>
<td>120.12</td>
<td>118.31</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>C1'-N10-C9A</td>
<td>2.06</td>
<td>120.11</td>
<td>118.31</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C5A-C6A-N6A</td>
<td>2.06</td>
<td>123.61</td>
<td>120.38</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1501</td>
<td>FMN</td>
<td>C1'-N10-C9A</td>
<td>2.05</td>
<td>120.10</td>
<td>118.31</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C5A-C6A-N6A</td>
<td>2.01</td>
<td>123.34</td>
<td>120.38</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C1'-N10-C9A</td>
<td>2.00</td>
<td>120.06</td>
<td>118.31</td>
</tr>
</tbody>
</table>

All (2) chirality outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C4'</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C3'</td>
</tr>
</tbody>
</table>

All (42) torsion outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C2'-C1'-N10-C9A</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C2'-C1'-N10-C10</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C1'-C2'-C3'-O3'</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>O2'-C2'-C3'-C4'</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C2'-C1'-N10-C9A</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C2'-C1'-N10-C10</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>N10-C1'-C2'-O2'</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C5'-O5'-P-O3P</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C2'-C1'-N10-C9A</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C2'-C1'-N10-C10</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C5'-O5'-P-O2P</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C5'-O5'-P-O3P</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>C2'-C1'-N10-C9A</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>C2'-C1'-N10-C10</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>N10-C1'-C2'-O2'</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>N10-C1'-C2'-C3'</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>O4B-C4B-C5B-O5B</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>C3B-C4B-C5B-O5B</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>O2'-C2'-C3'-O3'</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C1'-C2'-C3'-C4'</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>O2'-C2'-C3'-C4'</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C1'-C2'-C3'-C4'</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>O4B-C4B-C5B-O5B</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>PA-O3P-P-O5'</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>PA-O3P-P-O5'</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C3B-C4B-C5B-O5B</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C5'-O5'-P-O1P</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>C1'-C2'-C3'-O3'</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1501</td>
<td>FMN</td>
<td>C5'-O5'-P-O1P</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1501</td>
<td>FMN</td>
<td>C5'-O5'-P-O1P</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1501</td>
<td>FMN</td>
<td>C5'-O5'-P-O1P</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1501</td>
<td>FMN</td>
<td>C5'-O5'-P-O1P</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>O4B-C4B-C5B-O5B</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>C5'-O5'-P-O3P</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>C5B-O5B-PA-O3P</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>C5B-O5B-PA-O3P</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>PA-O3P-P-O2P</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>O2'-C2'-C3'-O3'</td>
</tr>
</tbody>
</table>

There are no ring outliers.

7 monomers are involved in 39 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>B</td>
<td>1502</td>
<td>F3S</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1501</td>
<td>FMN</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1502</td>
<td>F3S</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>503</td>
<td>FAD</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>503</td>
<td>FAD</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>503</td>
<td>FAD</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>503</td>
<td>FAD</td>
<td>13</td>
<td>0</td>
</tr>
</tbody>
</table>

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier.
Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.
Ligand FMN D 1501

Bond lengths

Bond angles

Torsions

Rings
Ligand FAD G 503

Bond lengths

Bond angles

Torsions

Rings
Ligand FAD H 503

Bond lengths

Bond angles

Torsions

Rings
5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.