

# wwPDB X-ray Structure Validation Summary Report (i)

#### Sep 3, 2023 – 04:57 PM EDT

| PDB ID       | : | 3SLN                                                                        |
|--------------|---|-----------------------------------------------------------------------------|
| Title        | : | Structural characterization of a GII.4 2004 norovirus variant (TCH05) bound |
|              |   | to H pentasaccharide                                                        |
| Authors      | : | Shanker, S.; Choi, JM.; Sankaran, B.; Atmar, R.L.; Estes, M.K.; Prasad,     |
|              |   | B.V.V.                                                                      |
| Deposited on | : | 2011-06-24                                                                  |
| Resolution   | : | 2.84  Å(reported)                                                           |

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.35                                                               |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.84 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Motric                | Whole archive        | Similar resolution                                          |
|-----------------------|----------------------|-------------------------------------------------------------|
| IVIETIC               | $(\# {\rm Entries})$ | $(\# { m Entries},  { m resolution}  { m range}({ m \AA}))$ |
| R <sub>free</sub>     | 130704               | $1031 \ (2.86-2.82)$                                        |
| Clashscore            | 141614               | 1078 (2.86-2.82)                                            |
| Ramachandran outliers | 138981               | 1050 (2.86-2.82)                                            |
| Sidechain outliers    | 138945               | 1051 (2.86-2.82)                                            |
| RSRZ outliers         | 127900               | 1019 (2.86-2.82)                                            |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |     |
|-----|-------|--------|------------------|-----|-----|
| 1   | А     | 311    | .%               | 14% |     |
| 1   | В     | 311    | 80%              | 16% | ••• |
| 1   | С     | 311    | 82%              | 16% | •   |
| 1   | D     | 311    | 83%              | 13% | ••• |
| 1   | Е     | 311    | 80%              | 18% | ••  |



| Mol | Chain | Length |     | Quality of chain |     |        |
|-----|-------|--------|-----|------------------|-----|--------|
| 1   | F     | 311    | %   | 81%              |     | 17% •• |
| 1   | G     | 311    |     | 80%              |     | 17% •• |
| 1   | Н     | 311    | %   | 72%              | 19% | • 6%   |
| 1   | Ι     | 311    | 12% | 73%              | 16% | • 8%   |
| 1   | J     | 311    |     | 82%              |     | 16% •• |
| 2   | K     | 5      | 20% | 80%              |     |        |
| 2   | L     | 5      | 60  | 0%               | 40% |        |
| 2   | М     | 5      | 60  | 0%               | 40% |        |
| 2   | Ν     | 5      | 20% | 80%              |     |        |
| 2   | Ο     | 5      | 20% | 60%              |     | 20%    |
| 2   | Р     | 5      | 20% | 60%              |     | 20%    |
| 2   | Q     | 5      | 60  | )%               | 40% |        |
| 2   | R     | 5      | 60  | )%               | 40% |        |

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

| Mol | Type | Chain | Res | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|-----|-----------|----------|---------|------------------|
| 2   | BGC  | Κ     | 1   | -         | -        | Х       | -                |
| 2   | GAL  | Κ     | 2   | -         | -        | Х       | Х                |
| 2   | NAG  | Κ     | 3   | -         | -        | -       | Х                |
| 2   | BGC  | L     | 1   | -         | -        | -       | Х                |
| 2   | GAL  | L     | 2   | -         | -        | -       | Х                |
| 2   | NAG  | L     | 3   | -         | -        | -       | Х                |
| 2   | GAL  | L     | 4   | -         | -        | -       | Х                |
| 2   | BGC  | М     | 1   | -         | -        | -       | Х                |
| 2   | GAL  | М     | 2   | -         | -        | -       | Х                |
| 2   | NAG  | М     | 3   | -         | -        | -       | Х                |
| 2   | BGC  | N     | 1   | -         | -        | Х       | Х                |
| 2   | GAL  | N     | 2   | -         | -        | Х       | Х                |
| 2   | NAG  | N     | 3   | -         | -        | -       | Х                |
| 2   | GAL  | N     | 4   | -         | -        | -       | Х                |
| 2   | BGC  | 0     | 1   | -         | -        | -       | Х                |



| Mol | Type | Chain | Res | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|-----|-----------|----------|---------|------------------|
| 2   | GAL  | 0     | 2   | -         | -        | -       | Х                |
| 2   | NAG  | 0     | 3   | -         | -        | -       | Х                |
| 2   | GAL  | 0     | 4   | -         | -        | -       | Х                |
| 2   | FUC  | 0     | 5   | -         | -        | Х       | -                |
| 2   | BGC  | Р     | 1   | -         | -        | -       | Х                |
| 2   | GAL  | Р     | 2   | -         | -        | Х       | Х                |
| 2   | NAG  | Р     | 3   | -         | -        | -       | Х                |
| 2   | BGC  | Q     | 1   | -         | -        | -       | Х                |
| 2   | GAL  | Q     | 2   | -         | -        | -       | Х                |
| 2   | BGC  | R     | 1   | -         | -        | Х       | Х                |
| 2   | GAL  | R     | 2   | -         | -        | Х       | Х                |
| 2   | NAG  | R     | 3   | -         | -        | -       | Х                |



# 2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 24066 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain    | Residues |       | At           | oms |     |              | ZeroOcc | AltConf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|----------|----------|-------|--------------|-----|-----|--------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Δ        | 300      | Total | С            | Ν   | 0   | $\mathbf{S}$ | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L   | Π        | 505      | 2404  | 1517         | 415 | 462 | 10           | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | В        | 308      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |          | 300      | 2392  | 1510         | 411 | 461 | 10           | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | C        | 311      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | <u> </u> | 011      | 2403  | 1514         | 413 | 466 | 10           | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | О        | 307      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -   |          | 501      | 2385  | 1507         | 410 | 458 | 10           | 0       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | E        | 309      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -   |          |          | 2406  | 1518         | 415 | 463 | 10           | Ŭ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | F        | 308      | Total | С            | Ν   | Ο   | $\mathbf{S}$ | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | -        |          | 2393  | 1511         | 411 | 461 | 10           | Ŭ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | G        | 308      | Total | С            | Ν   | Ο   | $\mathbf{S}$ | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |          |          | 2383  | 1506         | 407 | 460 | 10           | Ŭ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1   | Н        | 292      | Total | С            | Ν   | Ο   | S            | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |          |          | 2266  | 1441         | 385 | 431 | 9            | Ŭ       | Ŭ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1   | T        | 285      | Total | С            | Ν   | 0   | S            | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | -        |          | 2184  | 1385         | 378 | 413 | 8            | Ŭ       | , in the second | , in the second |
| 1   | J        | 307      | Total | С            | Ν   | 0   | S            | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Ŭ        |          | 2386  | 1507         | 410 | 459 | 10           | Ŭ       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

• Molecule 1 is a protein called Capsid.

There are 30 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment        | Reference  |
|-------|---------|----------|--------|----------------|------------|
| А     | 228     | THR      | SER    | SEE REMARK 999 | UNP Q5EGK8 |
| А     | 271     | ALA      | VAL    | SEE REMARK 999 | UNP Q5EGK8 |
| А     | 282     | ASP      | ASN    | SEE REMARK 999 | UNP Q5EGK8 |
| В     | 228     | THR      | SER    | SEE REMARK 999 | UNP Q5EGK8 |
| В     | 271     | ALA      | VAL    | SEE REMARK 999 | UNP Q5EGK8 |
| В     | 282     | ASP      | ASN    | SEE REMARK 999 | UNP Q5EGK8 |
| С     | 228     | THR      | SER    | SEE REMARK 999 | UNP Q5EGK8 |
| С     | 271     | ALA      | VAL    | SEE REMARK 999 | UNP Q5EGK8 |
| C     | 282     | ASP      | ASN    | SEE REMARK 999 | UNP Q5EGK8 |



| Chain | Residue | Modelled | Actual | Comment        | Reference  |
|-------|---------|----------|--------|----------------|------------|
| D     | 228     | THR      | SER    | SEE REMARK 999 | UNP Q5EGK8 |
| D     | 271     | ALA      | VAL    | SEE REMARK 999 | UNP Q5EGK8 |
| D     | 282     | ASP      | ASN    | SEE REMARK 999 | UNP Q5EGK8 |
| Е     | 228     | THR      | SER    | SEE REMARK 999 | UNP Q5EGK8 |
| Е     | 271     | ALA      | VAL    | SEE REMARK 999 | UNP Q5EGK8 |
| Е     | 282     | ASP      | ASN    | SEE REMARK 999 | UNP Q5EGK8 |
| F     | 228     | THR      | SER    | SEE REMARK 999 | UNP Q5EGK8 |
| F     | 271     | ALA      | VAL    | SEE REMARK 999 | UNP Q5EGK8 |
| F     | 282     | ASP      | ASN    | SEE REMARK 999 | UNP Q5EGK8 |
| G     | 228     | THR      | SER    | SEE REMARK 999 | UNP Q5EGK8 |
| G     | 271     | ALA      | VAL    | SEE REMARK 999 | UNP Q5EGK8 |
| G     | 282     | ASP      | ASN    | SEE REMARK 999 | UNP Q5EGK8 |
| Н     | 228     | THR      | SER    | SEE REMARK 999 | UNP Q5EGK8 |
| Н     | 271     | ALA      | VAL    | SEE REMARK 999 | UNP Q5EGK8 |
| Н     | 282     | ASP      | ASN    | SEE REMARK 999 | UNP Q5EGK8 |
| Ι     | 228     | THR      | SER    | SEE REMARK 999 | UNP Q5EGK8 |
| Ι     | 271     | ALA      | VAL    | SEE REMARK 999 | UNP Q5EGK8 |
| Ι     | 282     | ASP      | ASN    | SEE REMARK 999 | UNP Q5EGK8 |
| J     | 228     | THR      | SER    | SEE REMARK 999 | UNP Q5EGK8 |
| J     | 271     | ALA      | VAL    | SEE REMARK 999 | UNP Q5EGK8 |
| J     | 282     | ASP      | ASN    | SEE REMARK 999 | UNP Q5EGK8 |

• Molecule 2 is an oligosaccharide called alpha-L-fucopyranose-(1-2)-beta-D-galactopyranose-(1-3)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-3)-beta-D-galactopyranose-(1-4)-beta-D-glucopyranose.

$$\begin{array}{c} 2 \\ 2 \\ \alpha \end{array} \\ \alpha \end{array} \\ \beta 3 \\ \beta 3 \\ \beta 4 \\ \beta$$

| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf | Trace |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|-------|
| 2   | Κ     | 5        | Total         C         N         O           58         32         1         25 | 0       | 0       | 0     |
| 2   | L     | 5        | Total         C         N         O           58         32         1         25 | 0       | 0       | 0     |
| 2   | М     | 5        | Total         C         N         O           58         32         1         25 | 0       | 0       | 0     |
| 2   | Ν     | 5        | Total         C         N         O           58         32         1         25 | 0       | 0       | 0     |
| 2   | О     | 5        | Total         C         N         O           58         32         1         25 | 0       | 0       | 0     |



| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf | Trace |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|-------|
| 2   | Р     | 5        | Total         C         N         O           58         32         1         25 | 0       | 0       | 0     |
| 2   | Q     | 5        | Total         C         N         O           58         32         1         25 | 0       | 0       | 0     |
| 2   | R     | 5        | Total         C         N         O           58         32         1         25 | 0       | 0       | 0     |

Continued from previous page...



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Capsid





 $\bullet$  Molecule 1: Capsid





| Chain N:                             | 20%                                                     | 80%                                             |                                                     |
|--------------------------------------|---------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|
| BGC1<br>GAL2<br>NAG3<br>GAL4<br>FUC5 |                                                         |                                                 |                                                     |
| • Molecule 2:<br>a-D-glucopyra       | alpha-L-fucopyranose-(1-2<br>nose-(1-3)-beta-D-galactor | 2)-beta-D-galactopyra<br>pyranose-(1-4)-beta-D- | nose-(1-3)-2-acetamido-2-deoxy-bet<br>glucopyranose |
| Chain O:                             | 20%                                                     | 60%                                             | 20%                                                 |
| BGC1<br>GAL2<br>NAG3<br>FUC5         |                                                         |                                                 |                                                     |
| • Molecule 2:<br>a-D-glucopyra       | alpha-L-fucopyranose-(1-2<br>nose-(1-3)-beta-D-galacto  | 2)-beta-D-galactopyra<br>pyranose-(1-4)-beta-D- | nose-(1-3)-2-acetamido-2-deoxy-bet<br>glucopyranose |
| Chain P:                             | 20%                                                     | 60%                                             | 20%                                                 |
| BGC1<br>GAL2<br>NAG3<br>GAL4<br>FUC5 |                                                         |                                                 |                                                     |
| • Molecule 2:<br>a-D-glucopyra       | alpha-L-fucopyranose-(1-2<br>nose-(1-3)-beta-D-galacto  | 2)-beta-D-galactopyra<br>pyranose-(1-4)-beta-D- | nose-(1-3)-2-acetamido-2-deoxy-bet<br>glucopyranose |
| Chain Q:                             | 60%                                                     | 40                                              | 0%                                                  |
| BGC1<br>GAL2<br>NAG3<br>GAL4<br>FUC5 |                                                         |                                                 |                                                     |
| • Molecule 2:<br>a-D-glucopyra       | alpha-L-fucopyranose-(1-2<br>nose-(1-3)-beta-D-galactor | 2)-beta-D-galactopyra<br>pyranose-(1-4)-beta-D- | nose-(1-3)-2-acetamido-2-deoxy-bet<br>glucopyranose |
| Chain R:                             | 60%                                                     | 40                                              | 0%                                                  |
| BGC1<br>GAL2<br>NAG3<br>GAL4<br>FUC5 |                                                         |                                                 |                                                     |



## 4 Data and refinement statistics (i)

| Property                                       | Value                                           | Source    |
|------------------------------------------------|-------------------------------------------------|-----------|
| Space group                                    | C 2 2 21                                        | Depositor |
| Cell constants                                 | 242.22Å 339.03Å 124.33Å                         | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$         | $90.00^{\circ}$ $90.00^{\circ}$ $90.00^{\circ}$ | Depositor |
| Bosolution (Å)                                 | 39.85 - 2.84                                    | Depositor |
| Resolution (A)                                 | 39.52 - 2.84                                    | EDS       |
| % Data completeness                            | 99.1 (39.85-2.84)                               | Depositor |
| (in resolution range)                          | 99.2(39.52-2.84)                                | EDS       |
| $R_{merge}$                                    | 0.12                                            | Depositor |
| $R_{sym}$                                      | 0.10                                            | Depositor |
| $< I/\sigma(I) > 1$                            | $2.88 (at 2.86 \text{\AA})$                     | Xtriage   |
| Refinement program                             | REFMAC 5.5.0102                                 | Depositor |
| B B.                                           | 0.187 , $0.231$                                 | Depositor |
| $\mathbf{n}, \mathbf{n}_{free}$                | 0.187 , $0.227$                                 | DCC       |
| $R_{free}$ test set                            | 6014 reflections $(5.04%)$                      | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                        | 56.5                                            | Xtriage   |
| Anisotropy                                     | 0.071                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3)$ , $B_{sol}(Å^2)$ | 0.31, 25.3                                      | EDS       |
| L-test for $twinning^2$                        | $ < L >=0.49, < L^2>=0.32$                      | Xtriage   |
| Estimated twinning fraction                    | No twinning to report.                          | Xtriage   |
| $F_o, F_c$ correlation                         | 0.94                                            | EDS       |
| Total number of atoms                          | 24066                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                   | 57.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.16% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FUC, NAG, BGC, GAL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Chain |      | Bo   | ond lengths     | Bond angles |                 |  |
|-----------|------|------|-----------------|-------------|-----------------|--|
| WIOI      | Unam | RMSZ | # Z  > 5        | RMSZ        | # Z  > 5        |  |
| 1         | А    | 1.04 | 3/2474~(0.1%)   | 0.91        | 5/3385~(0.1%)   |  |
| 1         | В    | 0.97 | 3/2462~(0.1%)   | 0.91        | 3/3369~(0.1%)   |  |
| 1         | С    | 0.99 | 5/2472~(0.2%)   | 0.90        | 5/3384~(0.1%)   |  |
| 1         | D    | 0.93 | 1/2455~(0.0%)   | 0.88        | 2/3360~(0.1%)   |  |
| 1         | Ε    | 0.96 | 1/2476~(0.0%)   | 0.89        | 3/3388~(0.1%)   |  |
| 1         | F    | 0.85 | 0/2463          | 0.91        | 5/3371~(0.1%)   |  |
| 1         | G    | 0.87 | 0/2453          | 0.85        | 2/3359~(0.1%)   |  |
| 1         | Н    | 0.91 | 2/2330~(0.1%)   | 0.88        | 4/3186~(0.1%)   |  |
| 1         | Ι    | 0.90 | 2/2245~(0.1%)   | 0.77        | 1/3071~(0.0%)   |  |
| 1         | J    | 0.86 | 0/2456          | 0.83        | 0/3361          |  |
| All       | All  | 0.93 | 17/24286~(0.1%) | 0.87        | 30/33234~(0.1%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | А     | 0                   | 1                   |
| 1   | D     | 0                   | 1                   |
| 1   | Е     | 0                   | 1                   |
| 1   | Н     | 0                   | 1                   |
| All | All   | 0                   | 4                   |

The worst 5 of 17 bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z     | Observed(Å) | $\mathrm{Ideal}(\mathrm{\AA})$ |
|-----|-------|-----|------|--------|-------|-------------|--------------------------------|
| 1   | Н     | 340 | ARG  | CB-CG  | -8.15 | 1.30        | 1.52                           |
| 1   | Н     | 340 | ARG  | CZ-NH1 | -8.09 | 1.22        | 1.33                           |
| 1   | А     | 451 | CYS  | CB-SG  | -6.12 | 1.71        | 1.82                           |
| 1   | В     | 518 | ASP  | CB-CG  | 6.02  | 1.64        | 1.51                           |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms | $\mathbf{Z}$ | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|--------------|-------------|----------|
| 1   | В     | 315 | GLU  | CG-CD | 6.00         | 1.60        | 1.51     |

The worst 5 of 30 bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | Н     | 241 | ARG  | NE-CZ-NH2 | -8.04 | 116.28           | 120.30        |
| 1   | С     | 496 | TYR  | N-CA-CB   | -7.74 | 96.66            | 110.60        |
| 1   | F     | 496 | TYR  | N-CA-CB   | -7.01 | 97.99            | 110.60        |
| 1   | А     | 496 | TYR  | N-CA-CB   | -6.99 | 98.02            | 110.60        |
| 1   | F     | 345 | ARG  | N-CA-CB   | -6.95 | 98.08            | 110.60        |

There are no chirality outliers.

All (4) planarity outliers are listed below:

| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 1   | А     | 343 | SER  | Peptide   |
| 1   | D     | 345 | ARG  | Sidechain |
| 1   | Е     | 223 | ARG  | Sidechain |
| 1   | Н     | 336 | GLN  | Peptide   |

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 2404  | 0        | 2295     | 36      | 0            |
| 1   | В     | 2392  | 0        | 2278     | 44      | 0            |
| 1   | С     | 2403  | 0        | 2282     | 38      | 0            |
| 1   | D     | 2385  | 0        | 2272     | 46      | 0            |
| 1   | Е     | 2406  | 0        | 2297     | 31      | 0            |
| 1   | F     | 2393  | 0        | 2282     | 50      | 0            |
| 1   | G     | 2383  | 0        | 2265     | 40      | 0            |
| 1   | Н     | 2266  | 0        | 2169     | 55      | 0            |
| 1   | Ι     | 2184  | 0        | 2068     | 41      | 0            |
| 1   | J     | 2386  | 0        | 2275     | 40      | 0            |
| 2   | Κ     | 58    | 0        | 51       | 10      | 0            |
| 2   | L     | 58    | 0        | 49       | 5       | 0            |
| 2   | М     | 58    | 0        | 51       | 2       | 0            |



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 2   | Ν     | 58    | 0        | 51       | 11      | 1            |
| 2   | 0     | 58    | 0        | 51       | 12      | 0            |
| 2   | Р     | 58    | 0        | 51       | 7       | 0            |
| 2   | Q     | 58    | 0        | 51       | 5       | 0            |
| 2   | R     | 58    | 0        | 51       | 14      | 0            |
| All | All   | 24066 | 0        | 22889    | 445     | 1            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

The worst 5 of 445 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
| 1:G:411:ARG:O    | 1:G:412:ASP:HB3  | 1.45                        | 1.17                 |
| 2:Q:3:NAG:O3     | 2:Q:5:FUC:H5     | 1.44                        | 1.16                 |
| 1:B:339:ARG:HG3  | 1:B:339:ARG:HH11 | 1.01                        | 1.15                 |
| 1:H:382:ARG:HH11 | 1:H:382:ARG:CG   | 1.60                        | 1.12                 |
| 1:H:382:ARG:HG2  | 1:H:382:ARG:NH1  | 1.54                        | 1.08                 |

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

| Atom-1 Atom-2 |                     | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|---------------|---------------------|-----------------------------|----------------------|
| 2:N:1:BGC:O2  | 2:N:2:GAL:O2[3_553] | 1.29                        | 0.91                 |

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed Favoured Allowed |           | Outliers | Percentiles |         |
|-----|-------|---------------------------|-----------|----------|-------------|---------|
| 1   | А     | 307/311~(99%)             | 295~(96%) | 11 (4%)  | 1 (0%)      | 41 61   |
| 1   | В     | 306/311~(98%)             | 296 (97%) | 10 (3%)  | 0           | 100 100 |



| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 1   | С     | 309/311~(99%)   | 296 (96%)  | 13 (4%)  | 0        | 100   | 100    |
| 1   | D     | 305/311~(98%)   | 290~(95%)  | 15 (5%)  | 0        | 100   | 100    |
| 1   | Е     | 307/311~(99%)   | 296 (96%)  | 11 (4%)  | 0        | 100   | 100    |
| 1   | F     | 306/311~(98%)   | 294 (96%)  | 12 (4%)  | 0        | 100   | 100    |
| 1   | G     | 306/311~(98%)   | 286 (94%)  | 18 (6%)  | 2(1%)    | 22    | 42     |
| 1   | Н     | 284/311~(91%)   | 270 (95%)  | 14 (5%)  | 0        | 100   | 100    |
| 1   | Ι     | 277/311~(89%)   | 258~(93%)  | 19 (7%)  | 0        | 100   | 100    |
| 1   | J     | 305/311~(98%)   | 292 (96%)  | 13 (4%)  | 0        | 100   | 100    |
| All | All   | 3012/3110~(97%) | 2873 (95%) | 136 (4%) | 3~(0%)   | 51    | 75     |

All (3) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | G     | 357 | HIS  |
| 1   | G     | 412 | ASP  |
| 1   | А     | 445 | PRO  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric | Outliers | Percentiles |  |  |
|-----|-------|----------------|-----------|----------|-------------|--|--|
| 1   | А     | 270/272~(99%)  | 255~(94%) | 15~(6%)  | 21 40       |  |  |
| 1   | В     | 269/272~(99%)  | 252 (94%) | 17 (6%)  | 18 34       |  |  |
| 1   | С     | 269/272~(99%)  | 254 (94%) | 15~(6%)  | 21 40       |  |  |
| 1   | D     | 267/272~(98%)  | 254~(95%) | 13~(5%)  | 25 47       |  |  |
| 1   | Ε     | 271/272~(100%) | 256~(94%) | 15~(6%)  | 21 41       |  |  |
| 1   | F     | 269/272~(99%)  | 255~(95%) | 14 (5%)  | 23 44       |  |  |
| 1   | G     | 267/272~(98%)  | 253~(95%) | 14 (5%)  | 23 44       |  |  |
| 1   | Н     | 253/272~(93%)  | 236~(93%) | 17 (7%)  | 16 32       |  |  |
| 1   | Ι     | 238/272~(88%)  | 213 (90%) | 25 (10%) | 7 14        |  |  |



| 001000 | Continuada front precioais page |                 |            |          |     |                        |      |  |  |  |
|--------|---------------------------------|-----------------|------------|----------|-----|------------------------|------|--|--|--|
| Mol    | Chain                           | Analysed        | Rotameric  | Outliers | Per | $\operatorname{centi}$ | lles |  |  |  |
| 1      | J                               | 268/272~(98%)   | 254~(95%)  | 14 (5%)  | 23  | 3 4                    | 4    |  |  |  |
| All    | All                             | 2641/2720~(97%) | 2482 (94%) | 159 (6%) | 19  | ) 3'                   | 7    |  |  |  |

 $5~{\rm of}~159$  residues with a non-rotameric side chain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Н     | 399 | GLU  |
| 1   | Ι     | 521 | VAL  |
| 1   | Н     | 523 | GLN  |
| 1   | Ι     | 339 | ARG  |
| 1   | J     | 345 | ARG  |

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 22 such side chains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | G     | 390 | GLN  |
| 1   | Н     | 523 | GLN  |
| 1   | Н     | 347 | HIS  |
| 1   | Ι     | 331 | GLN  |
| 1   | D     | 390 | GLN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

40 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the



expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).



| Mal  | <b>T</b> | Chain | Dag | T in la | Bo             | ond leng | ths      | E              | ond ang           | gles     |
|------|----------|-------|-----|---------|----------------|----------|----------|----------------|-------------------|----------|
| WIOI | туре     | Chain | nes | LIIIK   | Counts         | RMSZ     | # Z  > 2 | Counts         | RMSZ              | # Z >2   |
| 2    | BGC      | К     | 1   | 2       | $12,\!12,\!12$ | 0.90     | 1 (8%)   | $17,\!17,\!17$ | 1.92              | 3 (17%)  |
| 2    | GAL      | K     | 2   | 2       | 11,11,12       | 0.62     | 0        | 15, 15, 17     | 2.77              | 7 (46%)  |
| 2    | NAG      | K     | 3   | 2       | 14,14,15       | 1.48     | 2 (14%)  | 17,19,21       | 2.80              | 2 (11%)  |
| 2    | GAL      | K     | 4   | 2       | 11,11,12       | 1.49     | 2 (18%)  | 15,15,17       | 2.97              | 6 (40%)  |
| 2    | FUC      | K     | 5   | 2       | 10,10,11       | 0.40     | 0        | 14,14,16       | 0.87              | 0        |
| 2    | BGC      | L     | 1   | 2       | 12,12,12       | 0.59     | 0        | 17,17,17       | 1.77              | 3 (17%)  |
| 2    | GAL      | L     | 2   | 2       | 11,11,12       | 0.62     | 0        | 15, 15, 17     | 4.91              | 4 (26%)  |
| 2    | NAG      | L     | 3   | 2       | 14,14,15       | 1.84     | 1 (7%)   | 17,19,21       | <mark>3.94</mark> | 10 (58%) |
| 2    | GAL      | L     | 4   | 2       | 11,11,12       | 1.02     | 1 (9%)   | 15,15,17       | 2.22              | 5 (33%)  |
| 2    | FUC      | L     | 5   | 2       | 10,10,11       | 0.42     | 0        | 14,14,16       | 0.84              | 0        |
| 2    | BGC      | М     | 1   | 2       | 12,12,12       | 0.38     | 0        | 17,17,17       | 2.08              | 3 (17%)  |
| 2    | GAL      | М     | 2   | 2       | 11,11,12       | 0.44     | 0        | 15,15,17       | 2.48              | 4 (26%)  |
| 2    | NAG      | М     | 3   | 2       | 14,14,15       | 0.62     | 0        | 17,19,21       | 2.41              | 4 (23%)  |
| 2    | GAL      | М     | 4   | 2       | 11,11,12       | 0.84     | 0        | 15,15,17       | 2.59              | 4 (26%)  |
| 2    | FUC      | М     | 5   | 2       | 10,10,11       | 1.26     | 1 (10%)  | 14,14,16       | 2.70              | 3 (21%)  |
| 2    | BGC      | N     | 1   | 2       | 12,12,12       | 0.90     | 1 (8%)   | 17,17,17       | 1.91              | 3 (17%)  |
| 2    | GAL      | N     | 2   | 2       | 11,11,12       | 0.63     | 0        | 15.15.17       | 2.76              | 7 (46%)  |
| 2    | NAG      | N     | 3   | 2       | 14,14,15       | 1.49     | 2 (14%)  | 17,19,21       | 2.80              | 2 (11%)  |
| 2    | GAL      | N     | 4   | 2       | 11.11.12       | 1.49     | 2 (18%)  | 15.15.17       | 2.98              | 6 (40%)  |
| 2    | FUC      | N     | 5   | 2       | 10,10,11       | 0.41     | 0        | 14,14,16       | 0.87              | 0        |
| 2    | BGC      | 0     | 1   | 2       | 12,12,12       | 0.49     | 0        | 17,17,17       | 0.78              | 1 (5%)   |
| 2    | GAL      | 0     | 2   | 2       | 11,11,12       | 0.38     | 0        | 15,15,17       | 0.90              | 0        |
| 2    | NAG      | 0     | 3   | 2       | 14,14,15       | 0.54     | 0        | 17,19,21       | 0.93              | 1 (5%)   |
| 2    | GAL      | 0     | 4   | 2       | 11,11,12       | 0.33     | 0        | 15,15,17       | 0.82              | 0        |
| 2    | FUC      | 0     | 5   | 2       | 10,10,11       | 0.42     | 0        | 14,14,16       | 0.84              | 0        |
| 2    | BGC      | Р     | 1   | 2       | 12,12,12       | 0.49     | 0        | 17,17,17       | 0.76              | 1 (5%)   |
| 2    | GAL      | Р     | 2   | 2       | 11,11,12       | 0.37     | 0        | 15,15,17       | 0.89              | 0        |
| 2    | NAG      | Р     | 3   | 2       | 14,14,15       | 0.54     | 0        | 17,19,21       | 0.91              | 0        |
| 2    | GAL      | Р     | 4   | 2       | 11,11,12       | 0.33     | 0        | $15,\!15,\!17$ | 0.82              | 0        |
| 2    | FUC      | Р     | 5   | 2       | 10,10,11       | 0.42     | 0        | 14,14,16       | 0.83              | 0        |
| 2    | BGC      | Q     | 1   | 2       | 12,12,12       | 0.50     | 0        | 17,17,17       | 0.77              | 1 (5%)   |
| 2    | GAL      | Q     | 2   | 2       | 11,11,12       | 0.38     | 0        | 15,15,17       | 0.90              | 0        |
| 2    | NAG      | Q     | 3   | 2       | 14,14,15       | 0.54     | 0        | 17,19,21       | 0.91              | 0        |
| 2    | GAL      | Q     | 4   | 2       | 11,11,12       | 0.32     | 0        | $15,\!15,\!17$ | 0.83              | 1 (6%)   |
| 2    | FUC      | Q     | 5   | 2       | 10,10,11       | 0.43     | 0        | 14,14,16       | 0.84              | 0        |
| 2    | BGC      | R     | 1   | 2       | 12,12,12       | 0.49     | 0        | $17,\!17,\!17$ | 0.78              | 1 (5%)   |
| 2    | GAL      | R     | 2   | 2       | 11,11,12       | 0.37     | 0        | 15, 15, 17     | 0.89              | 1 (6%)   |



| Mal   | Typo | Chain | Dag | Link | Bond lengths |      |          | Bond angles    |      |        |
|-------|------|-------|-----|------|--------------|------|----------|----------------|------|--------|
| IVIOI | туре | Unain | nes |      | Counts       | RMSZ | # Z  > 2 | Counts         | RMSZ | # Z >2 |
| 2     | NAG  | R     | 3   | 2    | 14,14,15     | 0.54 | 0        | 17,19,21       | 1.03 | 0      |
| 2     | GAL  | R     | 4   | 2    | 11,11,12     | 0.33 | 0        | $15,\!15,\!17$ | 0.83 | 0      |
| 2     | FUC  | R     | 5   | 2    | 10,10,11     | 0.42 | 0        | 14,14,16       | 0.83 | 0      |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | BGC  | K     | 1   | 2    | -       | 2/2/22/22 | 0/1/1/1 |
| 2   | GAL  | K     | 2   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | K     | 3   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | GAL  | K     | 4   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | FUC  | K     | 5   | 2    | -       | -         | 0/1/1/1 |
| 2   | BGC  | L     | 1   | 2    | -       | 2/2/22/22 | 0/1/1/1 |
| 2   | GAL  | L     | 2   | 2    | -       | 1/2/19/22 | 0/1/1/1 |
| 2   | NAG  | L     | 3   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | GAL  | L     | 4   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | FUC  | L     | 5   | 2    | -       | -         | 0/1/1/1 |
| 2   | BGC  | М     | 1   | 2    | -       | 2/2/22/22 | 0/1/1/1 |
| 2   | GAL  | М     | 2   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | М     | 3   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | GAL  | М     | 4   | 2    | -       | 1/2/19/22 | 0/1/1/1 |
| 2   | FUC  | М     | 5   | 2    | -       | -         | 0/1/1/1 |
| 2   | BGC  | N     | 1   | 2    | -       | 2/2/22/22 | 0/1/1/1 |
| 2   | GAL  | N     | 2   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | N     | 3   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | GAL  | N     | 4   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | FUC  | N     | 5   | 2    | -       | -         | 0/1/1/1 |
| 2   | BGC  | 0     | 1   | 2    | -       | 0/2/22/22 | 0/1/1/1 |
| 2   | GAL  | 0     | 2   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | 0     | 3   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | GAL  | 0     | 4   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | FUC  | 0     | 5   | 2    | -       | -         | 0/1/1/1 |
| 2   | BGC  | Р     | 1   | 2    | -       | 0/2/22/22 | 0/1/1/1 |
| 2   | GAL  | Р     | 2   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | Р     | 3   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | GAL  | Р     | 4   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | FUC  | Р     | 5   | 2    | -       | -         | 0/1/1/1 |



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | BGC  | Q     | 1   | 2    | -       | 2/2/22/22 | 0/1/1/1 |
| 2   | GAL  | Q     | 2   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | Q     | 3   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | GAL  | Q     | 4   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | FUC  | Q     | 5   | 2    | -       | -         | 0/1/1/1 |
| 2   | BGC  | R     | 1   | 2    | -       | 0/2/22/22 | 0/1/1/1 |
| 2   | GAL  | R     | 2   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | NAG  | R     | 3   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | GAL  | R     | 4   | 2    | -       | 1/2/19/22 | 0/1/1/1 |
| 2   | FUC  | R     | 5   | 2    | -       | -         | 0/1/1/1 |

The worst 5 of 13 bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|-------|-------------|----------|
| 2   | L     | 3   | NAG  | O3-C3 | 6.11  | 1.57        | 1.43     |
| 2   | Ν     | 3   | NAG  | C1-C2 | 4.05  | 1.58        | 1.52     |
| 2   | Κ     | 3   | NAG  | C1-C2 | 4.00  | 1.58        | 1.52     |
| 2   | Ν     | 4   | GAL  | O5-C1 | -3.46 | 1.38        | 1.43     |
| 2   | Κ     | 4   | GAL  | O5-C1 | -3.44 | 1.38        | 1.43     |

The worst 5 of 83 bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|--------|------------------|---------------|
| 2   | L     | 2   | GAL  | O3-C3-C2 | -13.54 | 84.07            | 109.99        |
| 2   | L     | 2   | GAL  | O3-C3-C4 | 10.15  | 133.81           | 110.35        |
| 2   | L     | 3   | NAG  | O3-C3-C4 | -9.68  | 87.98            | 110.35        |
| 2   | N     | 3   | NAG  | C6-C5-C4 | -9.39  | 91.00            | 113.00        |
| 2   | K     | 3   | NAG  | C6-C5-C4 | -9.38  | 91.04            | 113.00        |

There are no chirality outliers.

5 of 39 torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 2   | R     | 2   | GAL  | O5-C5-C6-O6 |
| 2   | Q     | 1   | BGC  | C4-C5-C6-O6 |
| 2   | Q     | 2   | GAL  | O5-C5-C6-O6 |
| 2   | R     | 2   | GAL  | C4-C5-C6-O6 |
| 2   | М     | 1   | BGC  | O5-C5-C6-O6 |

There are no ring outliers.



| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 2   | Κ     | 3   | NAG  | 2       | 0            |
| 2   | R     | 3   | NAG  | 5       | 0            |
| 2   | М     | 2   | GAL  | 2       | 0            |
| 2   | Ν     | 4   | GAL  | 1       | 0            |
| 2   | Κ     | 1   | BGC  | 8       | 0            |
| 2   | 0     | 2   | GAL  | 2       | 0            |
| 2   | Q     | 2   | GAL  | 1       | 0            |
| 2   | Κ     | 2   | GAL  | 9       | 0            |
| 2   | L     | 1   | BGC  | 4       | 0            |
| 2   | R     | 4   | GAL  | 1       | 0            |
| 2   | Q     | 1   | BGC  | 1       | 0            |
| 2   | L     | 2   | GAL  | 3       | 0            |
| 2   | Р     | 4   | GAL  | 1       | 0            |
| 2   | Ν     | 3   | NAG  | 2       | 0            |
| 2   | Р     | 3   | NAG  | 2       | 0            |
| 2   | Ν     | 1   | BGC  | 9       | 1            |
| 2   | R     | 1   | BGC  | 6       | 0            |
| 2   | R     | 5   | FUC  | 5       | 0            |
| 2   | Q     | 4   | GAL  | 2       | 0            |
| 2   | R     | 2   | GAL  | 8       | 0            |
| 2   | Р     | 2   | GAL  | 6       | 0            |
| 2   | М     | 3   | NAG  | 2       | 0            |
| 2   | Р     | 1   | BGC  | 4       | 0            |
| 2   | Κ     | 4   | GAL  | 1       | 0            |
| 2   | L     | 5   | FUC  | 1       | 0            |
| 2   | Q     | 5   | FUC  | 4       | 0            |
| 2   | 0     | 3   | NAG  | 3       | 0            |
| 2   | 0     | 5   | FUC  | 10      | 0            |
| 2   | Q     | 3   | NAG  | 2       | 0            |
| 2   | N     | 2   | GAL  | 10      | 1            |

30 monomers are involved in 67 short contacts:

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

























### 5.6 Ligand geometry (i)

There are no ligands in this entry.

### 5.7 Other polymers (i)

There are no such residues in this entry.



## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain        | Analysed        | < <b>RSRZ</b> > | #RSRZ>2    |    | $OWAB(Å^2)$       | Q<0.9 |
|-----|--------------|-----------------|-----------------|------------|----|-------------------|-------|
| 1   | А            | 309/311~(99%)   | -0.33           | 2 (0%) 89  | 88 | 29, 41, 66, 80    | 0     |
| 1   | В            | 308/311~(99%)   | -0.47           | 1 (0%) 94  | 93 | 32, 44, 67, 78    | 0     |
| 1   | С            | 311/311~(100%)  | -0.24           | 2 (0%) 89  | 88 | 30, 45, 68, 93    | 0     |
| 1   | D            | 307/311~(98%)   | -0.33           | 1 (0%) 94  | 93 | 29,  45,  77,  95 | 0     |
| 1   | Ε            | 309/311~(99%)   | -0.21           | 4 (1%) 77  | 74 | 32, 47, 76, 89    | 0     |
| 1   | $\mathbf{F}$ | 308/311~(99%)   | -0.13           | 3 (0%) 82  | 79 | 38, 57, 87, 103   | 0     |
| 1   | G            | 308/311~(99%)   | -0.24           | 1 (0%) 94  | 93 | 41, 57, 82, 118   | 0     |
| 1   | Η            | 292/311~(93%)   | -0.21           | 4 (1%) 75  | 71 | 34, 59, 93, 117   | 0     |
| 1   | Ι            | 285/311~(91%)   | 0.57            | 38 (13%) 3 | 8  | 52, 83, 121, 146  | 0     |
| 1   | J            | 307/311~(98%)   | -0.18           | 1 (0%) 94  | 93 | 38, 53, 84, 105   | 0     |
| All | All          | 3044/3110~(97%) | -0.18           | 57 (1%) 66 | 62 | 29, 52, 89, 146   | 0     |

The worst 5 of 57 RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Ι     | 377 | THR  | 5.6  |
| 1   | Ι     | 369 | THR  | 4.3  |
| 1   | Ι     | 296 | THR  | 4.1  |
| 1   | Ι     | 295 | GLY  | 3.6  |
| 1   | Ι     | 508 | VAL  | 3.4  |

### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



#### 6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC               | RSR  | $B-factors(A^2)$        | Q<0.9 |
|-----|------|-------|-----|-------|--------------------|------|-------------------------|-------|
| 2   | BGC  | L     | 1   | 12/12 | <mark>-0.09</mark> | 1.72 | 178,181,181,182         | 0     |
| 2   | BGC  | N     | 1   | 12/12 | 0.31               | 0.56 | 139,141,141,141         | 0     |
| 2   | NAG  | L     | 3   | 14/15 | 0.32               | 0.79 | 155,162,164,166         | 0     |
| 2   | GAL  | М     | 2   | 11/12 | 0.33               | 0.72 | 147,151,153,153         | 0     |
| 2   | BGC  | Q     | 1   | 12/12 | 0.37               | 0.55 | 145,149,150,150         | 0     |
| 2   | BGC  | R     | 1   | 12/12 | 0.48               | 0.65 | 155,158,159,159         | 0     |
| 2   | BGC  | М     | 1   | 12/12 | 0.49               | 0.67 | 149,153,153,153         | 0     |
| 2   | GAL  | N     | 2   | 11/12 | 0.50               | 0.47 | 132,135,137,137         | 0     |
| 2   | GAL  | L     | 4   | 11/12 | 0.53               | 0.52 | 137,144,147,148         | 0     |
| 2   | NAG  | R     | 3   | 14/15 | 0.56               | 0.76 | 142,147,149,149         | 0     |
| 2   | GAL  | Q     | 2   | 11/12 | 0.58               | 0.50 | 145,146,147,148         | 0     |
| 2   | BGC  | Р     | 1   | 12/12 | 0.58               | 0.84 | 162,163,164,164         | 0     |
| 2   | GAL  | R     | 2   | 11/12 | 0.58               | 0.57 | 151,152,154,154         | 0     |
| 2   | GAL  | L     | 2   | 11/12 | 0.58               | 0.96 | 169,174,175,176         | 0     |
| 2   | GAL  | R     | 4   | 11/12 | 0.63               | 0.40 | 134,136,138,139         | 0     |
| 2   | GAL  | N     | 4   | 11/12 | 0.66               | 0.44 | 115,119,122,122         | 0     |
| 2   | BGC  | 0     | 1   | 12/12 | 0.69               | 0.60 | 145,146,147,147         | 0     |
| 2   | GAL  | K     | 2   | 11/12 | 0.69               | 0.73 | 132,135,137,137         | 0     |
| 2   | GAL  | K     | 4   | 11/12 | 0.70               | 0.38 | 115,119,122,122         | 0     |
| 2   | NAG  | Р     | 3   | 14/15 | 0.70               | 0.79 | 147,153,156,156         | 0     |
| 2   | FUC  | R     | 5   | 10/11 | 0.73               | 0.36 | 129,131,131,132         | 0     |
| 2   | GAL  | 0     | 4   | 11/12 | 0.74               | 0.44 | 124,129,131,131         | 0     |
| 2   | FUC  | L     | 5   | 10/11 | 0.74               | 0.35 | 123,126,129,131         | 0     |
| 2   | NAG  | М     | 3   | 14/15 | 0.76               | 0.50 | 137,140,142,144         | 0     |
| 2   | NAG  | 0     | 3   | 14/15 | 0.76               | 0.58 | 132,135,138,139         | 0     |
| 2   | GAL  | 0     | 2   | 11/12 | 0.77               | 0.60 | 142,146,147,147         | 0     |
| 2   | NAG  | K     | 3   | 14/15 | 0.77               | 0.51 | 124,127,129,130         | 0     |
| 2   | FUC  | 0     | 5   | 10/11 | 0.78               | 0.35 | 112,116,117,119         | 0     |
| 2   | NAG  | Ν     | 3   | 14/15 | 0.78               | 0.52 | 124,127,129,130         | 0     |
| 2   | GAL  | Р     | 4   | 11/12 | 0.79               | 0.36 | 136,138,141,142         | 0     |
| 2   | FUC  | P     | 5   | 10/11 | 0.79               | 0.40 | 129,130,132,133         | 0     |
| 2   | GAL  | P     | 2   | 11/12 | 0.79               | 0.77 | $158,\!161,\!163,\!163$ | 0     |
| 2   | GAL  | Q     | 4   | 11/12 | 0.80               | 0.42 | $129,\!132,\!135,\!135$ | 0     |
| 2   | BGC  | K     | 1   | 12/12 | 0.81               | 0.80 | 139,141,141,141         | 0     |
| 2   | NAG  | Q     | 3   | 14/15 | 0.81               | 0.55 | 138,142,143,143         | 0     |
| 2   | FUC  | K     | 5   | 10/11 | 0.82               | 0.26 | 101,104,107,109         | 0     |



| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $B-factors(Å^2)$ | Q<0.9 |  |
|-----|------|-------|-----|-------|------|------|------------------|-------|--|
| 2   | FUC  | Ν     | 5   | 10/11 | 0.83 | 0.39 | 101,104,107,109  | 0     |  |
| 2   | GAL  | М     | 4   | 11/12 | 0.84 | 0.40 | 130,133,135,135  | 0     |  |
| 2   | FUC  | М     | 5   | 10/11 | 0.84 | 0.26 | 121,123,124,126  | 0     |  |
| 2   | FUC  | Q     | 5   | 10/11 | 0.86 | 0.31 | 122,123,124,125  | 0     |  |

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.



















## 6.4 Ligands (i)

There are no ligands in this entry.

## 6.5 Other polymers (i)

There are no such residues in this entry.

