

Dec 11, 2022 – 03:48 pm GMT

PDB ID	:	6SO3
EMDB ID	:	EMD-7029
Title	:	The interacting head motif in insect flight muscle myosin thick filaments
Authors	:	Morris, E.P.; Knupp, C.; Squire, J.M.
Deposited on	:	2019-08-28
Resolution	:	6.20 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.3
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 6.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive}\ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	Quality of chain								
			43%									
1	А	1953	29% 12% ••	57%								
			43%									
1	В	1953	30% 10% ·	57%								
			100%									
2	С	156	71%	26%	••							
			100%									
2	D	156	69%	25%	6%							
			100%									
3	Ε	196	68%	23%	8% •							
			100%									
3	\mathbf{F}	196	69%	24%	7%							

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 37957 atoms, of which 18956 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Myosin 2 heavy chain striated muscle.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
1	В	840	Total	С	Η	Ν	Ο	S	0	0
1	I B	040	13499	4302	6760	1164	1245	28	0	0
1	Δ	840	Total	С	Η	Ν	Ο	S	0	0
		040	13498	4302	6760	1164	1244	28	0	0

• Molecule 2 is a protein called Myosin 2 essential light chain striated muscle.

Mol	Chain	Residues			Atom	S			AltConf	Trace
2	Л	156	Total	С	Η	Ν	0	S	0	0
2 D	D	150	2460	779	1227	199	247	8	0	0
2	C	156	Total	С	Η	Ν	0	S	0	0
2	U	130	2460	779	1227	199	247	8	0	0

• Molecule 3 is a protein called Myosin 2 regulatory light chain striated muscle.

Mol	Chain	Residues			Atom	S			AltConf	Trace
9	Б	106	Total	С	Η	Ν	0	\mathbf{S}	0	0
0	3 F	190	3020	952	1491	257	314	6	0	0
9	Б	106	Total	С	Η	Ν	0	S	0	0
0	E	190	3020	952	1491	257	314	6	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Myosin 2 heavy chain striated muscle

•	••	••	•••	••	••	••	•	••	••		••	••	•	•	••	• •		•	••	••	••		••	••		• •	•	••	••	•	••		••	•	• •	••	••	••	•	••	•	••
T541	D542 K543	S544 TEAE	r 545 Q546	D547 ve40	L549	N550 A551	N552	H553	L554 G555	K556	8557	P558 N559	F560	V561	K562	P563	P565	P566	K567	P568	0220	q571	E572	А573 н574	F575	S576 TE77	A578	H579	Y580 A581	G582	T583 V584	P585	Y586 N587	1588 1588	T589	G590 W591	L592	E593 K594	N595	K596 D597	P598	V599 N600
•	••	••		• •	••	••	•	••	••		••		•		•	• •	••	•	•	••			••	• •		• •		• •	••	•	• •		• •	•	• •	••	••	••		••	•	••
D601	T602 V603	V604	0090	F607	K609	G610 S611	N612	K613	L614 V615	q616	E617	1618 F619	E620	D621	H622	P623	4024 L625	G626	A627	E628	E629 K630	G631	G632	G633 C634	400 1 K635	G636	G638	G639	R640 K641	K642	G643	S645	F646	4071 T648	V649	S650 A651	L652	Y653 R654	E655	Q656 1.657	N658	R659 L660
•		• •	0 10			••								•			+ 10	•							H 10		- m							.				0 +			m	
M66	A66 S66	L66. L66.	866 S66	T66	P66	H67 F67	V67	R67	C67 167	167 167	P67	N67 E67	L68 L68	K68	Q68	P68	89A	I 68	D68	S68	695 769	V69	M69	Н69 Пео	400 T	T69	N69	695	L70 L70	E70	G70 170	R70	170 C70	R70	K70	G/1 F71	P71	N71 R71	M71	V71 V71	P71	D71 F72
21	23	24	20 20	27	5 <mark>0 00</mark>	30	32	33	34 35	36	37	39	40	41	42	43	44 45	46	47	48	49 50	51	52	53 F.4	55	56	89	59	60 61	62	63 64	65	66	8	69	71	72	73	75	76	78	79 80
K7	Q7 R7	77 77		L7	A7 A7	S7	V7	P7	K7 G7	F7	V7 24	D7 A7	K7	K7	V7	T7 E7	E7 A7	V7	L7	G7	A/ I7	ц77	L7	D7 A7	N7	D7	R7	L7	G7 N7	T7	K7 V7	F7	F7 R7	A7	G7		G7	R7 L7	E7	E7	R7	D7 D7
v781	.782 1783	Γ784 -7 οε	786	787	789	7 90	1792	793	17.95	796	797	7 98	800	801	802	803	805	806	807	808		811	812	813	815	1816 17	1818	819	1820 1821	822	823	825	826	1828	829	830	(832	833	835	(836 1837	838	839
-												2 E		H	I	ч н ,		0	, ₁			1								H L					<u> </u>		ł			ł	14	
LEU	MET AL <i>I</i>	LYS VAI	GLU	CLL	LYS		CLU		LYS	AL/ LEU	CLU	LEI	CLU	CLU	CLU GLU	VAI	LYS	ASF	GLU	VAI	ASN	LYS	LEI	GLN	TY5	ASF	TEU	CLN	CLU	SEF	ARC		GLY									
ASP	GLU GLU	ARG LEU	THR LYS	ALA ILE	SER	LYS ASN	ASP	GLU	GLN	VAL GLN	GLU I FII	GLN	GLU ARG	LEU	SER	GLU	ASP	ALA HTS	SER	ASN LEU	SER	VAL	ARG LYS	TAS	ASP	GLU	ILE SER	ASN LEU	LYS	GLU	GLU	LEU	LEU									
VAL	GLN	THR GLU	GLN	LYS ALA	ALA	ASP HIS	GLN	ARG	ASN	ASN ASP	GLU	ALA	GLN	ASP	GLU LEU	ILE	LYS	LEU	ARG	GLU	LYS	GLN	GLU	MET	GLN	THR	GLU	ASP LEU	GLN	THR	ASP	LEU	HIS									
1ET Ven	'AL	LYS NLA	.YS .EU	aLU SLN	THR	UTI 1	EU	ASP MSP	LEU	aLU ARG	NS NS	XS	LEU	ATE	ASP /AL	TU	THR	LYS BRG	TYS SAL	/AL	TY	EU	YS	NLA		ALA /AL	ALA ASP	LEU SLU	YS	YS	TU		ALA VLA									
		1 4	нн Б.С.																	20						~ ~																
EE E	ARC	GLI	GLU	AL/ SEF	LEU	ALJ		ASI	GLI GLI	GLY	VAI	LYS	GLI	TA	GLI	TAS	LEI C	GLI	ARG	ULI ILI	CLU	CLI CLI	UT9 CT1	EE	AL/	ARG	GL1 AL1	ARO	LYS	CLU	111	AL/ AL/	LEI									
ALA	GLU	GLU GLU	LEU SER	GLU ARG	LEU	GLU ALA	GLY	ALA	THR SER	ALA GLN	VAL	LEU	ASN LYS	ARG	ARG GLU	ALA	MET	ALA	TEU	ARG	ASP	GLU	GLU SER	ASN	GLN	GLU	GLN THR	LEU ALA	ASN	ARG	TYS	ASN	VAL									
VAL	GLU LEU	SER GLU	GLN	ASP GLN	LEU	LYS	LYS	ALA	GLU	GLU	LYS	GLN	MET LYS	GLY	GLU	ASP	VAL	ARG	SER	VAL ASP	SIH	ASN	GLU	LYS	ALA	GLU	GLN	ALA LYS	GLN	GLU	GLN	THR	LEU									
GLN GLN	LYS	ASP GLU	ALA HIS	ARG SER	LEU GI V	ASP	ASP	ALA	LYS	ARG LEU	THR	GLU	ASN THR	CLU	LEU THR	ARG	GLN	GLU	ALA	GLU SER	GLN	VAL SER	GLN	SER	LEU	THR	SER	GLN THR	GLN	GLU	THR	LYS ARG MET	ALA									
a. :		5 5	5 4	R A	H >	4 00 EI	100	د ـــ :	<u>م</u> ح	a D	<u> </u>	2 0	0 0		ш с.	5		5 >	+ 00 +	A d		2 3	zb		0 4 2	A N		z D	A. C	et 10	2 64 1											
ASI	SE GE	AR	AR. AL.	THI AL.	UE.	LY I	AR	VA	H G	ASI	ASI	E E	AR		ILI ASI	GLI	CI CI	U G G	T	AL. ASI	E	AR	CLI LEI	SEI	AL	A5.	GLI	E G	TRI	SEJ	E L	E	5 F									
DEU AT A	ARG	GLU	GLU	GLU SER	LYS	LEU	ASP	LYS	GLN	GLU ALA	MET	THR	ASP	GLN	ASN	SER	THR	SER	TEO	GLU	THR	LYS	ARG	GLN	dLU GLU	GLU	ASP	THR	GLU VAL	GLU GLU	ALA	ALA	ALA									
SER	MET GLU	LYS	GLN	SER PHE	ASP	ILE	SER	TRP	GLN	LYS VAL	ASP	LEU	ALA LEU	GLU	LEU ASP	ALA	GLN	LYS	CYS	ARG	TYR	THR	GLU VAL	PHE	LEU	SER	GLN TYR	GLU	SER	GLU	TYR	SER	LYS									
ARG	ASN	ASN LEU	GLN ASP	GLU	LYS	LEU	ASP	LEU	GLY	GLY GLY	ARG	VAL	HIS SLU	LEU	GLU	ALA	LYS	ARG	GLU	LEU GLU	LYS	GLU	LEU	ALA	ALA LEU	GLU	ALA GLU	ALA ALA	LEU	GLN	GLU	LYS	LEU									
ب		55	~~~		N	ы			z D	8 5	<u>ь</u>	о н ^а	57	1 PL 1	5 10	2.7		0 -	с ш.	L. C*	н.	ZÆ	8.5		A D 4	₹ 10	> 10	AU	A U	0 -	+ 60 -	0 10 1										
AR	EE	GL	SEI	VA.	GL	ILL ASH	AR	LEI	ELI E	GLU GLU	EL E	IHA	GL	THI	AR	ASI	GLI	AR	H	AS	ME	GL.	SEI	GL	GLI	LY	CL CL	AL. GLI	AL.	AR	ΓΛ		3 5									

												_								_										_		_		_		_						
T541	D542 K543	S544	F545 0546	D547	K548 1.549	N550	A551 N552	H553	L554	G555 K556	8557	P558	N559 FEGO	r 560 V561	K562	P563	K564 P565	P566	K567	P568	G569 D570	q571	E572	A573 H574	F575	8576 1577	4578 A578	H579	Y580 A581	G582	T583 V584	P585	1 300 N587	1588 1588	1589 1589 1589	W591	L592 E593	K594	N595 K596	D597	P598 V699	N600
D601	T602	V604	D605	F607	K608	G610	S611	K613	L614	V615	E617	I618	F619	E620 D621	H622	P623	G624	G626	A627	E628	Е629 Кезо	G631	G632	G633 G634	K635	G636	d 638	G639	R640 K641	K642	G643 A644	S645	r 040 Q647	T648	V649 S650	A651	1652 Y 653	R654	E655	L657	N658	
•	••	•	••		••	•	••		••	••	•	••	• •	••		••	••	•		••		•	••	••		• •	•••	•	••	••	••	••	••	••	••	••	•		••	•	••	•
M661	A662 S663	L664	H665 S666	T667	0,0663 P669	H670	F671 V672	R673	C674	I675 1676	P677	N678	E679 1680	L000 K681	<mark>0682</mark>	P683	G684 V685	1686	D687	S688	1 690	V691	M692	H693 D694	L695	T696	N698	6695	V700 L701	E702	G703 I704	R705	C707	R708	G710 G710	F711	N713	R714	M715 V716	Y717	P718 D719	F720
K721	Q722 R723	Y724	T725	L727	A728	S730	A731	P733	K734	G735 F736	V737	D738	A739 4740	K741	V742	T743	E744	V746	L747	G748	A749	q751	L752	D753	N755	D756	R758	L759	G760 N761	T762	K/63 V764	F765	R767	A768	G/69 V770	L771	GTT3	L774	E775 🕈	M777	R778	D780
781	782 83	784	785	87	788 789) 06	7 <mark>91</mark>	23 23	<u>794</u>	7 <u>95</u>	<u>6</u> 2	7 <u>98</u>	4 99	001 •	302	303	304 205	306	307	808	309	311	312	313	315	316	318	319	320	322	224 324	325	27	328	330	331	33	34	335	337	338 230	340
EU RI	HR IET I.A	YS KT				LA EU		YS II	YS RT			ER ST		LU E	LU F	AL KE	RG K8 YS L5	SP 1	LLE EE	AL Q	SN R	AL VC	EU LE		T SX		HE NE	EU LE	EU R6	ER F	RG TS	LY LE	ILY NE	M		Y		Y	IE	SV SV	N N	i II
ASP I	VAL GLU GLU M	ARG	THR G	ALA G	SER I	MET A LYS I	ASN G ASP G	LEU I	GLY I		GLU I GLU	LEU S	dLU GLU	ARG I LEU G	SER G	dLU V	GLU ASP I	ALA A	NTS 1 G	ASN V	SER	SER V VAL I	ARG I LYS I	TAS 0	ASP I	GLU A	ILE I SER P	ASN I	T XS I	GLU S	GLU A	LEU G	TEU C									
VAL	ILE GLN LYS	THR	den of the second secon	LYS	ALA	LYS ASP	HIS	ILE ARG	ASN 1 FTI	ASN	ASP GLU	ILE ALA	HIS	GLN ASP	GLU T ETI	ILE	ASN LYS	LEU	ASN	GLU LYS	LYS	GLN MET	GLU	MET	CLN GLN	THR	GLY GLU	ASP LEU	GLN	THR	ASP LYS	LEU ASN	HIS									
MET	ASN LYS VAI.	LYS	LYS LYS	GLU	THR	LEU ASP	GLU	GLU ASP	SER	CLU GLU	ARG GLU	LYS	TEU	ARG GLY	ASP	GLU	LYS THR	LYS	AKG	VAL	GLY	ASP LEU	LYS LEU	ALA	GLU GLU	ALA VAL	ALA ASP	LEU GLU	LYS ASN	LYS LYS	GLU	GLU	ALA									
LEU	GLN ARG LYS	0LU	GLU	ALA	LEU	SER ALA	LYS LEU	GLU ASP	GLU	GLY	LEU VAL	ALA LYS	LEU	GLN	GLN GLN	LYS	GLU LEU	GLN	ALA ARG	ILE GLU	GLU	GLU	GLU	TEU	ALA	ARG	GLN ALA	ARG ALA	LYS ALA	GLU GLU	GLN	ALA ASP	TEU									
ALA	ARG GLU TLF	0TD	LEU	GLU	LEU	GLU	ALA GLY	GLY ALA	THR	ALA	GLN VAL	GLU LEU	ASN	LYS ARG	ARG	ALA	GLU MET	ALA	LYS	ARG	ASP	GLU	GLU SER	ASN	GLN	GLU	GLN THR	LEU ALA	ASN	ARG LYS	LYS HIS	ASN	VAL									
VAL	ALA GLU I.FU	SER	GLN	ASP	LEU	ASN LYS	LYS	ALA ARG	LEU	LYS	GLU	ALA GLN	MET	GLY	GLU GLU	ASP	ASP VAL	ARG	SER	VAL	SIH	VAL ASN	GLU	LYS	ASN	GLU	GLN	ALA LYS	GLN	GLU MET	GLN	THR GLU	LEU									
GLN	GLY LYS MFT	ASP	ALA	ARG	LEU	GLY ASP	PHE ASP	ALA ALA	LYS	ARG	THR	VAL GLU	ASN	GLU	LEU	ARG	GLN LEU	GLU	ASP	GLU SER	GLN	VAL SER	GLN	SER	TEU	THR	SER LEU	GLN THR	GLN	GLU ASP	THR	ARG MET	ALA									
ASP	GLU GLU SFR	ARG	ARG	THR	MET	GLY LYS	PHE ARG	SER VAL	GLU	ASP	ASP	SER	ARG	GLU GLN	ILE	GLU	GLU GLN	GLU	GL Y GL Y	ALA	LEU	GLN ARG	GLN	SER	ALA	ASN	GLU VAL	GLN	TRP	SER LYS	TYR GLU	SER	GLY									
LEU	ALA ARG I.EU	0TD	TEU	GLU	LYS	ARG LYS	LEU ASP	ALA LYS	LEU	GLU	ALA MET	GLU THR	ILE	ASP GLN	LEU	SER	LYS THR	SER	CEU LEU	GLU LYS	THR	LYS SER	ARG	GLN	CTD CTD	GLU	ASP MET	THR	GLU VAL	GLU LYS	ALA ASN	ALA LEU	ALA									
G SER	U ALA N MET	N LYS	N GLN	U SER	E ASP	P ARG U ILE	P SER	U GLU	A LYS	A LYS	Y VAL 3 ASP	R ASP	S ALA	U LEU	U LEU	A ALA	G SER	G LYS	U CYS	U ARG	S TYR	U SER U THR	U GLU V VAL	A PHE		U ARG	U TYR	A GLU	U SER	N GLU	U TYR V GLU	S SER	U LYS									
RG AR	LA GL NN AS	U AS.	ER GL	AL GL	N LY	LE LEI	SP VA kG ASI	SU CL	II CT		LU GL	LU SE TE VA	H	SN GL	RG GL	IN AL	IS AR	RG AR	LE GLI	SP LE	ST LY	LA GLU	ER LE	U AL		rs GL	rs all	LA AL	LE CLA	AG GLI	rs GL	rs LY su VA	.U LE									
A.	A 13 1	181	1 02 5	55	A D	9 H	A. AI	A LI	55	ទែដដ	55	19 19		A II	A	A:	нIJ	A	A H	A		G.	S II	10 1	4 13 1	Ρ	ទីដ	A.G.	A.	A	122	23	5									

• Molecule 3: Myosin 2 regulatory light chain striated muscle

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	HELICAL	Depositor
Imposed symmetry	HELICAL, twist=33.98°, rise=145 Å, axial	Depositor
	sym=C4	
Number of segments used	24000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	65	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	DIRECT ELECTRON DE-20 (5k x 3k)	Depositor
Maximum map value	0.181	Depositor
Minimum map value	-0.056	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.009	Depositor
Recommended contour level	0.032	Depositor
Map size (Å)	528.336, 528.336, 528.336	wwPDB
Map dimensions	432, 432, 432	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.223, 1.223, 1.223	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	E	Bond angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	1.70	50/6882~(0.7%)	2.01	194/9279~(2.1%)
1	В	1.70	56/6883~(0.8%)	1.98	158/9280~(1.7%)
2	С	1.70	9/1251~(0.7%)	1.94	26/1674~(1.6%)
2	D	1.65	6/1251~(0.5%)	1.99	43/1674~(2.6%)
3	Е	1.66	8/1554~(0.5%)	1.94	38/2081~(1.8%)
3	F	1.68	8/1554~(0.5%)	1.98	33/2081~(1.6%)
All	All	1.69	137/19375~(0.7%)	1.99	492/26069~(1.9%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	18
1	В	0	31
2	С	0	6
2	D	0	1
3	Е	0	3
3	F	0	3
All	All	0	62

All (137) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
3	F	42	ARG	CZ-NH2	8.38	1.44	1.33
1	В	796	TYR	CE2-CZ	8.13	1.49	1.38
1	А	342	TYR	CG-CD1	7.94	1.49	1.39
1	В	834	TYR	CE2-CZ	7.80	1.48	1.38
3	F	13	SER	CA-CB	7.50	1.64	1.52
1	А	366	ARG	CZ-NH1	7.36	1.42	1.33
1	А	347	TYR	CE2-CZ	7.34	1.48	1.38
1	А	735	GLY	N-CA	-7.33	1.35	1.46

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	В	453	PHE	CG-CD1	7.30	1.49	1.38
1	В	142	ARG	NE-CZ	7.19	1.42	1.33
1	В	358	GLU	CG-CD	7.04	1.62	1.51
2	D	139	TYR	CZ-OH	6.91	1.49	1.37
1	В	412	ARG	CD-NE	6.88	1.58	1.46
1	А	781	ARG	CZ-NH2	6.87	1.42	1.33
1	В	537	PHE	CE2-CZ	6.87	1.50	1.37
1	В	653	TYR	CG-CD2	6.83	1.48	1.39
1	А	450	ARG	CZ-NH2	6.80	1.41	1.33
2	С	25	GLY	CA-C	-6.75	1.41	1.51
1	А	576	SER	CA-CB	6.74	1.63	1.52
1	В	269	ARG	NE-CZ	6.73	1.41	1.33
1	В	263	TYR	CZ-OH	6.66	1.49	1.37
3	F	47	VAL	CA-CB	-6.65	1.40	1.54
1	В	125	ARG	CD-NE	6.61	1.57	1.46
1	А	727	LEU	N-CA	6.55	1.59	1.46
1	А	157	TYR	CE2-CZ	6.34	1.46	1.38
1	А	757	TYR	CE1-CZ	6.34	1.46	1.38
1	В	104	TYR	CZ-OH	6.31	1.48	1.37
1	А	783	GLY	CA-C	6.26	1.61	1.51
1	А	757	TYR	CB-CG	-6.25	1.42	1.51
1	А	798	SER	CA-CB	6.25	1.62	1.52
1	В	249	PHE	CG-CD1	6.14	1.48	1.38
1	В	730	SER	CA-CB	6.12	1.62	1.52
1	В	203	GLU	CB-CG	6.12	1.63	1.52
1	А	83	GLU	CD-OE1	6.11	1.32	1.25
1	В	540	ALA	CA-CB	6.06	1.65	1.52
1	А	418	SER	CA-CB	6.02	1.61	1.52
1	А	708	ARG	NE-CZ	6.02	1.40	1.33
1	А	137	TYR	CB-CG	-6.00	1.42	1.51
1	В	174	GLU	CD-OE2	5.99	1.32	1.25
1	А	352	SER	CA-CB	5.97	1.61	1.52
1	В	643	GLY	N-CA	-5.95	1.37	1.46
1	В	826	ARG	NE-CZ	5.94	1.40	1.33
2	С	54	SER	CA-CB	5.94	1.61	1.52
1	А	189	TYR	CB-CG	5.94	1.60	1.51
2	D	14	GLU	CG-CD	5.92	1.60	1.51
1	A	724	TYR	CB-CG	5.92	1.60	1.51
3	E	168	SER	CA-CB	5.92	1.61	1.52
1	A	379	GLU	CD-OE1	5.92	1.32	1.25
1	A	611	SER	CA-CB	5.91	1.61	1.52
1	A	453	PHE	CE1-CZ	5.88	1.48	1.37

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	В	640	ARG	CD-NE	5.88	1.56	1.46
1	В	278	ARG	CD-NE	5.87	1.56	1.46
1	В	12	TYR	CZ-OH	5.86	1.47	1.37
1	А	140	ARG	CZ-NH2	5.84	1.40	1.33
1	А	529	SER	CA-CB	5.83	1.61	1.52
1	А	307	TYR	CE2-CZ	5.82	1.46	1.38
1	В	10	TYR	CG-CD1	5.78	1.46	1.39
1	В	439	ARG	CZ-NH1	5.77	1.40	1.33
1	А	367	GLU	CG-CD	5.76	1.60	1.51
1	В	167	GLN	CG-CD	5.76	1.64	1.51
1	А	24	LYS	CA-CB	5.76	1.66	1.53
1	А	157	TYR	CD2-CE2	5.75	1.48	1.39
2	С	139	TYR	CB-CG	5.73	1.60	1.51
3	Ε	150	SER	N-CA	-5.65	1.35	1.46
3	F	161	ASP	CA-CB	5.63	1.66	1.53
3	Е	61	GLU	CG-CD	5.62	1.60	1.51
3	F	118	ARG	CZ-NH1	5.58	1.40	1.33
3	Е	162	GLU	CG-CD	5.58	1.60	1.51
3	F	25	ALA	CA-CB	5.57	1.64	1.52
3	F	174	GLY	CA-C	-5.56	1.43	1.51
1	А	141	ARG	NE-CZ	5.51	1.40	1.33
1	А	173	GLY	CA-C	-5.49	1.43	1.51
2	С	77	GLU	CD-OE2	5.47	1.31	1.25
1	В	63	SER	CB-OG	5.47	1.49	1.42
1	А	498	TYR	CZ-OH	5.46	1.47	1.37
1	В	450	ARG	NE-CZ	5.45	1.40	1.33
2	D	124	GLU	CG-CD	5.43	1.60	1.51
1	А	242	GLY	N-CA	-5.43	1.37	1.46
2	С	24	GLU	CB-CG	5.43	1.62	1.52
3	E	42	ARG	CZ-NH1	5.42	1.40	1.33
2	С	17	GLU	CG-CD	5.41	1.60	1.51
1	A	313	GLY	N-CA	-5.41	1.38	1.46
1	A	191	ALA	CA-CB	5.39	1.63	1.52
1	В	724	TYR	CD2-CE2	5.36	1.47	1.39
1	В	122	PRO	C-N	5.32	1.46	1.34
1	A	247	ILE	C-N	5.31	1.46	1.34
1	B	239	SER	CA-CB	5.30	1.60	1.52
1	A	174	GLU	CD-OE2	5.29	1.31	1.25
1	B	431	ARG	CZ-NH1	5.29	1.40	1.33
1	В	162	ALA	CA-CB	5.24	1.63	1.52
1	В	610	GLY	CA-C	-5.24	1.43	1.51
1	B	51	GLY	CA-C	-5.24	1.43	1.51

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
1	В	606	GLN	CG-CD	5.24	1.63	1.51
1	В	214	GLU	CB-CG	5.23	1.62	1.52
1	В	129	TYR	CE2-CZ	5.22	1.45	1.38
1	В	495	GLN	CG-CD	5.22	1.63	1.51
2	D	139	TYR	CE1-CZ	5.22	1.45	1.38
1	А	236	ASP	CA-CB	5.22	1.65	1.53
1	А	171	ILE	CA-CB	5.22	1.66	1.54
1	В	182	ASN	CB-CG	5.22	1.63	1.51
1	В	373	ASP	C-N	5.21	1.42	1.33
3	Е	94	GLU	CD-OE2	-5.20	1.20	1.25
1	А	284	TYR	CE2-CZ	5.20	1.45	1.38
1	В	477	PHE	CB-CG	5.18	1.60	1.51
3	Е	124	GLU	CD-OE2	5.18	1.31	1.25
1	В	289	GLY	C-N	5.18	1.42	1.33
1	В	309	PHE	CG-CD2	5.17	1.46	1.38
2	С	154	GLU	CB-CG	5.17	1.61	1.52
2	D	34	ASP	CB-CG	5.17	1.62	1.51
3	Е	85	SER	CB-OG	5.17	1.49	1.42
1	В	505	TRP	CD2-CE3	-5.16	1.32	1.40
1	В	311	SER	CA-CB	5.16	1.60	1.52
1	В	129	TYR	CE1-CZ	5.15	1.45	1.38
1	А	79	TYR	CE2-CZ	5.14	1.45	1.38
1	В	364	ARG	CD-NE	5.13	1.55	1.46
1	В	419	TYR	CG-CD2	5.12	1.45	1.39
1	А	12	TYR	CE2-CZ	5.11	1.45	1.38
1	В	839	PRO	CA-C	-5.10	1.42	1.52
1	В	655	GLU	CB-CG	5.10	1.61	1.52
1	В	238	SER	CA-CB	5.08	1.60	1.52
1	В	539	LYS	N-CA	-5.08	1.36	1.46
3	F	4	GLU	CD-OE2	5.08	1.31	1.25
2	С	13	ARG	CD-NE	5.08	1.55	1.46
1	А	70	LEU	CA-CB	5.07	1.65	1.53
1	А	104	TYR	CE2-CZ	5.07	1.45	1.38
1	А	575	PHE	CE2-CZ	5.07	1.47	1.37
1	В	640	ARG	CZ-NH2	5.05	1.39	1.33
2	С	123	GLU	CD-OE2	5.05	1.31	1.25
2	D	57	ARG	CD-NE	5.04	1.55	1.46
1	А	225	GLU	CG-CD	5.04	1.59	1.51
1	В	363	GLN	C-N	5.04	1.45	1.34
1	А	397	VAL	CB-CG1	5.03	1.63	1.52
1	В	377	GLU	N-CA	-5.03	1.36	1.46
1	A	442	GLU	CD-OE1	-5.02	$1.\overline{20}$	1.25

Continued from previous page...

		1	1 0				
Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
1	А	783	GLY	N-CA	-5.02	1.38	1.46
1	А	380	ARG	CZ-NH1	5.01	1.39	1.33
1	В	500	ARG	NE-CZ	5.01	1.39	1.33

All (492) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	809	ARG	NE-CZ-NH1	17.57	129.08	120.30
3	F	38	ARG	NE-CZ-NH2	17.39	128.99	120.30
3	F	149	ARG	NE-CZ-NH2	16.97	128.78	120.30
1	А	767	ARG	NE-CZ-NH2	16.62	128.61	120.30
1	В	809	ARG	NE-CZ-NH2	-16.00	112.30	120.30
1	В	708	ARG	NE-CZ-NH1	15.82	128.21	120.30
1	В	767	ARG	NE-CZ-NH1	-15.31	112.65	120.30
1	А	41	TYR	CB-CG-CD1	-15.21	111.88	121.00
1	В	758	ARG	NE-CZ-NH1	-14.72	112.94	120.30
1	А	767	ARG	NE-CZ-NH1	-14.44	113.08	120.30
1	А	305	TYR	CB-CG-CD2	14.36	129.62	121.00
1	А	132	ARG	NE-CZ-NH2	14.18	127.39	120.30
1	А	809	ARG	NE-CZ-NH2	13.91	127.26	120.30
1	А	327	ARG	NE-CZ-NH1	-13.83	113.38	120.30
2	D	86	PHE	CB-CG-CD2	13.36	130.15	120.80
1	В	640	ARG	NE-CZ-NH1	13.25	126.92	120.30
1	В	283	PHE	CB-CG-CD2	13.17	130.02	120.80
2	С	139	TYR	CB-CG-CD1	-12.78	113.33	121.00
1	В	498	TYR	CB-CG-CD1	-12.38	113.57	121.00
3	Е	59	PHE	CB-CG-CD1	-12.33	112.17	120.80
1	В	342	TYR	CB-CG-CD1	12.07	128.24	121.00
1	А	778	ARG	NE-CZ-NH2	12.03	126.32	120.30
1	В	141	ARG	NE-CZ-NH2	11.96	126.28	120.30
2	D	37	ARG	NE-CZ-NH2	11.78	126.19	120.30
2	С	139	TYR	CB-CG-CD2	11.77	128.06	121.00
3	F	118	ARG	NE-CZ-NH1	-11.72	114.44	120.30
2	D	19	TYR	CB-CG-CD2	-11.63	114.02	121.00
1	А	305	TYR	CB-CG-CD1	-11.47	114.12	121.00
1	А	431	ARG	NE-CZ-NH1	-11.38	114.61	120.30
1	В	64	ARG	NE-CZ-NH2	11.26	125.93	120.30
1	В	342	TYR	CB-CG-CD2	-11.21	114.28	121.00
1	В	439	ARG	NE-CZ-NH2	11.17	125.88	120.30
1	В	364	ARG	NE-CZ-NH2	11.15	11.15 125.88	
2	С	116	ARG	NE-CZ-NH1	-11.12	114.74	120.30
1	В	580	TYR	CB-CG-CD2	11.12	127.67	121.00

1

А

673

ARG

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	439	ARG	NE-CZ-NH2	11.10	125.85	120.30
1	В	580	TYR	CB-CG-CD1	-10.78	114.53	121.00
1	В	283	PHE	CB-CG-CD1	-10.75	113.27	120.80
1	В	498	TYR	CB-CG-CD2	10.73	127.44	121.00
1	В	129	TYR	CB-CG-CD1	-10.69	114.59	121.00
3	Е	118	ARG	NE-CZ-NH1	-10.51	115.05	120.30
3	Е	83	PHE	CB-CG-CD1	-10.31	113.58	120.80
1	А	104	TYR	CB-CG-CD1	-10.29	114.83	121.00
1	А	654	ARG	NE-CZ-NH1	-10.19	115.21	120.30
1	А	773	ARG	NE-CZ-NH2	10.05	125.33	120.30
1	А	280	TYR	CB-CG-CD2	-10.04	114.97	121.00
1	В	778	ARG	NE-CZ-NH2	10.04	125.32	120.30
1	А	607	PHE	CB-CG-CD2	-9.78	113.96	120.80
1	В	736	PHE	CB-CG-CD2	9.74	127.62	120.80
2	D	71	PHE	CB-CG-CD2	-9.73	113.99	120.80
1	В	794	ARG	NE-CZ-NH1	-9.66	115.47	120.30
2	D	30	ARG	NE-CZ-NH2	9.66	125.13	120.30
1	В	431	ARG	NE-CZ-NH1	-9.65	115.47	120.30
1	А	705	ARG	NE-CZ-NH1	-9.62	115.49	120.30
1	А	342	TYR	CB-CG-CD1	-9.59	115.25	121.00
1	В	671	PHE	CB-CG-CD2	9.57	127.50	120.80
2	D	116	ARG	NE-CZ-NH1	-9.53	115.53	120.30
1	В	327	ARG	NE-CZ-NH2	-9.50	115.55	120.30
1	А	507	PHE	CB-CG-CD1	-9.48	114.17	120.80
1	А	323	ALA	N-CA-CB	9.46	123.35	110.10
2	D	86	PHE	CB-CG-CD1	-9.39	114.23	120.80
1	А	504	ASP	CB-CG-OD2	9.32	126.69	118.30
1	В	64	ARG	NE-CZ-NH1	-9.31	115.65	120.30
3	Е	118	ARG	NE-CZ-NH2	9.28	124.94	120.30
2	D	93	TYR	CB-CG-CD1	-9.28	115.44	121.00
1	А	673	ARG	NE-CZ-NH1	-9.25	115.67	120.30
1	В	361	PHE	CB-CG-CD1	-9.22	114.34	120.80
1	А	736	PHE	CB-CG-CD2	-9.21	114.35	120.80
1	А	640	ARG	NE-CZ-NH2	-9.17	115.71	120.30
1	В	129	TYR	CB-CG-CD2	9.09	126.45	121.00
2	С	63	THR	CA-CB-CG2	-9.09	99.68	112.40
1	А	280	TYR	CB-CG-CD1	9.06	126.44	121.00
1	В	19	ARG	NE-CZ-NH1	-9.01	115.80	120.30
1	В	31	MET	CG-SD-CE	-9.01	9.01 85.79	
1	В	736	PHE	CB-CG-CD1	-8.97	114.52	120.80
2	С	19	TYR	CB-CG-CD2	8.85	126.31	121.00

Continued from previous page...

Continued on next page...

120.30

124.72

8.85

NE-CZ-NH2

Conti				
Mol	Chain	Res	Type	Atoms

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\mathbf{Ideal}(^{o})$
1	А	431	ARG	NE-CZ-NH2	8.78	124.69	120.30
1	А	778	ARG	NE-CZ-NH1	-8.72	115.94	120.30
3	Е	158	PHE	CB-CG-CD1	-8.72	114.70	120.80
3	F	149	ARG	NE-CZ-NH1	-8.72	115.94	120.30
1	А	132	ARG	NE-CZ-NH1	-8.70	115.95	120.30
1	А	765	PHE	CB-CG-CD1	-8.65	114.74	120.80
1	В	103	ARG	NE-CZ-NH2	8.65	124.62	120.30
1	В	758	ARG	NE-CZ-NH2	8.65	124.62	120.30
1	А	389	ALA	N-CA-CB	8.59	122.12	110.10
1	А	826	ARG	NE-CZ-NH1	-8.57	116.02	120.30
1	А	103	ARG	NE-CZ-NH2	8.52	124.56	120.30
1	В	485	PHE	CB-CG-CD1	-8.50	114.85	120.80
1	В	132	ARG	NE-CZ-NH1	-8.49	116.06	120.30
1	В	10	TYR	CB-CG-CD2	8.46	126.08	121.00
3	Ε	59	PHE	CB-CG-CD2	8.44	126.71	120.80
3	F	24	ALA	N-CA-CB	8.40	121.86	110.10
1	А	269	ARG	NE-CZ-NH1	-8.40	116.10	120.30
1	А	41	TYR	CB-CG-CD2	8.38	126.03	121.00
1	В	234	ARG	NE-CZ-NH1	8.37	124.48	120.30
3	F	42	ARG	NE-CZ-NH1	8.36	124.48	120.30
1	А	140	ARG	NE-CZ-NH1	-8.34	116.13	120.30
1	А	19	ARG	NE-CZ-NH1	-8.31	116.15	120.30
1	А	794	ARG	NE-CZ-NH1	-8.30	116.15	120.30
1	В	396	LEU	CB-CG-CD2	8.27	125.06	111.00
1	В	157	TYR	CB-CG-CD1	-8.25	116.05	121.00
1	В	705	ARG	NE-CZ-NH2	-8.18	116.21	120.30
1	А	347	TYR	CB-CG-CD2	-8.18	116.09	121.00
2	D	2	ALA	N-CA-CB	8.17	121.54	110.10
1	В	132	ARG	NE-CZ-NH2	8.12	124.36	120.30
1	А	545	PHE	CB-CG-CD2	-8.03	115.18	120.80
3	F	83	PHE	CB-CG-CD2	-8.00	115.20	120.80
2	D	19	TYR	CB-CG-CD1	8.00	125.80	121.00
1	А	736	PHE	CB-CG-CD1	7.98	126.39	120.80
3	F	118	ARG	NE-CZ-NH2	7.98	124.29	120.30
1	В	627	ALA	N-CA-CB	7.92	121.19	110.10
2	D	20	ASP	CB-CG-OD1	7.88	125.40	118.30
1	В	123	TYR	CB-CG-CD1	-7.79	116.33	121.00
2	С	116	ARG	NE-CZ-NH2	7.78	124.19	120.30
1	А	777	MET	CG-SD-CE	-7.77	87.77	100.20
1	В	767	ARG	NE-CZ-NH2	7.77	124.18	120.30
3	F	82	THR	CA-CB-CG2	-7.76	101.53	112.40
1	В	249	PHE	CB-CG-CD2	7.75	126.23	120.80

3

Е

83

PHE

Mol	Chain	Res	Type	Atoms		$\mathbf{Z} = \mathbf{Observed}(^{o})$	
3	F	48	PHE	CB-CG-CD2	-7.73	115.39	120.80
1	А	157	TYR	CB-CG-CD2	7.70	125.62	121.00
1	А	327	ARG	NE-CZ-NH2	7.69	124.15	120.30
1	А	537	PHE	CB-CG-CD1	-7.68	115.42	120.80
1	В	104	TYR	N-CA-CB	7.67	124.40	110.60
1	А	573	ALA	N-CA-CB	7.57	120.70	110.10
1	В	65	GLN	N-CA-CB	7.55	124.18	110.60
2	D	154	GLU	N-CA-CB	7.54	124.18	110.60
1	А	504	ASP	CB-CG-OD1	-7.54	111.51	118.30
2	С	16	PHE	CB-CG-CD2	-7.52	115.54	120.80
2	С	7	ALA	N-CA-CB	7.52	120.63	110.10
1	А	822	PHE	CB-CG-CD1	7.45	126.02	120.80
1	В	831	TYR	N-CA-CB	7.43	123.97	110.60
3	Е	173	ASP	CB-CG-OD2	-7.40	111.64	118.30
1	А	766	PHE	CB-CG-CD2	-7.35	115.66	120.80
1	А	765	PHE	CB-CG-CD2	7.34	125.94	120.80
1	А	500	ARG	NE-CZ-NH1	-7.32	116.64	120.30
1	В	671	PHE	CB-CG-CD1	-7.31	115.69	120.80
1	А	364	ARG	NE-CZ-NH1	-7.30	116.65	120.30
1	В	189	TYR	CB-CG-CD2	-7.30	116.62	121.00
1	В	105	TYR	CB-CG-CD2	-7.29	116.62	121.00
1	В	307	TYR	CB-CG-CD2	7.25	125.35	121.00
1	В	607	PHE	CB-CG-CD1	7.20	125.84	120.80
1	А	452	TYR	CG-CD2-CE2	7.19	127.06	121.30
1	В	792	TRP	CG-CD2-CE3	7.19	140.37	133.90
2	С	4	LEU	CB-CA-C	-7.19	96.54	110.20
1	А	41	TYR	CG-CD2-CE2	-7.17	115.57	121.30
1	В	302	ASP	CB-CG-OD1	7.16	124.75	118.30
1	А	779	ASP	CB-CG-OD2	7.16	124.74	118.30
1	А	809	ARG	NE-CZ-NH1	-7.15	116.72	120.30
1	А	545	PHE	CB-CG-CD1	7.14	125.80	120.80
1	А	307	TYR	CB-CG-CD2	7.12	125.27	121.00
1	А	430	ASP	CB-CG-OD2	-7.12	111.90	118.30
2	D	92	VAL	CG1-CB-CG2	-7.11	99.52	110.90
1	В	796	TYR	CB-CG-CD1	7.10	125.26	121.00
1	А	586	TYR	CB-CG-CD1	7.08	125.25	121.00
1	В	366	ARG	NE-CZ-NH1	-7.07 116.76		120.30
3	F	38	ARG	NE-CZ-NH1	-7.05 116.77		120.30
2	D	31	ASP	CB-CG-OD1	7.05 124.64		118.30
1	А	607	PHE	CB-CG-CD1	7.04	7.04 125.73	
3	Е	161	ASP	CB-CG-OD2	-7.01	111.99	118.30

Continued from previous page...

Continued on next page...

120.80

125.70

7.01

CB-CG-CD2

Mol	Chain	Res	Type	Atoms	$\mathbf{Z} = \mathbf{Observed}(^{o})$		$Ideal(^{o})$
1	А	393	TYR	CB-CG-CD2	-6.93	116.84	121.00
1	А	580	TYR	CB-CG-CD1	-6.93	116.84	121.00
3	F	98	MET	CG-SD-CE	-6.92	89.13	100.20
1	А	234	ARG	NE-CZ-NH1	-6.91	116.84	120.30
1	В	651	ALA	N-CA-CB	6.83	119.67	110.10
1	А	458	ASP	CB-CG-OD1	-6.82	112.16	118.30
3	F	80	ARG	NE-CZ-NH1	6.82	123.71	120.30
2	С	153	ASP	CB-CG-OD1	-6.81	112.17	118.30
1	А	90	TYR	CB-CG-CD1	-6.80	116.92	121.00
1	В	284	TYR	CB-CG-CD2	-6.80	116.92	121.00
1	А	129	TYR	CB-CG-CD2	-6.78	116.93	121.00
3	Е	88	ARG	NE-CZ-NH1	-6.77	116.92	120.30
3	F	25	ALA	N-CA-CB	6.73	119.53	110.10
1	А	342	TYR	CB-CG-CD2	6.72	125.03	121.00
3	Е	139	GLU	OE1-CD-OE2	-6.71	115.25	123.30
1	В	439	ARG	NH1-CZ-NH2	-6.71	112.02	119.40
1	А	466	ASP	CB-CG-OD1	6.67	124.30	118.30
1	А	79	TYR	CB-CG-CD2	-6.66	117.00	121.00
1	А	826	ARG	NE-CZ-NH2	6.66	123.63	120.30
1	А	491	PHE	CB-CG-CD2	6.64	125.45	120.80
1	В	692	MET	CG-SD-CE	-6.64	89.58	100.20
1	В	333	PHE	CB-CG-CD1	-6.62	116.17	120.80
1	А	241	PHE	CB-CG-CD2	-6.62	116.17	120.80
1	В	259	ASP	N-CA-CB	6.60	122.48	110.60
1	А	696	THR	N-CA-CB	6.58	122.80	110.30
1	А	797	LEU	CB-CG-CD1	6.57	122.17	111.00
3	F	80	ARG	NE-CZ-NH2	6.55	123.58	120.30
1	В	241	PHE	CB-CG-CD1	-6.55	116.22	120.80
3	F	108	PHE	CB-CG-CD2	-6.54	116.22	120.80
1	А	307	TYR	CG-CD1-CE1	6.53	126.52	121.30
1	А	275	THR	CA-CB-CG2	-6.49	103.32	112.40
1	А	601	ASP	CB-CG-OD2	-6.49	112.46	118.30
1	А	794	ARG	NE-CZ-NH2	6.48	123.54	120.30
1	В	361	PHE	CB-CG-CD2	6.47	125.33	120.80
1	А	284	TYR	CB-CG-CD1	-6.46	117.12	121.00
3	F	131	ALA	CB-CA-C	-6.46	100.41	110.10
2	D	116	ARG	NE-CZ-NH2	6.46	123.53	120.30
2	С	19	TYR	CB-CG-CD1	-6.44	117.14	121.00
1	В	140	ARG	NE-CZ-NH2	6.43	123.52	120.30
1	В	834	TYR	CB-CG-CD2	6.40 124.84		121.00
2	D	71	PHE	CB-CG-CD1	6.39	6.39 125.28	
2	D	136	PHE	CB-CG-CD1	-6.38	116.33	120.80

1

1

1

1

1

1

1

1

3

1

А

А

В

В

А

А

В

В

F

А

GLY

TYR

ARG

SER

ARG

TYR

ARG

LYS

VAL

ARG

469

41

141

650

64

467

708

360

56

781

N-CA-C

CZ-CE2-CD2

NE-CZ-NH1

O-C-N

NE-CZ-NH1

O-C-N

NH1-CZ-NH2

N-CA-CB

CA-CB-CG1

NE-CZ-NH1

Ideal(°) 110.10 120.30 110.90 113.40 120.30 121.70 110.60 122.70 120.80 120.30 120.30 121.30 110.10 120.80 110.10 111.00 111.00 120.30 120.30 120.80 123.20 111.00 110.90 119.80 110.10 120.30 121.00 120.80 121.00119.40 110.60 111.00

001111	naca jion	i precia	Jus puge	• • •		
Mol	Chain	Res	Type	Atoms	Z	Observed(°)
1	В	323	ALA	N-CA-CB	6.38	119.03
1	А	278	ARG	NE-CZ-NH2	6.38	123.49
1	А	96	VAL	CA-CB-CG1	-6.38	101.33
1	А	458	ASP	CA-CB-CG	6.37	127.41
3	F	88	ARG	NE-CZ-NH2	6.33	123.47
1	А	367	GLU	C-N-CA	6.33	137.53
2	D	79	GLU	N-CA-CB	6.33	121.99
1	В	618	ILE	O-C-N	-6.33	112.58
1	А	241	PHE	CB-CG-CD1	6.33	125.23
1	А	714	ARG	NE-CZ-NH1	6.33	123.46
1	А	234	ARG	NE-CZ-NH2	6.32	123.46
1	В	757	TYR	CG-CD1-CE1	-6.31	116.25
3	Е	131	ALA	CB-CA-C	-6.28	100.68
1	В	241	PHE	CB-CG-CD2	6.27	125.19
1	А	768	ALA	N-CA-CB	6.25	118.85
1	В	462	PHE	N-CA-C	-6.25	94.12
1	В	482	LEU	CB-CG-CD2	-6.25	100.38
1	А	142	ARG	NE-CZ-NH1	6.21	123.41
3	Е	39	ARG	NE-CZ-NH1	-6.20	117.20
2	D	16	PHE	CB-CG-CD2	-6.18	116.47
1	А	377	GLU	O-C-N	-6.18	112.69
3	Е	65	LEU	CB-CG-CD1	6.18	121.51
1	В	691	VAL	CG1-CB-CG2	-6.18	101.02
1	А	347	TYR	CZ-CE2-CD2	-6.18	114.24
3	F	120	ALA	N-CA-CB	6.17	118.74
1	В	19	ARG	NE-CZ-NH2	6.16	123.38
1	В	834	TYR	CB-CG-CD1	-6.15	117.31
1	В	720	PHE	CG-CD2-CE2	-6.14	114.05
1	В	586	TYR	CB-CG-CD2	-6.10	117.34
3	F	80	ARG	NH1-CZ-NH2	-6.08	112.71
1	В	208	GLU	N-CA-CB	6.06	121.52
3	Е	137	GLU	N-CA-C	-6.06	94.64

Continued from previous page...

Continued on next page...

97.96

125.25

117.27

113.03

123.32

132.35

112.77

121.44

119.93

123.31

113.10

119.80

120.30

122.70

120.30

122.70

119.40

110.60

110.90

120.30

-6.06

6.05

-6.05

-6.05

6.04

6.04

-6.03

6.02

6.02

6.02

Mol	Chain	Res	Type	Atoms	$\mathbf{Z} = \mathbf{Observed}(^{o})$		$Ideal(^{o})$
1	А	708	ARG	NE-CZ-NH1	-6.01	117.29	120.30
3	Е	112	LEU	N-CA-CB	5.99	122.38	110.40
2	D	30	ARG	NH1-CZ-NH2	-5.98	112.82	119.40
1	В	783	GLY	N-CA-C	-5.98	98.15	113.10
1	А	452	TYR	CB-CG-CD2	5.98	124.59	121.00
2	D	130	ASP	CB-CG-OD1	5.97	123.67	118.30
3	Е	59	PHE	N-CA-CB	5.96	121.32	110.60
3	Е	161	ASP	CB-CG-OD1	5.94	123.64	118.30
1	А	685	VAL	N-CA-C	-5.92	95.00	111.00
1	В	232	THR	N-CA-C	-5.92	95.02	111.00
1	А	640	ARG	NE-CZ-NH1	5.92	123.26	120.30
1	А	580	TYR	CG-CD2-CE2	-5.90	116.58	121.30
1	А	601	ASP	CB-CG-OD1	5.90	123.61	118.30
1	В	211	ALA	N-CA-CB	5.90	118.36	110.10
1	А	246	ARG	NE-CZ-NH2	5.90	123.25	120.30
1	А	494	GLU	CB-CA-C	-5.90	98.59	110.40
1	А	215	ASP	CB-CG-OD2	5.89	123.60	118.30
1	В	824	THR	CA-CB-CG2	-5.89	104.16	112.40
1	А	830	TRP	N-CA-CB	5.89	121.20	110.60
2	D	153	ASP	N-CA-CB	5.88	121.19	110.60
3	F	188	THR	N-CA-CB	5.88	121.48	110.30
2	D	3	ASP	CB-CG-OD2	5.87	123.58	118.30
1	А	409	THR	CA-CB-CG2	-5.86	104.19	112.40
1	А	268	ALA	C-N-CA	5.86	136.35	121.70
1	А	106	ALA	CB-CA-C	-5.85	101.32	110.10
1	В	10	TYR	CB-CG-CD1	-5.85	117.49	121.00
1	А	453	PHE	CB-CG-CD1	-5.84	116.71	120.80
1	В	792	TRP	CD2-CE3-CZ3	5.83	126.38	118.80
1	В	621	ASP	N-CA-CB	5.83	121.09	110.60
1	A	452	TYR	CG-CD1-CE1	5.82	125.95	121.30
1	А	510	PHE	N-CA-CB	5.82	121.07	110.60
1	A	591	TRP	CD1-NE1-CE2	-5.81	103.77	109.00
1	A	795	TRP	CA-CB-CG	5.81	124.73	113.70
1	A	423	GLY	N-CA-C	-5.80	98.59	113.10
2	D	140	GLU	OE1-CD-OE2	5.80	130.26	123.30
3	E	103	PRO	N-CA-CB	5.79	110.25	103.30
1	А	834	TYR	CB-CG-CD1	-5.79	117.53	121.00
1	В	817	ARG	NE-CZ-NH2	-5.75	117.42	120.30
1	A	383	HIS	CA-CB-CG	5.75	123.38	113.60
1	В	35	ALA	N-CA-CB	5.74	118.14	110.10
1	A	126	PHE	CB-CG-CD2	5.74	124.82	120.80
1	A	520	LEU	CB-CG-CD1	5.73	120.74	111.00

Mol	Chain	Res	Type	Atoms	$\mathbf{Z} = \mathbf{Observed}(^{o})$		$Ideal(^{o})$
2	С	86	PHE	CB-CG-CD1	-5.73	116.79	120.80
1	А	190	TYR	CB-CG-CD2	5.72	124.43	121.00
1	А	653	TYR	CD1-CE1-CZ	-5.72	114.65	119.80
1	В	573	ALA	N-CA-CB	5.71	118.10	110.10
2	D	2	ALA	O-C-N	5.71	131.84	122.70
2	D	127	ARG	NE-CZ-NH2	5.70	123.15	120.30
1	В	600	ASN	C-N-CA	5.69	135.93	121.70
3	Е	135	PHE	CB-CG-CD1	-5.69	116.82	120.80
1	В	164	ARG	NE-CZ-NH2	5.68	123.14	120.30
2	D	31	ASP	CB-CG-OD2	-5.68	113.19	118.30
1	А	331	THR	CA-CB-CG2	5.68	120.35	112.40
1	В	278	ARG	N-CA-CB	5.67	120.80	110.60
1	В	622	HIS	CA-CB-CG	-5.66	103.98	113.60
1	В	364	ARG	NE-CZ-NH1	-5.66	117.47	120.30
1	А	510	PHE	CB-CA-C	-5.66	99.08	110.40
3	Е	166	ALA	N-CA-CB	5.66	118.02	110.10
1	В	599	VAL	C-N-CA	5.65	135.83	121.70
1	А	16	GLU	OE1-CD-OE2	5.64	130.07	123.30
1	А	64	ARG	NH1-CZ-NH2	-5.63	113.20	119.40
1	В	640	ARG	NH1-CZ-NH2	-5.63	113.21	119.40
1	В	536	MET	C-N-CA	5.62	135.76	121.70
1	А	665	HIS	N-CA-CB	5.62	120.72	110.60
1	В	150	PHE	CB-CG-CD2	-5.62	116.87	120.80
3	F	48	PHE	CB-CG-CD1	5.62	124.73	120.80
1	А	73	GLN	N-CA-CB	5.62	120.71	110.60
1	А	792	TRP	CB-CG-CD2	-5.62	119.30	126.60
3	Е	99	VAL	CA-CB-CG1	5.62	119.32	110.90
1	А	394	LYS	N-CA-CB	5.61	120.70	110.60
1	А	246	ARG	NE-CZ-NH1	-5.60	117.50	120.30
1	В	787	THR	CA-CB-OG1	5.60	120.76	109.00
1	А	433	PHE	CB-CG-CD1	5.60	124.72	120.80
2	С	26	LYS	N-CA-CB	5.59	120.67	110.60
3	F	58	GLU	O-C-N	-5.59	113.76	122.70
1	А	227	PHE	CB-CG-CD2	-5.59	116.89	120.80
1	В	801	GLU	OE1-CD-OE2	5.58	130.00	123.30
2	D	102	LEU	CB-CA-C	-5.57	99.62	110.20
1	В	398	LYS	N-CA-CB	5.57	120.62	110.60
1	А	468	ASN	N-CA-CB	5.55	120.60	110.60
1	А	307	TYR	N-CA-CB	5.55	120.59	110.60
3	E	25	ALA	N-CA-CB	5.55	117.87	110.10
2	D	142	PHE	CB-CG-CD2	5.54	124.68	120.80
1	В	719	ASP	C-N-CA	5.54	135.54	121.70

Mol	Chain	Res	Type	Atoms	${f ms} \hspace{0.5cm} {f Z} \hspace{0.5cm} {f Observed}(^{o})$		$Ideal(^{o})$
2	С	55	ASP	CB-CG-OD1	5.54	123.28	118.30
3	Е	195	GLY	N-CA-C	5.54	126.94	113.10
1	А	84	ASP	N-CA-CB	5.54	120.56	110.60
1	А	802	PHE	CB-CG-CD1	-5.53	116.93	120.80
1	А	433	PHE	CB-CG-CD2	-5.52	116.94	120.80
2	D	109	VAL	CB-CA-C	-5.51	100.92	111.40
1	А	581	ALA	CB-CA-C	-5.51	101.83	110.10
1	А	157	TYR	CB-CG-CD1	-5.51	117.69	121.00
2	С	102	LEU	CB-CG-CD2	5.51	120.36	111.00
1	А	347	TYR	CB-CG-CD1	5.51	124.30	121.00
3	Е	42	ARG	NE-CZ-NH1	-5.50	117.55	120.30
1	А	724	TYR	CD1-CE1-CZ	-5.50	114.85	119.80
1	А	57	ASP	CB-CG-OD1	5.49	123.24	118.30
1	А	69	ASP	CB-CG-OD1	5.49	123.24	118.30
1	А	560	PHE	N-CA-CB	5.49	120.48	110.60
2	D	93	TYR	CG-CD1-CE1	-5.49	116.91	121.30
1	А	792	TRP	CB-CG-CD1	5.48	134.12	127.00
3	Е	88	ARG	NE-CZ-NH2	5.48	123.04	120.30
1	А	232	THR	N-CA-C	-5.47	96.22	111.00
1	А	462	PHE	CB-CG-CD1	-5.47	116.97	120.80
1	В	305	TYR	CB-CG-CD2	5.47	124.28	121.00
1	В	458	ASP	CB-CG-OD1	5.47	123.22	118.30
3	F	170	ALA	CB-CA-C	-5.46	101.91	110.10
3	Е	57	GLN	N-CA-C	-5.46	96.25	111.00
3	F	15	LYS	N-CA-C	-5.46	96.26	111.00
2	С	119	ASP	CB-CG-OD1	-5.46	113.39	118.30
2	С	142	PHE	CB-CG-CD1	-5.45	116.99	120.80
1	В	817	ARG	O-C-N	-5.43	114.01	122.70
1	В	287	MET	CB-CA-C	-5.43	99.54	110.40
1	А	83	GLU	OE1-CD-OE2	-5.43	116.79	123.30
1	А	602	THR	N-CA-C	-5.42	96.37	111.00
1	В	12	TYR	CB-CA-C	-5.41	99.57	110.40
1	В	148	HIS	C-N-CA	5.41	135.23	121.70
1	В	779	ASP	CB-CG-OD2	-5.41	113.43	118.30
1	А	105	TYR	O-C-N	5.41	131.36	122.70
2	D	$1\overline{9}$	TYR	N-CA-CB	5.41	120.33	110.60
3	Е	117	ASP	CB-CG-OD1	5.40	123.16	118.30
2	С	86	PHE	CG-CD1-CE1	-5.39	114.87	120.80
1	A	19	ARG	N-CA-CB	5.39	120.30	110.60
1	В	66	VAL	C-N-CA	5.38	135.14	121.70
1	A	553	HIS	CA-CB-CG	-5.38	104.46	113.60
2	С	41	CYS	N-CA-CB	5.37	120.27	110.60

\mathbf{Mol}	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	505	TRP	CE2-CD2-CE3	5.37	125.14	118.70
1	А	212	THR	N-CA-CB	5.37	120.50	110.30
1	А	486	PHE	CB-CG-CD2	5.37	124.56	120.80
1	А	802	PHE	CB-CG-CD2	5.37	124.56	120.80
1	А	810	VAL	CG1-CB-CG2	5.36	119.48	110.90
1	В	757	TYR	CB-CG-CD2	-5.36	117.79	121.00
3	F	67	ASP	CB-CG-OD2	-5.36	113.48	118.30
1	В	56	VAL	CA-CB-CG1	-5.35	102.88	110.90
2	D	13	ARG	NE-CZ-NH1	5.35	122.97	120.30
1	В	485	PHE	CB-CG-CD2	5.34	124.54	120.80
2	С	113	LEU	N-CA-C	-5.33	96.59	111.00
2	D	136	PHE	CB-CA-C	-5.33	99.73	110.40
1	В	471	GLU	OE1-CD-OE2	5.33	129.70	123.30
1	А	838	LYS	CA-C-N	5.33	132.02	117.10
1	А	653	TYR	CB-CG-CD1	5.33	124.20	121.00
1	В	82	CYS	N-CA-CB	5.32	120.18	110.60
1	В	393	TYR	CZ-CE2-CD2	5.32	124.59	119.80
1	В	787	THR	CA-CB-CG2	-5.32	104.95	112.40
2	D	37	ARG	NH1-CZ-NH2	-5.32	113.55	119.40
3	Е	78	ASP	CB-CG-OD1	5.29	123.06	118.30
1	А	263	TYR	CB-CG-CD2	5.29	124.17	121.00
3	F	42	ARG	NH1-CZ-NH2	-5.29	113.59	119.40
1	В	151	ALA	N-CA-CB	5.28	117.50	110.10
1	В	782	LEU	C-N-CA	5.28	133.39	122.30
2	D	40	ASP	N-CA-CB	5.28	120.10	110.60
1	А	189	TYR	CG-CD2-CE2	-5.27	117.08	121.30
1	В	793	ILE	CB-CA-C	-5.26	101.08	111.60
1	В	366	ARG	NH1-CZ-NH2	5.26	125.18	119.40
2	D	78	LYS	CA-CB-CG	5.26	124.97	113.40
1	А	370	ALA	N-CA-CB	5.25	117.45	110.10
2	D	136	PHE	CB-CG-CD2	5.25	124.47	120.80
3	F	175	ASN	CB-CA-C	5.25	120.90	110.40
1	В	307	TYR	CB-CG-CD1	-5.24	117.85	121.00
3	Е	21	GLY	C-N-CA	5.24	133.30	122.30
1	В	221	ASN	N-CA-CB	5.24	120.03	110.60
1	В	774	LEU	N-CA-CB	5.24	120.87	110.40
1	A	833	LEU	N-CA-C	-5.24	96.87	111.00
3	Е	51	PHE	CB-CG-CD1	5.24	124.46	120.80
1	А	687	ASP	N-CA-C	-5.23	96.88	111.00
1	A	380	ARG	NE-CZ-NH1	-5.23	117.69	120.30
3	F	170	ALA	N-CA-CB	5.22	117.42	110.10
1	В	229	ASN	N-CA-CB	5.22	120.00	110.60

Continued from previous page...

Mol	Chain	Res	Type	Atoms	$Z = Observed(^{o})$		$Ideal(^{o})$
3	Е	85	SER	N-CA-CB	-5.22	102.68	110.50
1	В	305	TYR	CB-CG-CD1	-5.20	117.88	121.00
1	В	691	VAL	CA-CB-CG1	5.20	118.71	110.90
3	Е	122	THR	N-CA-CB	5.20	120.19	110.30
2	D	39	LEU	CB-CG-CD1	5.20	119.84	111.00
1	А	567	LYS	N-CA-CB	5.20	119.96	110.60
3	Е	73	PHE	CB-CG-CD2	-5.20	117.16	120.80
1	В	344	THR	CA-CB-CG2	-5.20	105.13	112.40
1	В	728	ALA	N-CA-CB	5.20	117.37	110.10
1	А	715	MET	CG-SD-CE	-5.19	91.89	100.20
1	А	452	TYR	CD1-CG-CD2	-5.19	112.19	117.90
1	А	263	TYR	CZ-CE2-CD2	5.18	124.46	119.80
1	В	538	PRO	N-CD-CG	5.16	110.94	103.20
2	D	122	CYS	O-C-N	-5.16	114.44	122.70
1	А	790	GLN	CA-CB-CG	5.16	124.76	113.40
1	А	653	TYR	CG-CD1-CE1	5.16	125.43	121.30
2	D	135	GLY	N-CA-C	-5.16	100.20	113.10
1	В	504	ASP	CB-CG-OD2	-5.15	113.66	118.30
1	В	780	ASP	CB-CG-OD2	5.15	122.94	118.30
3	F	177	LEU	CB-CG-CD1	-5.15	102.24	111.00
1	А	265	LEU	N-CA-C	-5.15	97.09	111.00
1	В	394	LYS	N-CA-CB	-5.15	101.33	110.60
1	А	169	MET	CG-SD-CE	-5.15	91.96	100.20
1	В	153	SER	N-CA-CB	5.14	118.21	110.50
1	В	290	GLY	O-C-N	5.14	130.93	122.70
3	Е	123	ASP	C-N-CA	5.14	134.55	121.70
1	В	792	TRP	CE2-CD2-CE3	-5.14	112.53	118.70
1	А	838	LYS	CA-C-O	-5.14	109.31	120.10
1	А	485	PHE	CB-CG-CD2	5.13	124.39	120.80
1	А	413	ASN	N-CA-CB	5.13	119.83	110.60
1	А	757	TYR	CB-CG-CD1	5.12	124.08	121.00
1	А	759	LEU	CB-CG-CD2	5.12	119.71	111.00
1	В	840	LEU	N-CA-CB	5.12	120.64	110.40
1	А	459	ILE	CA-CB-CG2	-5.12	100.66	110.90
1	А	6	ASP	CB-CG-OD1	5.12	122.91	118.30
1	А	112	TYR	CG-CD1-CE1	5.12	125.39	121.30
1	А	280	TYR	CZ-CE2-CD2	5.12	124.41	119.80
1	A	723	ARG	CD-NE-CZ	5.11	130.75	123.60
1	В	342	TYR	CZ-CE2-CD2	-5.11	115.21	119.80
2	С	87	MET	CG-SD-CE	-5.11	92.03	100.20
1	A	$2\overline{77}$	GLU	N-CA-CB	5.10	119.78	110.60
1	В	670	HIS	N-CA-C	-5.10	97.23	111.00

Continued from previous page...

Mol	Chain	Res	Type	Atoms Z Observed		$Observed(^{o})$	$Ideal(^{o})$
2	С	134	ASP	CB-CG-OD1	5.10	122.89	118.30
1	А	157	TYR	CG-CD1-CE1	5.10	125.38	121.30
1	А	403	VAL	CA-CB-CG1	5.09	118.54	110.90
2	С	44	THR	CA-C-O	5.09	130.79	120.10
3	Е	140	GLY	N-CA-C	-5.09	100.38	113.10
3	Е	142	CYS	O-C-N	-5.08	114.56	122.70
2	С	130	ASP	N-CA-CB	5.08	119.75	110.60
1	А	820	ARG	C-N-CA	5.08	134.39	121.70
1	В	302	ASP	CB-CG-OD2	-5.07	113.74	118.30
3	F	18	GLU	N-CA-CB	5.06	119.71	110.60
2	С	136	PHE	CB-CG-CD1	-5.06	117.26	120.80
1	В	794	ARG	NH1-CZ-NH2	5.06	124.96	119.40
1	А	820	ARG	NE-CZ-NH2	5.06	122.83	120.30
3	F	33	PRO	N-CA-CB	5.05	109.36	103.30
1	В	125	ARG	CG-CD-NE	-5.05	101.19	111.80
1	В	249	PHE	CB-CG-CD1	-5.05	117.26	120.80
1	А	26	TYR	CB-CG-CD2	-5.05	117.97	121.00
1	В	79	TYR	CA-CB-CG	-5.05	103.81	113.40
1	В	599	VAL	CA-C-N	-5.05	106.10	117.20
2	D	118	THR	CA-CB-CG2	-5.05	105.33	112.40
2	D	127	ARG	NE-CZ-NH1	-5.05	117.78	120.30
1	В	473	LEU	CB-CG-CD1	5.04	119.58	111.00
1	А	141	ARG	NE-CZ-NH2	-5.04	117.78	120.30
1	В	130	THR	CA-CB-CG2	-5.04	105.34	112.40
1	В	831	TYR	CZ-CE2-CD2	-5.03	115.27	119.80
1	А	830	TRP	O-C-N	5.03	130.75	122.70
2	С	47	MET	CA-CB-CG	5.03	121.85	113.30
1	В	75	ASN	N-CA-CB	5.03	119.65	110.60
1	В	443	THR	N-CA-CB	5.03	119.85	110.30
1	А	499	LYS	N-CA-C	-5.03	97.43	111.00
3	Е	48	PHE	CB-CG-CD2	-5.03	117.28	120.80
1	А	496	GLU	CG-CD-OE1	-5.02	108.26	118.30
1	В	714	ARG	NE-CZ-NH2	5.02	122.81	120.30
1	А	449	LYS	N-CA-CB	5.02	119.63	110.60
1	В	778	ARG	CG-CD-NE	-5.01	101.27	111.80
1	В	270	VAL	CG1-CB-CG2	5.01	118.92	110.90
1	А	- 33	TRP	N-CA-CB	5.00	119.60	110.60

Continued from previous page...

There are no chirality outliers.

All (62) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	104	TYR	Sidechain
1	А	112	TYR	Sidechain
1	А	123	TYR	Sidechain
1	А	129	TYR	Sidechain
1	А	189	TYR	Sidechain
1	А	240	ARG	Sidechain
1	А	249	PHE	Sidechain
1	А	338	PHE	Sidechain
1	А	340	HIS	Sidechain
1	А	342	TYR	Sidechain
1	А	347	TYR	Sidechain
1	А	477	PHE	Sidechain
1	А	489	HIS	Sidechain
1	А	567	LYS	Peptide
1	А	580	TYR	Sidechain
1	А	619	PHE	Sidechain
1	А	831	TYR	Sidechain
1	А	90	TYR	Sidechain
1	В	10	TYR	Sidechain
1	В	112	TYR	Sidechain
1	В	125	ARG	Sidechain
1	В	132	ARG	Sidechain
1	В	240	ARG	Sidechain,Peptide
1	В	263	TYR	Sidechain
1	В	318	PRO	Peptide
1	В	347	TYR	Sidechain
1	В	369	GLN	Mainchain
1	В	393	TYR	Sidechain
1	В	419	TYR	Sidechain
1	В	429	PHE	Sidechain
1	В	453	PHE	Sidechain
1	В	467	TYR	Peptide
1	В	491	PHE	Peptide
1	В	526	GLY	Peptide
1	В	621	ASP	Peptide
1	В	627	ALA	Peptide
1	В	639	GLY	Peptide
1	В	64	ARG	Sidechain
1	В	640	ARG	Sidechain
1	В	653	TYR	Sidechain
1	В	669	PRO	Peptide
1	В	670	HIS	Sidechain
1	В	714	ARG	Sidechain

Mol	Chain	Res	Type	Group
1	В	724	TYR	Sidechain
1	В	757	TYR	Sidechain
1	В	796	TYR	Sidechain
1	В	831	TYR	Sidechain
1	В	84	ASP	Peptide
2	С	116	ARG	Sidechain
2	С	139	TYR	Sidechain
2	С	16	PHE	Sidechain
2	С	19	TYR	Sidechain
2	С	57	ARG	Sidechain
2	С	93	TYR	Sidechain
2	D	19	TYR	Sidechain
3	Е	38	ARG	Sidechain
3	Е	39	ARG	Sidechain
3	Е	63	PHE	Sidechain
3	F	113	THR	Peptide
3	F	88	ARG	Sidechain
3	F	9	LYS	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	6738	6760	6760	41	0
1	В	6739	6760	6760	36	0
2	С	1233	1227	1227	4	0
2	D	1233	1227	1227	5	0
3	Е	1529	1491	1491	10	0
3	F	1529	1491	1491	13	0
All	All	19001	18956	18956	94	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (94) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:E:32:LYS:H	3:E:33:PRO:HD2	1.44	0.81
1:A:20:LYS:HG2	1:A:22:GLN:H	1.58	0.68
1:B:67:LYS:HD2	1:B:67:LYS:H	1.62	0.65
1:B:815:ILE:HG23	3:F:147:LEU:HD22	1.81	0.63
1:A:729:ALA:HB1	2:C:88:GLU:HG3	1.85	0.58
3:F:80:ARG:HE	3:F:99:VAL:HG23	1.69	0.58
1:B:773:ARG:HD3	1:B:773:ARG:H	1.69	0.58
3:E:23:ASP:H	3:E:31:PRO:HA	1.69	0.56
1:A:256:ALA:HB3	1:A:450:ARG:HH12	1.71	0.56
1:A:758:ARG:HE	1:A:759:LEU:H	1.53	0.55
1:B:197:THR:HG22	2:D:127:ARG:HH12	1.70	0.55
1:A:206:THR:HB	1:A:207:LYS:HB2	1.89	0.55
1:A:187:ILE:HD12	1:A:221:ASN:HD21	1.72	0.55
1:B:135:GLN:HB3	1:B:140:ARG:HH11	1.72	0.54
1:B:814:VAL:HG21	3:F:39:ARG:HH21	1.73	0.54
1:B:773:ARG:H	1:B:773:ARG:CD	2.20	0.54
1:A:160:MET:HB2	1:A:167:GLN:HB2	1.89	0.54
3:E:32:LYS:H	3:E:33:PRO:CD	2.18	0.54
2:D:51:ASN:HD21	2:D:74:ILE:HD11	1.73	0.53
3:F:42:ARG:H	3:F:123:ASP:H	1.56	0.53
1:A:356:LEU:HD13	1:A:425:ALA:HB2	1.91	0.52
1:A:663:SER:O	1:A:667:THR:HG23	2.09	0.52
3:E:178:ILE:HG22	3:E:180:ILE:H	1.75	0.51
1:A:830:TRP:CH2	3:E:111:PHE:CE1	2.99	0.51
1:B:833:LEU:HD21	3:F:171:PRO:HB3	1.91	0.51
1:A:4:ASP:HB3	1:A:14:SER:HA	1.94	0.50
3:F:54:HIS:O	3:F:54:HIS:CG	2.65	0.48
1:A:248:HIS:CE1	1:A:449:LYS:HA	2.48	0.48
1:A:581:ALA:HA	1:A:697:CYS:SG	2.53	0.48
1:B:815:ILE:HG22	1:B:819:LEU:HD12	1.95	0.48
1:B:826:ARG:HH11	3:F:170:ALA:HA	1.79	0.47
1:B:244:PHE:CZ	1:B:664:LEU:HD21	2.49	0.47
3:F:44:GLY:H	3:F:120:ALA:HA	1.80	0.47
1:B:137:TYR:CE2	1:B:150:PHE:CE2	3.02	0.47
1:B:792:TRP:CH2	2:D:147:ILE:HD12	2.49	0.47
3:F:96:ASP:HA	3:F:99:VAL:HG12	1.96	0.47
1:A:100:LEU:HD22	1:A:118:VAL:HG23	1.96	0.47
2:C:15:HIS:HA	2:C:18:ILE:HD12	1.96	0.47
1:A:650:SER:HA	1:A:653:TYR:CD2	2.50	0.46
1:B:828:TRP:CD1	3:F:186:ILE:HG22	2.50	0.46
1:A:172:THR:HG22	1:A:173:GLY:H	1.81	0.45
3:E:24:ALA:O	3:E:25:ALA:HB2	2.17	0.45

EMD-7029, 6	6SO3
-------------	------

	loue page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:356:LEU:HD12	1:A:356:LEU:H	1.82	0.45
1:B:386:GLY:HA3	1:A:736:PHE:HA	1.99	0.45
1:A:230:ALA:HB1	1:A:281:HIS:H	1.82	0.45
1:A:398:LYS:HB2	1:A:398:LYS:NZ	2.32	0.45
1:B:488:HIS:CD2	1:B:665:HIS:CE1	3.04	0.45
1:A:687:ASP:O	1:A:691:VAL:HG23	2.17	0.45
1:A:312:GLN:HE21	1:A:362:LYS:HB3	1.81	0.44
1:A:808:GLN:HE22	3:E:141:LYS:NZ	2.16	0.44
1:A:751:GLN:HE21	1:A:751:GLN:HA	1.83	0.44
2:D:39:LEU:HD13	2:D:71:PHE:CZ	2.52	0.44
1:A:20:LYS:HA	1:A:24:LYS:HG3	1.99	0.44
1:B:488:HIS:O	1:B:488:HIS:CG	2.71	0.44
3:F:9:LYS:HA	3:F:12:LYS:HB2	2.00	0.44
1:A:104:TYR:CE1	1:A:120:ILE:HG22	2.52	0.43
1:B:579:HIS:CG	1:B:580:TYR:H	2.36	0.43
1:A:459:ILE:HD12	1:A:459:ILE:H	1.83	0.43
1:B:611:SER:HA	1:A:730:SER:HA	2.01	0.43
1:B:759:LEU:HD12	1:B:760:GLY:H	1.83	0.43
1:B:827:ASN:HD21	1:B:831:TYR:HA	1.84	0.43
1:B:771:LEU:H	1:B:771:LEU:HD22	1.84	0.43
1:A:20:LYS:HA	1:A:24:LYS:CG	2.48	0.43
1:B:158:SER:HB3	1:B:715:MET:HA	2.00	0.43
1:A:230:ALA:HB3	1:A:280:TYR:HA	2.00	0.43
1:B:479:ASN:HA	1:B:482:LEU:HG	2.01	0.43
1:B:833:LEU:HG	1:B:837:VAL:HG22	2.00	0.43
1:A:243:LYS:HZ2	1:A:243:LYS:HB3	1.84	0.43
3:F:86:LEU:HD21	3:E:31:PRO:HB2	2.01	0.42
1:B:361:PHE:HB2	1:B:414:ALA:HA	2.01	0.42
1:B:485:PHE:HB3	1:B:489:HIS:CE1	2.55	0.42
3:F:107:ASN:H	3:F:110:MET:HB2	1.84	0.42
3:E:151:LEU:HD23	3:E:151:LEU:HA	1.87	0.42
1:B:406:GLU:HG2	1:B:407:MET:H	1.85	0.42
1:A:230:ALA:CB	1:A:281:HIS:H	2.33	0.42
1:B:41:TYR:CE1	1:B:93:ASP:HB2	2.54	0.42
1:B:718:PRO:HB3	2:D:94:ASP:H	1.85	0.42
1:B:804:LYS:HA	1:B:808:GLN:HG3	2.01	0.41
1:A:459:ILE:HG21	1:A:478:THR:HB	2.02	0.41
1:A:561:VAL:HG12	1:A:562:LYS:N	2.34	0.41
2:C:19:TYR:CD2	2:C:31:ASP:HB3	2.55	0.41
1:A:831:TYR:HA	3:E:115:PHE:CE1	2.55	0.41
1:B:782:LEU:HD13	1:B:786:VAL:HG21	2.02	0.41

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:104:TYR:CD2	1:A:686:ILE:HD11	2.56	0.41
1:A:126:PHE:HB3	1:A:127:PRO:HD2	2.02	0.41
1:A:243:LYS:HZ2	1:A:458:ASP:HB3	1.86	0.41
1:A:41:TYR:CZ	1:A:688:SER:HB3	2.56	0.41
2:C:85:ASP:H	2:C:88:GLU:HB2	1.86	0.41
1:B:834:TYR:H	1:B:835:ILE:HG13	1.86	0.40
1:B:827:ASN:OD1	1:B:831:TYR:CE1	2.73	0.40
1:B:355:HIS:CG	1:B:380:ARG:HD2	2.56	0.40
1:B:157:TYR:CZ	1:B:161:LEU:HD22	2.56	0.40
1:A:84:ASP:H	1:A:112:TYR:HB2	1.87	0.40
1:A:476:ASN:HB3	1:A:579:HIS:CD2	2.57	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	P	erc	entiles	\mathbf{s}
1	А	838/1953~(43%)	675~(80%)	106 (13%)	57 (7%)		1	15	
1	В	838/1953~(43%)	705 (84%)	89 (11%)	44 (5%)		2	19	
2	С	154/156~(99%)	130 (84%)	16 (10%)	8 (5%)		2	19	
2	D	154/156~(99%)	132 (86%)	15 (10%)	7 (4%)		2	21	
3	Е	194/196~(99%)	148 (76%)	31 (16%)	15 (8%)		1	13	
3	F	194/196~(99%)	149 (77%)	28 (14%)	17 (9%)		1	11	
All	All	2372/4610~(52%)	1939 (82%)	285 (12%)	148 (6%)		3	16	

All (148) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	149	LEU

Mol	Chain	Res	Type
1	В	206	THR
1	В	208	GLU
1	В	270	VAL
1	В	358	GLU
1	В	462	PHE
1	В	505	TRP
1	В	515	ALA
1	В	536	MET
1	В	558	PRO
1	В	600	ASN
1	В	731	ALA
1	В	759	LEU
1	В	806	GLN
1	В	836	LYS
3	F	24	ALA
3	F	93	GLN
3	F	127	VAL
3	F	136	ASP
3	F	144	GLU
1	А	369	GLN
1	А	418	SER
1	А	465	PHE
1	А	507	PHE
1	А	511	GLY
1	А	559	ASN
1	А	573	ALA
1	А	600	ASN
1	А	606	GLN
1	А	622	HIS
1	А	768	ALA
1	А	830	TRP
1	А	833	LEU
2	С	22	GLU
2	C	26	LYS
2	C	84	GLU
2	C	92	VAL
2	C	118	THR
3	E	25	ALA
3	E	32	LYS
3	Е	139	GLU
3	E	188	THR
1	В	61	GLN

Mol	Chain	Res	Type
1	В	68	LYS
1	В	141	ARG
1	В	202	LYS
1	В	207	LYS
1	В	516	ALA
1	В	582	GLY
2	D	21	TRP
2	D	153	ASP
3	F	67	ASP
3	F	86	LEU
1	А	3	GLU
1	А	65	GLN
1	А	86	SER
1	A	144	GLU
1	А	269	ARG
1	А	307	TYR
1	А	310	VAL
1	А	311	SER
1	А	316	GLU
1	А	323	ALA
1	А	366	ARG
1	А	471	GLU
1	А	499	LYS
1	А	556	LYS
1	А	560	PHE
1	А	723	ARG
3	Е	51	PHE
3	Ε	159	SER
3	Ε	195	GLY
1	В	3	GLU
1	В	292	GLU
1	В	611	SER
1	В	646	PHE
1	В	677	PRO
1	В	712	PRO
1	В	839	PRO
2	D	2	ALA
2	D	96	ALA
3	F	45	SER
3	F	63	PHE
3	F	103	PRO
1	А	29	LYS

Mol	Chain	Res	Type
1	А	299	LEU
1	А	449	LYS
1	А	525	MET
1	А	567	LYS
1	А	580	TYR
1	А	635	LYS
1	А	719	ASP
1	А	722	GLN
1	А	754	ALA
2	С	2	ALA
3	Е	16	LYS
3	Е	37	LYS
3	Е	48	PHE
3	Е	73	PHE
3	Е	131	ALA
3	Е	166	ALA
3	Е	169	GLU
1	В	27	ASP
1	В	263	TYR
1	В	272	SER
1	В	308	HIS
1	В	405	ASN
1	В	597	ASP
1	В	725	THR
1	В	733	PRO
1	В	803	LYS
2	D	134	ASP
3	F	90	CYS
3	F	172	ILE
1	А	19	ARG
1	А	22	GLN
1	A	23	THR
1	А	199	LYS
1	A	235	ASN
1	А	309	PHE
1	А	389	ALA
1	A	682	GLN
2	С	107	ALA
3	E	152	THR
1	В	2	ALA
1	В	39	GLU
1	В	312	GLN

Mol	Chain	Res	Type
2	D	40	ASP
3	F	26	PRO
3	F	54	HIS
3	F	91	THR
3	F	95	LEU
1	А	61	GLN
1	А	358	GLU
1	А	450	ARG
1	А	582	GLY
1	А	761	ASN
2	С	91	LYS
1	В	77	PRO
2	D	116	ARG
3	F	25	ALA
1	А	228	GLY
1	А	375	THR
1	А	571	GLN
1	В	623	PRO
1	А	712	PRO
1	В	737	VAL
1	А	524	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	721/1689~(43%)	686~(95%)	35~(5%)	25	50
1	В	721/1689~(43%)	686~(95%)	35~(5%)	25	50
2	С	132/132~(100%)	129 (98%)	3 (2%)	50	70
2	D	132/132~(100%)	125~(95%)	7 (5%)	22	47
3	Ε	164/164~(100%)	153~(93%)	11 (7%)	16	41
3	F	164/164~(100%)	157~(96%)	7 (4%)	29	53
All	All	2034/3970~(51%)	1936 (95%)	98~(5%)	29	51

All ((98)	residues	with	a non	-rotameri	c sidec	hain	are	listed	below:
	· /									

Mol	Chain	Res	Type
1	В	8	THR
1	В	34	VAL
1	В	67	LYS
1	В	71	LEU
1	В	109	ILE
1	В	112	TYR
1	В	141	ARG
1	В	142	ARG
1	В	174	GLU
1	В	220	THR
1	В	232	THR
1	В	241	PHE
1	В	302	ASP
1	В	364	ARG
1	В	409	THR
1	В	426	LYS
1	В	517	CYS
1	В	536	MET
1	В	541	THR
1	В	564	LYS
1	В	607	PHE
1	В	671	PHE
1	В	678	ASN
1	В	715	MET
1	В	758	ARG
1	В	771	LEU
1	В	773	ARG
1	В	779	ASP
1	В	817	ARG
1	В	818	ASN
1	В	822	PHE
1	В	831	TYR
1	В	832	LYS
1	В	836	LYS
1	В	837	VAL
2	D	32	LEU
2	D	35	LEU
2	D	54	SER
2	D	60	LYS
2	D	75	LYS
2	D	82	THR
2	D	139	TYR

Mol	Chain	Res	Type
3	F	53	GLN
3	F	64	GLN
3	F	93	GLN
3	F	99	VAL
3	F	143	LYS
3	F	182	LYS
3	F	186	ILE
1	А	19	ARG
1	А	20	LYS
1	А	36	ASP
1	А	75	ASN
1	А	93	ASP
1	А	141	ARG
1	A	149	LEU
1	A	180	THR
1	А	185	LYS
1	А	243	LYS
1	А	252	MET
1	А	280	TYR
1	А	281	HIS
1	А	286	LEU
1	А	305	TYR
1	А	312	GLN
1	А	329	THR
1	A	362	LYS
1	A	364	ARG
1	A	366	ARG
1	A	450	ARG
1	A	458	ASP
1	A	459	ILE
1	A	484	GLN
1	A	567	LYS
1	A	599	VAL
1	A	600	ASN
1	A	692	MET
1	A	725	THR
1	A	742	VAL
	A	746	VAL
	A	757	TYR
1	A	764	VAL
1	A	790	GLN
1	A	809	ARG

\mathbf{Mol}	Chain	Res	Type
2	С	13	ARG
2	С	32	LEU
2	С	42	LYS
3	Е	1	MET
3	Е	14	LYS
3	Ε	16	LYS
3	Ε	42	ARG
3	Ε	54	HIS
3	Ε	59	PHE
3	Е	75	SER
3	Е	108	PHE
3	Е	112	LEU
3	Е	141	LYS
3	Е	188	THR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (31) such sidechains are listed below:

Mol	Chain	Res	Type
1	В	73	GLN
1	В	98	HIS
1	В	219	GLN
1	В	281	HIS
1	В	285	GLN
1	В	340	HIS
1	В	479	ASN
1	В	488	HIS
1	В	489	HIS
1	В	495	GLN
1	В	550	ASN
1	В	665	HIS
1	В	678	ASN
1	В	698	ASN
1	В	722	GLN
1	В	806	GLN
1	В	818	ASN
1	В	827	ASN
2	D	108	HIS
1	А	22	GLN
1	A	50	GLN
1	A	216	GLN
1	A	221	ASN
1	А	293	ASN

Continued from previous page...

Mol	Chain	Res	Type
1	А	552	ASN
1	А	579	HIS
1	А	622	HIS
1	А	698	ASN
1	А	751	GLN
1	А	808	GLN
1	А	816	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-7029. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 216

Y Index: 216

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 167

Y Index: 167

Z Index: 232

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.032. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1954 $\rm nm^3;$ this corresponds to an approximate mass of 1765 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.161 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.161 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	6.20	-	-
Author-provided FSC curve	6.41	7.35	6.53
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-7029 and PDB model 6SO3. Per-residue inclusion information can be found in section 3 on page 4.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.032 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.032).

9.4 Atom inclusion (i)

At the recommended contour level, 0% of all backbone atoms, 0% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.032) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.0000	0.0000
А	0.0000	0.0010
В	0.0000	0.0010
С	0.0000	-0.0010
D	0.0000	-0.0070
Е	0.0000	0.0250
F	0.0000	-0.0260

